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1 The errors

Unfortunately, we have discovered several errors in [2]:

(i) Lemma 5 in Sect. 4 is incorrect. A counterexample is given in Sect. 2 below.
(ii) Theorem5 in Sect. 5 is incorrect. Itwould be correct ifwe could replace t ≥ −Ma

by t ≥ 0 in the condition (39) in Theorem 4, but we are not free to do so, because
the condition t ≥ −Ma is required by the increasing convex stochastic order
used in Theorem 4.

(iii) The presentation of Lemma 3 is incorrect, but this is fixable, as explained in Sect.
3.

(iv) Proposition 1 is incorrect, but this is fixable. This proposition becomes correct
if the condition g(0) = 0 is added, as holds in the intended Erlang example (Ek

for k ≥ 2). The correction is needed because (57) in [2] is missing the term
g(0)h(t).

These errors have serious implications. The error in Lemma 5 invalidates the proofs
of Theorems 1 and 3. The error in Theorem 5 invalidates the proof of Theorem 2. Thus,
Theorems 1–3 become conjectures remaining to be proved or disproved.

The error in the proof of Theorem 1 invalidates the proof of Theorem 8, which
invalidates the proof of Theorem 7. However, we have obtained new results, which
provide a new proof of Theorem 7, as explained in Sect. 4 below.

The original article can be found online at https://doi.org/10.1007/s11134-020-09675-7.
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2 Counterexample to Lemma 5

Wewillworkwith the two-point distributions as defined in Sect. 2.1 of [2]. Assume that
the mean ism = 1, the upper limit of the support is M = 5 and the squared coefficient
of variation is c2 = 1. Let X0 and Xu be random variables with the extremal two-
point cdf’s F0 and Fu , respectively. Then, P(X0 = 2) = 1/2 = P(X0 = 0), while
P(Xu = 5) = 1/17 and P(Xu = 3/4) = 16/17. It is known that X0 ≤3−cx Xu ,
as stated in (34) of [2]. Since E[X0] = E[Xu] = 1 and E[X2

0] = E[X2
u] = 2, we

also have X0 ≤2,2 Xu . However, contrary to Lemma 5 in [2], the ordering Y0 ≡
(X0 − 3/4)+ ≤2,2 (Xu − 3/4)+ ≡ Yu fails to hold. This is easy to see, because Y0
and Yu are the two-point distribution with P(Y0 = 0) = 1/2 = P(Y0 = 5/4), while
P(Yu = 0) = 16/17 and P(Yu = 17/4) = 1/17, so that we have a reverse ordering
of the means: E[Y0] = 5/8 > 1/4 = E[Yu] = E[Xu]− 3/4. For the counterexample
to the ordering under consideration, note that Y0 + t ≥ 0 and Yu + t ≥ 0 for all t ≥ 0,

E[(Y0 + t)2] = t2 + 5t/4 + O(1) and

E[(Yu + t)2] = t2 + t/2 + O(1) as t → ∞,

so that E[(Y0 + t)2] > E[Yu + t)2] for all t sufficiently large. This contradicts the
claim of Lemma 5.

3 Correcting Lemma 3

Lemma 3 is important because it provides a way to apply the theory of Tchebycheff
(T ) systems from [4], as briefly reviewed in [1] and Section 3 of [2]. However, in
the statement of Lemma 3 insufficient care was given to the support of the random
variable Y with distribution � appearing in (22) of [2]. The support of Y should be
chosen so that the integrand φ(u) appearing in (21) of [2] is not identically 0 for any
subinterval of [0, Ma]. Hence, the support of Y should be changed from [0,∞) to a
more general interval, i.e., (22) should be replaced by

φ(u) ≡
∫ b

a
h((y − u)+) d�(y) = h(0)�(u) +

∫ b

u+
h(y − u) d�(y), 0 ≤ u ≤ Ma,

(1)
where

− ∞ ≤ a ≤ 0 < Ma ≤ b ≤ ∞, (2)

� is a cdf of a real-valued random variable Y with a continuous positive density
function over the interval [a, b]. Then, in Lemma 3 of [2] we should replace (25) by
(2) above. The proof also needs to be adjusted accordingly. In particular, the revised
proof is:

Proof First, observe that the finite mgf condition implies that all integrals are finite. In
each case, we can apply Lemmas 1 and 2 of [2] with (1) and (2). To do so, we apply
the Leibniz rule for differentiation of an integral with (1). Using (2), we have
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φ(u) =
∫ b

a
h((y − u)+) d�(y) =

∫ b

u
h(y − u) d�(y) + h(0)�(u) and

φ(1)(u) = −
∫ b

u
h(1)(y − u) d�(y) − h(0)γ (u) + h(0)γ (u)

= −
∫ b

u
h(1)(y − u) d�(y). (3)

For h(x) ≡ x in condition (i), we have h(1)(x) = 1 for all x , so that

φ(1)(u) = −
∫ b

u
h(1)(y − u) d�(y) = −

∫ b

u
d�(y) = −(1 − �(u)), (4)

so that, by the condition on �,

φ(2)(u) = γ (u) > 0 and φ(3)(u) = γ (1)(u) < 0 for 0 ≤ u ≤ Ma . (5)

From the form of φ(3)(u) in (5), we see that the condition on γ is necessary as well as
sufficient. We also see that the UB and LB are switched if instead γ (1)(u) > 0.

Turning to h(x) = x2 in condition (ii), we use h(1)(0) = 0 and h(2)(x) = 2 for all
x with the second line of (3) to get

φ(2)(u) =
∫ b

u
h(2)(y − u) d�(y) = 2

∫ b

u
d�(y) = 2(1 − �(u)) > 0, (6)

so that φ(3)(u) = −2γ (u) < 0 for 0 ≤ u ≤ Ma .
Conditions (iii) and (iv) are both special cases of condition (v), which implies that

φ(3)(u) = −
∫ b

u
h(3)(y − u) d�(y) < 0. (7)

��

4 Application of Lemma 3 to the higher cumulants

In [3], we have applied the corrected Lemma 3 in [2] to develop new extremal results
for the higher cumulants of the steady-state waiting time that provide corrected proofs
of Theorems 7 and 8 in [2]. These bounds for higher cumulants are interesting and
important because they clearly demonstrate the value of Lemma 3 in [2] and highlight
its limitation for treating themean. In particular, the decreasingpdf condition inLemma
3 (i) prevents positive results for the mean that we now obtain for the higher cumulants
from Lemma 3 (ii) and (iii).
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