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Abstract

We develop new rules for assigning available service representatives to customers in customer
contact centers and other large-scale service systems in order to create effective work breaks for
the service representatives from naturally available idleness. These are unplanned breaks occurring
randomly over time. We consider both announced breaks as well as unannounced breaks. Our goal
is to make the mean and variance of the interval between successive breaks suitably small. Given
a target break duration, we propose assigning idle servers based on the elapsed time since their
last break. We show that our proposed server-assignment rules are optimal for the many-server
heavy-traffic (MSHT) fluid model. Extensive simulation experiments support the proposed server-
assignment rules in practical cases and confirm the MSHT approximation formulas when the number
of servers is very large.

Keywords: work breaks; server-assignment rules; customer contact centers, large-scale service sys-

tems; many-server heavy-traffic limits; fluid models.
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1 Introduction

In this paper we apply queueing models to investigate new rules for assigning available (idle) servers

to customers that redistribute the cumulative idleness to create effective work breaks for the service

representatives. In doing so, we identify two different kinds of unplanned work breaks, unlike the

conventional planned breaks that can be part of a daily schedule posted in advance: (i) random

announced breaks, and (ii) random unannounced breaks. For announced breaks, the server is told they

will be on break when the break is announced, so that they are “off duty” during the break; for

unannounced breaks, the servers are not told, so that they are always “on call” if needed to meet

customer demand.

We were motivated by customer contact centers (call centers), but concern about the server expe-

rience also arise more widely, e.g., in the evolving sharing economy, such as ad-hoc taxi services. For

customer contact centers, there is now a substantial body of research developing methods for efficient

staffing and operation, as can be seen from Aksin et al. (2007). As these contact centers strive to

improve customer experience, a key step in the process may be overlooked: how to enhance call center

agent productivity? Without productive agents, it is impossible to provide superior customer support.

As reviewed in §5 of Aksin et al. (2007) on human resource issues, many studies on work-related

stress have documented emotional exhaustion and burnout experienced by service representatives. This

is attributed to handling high volumes of calls and difficult customers, while being required to meet

high performance metrics, e.g., see Sawyerr et al. (2009), Lin et al. (2010). In addition to work overload,

service representatives often do the same routine tasks every day and adhere to rigid call scripts, which

can be monotonous. This negative impact can decrease productivity and job satisfaction.

One way to help improve employee satisfaction and productivity is to provide adequate within-day

work breaks. In addition to the common meal breaks, which last about an hour, it may be desirable

to include shorter within-day work breaks of about 5 minutes. The importance of work breaks has

been studied within the literature on organizational behavior and work psychology, beginning with the

classic studies by Taylor (1911) and Mayo (1933), and expanding in recent years, e.g. , Jett and George

(2003), Trougakos and Hideg (2009) and Fritz et al. (2013).

1.1 Our Objectives

Here we apply queueing models to first consider unannounced breaks and then afterwards announced

breaks. Servers would naturally prefer announced breaks, but unannounced breaks are attractive

because, unlike announced breaks, they can be non-idling (work-conserving); i.e., no customer waits in
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queue if there is an available server, so that the customers experience no performance degradation.

Our broad goal is to determine if it is possible to redistribute idleness to create effective work breaks

and, if so, how to do so. For that purpose, we assume that we have a standard G/GI/n queueing model

with n homogeneous servers working in parallel. We assume that there is a target break duration θ.

Motivated by call centers, for our simulation examples we focus on a base case, which is the M/M/n

model with n = 100 servers, traffic intensity ρ = 0.9, mean service time E[S] = 1 and θ = 5/3. We

are thinking of calls having a mean duration of 3 minutes, so an hour is a time interval of length 20

with E[S] = 1. Very roughly, we would like to obtain a 5-minute break every 1 − 2 hours. That goal

translates to a break of length 5/3 every time interval of 20 − 40. That goal is feasible for ρ = 0.9

because each server is idle (1 − ρ) × 100% = 10% of the time, which is 6 minutes every hour or 12

minutes every two hours.

We first study unannounced breaks. To evaluate them, we introduce a specific criterion. Let

T ≡ T (θ) be the steady-state interval between successive breaks, i.e., the elapsed time from the end of

one break to the end of the next. Our main goal is to minimize E[T ].

However, we also want to control the variability of T , which we represent by the standard deviation

SD(T ). We want both E[T ] and SD(T ) to be suitably small. The second goal leads to multiple-

criteria decision making. We will consider a strong form of optimality involving lexicographical order

in which we first minimize E[T ] and then, from the set of optimal policies, minimize the variance

SD(T ). Alternatively, we could look at weighted averages wE[T ] + (1−w)SD(T ) for 0 < w < 1.

1.2 Our Main Contributions

(i) The standard longest-idle-server-first (LISF) server-assignment rule and natural alternatives such

as the random routing (RR) rule generate unannounced breaks, because we call all idle times

exceeding θ breaks. However, we show that these rules generate breaks too infrequently.

(ii) Hence, we introduce server-assignment rules that assign idle servers according to the elapsed

time since their last break ended, which we call “the age.” We first assign idle servers who have

completed a break (are experiencing an idle time greater than or equal to θ), assigning the idle

server with the largest elapsed idle time first. After all those servers are assigned, we assign the

idle servers not currently on break (with current idle times less than θ), assigning the server with

the least age first. Thus we always assign the idle server least due a break. We call this first

server-assignment rule D1 ≡ D1(θ), using D for “dynamic priority” and “due for a break.”
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(iii) We show that important insight into this server-assignment problem can be gained by considering

many-server heavy-traffic (MSHT) limits in which the arrival rate and number of servers are

allowed to grow, while the service-time distribution is held fixed. In particular, we show that the

D1 rule and the variant introduced for announced breaks, all are optimal for the fluid model,

minimizing E[T ] (in fact lexicographically optimal, first minimizing E[T ] and then minimizing

SD(T )). Explicit formulas for the steady-state performance show that (i) the distribution of T is

insensitive to the arrival process beyond its rate and (ii) the mean E[T ] is also insensitive to the

service-time distribution beyond its mean, but (iii) the standard deviation S(T ) increases with

increasing service-time variability.

(iv) We show that the lexicographical optimality criterion can play an important role by identifying

another rule that also minimizes E[T ] for the MSHT fluid model, but produces much larger

SD(T ). That rule is the natural myopic alternative to D1 in which we first assign idle servers

who have completed a break and then use the shortest-idle-server-first (SISF) rule, looking at the

current level of the elapse idle time instead of the age.

(v) We also consider announced work breaks, for which we necessarily lose the non-idling property.

(With announced breaks, servers on break remain idle even if customers wait in queue.) We pro-

pose a modification of the rule D1(θ) for announced breaks: With D2 ≡ D2(θ, τ, η) we announce

a work break whenever the age exceeds a threshold τ . (For a busy server, the break begins upon

service completion; for an idle server, the break begins immediately.) During the break, the server

is then off duty, and so unavailable to serve new demand until the break is over. In addition, we

impose an upper bound η on the number of servers that can be on break at any one time. If a

server cannot be given a break, it is given high priority for a future break.

(vi) We propose a way to evaluate the tradeoff between the frequency of announced breaks and

the resulting performance degradation for the customers being served. As a specific criterion,

we propose minimizing a cost function that is a weighted sum of the proportion of customers

experiencing a delay before starting service and the proportion of server idle time not devoted to

announced breaks.

(vii) Finally, we report results of extensive simulation experiments. These simulation experiments

show for the base case with n = 100 that the standard LISF server-assignment rule and the RR

variant do not generate sufficient breaks, but the new server-assignment rules do. For large n,
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the simulations confirm the MSHT fluid model formulas, but the MSHT fluid model provides

only a crude approximation for the base case, so that simulation also provides an important

contribution.

1.3 Related Literature and Organization

This paper is in the same spirit as other performance analysis studies that recognize and respond to the

preferences and concerns of the service representatives. First, Whitt (2006b) developed a mathematical

model to help analyze the benefit in contact-center performance gained from increasing employee

(agent) retention, which is in turn obtained by increasing agent job satisfaction. Sisselman and Whitt

(2007) introduced preference-based routing as a means to allow call center agents to help choose what

calls they handle; see Biron and Bamberger (2010) for a related industrial psychology study. See §5 of

Aksin et al. (2007) for further discussion.

Recent research by Chan et al. (2014) and Mandelbaum et al. (2012) has responded to the concern

that server assignment rules should be fair to service representatives as well as customers. This includes

a recognition that the service-time distributions of different representatives might not be identical; see

Armony and Ward (2010), Atar (2008), Atar et al. (2011).

There is a large literature on MSHT limits and approximations. The MSHT fluid model for the

steady-state performance in §3 is a variant of the standard MSHT fluid model with the first-come first-

served (FCFS) service discipline and, if considered, the LISF server-assignment rule, in Whitt (2006a),

Liu and Whitt (2012a) and Kaspi and Ramanan (2011), but here we consider the underloaded quality-

driven (QD) regime. Convergence to steady-state for that standard fluid model is considered in §5 of

Liu et al. (2011) and in Theorem 3.9 and §6 of Kaspi and Ramanan (2011). For the standard model,

MSHT limits are established in Kaspi and Ramanan (2011) and Liu and Whitt (2012b, 2014). Since we

are considering the QD MSHT regime, the standard MSHT limit is the same as for the infinite-server

system in Theorem 3.1 of Pang and Whitt (2010).

This paper is organized as follows: In §2 we introduce a general Markov process that describes

the evolution of the system state for the D1 server-assignment rule. It also can be used for other

server-assignment rules that exploit the elapsed times since the last service completion and the last

break. We also discuss important conservation laws and show that breaks occur too infrequently with

the LISF and RR rules. In §3 we establish our results for the MSHT fluid model. We report results of

simulation experiments for the D1 rule yielding unannounced breaks in §4 and for the D2 rule yielding

announced breaks in §5. Finally, in §6 we draw conclusions. We present additional supporting material
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in an appendix.

2 The Stochastic Model for the D1 Server-Assignment Rule

We consider the standard M/GI/n multi-server queueing model with n homogeneous servers working

in parallel and unlimited waiting space. The service times come from a sequence of independent and

identically distributed (i.i.d.) random variables Si having finite mean and variance. Without loss of

generality (by choosing the measuring units for time), we let the mean service time be E[S] ≡ µ−1 ≡ 1,

where ≡ denotes equality be definition. There is a Poisson arrival process with arrival rate λ ≡ ρ < 1

that is independent of the service times. Hence, the inter-arrival times Ui are i.i.d random variables

with an exponential distribution having mean EU = 1/λ.

2.1 A Function-Valued Markov Process

Since we want to consider the D1 server-assignment policy as well as alternatives, we extend the model.

Let the target break duration be θ. We call the elapsed time since the last break (idle time of at least

θ) the “age.” Let B(t, x, y) be the number of busy servers at time t with age at most x and elapsed

current service time at most y and let I(t, x, y) be the number of servers that are idle at time t with age

at most x and elapsed idle time (since their last service completion) at most y (necessarily x ≥ y for

I(t, x, y)). Let Q(t) be the total number of customers in the system at time t; let B(t) ≡ B(t,∞,∞)

be the number of busy servers at time t; and let I(t) ≡ I(t,∞,∞) be the number of idle servers at

time t. We clearly have B(t) = min {Q(t), n} and I(t) = max {n−Q(t), 0}.

For the M/GI/n model with ρ < 1 and the D1 server-assignment rule, it is evident that the

stochastic process

(Q,B, I)t ≡ (Q(t), B(t, ·, ·), I(t, ·, ·)) ≡ {{(Q(t), B(t, x, y), I(t, x, y) : x ≥ 0, y ≥ 0} : t ≥ 0} (2.1)

as a function of t is a Markov process with general state space. We will be interested in the steady-state

behavior, which we assume is well defined. In particular, with ⇒ denoting convergence in distribution,

we assume that, for any initial state (Q,B, I)0, (Q,B, I)t ⇒ (Q,B, I); i.e., as t → ∞,

{(Q(t), B(t, x, y), I(t, x, y)) : x ≥ 0, y ≥ 0} ⇒ {(Q,B(x, y), I(x, y)) : x ≥ 0, y ≥ 0} ≡ (Q,B, I) (2.2)

and when the initial state (Q,B, 0)0 is the limit (Q,B, I), (Q,B, I)t becomes a stationary stochastic

process. When we refer to the steady-state quantities, we omit the index t.
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Remark 2.1 (Relation between D1 and LISF) Because D1 is a work-conserving server-assignment

rule, the stochastic process {{Q(t), B(t,∞, y), I(t,∞) : y ≥ 0} : t ≥ 0} is the same as for LISF or any

other work-conserving server-assignment rule with M/GI/n model. The D1 rule only alters the server

idle times and ages.

2.2 Conservation Laws

Conservation laws are important for understanding allocations of idleness in steady state (so we now

omit t). Given that all arrivals are eventually served and that customer service times are not altered

by any of the server-assignment rules, the following (well known) expressions for the steady-state mean

values are valid:

E[B] = ρn and E[I] = (1− ρ)n, (2.3)

where B ≡ B(∞,∞) and I ≡ I(∞,∞). Formula (2.3) implies that, regardless of the server-assignment

rule, each server is idle a proportion 1− ρ of the time. Thus we are concerned with ways to re-allocate

the idle time subject to the constraint that (2.3) remains unchanged.

Let V denote the steady-state interval between successive service times, with V taking on the value

0 when the server is immediately reassigned. Given that each server experiences alternating service

times with E[S] = 1 and idle times, we have the relations

1− ρ =
E[V ]

E[V ] + 1
, so that E[V ] =

1− ρ

ρ
. (2.4)

From (2.4), we see that (i) the server-assignment rule cannot alter E[V ] and (ii) the target break

θ = 5/3 is 15 times larger than E[V ] = 0.1111 in the base case with ρ = 0.9.

Let D be the duration of a break and let T be the interval between successive breaks (end-to-end,

in steady state). Let β be the rate breaks occur, let πβ (πβ,I) be the long-run proportion of time (of

the idle time) during which each server is on break. As further conservation relations, we have

β =
1

E[T ]
, πβ =

E[D]

E[T ]
and πβ,I =

πβ
1− ρ

. (2.5)

We can combine (2.4) and (2.5) to deduce that idle times occur at rate (1 − ρ)/E[V ] = ρ, so the

rate at which breaks occur can be represented as

β =
(1 − ρ)P (V ≥ θ)

E[V ]
= ρP (V ≥ θ). (2.6)

Lemma 2.1 (upper bound on the rate of breaks) Given ρ and θ, the rate at which breaks occur is

bounded above by

β ≤ β∗ ≡
1− ρ

θ
. (2.7)
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which occurs if a proportion p ≡ E[V ]/θ = (1− ρ)/ρθ of the idle times are θ and the rest are 0.

Proof. We can apply (2.6), observing the P (V ≥ θ) is maximized over all possible distributions of

V with mean fixed at E[V ] = (1 − ρ)/ρ by the two-point distribution on θ and 0 that has the given

mean.

Remark 2.2 (conservation laws in the fluid model) The conservation laws in this section have natural

analogs for the associated deterministic fluid model considered in §3. They are identical, except we

remove the n in (2.3).

2.3 LISF and RR in the Base Case

We started by studying the idleness in the M/GI/n model with the LISF and RR server-assignment

rules. In the appendix we develop exact results and approximations for the steady-state distributions

of: (i) the number of idle servers, (ii) the cumulative idleness in a time interval, and (iii) the idle-time

distribution. For the M/M/n base case with n = 100, ρ = 0.9, E[S] = 1 and θ = 5/3, we find that

the cumulative idleness over [0, 40] is sufficient to produce effective work breaks, but the LISF and RR

rules do not generate them frequently enough.

For example, in the base case, LISF produces a steady-state idle time V with approximately a

truncated Gaussian distribution having P (V = 0) = 0.215, E[V ] = (1 − ρ)/ρ = 0.1111 and SD(V ) =

0.100. Since θ = 5/3 is 15.7 standard deviations above the mean, it is highly unlikely that an idle time

will be a break.

In contrast, with RR, V has approximately a mixture of exponential distributions having E[V ] =

(1 − ρ)/ρ = 0.1111 and SD(V ) = 0.176. the standard deviation is larger than for LISF but still the

target θ is more than 9 standard deviations above the mean.

Figure 1 shows histograms estimated by simulation of the steady-state idle-time pdf with LISF and

RR for the base case. In these figures the atom at time 0 is omitted from the histogram. Consistent with

the analysis above, these histograms have the suggested form, i.e., approximately truncated Gaussian

for LISF and a mixture of exponentials for RR. The histograms show that there is a significantly greater

chance that an idle time could serve as a work break for RR than for LISF, but neither is sufficient.

3 The MSHT Fluid Model for Age-Based Server-Assignment Rules

We can better understand why our server-assignment rules are attractive candidates for creating work

breaks with large scale by considering the many-server heavy-traffic (MSHT) limiting fluid model,
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Figure 1: Histograms estimated by simulation (with the atom at 0 removed) of the steady-state idle-
time distribution with LISF (left) and RR (right) for the base case.

which arises as the limit in a functional weak law of large numbers (FWLLN) for the stochastic model

in §2. The age-based server-assignment rules are much easier to analyze for the fluid model because

the discrete stochastic processes are replaced by continuous divisible deterministic processes, which we

refer to as fluid processes. Thus, for the fluid model our proposed D1 server-assignment rule achieves

the maximum possible rate of breaks in Lemma 2.1.

3.1 Many-Server Heavy-Traffic (MSHT) Limits

For the MSHT FWLLN, we consider a sequence of G/GI/n models indexed by n, where in model n the

number of servers is n and the arrival rate is λn = nρ for 0 < ρ < 1, while the service-time distribution

is held fixed. (For these asymptotic results, we can extend the arrival process from M to G; we only

require that the arrival process satisfy a FWLLN.) Since we have ρ < 1, the MSHT limit is in the

underloaded quality-driven (QD) many-server heavy-traffic regime. The QD regime is required for the

idleness of each server to be non-negligible in the limit, as required for non-negligible breaks.

The MSHT FWLLN states that

(Q̄, B̄, Ī)t,n ⇒ (Q̄, B̄, Ī) as n → ∞ (3.1)

for each t (actually uniformly in t over bounded intervals), where we average for each n; i.e.,

(Q̄, B̄, Ī) ≡ n−1(Q,B, I)t,n (3.2)

with (Q,B, I)t,n being (Q,B, I)t defined in (2.1) above for model n and (Q̄, B̄, Ī) is the limiting deter-

ministic fluid process. We propose to approximate the performance of the stochastic process (Q̄, B̄, Ī)
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for large n and t by the steady-state of the limiting fluid model, denoted by (Q,B, I)∞,∞.

As depicted in Figure 2, there are actually four limits supporting this approximation. First, the

(Q,B,I)n,t

(Q,B,I)∞,∞
(Q,B,I)∞,t

(Q,B,I)n,∞t ∞ 

steady-state limit

for the averages in the 

stochastic model

t ∞ 

steady-state limit

for fluid model

n ∞ 

MSHT limit

n ∞ 

MSHT limit
I

Figure 2: The four limits as n → ∞ and t → ∞ starting with the averages in the stochastic model
(upper left) and leading to the steady-state of the MSHT fluid model (lower right).

assumed steady-state convergence in (2.2) implies associated limits as t → ∞ for the averages in the

stochastic model for each n, as shown in the top arrow. To get to the steady-state of the fluid, there are

two possible iterated limits for the averages (Q̄, B̄, Ī)t,n in (3.2): limn→∞ limt→∞ and limt→∞ limn→∞.

We will not derive these limits in this paper. Instead, to focus on the central applied issue, here

we assume that these two iterated limits exist and coincide, and here derive the explicit form of the

steady-state of the D1 fluid model (Q,B, I)∞,∞, which is shorthand for {(Q,B(x, y), I(x, y)) : x ≥

0, y ≥ 0}∞,∞, which we will hereafter refer to as (Q,B(x, y), I(x, y)).

3.2 The Deterministic MSHT Fluid Model for D1(θ)

We now consider the underloaded deterministic MSHT fluid model associated with the D1 server-

assignment rule. For the fluid model we let the capacity (maximum possible service rate) be 1 and

refer to the model as the “G/GI” MSHT fluid model. (The fluid model for G arrivals is the same as

for M .) The key parameters are the traffic intensity ρ (assumed to satisfy 0 < ρ < 1), the target length

of each break θ and the service-time cdf F (assumed to have a density and finite first two moments).

We will focus on the steady-state behavior.

It is natural to think of the experience of individual atoms of fluid as following stochastic processes.

For example, a major component of the G/GI/n stochastic model for each n is a sequence of random

service times. For each n, this is a sequence of i.i.d. random variables each distributed as a random

variable S with cdf F , mean E[S] = 1 and a finite variance σ2. It is natural to speak of random variables,
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but the distributions should be interpreted as proportions in the fluid model. For the fluid model, we

understand that F (x) is the proportion of fluid that is served within time x after it started service.

Stochastic properties such as independence are also captured in the natural way. The proportion of

server fluid that experiences two consecutive service completions by time x is P (S1 + S2 ≤ x), where

S1 and S2 are i.i.d. random variables, with the usual convolution distribution.

From Remark 2.1, we see that much of the fluid model is already contained in Whitt (2006a) and

Liu and Whitt (2012a); we make the same technical smoothness assumptions here. A key insight is

that, for the D1 fluid model, we can directly apply the previous fluid results in those papers. .

The D1 rule acts to first reassign all idle server fluid content with current idle time exceeding θ, with

the fluid having largest idle time being assigned first, thus determining β. After that is accomplished,

the D1 rule assigns the idle server fluid content with current idle time less than θ, with the least age

being assigned first. We will show that, with the continuous divisible deterministic fluid, the D1 policy

produces a remarkably simple steady-state solution, in which we achieve the maximum possible rate

of breaks. For D1, we show that there is a unique time τ∗ such that all fluid that is in service beyond

τ∗ remains idle after a service completion for duration θ and thus receives a break, while all fluid that

completes service before τ∗ is immediately reassigned.

3.3 Relevant Renewal Theory

Given that we will consider 0-length idle times, we want to understand the implications of consecutive

service times. An important role is played by the renewal counting process N ≡ {N(t) : t ≥ 0}

associated with those service times, i.e.,

N(t) ≡ max {k ≥ 0 : S0 + S1 + · · ·+ Sk ≤ t}, t ≥ 0, (3.3)

where S0 ≡ 0.

We will exploit the mean of the renewal process, called the renewal function,

m(t) ≡ E[N(t)], t ≥ 0, (3.4)

and the associated renewal excess (after time t),

R(t) ≡ SN(t)+1 − t, t ≥ 0. (3.5)

As in §3.3 of Ross (1996), we apply Wald’s equation to express the expected value as

E[R(t)] = E[S](E[N(t)] + 1)− t = E[N(t)] + 1− t for all t ≥ 0. (3.6)

11



or, equivalently,

t+ E[R(t)] = E[N(t)] + 1 = m(t) + 1 for all t ≥ 0. (3.7)

As a regularity condition, we assume that m(t) is continuous and strictly increasing with m(0) = 0, so

that m(t) has a unique inverse; it suffices for the service-time pdf f to be continuous and positive in a

neighborhood of the origin (but not necessarily f(0) > 0); see §XI.3 of Feller (1971).

Because the service distribution has a density (and thus is nonlattice) with σ2 < ∞, see Proposition

3.4.8 of Ross (1996),

R(t) ⇒ Se as t → ∞ (3.8)

and

E[R(t)] → E[Se] =
ES2]

2E[S]
=

E[S](c2s + 1)

2
as t → ∞, (3.9)

where Se is a random variable with the equilibrium-excess cdf Fe associated with the service time cdf

F (t) ≡ (S ≤ t), i.e.,

Fe(t) ≡ P (Se ≤ t) ≡
1

E[S]

∫ t

0
P (S > u) du, t ≥ 0. (3.10)

By equation (2) of Eick et al. (1993),

E[Sk
e ] =

E[Sk+1]

(k + 1)E[S]
, (3.11)

so that for our case in which E[S] = 1, we have

E[Se] =
E[S2]

2
=

1 + c2s
2

, (3.12)

where c2s ≡ σ2/E[S]2 = σ2 and

V ar(Se) = E[S2
e ]− (E[Se])

2 =
E[S3]

3
−

(

E[S2]

2

)2

. (3.13)

For applications, provided that t is not too small, we thus might use the approximation

R(t) ≈ Se and E[R(t)] ≈ E[Se]. (3.14)

For special distributions, Se can serve as an upper bound for R(t). In particular, if F has the increasing

mean residual life (IMRL) or decreasing failure rate (DFR) property, then the distribution of R(t) is

increasing in t in the sense of increasing convex order or stochastic order, respectively; see Brown (1980,

1981). The H2 example we consider in §4.5 has the DFR property.

Alternatively, we can explicit numerical results by computing m(t) ≡ E[N(t)] and E[R(t)] numeri-

cally, e.g., by numerical transform inversion, as discussed in §13 of Abate and Whitt (1992).
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3.4 The Performance of the Age-Based Server Assignment Rules

Recall that we consider the G/GI fluid model with: (i) fluid service capacity 1, (ii) arrival rate ρ < 1,

(iii) service-time proportions with cdf F (x) ≡ P (S ≤ x) having pdf f with mean 1 and finite variance

σ2, (iv) the D1 server-assignment rule with target work breaks of length θ, where m ≡ (1 − ρ)/ρ < θ

and (v) in steady-state. We assume that the service-time renewal function m(t) in (3.4) is strictly

increasing and continuous on [0,∞). Let
d
= denote equality in distribution.

Theorem 3.1 (the steady-state of the MSHT G/GI fluid model with rule D1(θ)) Under the conditions

above, (a) there exists a unique time τ∗ ≡ τ∗(ρ, θ, F ), 0 < τ∗ < ∞, such that all fluid completing service

with age at least τ∗ is given a break of length θ, and thus is assigned exactly θ time units later, while

all fluid completing service with with age less than τ∗ is reassigned instantaneously and so experiences

0 idle time. The critical time τ∗ is the unique root of the equation

m(τ∗) =
1

p
− 1 > 0, (3.15)

where p ≡ (1 − ρ)/ρθ < 1 and m(t) is the renewal function associated with the service-time cdf F in

(3.4). As a consequence, work breaks (idle times of length at least θ) occur at the upper bound rate

from Lemma 2.1,

β∗ =
1− ρ

θ
= pρ, (3.16)

independent of the service cdf F beyond its mean.

(b) The proportion of fluid that experiences time less than or equal to x between breaks is P (T ∗ ≤ x),

where T ∗ ≡ T (τ∗) is a nondegenerate random variable with

T ∗ d
= τ∗ +R(τ∗) + θ = N(τ∗) + 1 + θ, (3.17)

where N(t) is the renewal counting process associated with the cdf F and R(t) is the renewal excess, so

that

E[T ∗] = m(τ∗) + 1 + θ =
1

β∗
and V ar(T ∗) = V ar(R(τ∗)). (3.18)

(c) The steady-state densities of the server fluid content in service with age x, b(x), and idle server

fluid content with age x, g(x), satisfy

b(x) = β∗1{0≤x<τ∗} + β∗P (R(τ∗) ≥ x− τ∗)1{τ∗≤x<∞} (3.19)

and

g(x) = 0 · 1{0≤x<τ∗} + β∗P (R(τ∗) ≤ x− τ∗)1{τ∗≤x<τ∗+θ}
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+β∗(P (x− τ∗ − θ ≤ R(τ∗) ≤ x− τ∗)1{τ∗+θ≤x<∞} (3.20)

for β∗ in (3.16), τ∗ the solution of equation (3.15) and R(t) the renewal excess in (3.5). As a conse-

quence, the associated cumulative functions satisfy

0 = I(τ∗,∞) < I(x,∞) < I(∞,∞) ≡ I = 1− ρ, τ∗ < x < ∞, (3.21)

and

B(τ∗,∞) = β∗τ∗ < B(x,∞) < B(∞,∞) ≡ B = ρ, τ∗ < x < ∞. (3.22)

(d) As a consequence, D1 is lexicographically optimal for the fluid model, first minimizing E[T ] and

then minimizing V ar(T ).

Proof. It is immediately evident that the claimed performance is consistent with the D1 rule, because

all idle server fluid content that has been idle for exactly θ experiences a break and is then immediately

assigned to service. On the other hand, all the rest of the fluid (the fluid with age less than τ∗) is

immediately reassigned upon service completion. Moreover, by Lemma 2.1 and Remark 2.2, the rate

of breaks is the maximum possible. However, it remains to show that a unique policy of this form can

be realized and what its performance consequences are.

The key to a short proof is converting the present model into the model in Whitt (2006a) and Liu

and Whitt (2012a) by creating a new “macro service-times,” which combines the consecutive service

times experienced between breaks. Given τ∗, the new combined service-time is S̃ ≡ τ∗+R(τ∗) with cdf

is F̃ and pdf f̃ . Thus, in the underloaded D1 fluid model, each atom of fluid experiences alternating

breaks of length θ, which we think of as interarrival times, and service times with cdf F̃ . The steady-

state performance of this D1 model coincides with the previous G/GI fluid model if we consider the

service-time cdf F̃ and a fluid arrival process with rate β∗E[S̃]. The higher arrival rate is balanced by

the longer service time; i.e.,

b(x) = (β∗E[S̃])f̃e(x) = (β∗E[S̃])(F̃ c(x)/E[S̃]) = β∗F̃ c(x), (3.23)

which coincides with (3.19). The density b in (3.23) then coincides with (3.2) in Theorem 3.1 (a) of

Whitt (2006a). The density g in (3.20) follows from observing that all idle fluid remains exactly for

time θ after it arrived.

It remains to show that there exists a unique pair (τ∗, β∗) satisfying (3.15) and (3.16). To start, the

renewal function has a unique inverse, because we have made assumptions that ensure it is continuous

and strictly increasing. Thus, (3.15) necessarily has a unique solution.
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On the other hand, given the form of the busy-server density b(x) in (3.19), and the total busy

server content B = ρ, we have ρ = β∗τ∗ + β∗E[R(τ∗)] = β∗(m(τ∗) + 1), where β∗ is the rate breaks

occur. Hence,

β∗ = ρ/(m(τ∗) + 1). (3.24)

Given the D1 policy, For T ∗ in (3.17), we also have T ∗ d
= τ∗ + R(τ∗) + θ, where R(τ∗) is the residual

service time beyond τ∗, so that

β∗ =
1

E[T ∗]
=

1

m(τ∗) + 1 + θ
. (3.25)

Combining (3.24) and (3.25), we obtain the unique solution with τ∗ in (3.15) and β∗ in (3.16). We

remark that, as an alternative argument, we could also apply (2.4) and Remark 2.2: On average, each

server experiences, m(τ∗) idle times of length 0 followed by one of length θ. Hence,

E[V ] =
θ

m(τ∗) + 1
= m =

1− ρ

ρ
, (3.26)

from which we also obtain (3.15). Because there is a unique solution to equation (3.15), there is a

unique fluid performance associated with D1.

Finally, it remains to establish the lexicographical optimality. The analysis above shows that mini-

mizing the mean E[T ] requires the two-point idle-time distribution, which is tantamount to immediately

assigning all fluid with age less than τ∗ the instant it completes service. At first glance, it might appear

that D1 is the only server-assignment rule minimizing E[T ] (and maximizing the rate of breaks) for the

fluid model, but that is not the case. We can obtain alternative rules with the same E[T ], but higher

variance V ar(T ), by changing which fluid is immediately reassigned after completing service. The only

remaining freedom if we fix the mean E[T ] at the optimal value is which fluid we assign immediately

upon completing service. The only alternatives involve randomizing over the age while holding the

mean E[T ] fixed, but that additional randomization necessarily increases the variance, by virtue of

convex stochastic order, as in §9.5 of Ross (1996). An example is the SISF rule discussed in the next

section.

Corollary 3.1 (equivalence for D2 with appropriate parameters) Under the conditions of Theorem 3.1,

for the G/GI fluid model, the server assignment rule D2(θ, τ) coincides with the D1(θ) rule if τ = τ∗

and η ≥ 1− ρ.

Remark 3.1 (the experience of individual servers) Individual servers (atoms of fluid) experience alter-

nating busy periods distributed as TB
d
= τ∗+R(τ∗) and idle periods of length TI ≡ θ, which form an al-

ternating renewal process with i.i.d. busy cycles distributed as T ∗ = TB+TI , as in §3.4.1 of Ross (1996).
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The form of the age densities in (3.19) and (3.20) can be explained by this alternating renewal process

structure; e.g., by Theorem 4.8.4 of Ross (1996), b(x) = P (TB > x)/E[T ∗] = β∗P (τ∗ +R(τ∗) > x).

With simulation data, it is natural to observe the steady-state age of busy and idle fluid. Thus,

we naturally observe densities of random variables AB and AI having the conditional age distribution

for fluid in service (or idle) in steady state, conditional on it being busy (or idle). Clearly, AB and AI

have densities b(x)/ρ and g(x)/(1 − ρ), respectively. What we see at an arbitrary time in steady state

can be understood from the renewal structure.

Remark 3.2 (exponential service) The solution in Theorem 3.1 simplifies if the service time S is a

mean-1 exponential, M(1), because then m(τ∗) = τ∗ and R(x∗)
d
= M(1), so that τ∗ = (1/p) − 1 and

T ∗ d
= τ∗ + θ +M(1).

3.5 Other Rules Maximizing the Rate of Breaks: SISF

We now expand upon part (d) of Theorem 3.1 by illustrating an alternative server-assignment rule with

the optimal mean E[T ], but higher variance V ar(T ). The alternative rule is the shortest-idle-server-

first (SISF) rule, which assigns the fluid with current idle time greater than or equal to θ first, just

like D1, but then assigns the fluid with the least (shortest) current idle time first. In fact, it is more

evident that the SISF rule should produce the extremal two-point steady-state idle-time distribution,

because it focuses directly on the current idle time.

The steady-state idle fluid content in the SISF fluid model can be represented by I(y) =
∫ y

0 g(u) du,

t ≥ 0, which represents the idle server content that has been idle for time y. The SISF rule dictates

that we first assign fluid with idle time θ (or above, if present) and then assign idle fluid with age 0

(or above, if necessary). If SISF can achieve routing from the two end points only, then the density g

will be uniform over the interval [0, θ].

To see what is possible, we start with the fluid flow rates. Let λ, δ and α be the steady-state

arrival rate of customer fluid, the departure rate of customer fluid (also the arrival rate of newly idle

server fluid), and the assignment rate of idle server content. These have the obvious steady-state values

λ = δ = α = ρ. Let α0 and αθ be the rate of assignment of fluid that has been idle for time 0 and θ,

respectively. If feasible, then we have α = α0 + αθ. By Lemma 2.1, the maximum possible value of

breaks is αθ = β∗ = pρ, leaving α0 = (1 − p)ρ for immediate reassignment. Thus, SISF does assign

fluid from the two end points only. SISF first assigns all fluid that has been idle for time θ and then

immediately re-assigns a proportion 1−p of the newly idle server content. That makes g(y) = (1−ρ)/θ,

0 < y < θ, and αθ = g(θ−) (the left limit at θ), where g(θ−) = (1 − ρ)/θ = [(1 − ρ)/ρθ]ρ = pρ. That
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routing occurs at each successive service completion time. Thus, the proportion of time between

successive breaks with SISF can be represented by the random sum

T ≈ θ +

N(p)
∑

i=1

Si, (3.27)

where N(p) is a random variable with the geometric distribution on the positive integers having mean

1/p for p ≡ E[V ]/θ = (1 − ρ)/ρθ and Si are i.i.d. mean-1 service-time random variables with cdf F

and variance σ2 that are independent of N(p), so that

E[T ] = θ +
1

p
= θ +

θ

E[V ]
=

θ

1− ρ
=

1

β∗
, (3.28)

as it should, and

V ar(T ) = V ar(S)E[N(p)] + E[S]2V ar(N(p)) =
σ2

p
+

1− p

p2
=

pσ2 + 1− p

p2
=

(

ρθ

(1− ρ)

)2

. (3.29)

which equals 1/p2 = ((ρθ/(1 − ρ))2 when σ2 = 1.

We can easily compare SISF to D1 for M service: For D1, V ar(T ) = V ar(R(τ∗) = V ar(M(1) = 1,

which is less than 1/p2, typically much less. For the base case, 1/p = 15.0, so that V ar(T ) = 225 for

SISF. We will show that these fluid formulas are consistent with simulation for large n.

4 Simulation Experiments for Unannounced Breaks: D1 and SISF

In §4.1 and §4.2 we indicate how we implement the D1 and SISF server-assignment rules in the

simulation. In §4.3 we discuss how we execute the simulation and perform the statistical estimates. In

§4.4 we report simulation results for the M/M/n model in the base case. In §4.5 we report additional

results for the D1 rule with a hyperexponential service-time distribution.

4.1 Implementing the D1 Server-Assignment Rule

Let any idle time greater than or equal to θ be called an (unannounced) break. Following an object-

oriented-programming approach, we treat each server as an “object” from a “server class;” e.g., see

Horstmann (2002). Each server contains three “instance variables,” namely its identity number, service

completion time and break end time. To implement D1 in a virtual environment, we maintain for each

busy server a service-completion time; this value is infinity by default for idle servers. Similarly, for

each idle server we maintain a break end time by acting as if its current idle period will eventually

develop into a break; this value is infinity by default for busy servers.
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We conduct a discrete-event simulation in which no change in the system occurs between consecutive

events. Thus the simulation jumps in time from one event to the next. For D1, three types of events can

happen: (i) customer arrival, (ii) customer departure and (iii) end (completion) of break. The algorithm

maintains (a) a FIFO queue for waiting customers, (b) a high-priority-queue (HPQ) containing all

servers whose elapsed idle time exceeds θ and (c) a sorted list L with all the server other than those in

the HPQ in the order of increasing ages.

At each arrival epoch, we look for idle servers in the HPQ. If any, assign the server at the head

of the HPQ, reset its age to zero and move the server to the head of the list L. Otherwise, we scan

through the list L to find an idle server with the shortest age. We make assignment if there exists such

a server in L; otherwise the customer is put in queue.

For the selected idle server, the algorithm generates a service requirement S from the service-time

distribution and resets its service completion time to t + S. Then we find the minimum service-

completion time among all busy servers and update the departure time accordingly. Searching for

the closest service completion time can be costly if the number of servers n is large. To accelerate

the search, we arrange all busy servers in a binary heap where the root node is the server with the

minimum service completion time. Computationally this is efficient, because it takes O(1) operations

to extract the minimum and O(log(n)) operations to restore the heap structure as new elements enter.

At each departure epoch, we first look for customers in queue. The server gets assigned if the queue

is nonempty. Otherwise the server becomes idle. At this time, we reset its service completion time to

infinity, set the break-end time to t+ θ and update the closest break-end time.

At the end of a break, we move the idle server to the back of the HPQ. That prevents a break from

being much greater than θ, because we first assign idle servers from the HPQ.

4.2 Implementing the SISF Server-Assignment Rule

To implement SISF , we stipulate that each server belongs to one of the three places: (i) the busy-server

pool (BSP), (ii) the low-priority-queue (LPQ) for assignment or (iii) the high-priority-queue (HPQ) for

assignment. For each busy server, we maintain the time for the current task to complete and set this

value to infinity for idle servers. Similarly, for each idle server in the LPQ we maintain a break end

time by assuming that its current idle period would eventually develop into an idle period of length θ;

we set this value to infinity for busy servers as well as (idle) servers in the HPQ.

At each arrival epoch, we look to see if the HPQ is empty; if it is nonempty, we assign the server

at the head of the HPQ. If the HPQ is empty, we look for idle servers in the LPQ and assign a server
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(if any) from the back of the LPQ. We use the first-in first-out (FIFO) discipline in the HPQ, but the

last-in first-out (LIFO) discipline in the LPQ. Because the HPQ is FIFO, we use a circular array to

implement the HPQ. The LPQ is a LIFO queue except that when a break finishes the server at the

head of the LPQ joins the back of the HPQ (at this time we reset its break end time to infinity). We

therefore use a linked-list to efficiently implement the LPQ.

Once a server gets assigned, we put the server into the BSP and attach to it a service completion

time by sampling from the service-time distribution. Here we calculate (update) the minimum service

completion time and let it be the time of next departure. Again we use a binary heap as we did for

rule D1 to speed up the searches for the minimum service completion time among all busy servers.

If no customers wait in queue, each customer departure is followed by a removal of a server from the

BSP and its joining the LPQ. At this time, we set its service completion time to infinity and schedule

its next long-idle-period end time.

4.3 Statistical Estimation

Our simulations used r = 20− 50 i.i.d. replications of an M/G/n system observed over a time interval

of length between 2000− 40, 000 depending on the value of n after a warmup period of length 50− 100

to allow the system that started empty to approach steady state. (We remark that the appropriate

choices depend on n, largely because the sample size is proportional to both n and t; see Srikant and

Whitt (1996),Whitt (1989) and Ni and Henderson (2015).) Idle times and periods between successive

breaks are collected from all n servers.

To estimate the probability of an event, we first compute the sampling frequency within each repli-

cation. Then the overall estimate is the sample average of the r values, which should be approximately

Gaussian distributed with unknown variance. Hence, the 95%-confidence interval (CI) is constructed

using the Student-t distribution with t0.025(r − 1); e.g., see §8 of Walpole et al. (1993). For a random

variable X, the first two moments mk ≡ E[Xk], k = 1, 2, are estimated by the sample averages m̄1 and

m̄2 within each replication. Then the overall estimates m̄1 and m̄2 are taken to be the sample averages

of the r values, which again should be Gaussian; e.g., see p. 2 of Ni and Henderson (2015). Hence,

again the 95% CI’s can be constructed in the same way with t0.025(r − 1).

Within each replication, the variance formula is σ2 = m2−m2
1. We therefore estimate the standard

deviation (std) within each replication by σ̄ =
√

m̄2 − m̄2
1. We then obtain r estimates of the std, one

of each replication. We estimate the overall std as the sample average of these. The way to construct

CI for the std is less straightforward, because σ̄ is not normally distributed due to the fact that m2
1 is
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no longer Gaussian. To circumvent this difficulty, we and use sample quantiles to construct the CI.

4.4 Simulation Results

We now report simulation results for D1 and SISF . (More results appear in the appendix.) We

primarily focus on the base M/M/n case with ρ = 0.9, E[S] = 1, n = 100 and θ = 5/3. Table

1 provides simulation estimates of the probability of short and large idle times as a function of the

scale n. Table 1 shows that the performance of the two rules is very similar, but SISF produces an

idle-time distribution slightly closer to the desired two-point extremal distribution in Lemma 2.1. The

fluid model provides the limiting case of n = ∞.

system D1 SISF

size P (Vn ≤ 0.1) P (Vn ≥ θ) P (Vn ≤ 0.1) P (Vn ≥ θ)

n = 25 0.7917± 0.0018 0.0163± 0.0003 0.8257± 0.0012 0.0217± 0.0003

n = 100 0.8240± 0.0013 0.0223± 0.0004 0.8341± 0.0008 0.0293± 0.0004

n = 250 0.8498± 0.0007 0.0317± 0.0003 0.8698± 0.0005 0.0386± 0.0003

n = 1000 0.8896± 0.0008 0.0492± 0.0007 0.9028± 0.0005 0.0546± 0.0005

n = 5000 0.9155± 0.0002 0.0601± 0.0010 0.9236± 0.0003 0.0628± 0.0002

n = ∞ 0.9333± 0.0000 0.0633± 0.0000 0.9333± 0.0000 0.0667± 0.0000

Table 1: Simulation estimates of the probability of short and large idle times as a function of the scale
n for the server-assignment rules D1 and SISF in the base M/M/n case with ρ = 0.9, E[S] = 1 and
θ = 5/3. The fluid model provides the limiting case of n = ∞.

Table 2 shows simulation estimates of the mean and standard deviation of the interval between

breaks, Tn, as a function of the scale n for the server-assignment rules D1 and SISF in the base

M/M/n case. As for the fluid model in §3.5, the means are very similar, but the standard deviation

is much smaller for D1. The fluid model is very helpful for understanding the advantage of D1 over

SISF , but the fluid model does not yield accurate approximations for the base case of n = 100.

Let AB (AI) be a random variable with the distribution of the age of a busy (idle) server at an

arbitrary time in steady state, as discussed in Remark 3.1. Figure 3 shows histograms of these ages

estimated from the simulation results. The vertical y axis has been scaled so that the area under each

histograms is 1, making the histogram an estimate of the density.

From the MSHT fluid model with rule D1, we expect that the ages AB and AI have densities much

like their fluid counterparts b(x)/ρ and g(x)/(1 − ρ) for b(x) and g(x) in (3.19) and (3.20). Table 3

reports estimations of the mean and standard deviation of these age random variables for D1 as a
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system D1 SISF

size E[Tn] SD(Tn) E[Tn] SD(Tn)

n = 25 66.29± 1.12 38.04± 0.71 51.44± 0.49 52.31± 0.89

n = 100 48.06± 0.79 18.73± 0.41 37.85± 0.49 36.68± 0.52

n = 250 33.45± 0.33 9.47± 0.35 28.62± 0.21 27.01± 0.28

n = 1000 20.84± 0.30 3.06± 0.12 20.28± 0.16 18.54± 0.16

n = 5000 16.75± 0.07 1.38± 0.03 17.28± 0.05 15.59± 0.06

n = ∞ 16.67± 0.00 1.00± 0.00 16.67± 0.00 15.00± 0.00

Table 2: Simulation estimates of the mean and standard deviation of the interval between breaks, Tn,
as a function of the scale n for the server-assignment rules D1 and SISF in the base M/M/n case with
ρ = 0.9, E[S] = 1 and θ = 5/3. The fluid model provides the limiting case of n = ∞.

function of n. As before, the case n = ∞ corresponds to the fluid model.

Busy Idle

E[AB] std(AB) E[AI ] std(AI)

n = 100 26.510± 0.051 19.146± 0.072 41.725± 0.068 19.725± 0.083

n = 500 13.178± 0.016 8.395± 0.033 24.858± 0.019 6.565± 0.024

n = 1000 10.518± 0.011 6.380± 0.018 20.865± 0.013 3.828± 0.017

n = 5000 8.399± 0.004 4.935± 0.011 17.378± 0.004 1.797± 0.007

n = ∞ 7.533± 0.000 4.392± 0.000 15.833± 0.000 1.108± 0.000

Table 3: Simulation estimates of the mean and standard deviation of the ages AB and AI in the base
case as a function of n.

It is also useful to look at the pattern of successive idle times over a long horizon. Figure 4 displays

successive idle-times for a set of randomly selected servers in the M/M/n base case. The vertical axis

measures the length of an idle-time and the horizontal axis indexes the successive idle times.

Figure 4 shows that D1 generates occasional long idle times with many very short ones in between.

Over a long horizon, these work breaks occur fairly regularly.

From the results above, we conclude that, unlike LISF and RR, the D1 server-assignment rule can

achieve the desired work breaks. Nevertheless, there are three serious drawbacks in D1. First, Figure

4 shows that that there tend to be long idle periods that occur right before many of the work breaks.

We regard this as undesirable, because we want all long idle periods to be work breaks. Second, closely

rated to the first drawback, the interval between successive breaks tends to be too long, often being
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(a) n = 100 (b) n = 500 (c) n = 5000

(d) n = 100 (e) n = 500 (f) n = 5000

Figure 3: Histograms of the ages AB of a busy server (top) and AI of an idle server (bottom) estimated
from computer simulation for the in the baseM/M/n model with rule D1 for three values of n: n = 100,
n = 500 and n = 5000.

above the interval [20, 40]. Indeed, Table 1 shows that the mean is 48 for θ = 5/3. The full distribution

is shown in Figure 5, with a histogram on the left and the empirical cumulative distribution function

(ecdf) on the right. Finally, we want to announce the work breaks so that the server can be off duty

during the breeak, which is not possible with D1.

4.5 The D1 Rule with a Different Service-Time Distribution

We also examined D1 with non-exponential service-time distributions. We illustrate by briefly dis-

cussing the case of a mean-1 hyperexponential (H2) distribution with variance σ2 = 4 and balanced

means, as in §3.1 of Whitt (1982); additional discussion for this example appears in the appendix.

From (3.14) and Theorem 3.1, the key quantities for the fluid model are

E[R(τ∗)] ≈ E[Se] = 2.50 and SD(R(τ∗)) ≈ SD(Se) = 3.71 (4.1)

At the end of §3.3, we noted that Se is an upper bound for R(t) in stochastic order, because the H2

cdf is DFR. The numerical values in (4.1) should be compared to the corresponding values for M(1):

E[R(τ∗)] = 1 and SD(R(τ∗)) = 1.
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Figure 4: Four sample paths of successive idle times over a time interval of length 300 for D1 in the
base case.
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Figure 5: The histogram (left) and ecdf (right) estimated from simulation of the distribution of T , the
time between breaks, with rule DP1 for θ = 5/3

Table 4 shows simulation estimates of the mean and standard deviation of AB , AI and T as a

function of n in the M/H2/n model with rule D1, ρ = 0.9 and θ = 5/3.

Tables 2-4 provide important confirmation of the fluid model with non-exponential service-time

distribution and the approximation R(τ∗) ≈ Se in (3.14), because the estimates for n = 5000 are
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E[AB] std(AB) E[AI ] std(AI) E[Tn] std(Tn)

n = 100 27.145 ± 0.098 22.059 ± 0.102 37.622 ± 0.106 23.851 ± 0.115 41.663 ± 0.126 23.7531 ± 0.131

n = 250 18.277 ± 0.085 13.584 ± 0.092 29.473 ± 0.089 13.922 ± 0.079 31.748 ± 0.095 13.473 ± 0.104

n = 1000 10.813 ± 0.062 7.249 ± 0.071 20.031 ± 0.075 5.883 ± 0.058 20.495 ± 0.047 5.568 ± 0.072

n = 5000 8.765 ± 0.022 5.789 ± 0.030 17.017 ± 0.028 4.150 ± 0.025 16.725 ± 0.024 3.876 ± 0.030

Table 4: Simulation estimates of the mean and standard deviation of AB , AI and T as a function of n
in the M/H2/n model with rule D1, ρ = 0.9 and θ = 5/3.

close to the analytical values for n = ∞. In particular, consistent with the fluid model, Tables 2-

4 indicate that the mean of T ∗ is independent of the additional service-time variability, while the

standard deviation increases in the variability. The estimated value for SD(T ) of 3.88 from simulation

for n = 5000 is well approximated by SD(Se) = 3.71 in (4.1). However, as before, the fluid model

approximations for n = 100 are not accurate.
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5 The D2(θ, τ, η) Rule for Announced Work Breaks

Theorem 3.1 for the fluid model suggests a natural way to modify D1 to create a rule for announced

breaks: introduce a threshold control parameter τ , paralleling τ∗. For each server, we keep track of the

age and announce a break when the age exceeds τ ; the server is then off duty for time θ. (For a busy

server, the break begins upon service completion; for an idle server, the break begins immediately.)

Any breaks that occur before time τ are unannounced breaks.

Because the servers that are on break are off duty, there can be servers not serving a customer even

though there are customers waiting in queue; i.e., now there is inevitably some level of performance

degradation for customers. To control that performance degradation for customers, we further modify

D2 by imposing an upper bound η on the number of servers that can be on break at any time. A server

due a break when the number of servers on break is η is given high priority for a break in the future.

Clearly, the additional parameters complicate the control. We propose introducing a cost function

to measure the tradeoff between the cost to servers of not getting enough announced breaks and the cost

to customers of performance degradation. We illustrate how such cost functions can be constructed by

using a cost function that is a function two steady-state proportions: (i) the proportion of the idle time

per server spent on an announced break, pA, and the proportion of customers delayed, pD ≡ P (Q ≥ n),

measured relative the value p∗D with no degradation at all.

Specifically, the proposed cost function is

C ≡ C(τ, η) = w(1− pA) + (1−w)(pD − p∗D), (5.1)

where the performance measures pA and pD are functions of the control parameters, while the weight

w with 0 ≤ w ≤ 1 represent our relative concern about the two factors. We have used simulation to

study the performance of the D2(θ, τ, η) rule as a function of the parameters, including choosing the

optimal τ and η to minimize the cost function in (5.1).

5.1 Implementing the D2 Server-Assignment Rule

We consider five types of events: customer arrival, customer departure (service completion), due for a

break, announced break completion and unannounced break completion. We first explain how to treat

the control parameter τ with η = ∞, so it plays no role. Afterwards, we discuss the modifications to

include η.

At each customer arrival epoch, we look for available servers. If any, assign the server with the

shortest age. For the selected idle server, the algorithm generates a service requirement S from the
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service-time distribution and resets its service completion time to t + S. Then we find the minimum

service-completion time among all busy servers and update the departure time accordingly. If there

are no servers available, the arriving customer waits in queue.

At each customer departure epoch, we look for customers in queue. If there is a customer waiting,

assign the newly-available server to the head-of-line customer. Otherwise, let the newly-available server

either become idle or start a break depending on whether or not a high priority designation (to be

explained momentarily) was given. If a high priority designation was given, the break is announced and

the server is off duty and not available to provide service for a duration θ after that time. Otherwise

it remains idle.

At each break due time (when a server’s age reaches τ), if the server is busy, then we give the server

a high priority designation indicating that its next idle period will be replaced by an announced break.

If the server is idle, then the server starts an announced break and goes off duty for the duration θ.

(The elapse idle time at the time of the break is not included in the break, and is counted as part of

the total idle time.)

At each announced-break-end time, we first reset the server’s age to zero. We assign this newly-

available server to a customer if the queue is not empty. Otherwise, the newly-available server stays

idle.

At each unannounced-break-end time, we reset the server’s age to zero. At this time the queue must

be empty because this server was idle but on call.

We now discuss modifications to treat the bound η.

Each time a break is due, if the server is idle and the number of off-duty servers is less than η, then

a break is announced and the server is not available to provide service for the duration θ. On the other

hand, if the server is idle and the the number of off-duty servers equals η, then we give the server a

high-priority designation and do not make the break announcement. Meanwhile, we keep track of the

elapsed time since this high priority designation has been assigned.

At each customer departure epoch, if the queue is non-empty, then the server is assigned to the

customer at the head of the queue. Hence, suppose that the queue is empty. If a high priority

designation was given to that server and the number off-duty servers is less than η, then the break is

announced and the server no longer provides service for the duration θ. Otherwise the server stays idle

but on-call.

At each announced-break-end time, there is a newly-available server. We reset the server’s age to

zero. We assign this newly-available server to a customer if the queue is not empty. Otherwise, the
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newly-available server stays idle. At the meantime we look for other idle servers with a high-priority

designation. If any, choose the one with the longest elapsed time since it received this high priority

level and announce the break.

5.2 Simulation Results for the Base Case

We start by showing in Tables 5 and 6 how the two performance measures pA and pD depend on the

control parameters τ and η for the base M/M/n model with n = 100 and ρ = 0.9. (For this base case,

the delay probability without extra degradation is p∗D = 0.223.)

η = 4 η = 6 η = 8 η = 10

τ pA pA pA pA

τ = 15 0.3714± 9× 10−4 0.5130± 7× 10−4 0.5971± 6× 10−4 0.6301± 8× 10−4

τ = 20 0.3706± 9× 10−4 0.5090± 8× 10−4 0.5734± 8× 10−4 0.5774± 7× 10−4

τ = 25 0.3694± 9× 10−4 0.4939± 8× 10−4 0.5189± 9× 10−4 0.5002± 9× 10−4

τ = 30 0.3661± 9× 10−4 0.4588± 9× 10−4 0.4587± 9× 10−4 0.4489± 9× 10−4

τ = 35 0.3588± 9× 10−4 0.4109± 9× 10−4 0.4041± 9× 10−4 0.3970± 9× 10−4

τ = 40 0.3472± 9× 10−4 0.3672± 9× 10−4 0.3604± 9× 10−4 0.3552± 7× 10−4

Table 5: 95% confidence intervals for the proportion of idle time spent on announced work breaks, pA,
for rule D2(θ, τ, η) as a function of and τ and η for n = 100 and θ = 5/3. The entries in bold are
maximal over η for that τ .

η = 4 η = 6 η = 8 η = 10

τ pD pD pD pD

τ = 15 0.3368± 0.0018 0.4141± 0.0026 0.4860± 0.0020 0.5414± 0.0023

τ = 20 0.3330± 0.0021 0.4076± 0.0021 0.4603± 0.0023 0.4855± 0.0021

τ = 25 0.3319± 0.0022 0.3937± 0.0017 0.4218± 0.0020 0.4339± 0.0025

τ = 30 0.3291± 0.0018 0.3739± 0.0025 0.3887± 0.0025 0.3974± 0.0024

τ = 35 0.3246± 0.0021 0.3510± 0.0024 0.3598± 0.0022 0.3663± 0.0024

τ = 40 0.3206± 0.0020 0.3342± 0.0027 0.3413± 0.0020 0.3449± 0.0028

Table 6: 95% confidence intervals for the steady-state delay probability pD associated with D2(θ, τ, η)
as a function of and τ and η for n = 100 and θ = 5/3.

In addition to the announced breaks, there also are unannounced breaks. Paralleling Table 5, Table

7 shows the proportion of idle time spent on idle periods of size at least θ, denoted by pB , with rule
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D2(θ, τ, η). The proportions are larger in Table 7, because both unannounced and announced breaks

are included.

η = 4 η = 6 η = 8 η = 10

τ pB pB pB pB

τ = 15 0.5041± 6× 10−4 0.5731± 5× 10−4 0.6212± 6× 10−4 0.6407± 8× 10−4

τ = 20 0.5043± 7× 10−4 0.5684± 6× 10−4 0.6022± 9× 10−4 0.6032± 6× 10−4

τ = 25 0.5021± 7× 10−4 0.5587± 6× 10−4 0.5671± 7× 10−4 0.5616± 9× 10−4

τ = 30 0.4991± 9× 10−4 0.5349± 9× 10−4 0.5333± 7× 10−4 0.5278± 6× 10−4

τ = 35 0.4944± 7× 10−4 0.5091± 8× 10−4 0.5045± 9× 10−4 0.5009± 7× 10−4

τ = 40 0.4832± 8× 10−4 0.4872± 5× 10−4 0.4829± 7× 10−4 0.4797± 7× 10−4

Table 7: 95% confidence intervals for the proportion of idle time spent on idle periods of size at least
θ, pB, with rule D2(θ, τ, η) as a function of τ and η for n = 100 and θ = 5/3. The entries in bold are
maximal over η for that τ .

These tables show that η makes much greater difference than τ . Moreover, there is a strong tradeoff

in the choice of η. All three of pD, pA and pB are monotone in τ , but pA and pB are not monotone

in η for fixed τ . The entries in bold show that optimal η for each τ . The values of η where these

maximal proportions occur are decreasing in τ . The corresponding plots for other weights w are shown

in the appendix. Figure 6 shows the cost in (5.1) as a function of τ and η for the base case with weight

w = 0.5. Overall, we see that the cost is minimized by choosing η = 8 with τ = 15 or τ = 20. For

higher τ , the optimal choice shifts to η = 6.

Remark 5.1 (a larger system) The appendix shows corresponding results for a large M/M/n system

with n = 1000, but still ρ = 0.9 and θ = 5.3.

Remark 5.2 (an alternative more elementary server-assignment rule) We identified an alternative

rule that is easier to implement and has comparable performance. This alternative rule still lets servers

go on break when their age exceeds the threshold τ , but otherwise uses the standard LISF rule for

server assignment. Tables and plots for this alternative LISF-based alternative to D2(θ, τ, η) are shown

in the appendix.

Remark 5.3 (comparison to the M/M/(n− b) model with a fixed number b on break) It is interesting

to compare the server-assignment rule D2 to what happens with a fixed number of servers on break.

The appendix shows that the D2 outperforms the alternative with a fixed number b of servers on break,
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Figure 6: The cost in (5.1) as a function of τ and η for D2(θ, τ, η) in the base case with n = 100,
θ = 5/3 and w = 0.5

where a range of b is considered ranging from the greatest integer less than or equal to the average

number on break to the bound η.

6 Conclusions

In this paper we developed new rules for assigning idle servers to customers requesting service in a

contact center in order to create effective work breaks from available idleness. After showing that the

standard longest-idle-server-first (LISF) rule and the random routing (RR) alternative generate breaks

too infrequently in §2.3, we studied the one-parameter rule D1 ≡ D1(θ) yielding unannounced breaks

while maintaining work conservation in §3 and §4, and then studied the three-parameter refined rule

D2 ≡ D2(θ, τ, η) yielding announced breaks by sacrificing work-conservation in §5.

We provided strong theoretical support for these proposed server-assignment rules in §3 by analyzing

them in the many-server heavy-traffic (MSHT) fluid model for the G/GI/n model, which arises as the

MSHT limit as the number of servers n and the arrival rate increase toward infinity, while the traffic

intensity (workload per server) is held fixed at ρ < 1 (the quality-driven MSHT regime). Theorem 3.1

shows that both rules are optimal for this fluid model, minimizing E[T ], the steady-state mean interval

between breaks, yielding the upper bound on the rate of breaks, established in Lemma 2.1. However,

in §3.5 we show that there are multiple rules that achieve this optimal mean. Among all rules that

achieve this minimum mean E[T ], the rules D1 and D2 minimize the standard deviation SD(T ).

Since announced breaks are likely to be preferred, there is interest in the rule D2(θ, τ, η), but it is
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complicated because it causes performance degradation for customers and has more parameters. In §5

we show the the parameters τ and η can be chosen by formulating an optimization that expresses the

tradeoff between the interests of servers and customers.

Finally, we conducted extensive simulation experiments evaluating the new server-assignment rules

D1 and D2. First, the simulation experiments reported in §4 confirm the fluid limit and show that

the rule D1 is effective for generating unannounced breaks in an M/M/n base case with n = 100

servers and ρ = 0.9. Second, the simulation results in §5 show that simulation can be used to solve the

optimization problems yielding the control paramters.

Much work remains to be done in the future. While we have shown that it is possible to create

within-day work breaks from available idleness, it remains to investigate whether or not these rules

would improve the satisfaction of service representatives. Second, it remains to investigate other server-

assignment rules. Finally, there remain many analytical challenges, such as deriving explicit formulas

and establishing optimality for the stochastic models.
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