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Abstract

We develop new rules for assigning available service representatives to customers in customer
contact centers and other large-scale service systems in order to create effective work breaks for
the service representatives from naturally available idleness. These are unplanned breaks occurring
randomly over time. We consider both announced breaks as well as unannounced breaks. Our goal
is to make the mean and variance of the interval between successive breaks suitably small. Given
a target break duration, we propose assigning idle servers based on the elapsed time since their
last break. We show that our proposed server-assignment rules are optimal for the many-server
heavy-traffic (MSHT) fluid model. Extensive simulation experiments support the proposed server-
assignment rules in practical cases and confirm the MSHT approximation formulas when the number
of servers is very large.

Keywords: work breaks; server-assignment rules; customer contact centers, large-scale service sys-

tems; many-server heavy-traffic limits; fluid models.
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1 Introduction

In this paper we apply queueing models to investigate new rules for assigning available (idle) servers

to customers that redistribute the cumulative idleness to create effective work breaks for the service

representatives. In doing so, we identify two different kinds of unplanned work breaks, unlike the

conventional planned breaks that can be part of a daily schedule posted in advance: (i) random

announced breaks, and (ii) random unannounced breaks. For announced breaks, the server is told they

will be on break when the break is announced, so that they are “off duty” during the break; for

unannounced breaks, the servers are not told, so that they are always “on call” if needed to meet

customer demand.

We were motivated by customer contact centers (call centers), but concern about the server expe-

rience also arises more widely, e.g., in the evolving sharing economy, such as ad-hoc taxi services. For

customer contact centers, there is now a substantial body of research developing methods for efficient

staffing and operation, as can be seen from Aksin et al. (2007). As these contact centers strive to

improve customer experience, a key step in the process may be overlooked: how to enhance call center

agent productivity? Without productive agents, it is impossible to provide superior customer support.

As reviewed in §5 of Aksin et al. (2007) on human resource issues, many studies on work-related

stress have documented emotional exhaustion and burnout experienced by service representatives. This

is attributed to handling high volumes of calls and difficult customers, while being required to meet high

performance metrics, e.g., see Sawyerr et al. (2009) and Lin et al. (2010). In addition to work overload,

service representatives often do the same routine tasks every day and adhere to rigid call scripts, which

can be monotonous. This negative impact can decrease productivity and job satisfaction.

One way to help improve employee satisfaction and productivity is to provide adequate within-day

work breaks. In addition to the common meal breaks, which last about an hour, it may be desirable

to include shorter within-day work breaks of about 5 minutes. The importance of work breaks has

been studied within the literature on organizational behavior and work psychology, beginning with the

classic studies by Taylor (1911) and Mayo (1933), and expanding in recent years, e.g. , Jett and George

(2003), Trougakos and Hideg (2009) and Fritz et al. (2013).

1.1 Our Objectives

We first consider unannounced breaks and then afterwards announced breaks. Servers would naturally

prefer announced breaks, but unannounced breaks are attractive because, unlike announced breaks,

they can be work-conserving (non-idling); i.e., no customer waits in queue if there is an available server,
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so that customers experience no performance degradation.

Our broad goal is to determine if it is possible to redistribute idleness to create effective work breaks

and, if so, how to do so. For that purpose, we assume that we have a standard M/GI/n queueing

model with n homogeneous servers working in parallel and unlimited waiting space. We assume that

there is a target break duration θ; we call any idle time exceeding θ a break.

Motivated by call centers, for our simulation examples we focus on a base case, which is the M/M/n

model with n = 100 servers, traffic intensity ρ = 0.9, mean service time E[S] = 1 and θ = 5/3. We

are thinking of mean service times of 3 minutes, so we measure time in units of 3 minutes. Roughly,

we would like to obtain a 5-minute break every 1 − 2 hours. That goal translates to a break of

length 5/3 every time interval of 20 − 40. That goal is feasible for ρ = 0.9 because each server is idle

(1− ρ)× 100% = 10% of the time, which is 6 minutes every hour or 12 minutes every two hours.

We first study unannounced breaks. To evaluate them, we introduce a specific criterion. Let

T ≡ T (θ) be the steady-state interval between successive breaks, i.e., the elapsed time from the end of

one break to the end of the next. Our main goal is to minimize E[T ].

However, we also want to control the variability of T , which we represent by the standard deviation

SD(T ). We want both E[T ] and SD(T ) to be suitably small. We will consider a strong form of

optimality involving lexicographical order in which we first minimize E[T ] and then, from the set of

optimal policies, minimize the standard deviation SD(T ).

1.2 Our Main Contributions

(i) We show that the standard longest-idle-server-first (LISF) server-assignment rule and the natural

alternative random routing (RR) rule, which generate unannounced breaks, generate the breaks

too infrequently.

(ii) We introduce server-assignment rules that assign idle servers according to the elapsed time since

their last break ended, which we call “the age.” We first assign idle servers who have completed a

break (are experiencing an idle time greater than or equal to θ), assigning the idle server with the

largest elapsed idle time first. After all those servers are assigned, we assign the idle servers not

currently on break (with current idle times less than θ), assigning the server with the least age

first. Thus we always assign the idle server least due a break. We call this first server-assignment

rule D1 ≡ D1(θ), using D for “dynamic priority” and “due for a break.”

(iii) We show that important insight into this server-assignment problem can be gained by considering
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the deterministic fluid model that arises in the many-server heavy-traffic (MSHT) fluid limit

in which the arrival rate and number of servers are allowed to grow, while the service-time

distribution is held fixed. In particular, we show that the D1 rule and the variant introduced for

announced breaks are both optimal for the fluid model, first minimizing E[T ] and then minimizing

SD(T ). Explicit formulas for the steady-state performance show that (i) the distribution of the

random interval between breaks, T , is insensitive to the arrival process beyond its rate, (ii)

the mean E[T ] is also insensitive to the service-time distribution beyond its mean, but (iii) the

standard deviation S(T ) increases with increasing service-time variability.

(iv) We also consider announced work breaks, for which we necessarily lose the non-idling property

(servers on break remain idle even if customers wait in queue). We propose a modification of the

rule D1(θ) for announced breaks: With D2 ≡ D2(θ, τ, η) we announce a work break whenever the

age exceeds a threshold τ . (For a busy server, the break begins upon service completion; for an

idle server, the break begins immediately.) During the break, the server is then off duty, and so

unavailable to serve new demand until the break is over. In addition, we impose an upper bound

η on the number of servers that can be on break at any time. If a server cannot be given a break,

it is given high priority for a future break.

(v) Finally, we report results of extensive simulation experiments. These simulation experiments

show for the base case with n = 100 that the new server-assignment rules are effective. For large

n, the simulations confirm the MSHT fluid formulas.

1.3 Related Literature and Organization

Other studies have recognized and responded to the preferences and concerns of the service represen-

tatives. First, Whitt (2006b) developed a mathematical model to help analyze the benefit in contact-

center performance gained from increasing employee retention, which is in turn obtained by increasing

agent job satisfaction. Sisselman and Whitt (2007) introduced preference-based routing as a means to

allow call center agents to help choose what calls they handle; see Biron and Bamberger (2010) for a

related industrial psychology study. See §5 of Aksin et al. (2007) for further discussion.

Recent research by Chan et al. (2014) and Mandelbaum et al. (2012) has responded to the concern

that server assignment rules should be fair to service representatives as well as customers. This includes

a recognition that the service-time distributions of different representatives might not be identical; see

Armony and Ward (2010), Atar (2008), Atar et al. (2011).
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There is a large literature on MSHT limits and approximations. The MSHT fluid model for the

steady-state performance in §3 is a variant of the standard MSHT fluid model with the first-come

first-served (FCFS) service discipline and, if considered, the LISF server-assignment rule, in Whitt

(2006a), Liu and Whitt (2012a) and Kaspi and Ramanan (2011), but here we consider the underloaded

quality-driven (QD) regime. Convergence to steady-state for that standard fluid model is considered in

§5 of Liu and Whitt (2011) and in Theorem 3.9 and §6 of Kaspi and Ramanan (2011). For the standard

model, MSHT limits are established in Kaspi and Ramanan (2011) and Liu and Whitt (2012b, 2014).

Since we are considering the QD MSHT regime, the standard MSHT limit is the same as for the

infinite-server system in Theorem 3.1 of Pang and Whitt (2010).

This paper is organized as follows: In §2 we formalize the work-conserving server-assignment rules

and introduce a general Markov process that describes the evolution of the system state for the D1

rule. We also discuss important conservation laws and show that breaks occur too infrequently with

the LISF and RR rules. In §3 we establish our results for the MSHT fluid model. We report results of

simulation experiments for the D1 rule yielding unannounced breaks in §4 and for the D2 rule yielding

announced breaks in §5. Finally, in §6 we draw conclusions. We present additional supporting material

in the online supplement. In particular, we describe how we implemented the server-assignment rules

D1, SISF and D2 in our simulations; we present distribution and renewal process details for the case

of hyperexponential service times; and we present additional simulation results.

2 The Stochastic Model for Server-Assignment Rules

We consider the standard M/GI/n multi-server queueing model with n homogeneous servers working

in parallel and unlimited waiting space with customers assigned to service in a first-come first-served

(FCFS) order. The service times come from a sequence of independent and identically distributed

(i.i.d.) random variables Si having finite mean and variance and cumulative distribution function

(cdf) F having a probability density function (pdf) f , with F (t) =
∫ t
0 f(s) ds, t > 0. Without loss of

generality (by choosing the measuring units for time), we let the mean service time be E[S] ≡ µ−1 ≡ 1,

where ≡ denotes equality be definition. Then the variance coincides with the squared coefficient of

variation (scv, variance divided by the square of the mean), which we denote by c2s. There is a Poisson

arrival process with arrival rate λ ≡ ρ < 1 that is independent of the service times. Hence, the inter-

arrival times Ui are i.i.d random variables with an exponential distribution having mean EU = 1/ρ.

We also assume that there is a specified target break duration θ. We call any idle time of length θ or

longer a (work) break.
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2.1 The Server-State Stochastic Process Accounting for Breaks

For our server-assignment rules, we maintain the state of each server, including the elapsed time since

the last break. Let Sk(t) be the state of server k, 1 ≤ k ≤ n, for some designated order of the servers.

Let the possible values of Sk(t) be vectors of real numbers (b, a, c) in the set Σ ≡ {0, 1}× [0,∞)2, where

b is an indicator variable with b = 1 if the server is busy serving a customer and b = 0 if the server is

idle, a is the age, i.e., the elapsed time since the last break, and c is the elapsed time of the current

busy period if the server is busy or of the current idle period if the server is idle. Thus the state of all

servers at time t is given by the vector S(t) ≡ (S1(t), . . . , Sn(t)) taking values in the set Σn. The state

of the full system at time t is then (Q(t), S(t)), where Q(t) is the number of customers in the system.

The overall state space is thus S ≡ N × Σn, where N is the set of nonnegative integers.

The stochastic process (Q,S) ≡ {(Q(t), S(t)) : t ≥ 0} evolves over time as a consequence of arrivals,

service completions and server assignments. Arrivals are generated exogenously by the Poisson arrival

process with rate ρ, while service completions occur an independent random service time with cdf F

after the server has been assigned to the customer. (There are no service interruptions.) Hence, to

understand the full evolution of the system, it only remains to specify how the servers are assigned to

customers.

2.2 Work-Conserving Server-Assignment Rules

Server-assignment rules can be classified into two types: work-conserving or non-work-conserving.

Work-conserving (or non-idling) policies immediately assign one of the idle servers to a customer

whenever there is a customer in need of service (in queue or upon arrival) and there is an idle server.

Non-work-conserving policies might let the customer wait in queue until a later time. These notions

are important for us because announced work breaks require policies that are in general non-work-

conserving, whereas unannounced work breaks do not. To quickly see why announced breaks require

non-work-conserving policies, note that a server could be on a break of duration θ when a customer

arrives; that customer will wait in queue if there are no other servers available.

The problem of choosing a good work-conserving server-assignment policy can be formulated as a

stochastic decision process. We can formulate a discrete-time general-state Markov decision problem

as in Puterman (2005) if we let the discrete times be the successive arrival epochs and the service

completion times, but we will look at the policy D1 and other work-conserving policies directly in

continuous-time.

The server-assignment policies operate only when a server assignment is needed and at least one
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idle server is available; we call that a server-assignment time. We will consider only stationary Markov

service-assignment rules, which at any server-assignment time t depend only on the state S(t) at time

t and are otherwise independent of t. A deterministic server-assignment rule is thus a map π : Σn →

{1, . . . , n} taking the server state S(t) at time t into the index of the server to be assigned at time t;

we thus write π(t) = π(S(t)). A randomized server-assignment rule is a map π : Σn → P({1, . . . , n}),

where P({1, . . . , n}) is the space of probability distributions on the set {1, . . . , n}. In this case, π(S(t))

maps the state S(t) at time t into a probability distribution on the indices of the server to be assigned

at time t.

To formalize the work-conserving server-assignment policies we consider, let I(t), E(t) and N (t) be

the sets of servers that, at time t, are idle, idle and currently experiencing a break, and idle but not

experiencing a break, respectively; i.e., I(t) ≡ {k : Sk,1(t) = 0, 1 ≤ k ≤ n}, E(t) ≡ {k : Sk,3(t) ≥ θ, k ∈

I(t)} and N (t) ≡ {k : Sk,3(t) < θ, k ∈ I(t)}. First the Longest-Idle-Server-First (LISF) policy assigns

the idle server that has been idle the longest, i.e.,

πLISF (t) ≡ arg max {Sk,3(t), k ∈ I(t)}. (2.1)

The RR rule is a randomized rule that assigns each server in I(t) with equal probability.

The new D1 rule first assigns the server in E(t) that has experienced the longest break, but if no

server has completed a break, then D1 assigns the server in N (t) least due a break; i.e.,

πD1(t) ≡ arg max {Sk,3(t) : k ∈ E(t)} if E(t) 6= φ, and

≡ arg min {Sk,2(t); k ∈ N (t)} if E(t) = φ and N (t) 6= φ. (2.2)

We also consider a myopic modification of D1 which we call the shortest-(least)-idle-server-first

(SISF) rule, which first looks for servers experiencing a break, just like D1, but if there are none, then

assigns the server whose current idle time is least, i.e.,

πSISF (t) ≡ arg max {Sk,3(t); k ∈ E(t)} if E(t) 6= φ, and

≡ arg min {Sk,3(t); k ∈ N (t)} if E(t) = φ and N (t) 6= φ. (2.3)

Note that the age plays no role for SISF.

2.3 A Function-Valued Continuous-Time Markov Process

To understand the approximating deterministic fluid model for the policy D1 and other work-conserving

policies introduced in §3, it is convenient to consider an alternative continuous-time representation.
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Given that we have no special interest in individual servers, we can focus on associated counting

processes. In particular, now using the subscript n to denote the stochastic model with n servers, let

Bn(t, x, y) ≡
n∑
k=1

1{Sk,1(t)=1,Sk,2(t)≤x,Sk,3(t)≤y} and

In(t, x, y) ≡
n∑
k=1

1{Sk,1(t)=0,Sk,2(t)≤x,Sk,3(t)≤y}, (2.4)

where 1A is the indicator function of the set A; i.e., 1A = 1 on A and 1A = 0 otherwise, so that

Bn(t, x, y) is the number of busy servers at time t with age at most x and elapsed current service time

at most y, while In(t, x, y) is the number of servers that are idle at time t with age at most x and

elapsed idle time (since their last service completion) at most y. (Necessarily, x ≥ y for In(t, x, y).)

Thus, Bn ≡ {Bn(t, ·, ·) : t ≥ 0} and In ≡ {Bn(t, ·, ·) : t ≥ 0} can each be regarded as a stochastic

process with values in D2, where D is the function space of all right-continuous real-valued functions

with left limits, as in Whitt (2002), while D2 ≡ D×D is the usual two-fold product space. Aside from

customer identity, the stochastic process (Qn, Bn, In) ≡ {(Qn(t), Bn(t, ·, ·), In(t, ·, ·)) : t ≥ 0}, where

Qn(t) is again the number in system at time t, is equivalent to the stochastic process (Q,S) in §2.1

(with subscript n added now). Let Bn(t) ≡ Bn(t,∞,∞) be the number of busy servers at time t; and

let In(t) ≡ In(t,∞,∞) be the number of idle servers at time t. We clearly have Bn(t) = min {Qn(t), n}

and In(t) = max {n−Qn(t), 0}.

For the M/GI/n model with ρ < 1 and the D1 server-assignment rule, it is evident that the

stochastic process

(Qn, Bn, In)t ≡ (Qn(t), Bn(t, ·, ·), In(t, ·, ·)) ≡ {{(Qn(t), Bn(t, x, y), In(t, x, y) : x ≥ 0, y ≥ 0} : t ≥ 0}(2.5)

as a function of t is a Markov process with general state space. We will be interested in the steady-state

behavior, which we assume is well defined. In particular, with ⇒ denoting convergence in distribu-

tion, we assume that there exists a random element (Qn, Bn, In)∞ such that, for any initial state

(Qn, Bn, In)0, (Qn, Bn, In)t ⇒ (Qn, Bn, In)∞ as t→∞, and if the initial state (Qn, Bn, In)0 is the limit

(Qn, Bn, In)∞, then (Qn, Bn, In)t becomes a stationary stochastic process, distributed as (Qn, Bn, In)∞

for all t. (We conjecture that this conclusion can be proved as a theorem, but it does not follow imme-

diately from standard Markov process theory because the state space is uncountably infinite.) When

we refer to the steady-state quantities, we omit the index t.

Remark 2.1 (stochastic process for any work-conserving rule) It is significant that the stochastic

process {{Qn(t), Bn(t,∞, y), In(t,∞,∞) : y ≥ 0} : t ≥ 0} is the same for any work-conserving server-

assignment rule. The (work-conserving) server-assignment rule only alters the server ages and current
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idle times, which are excluded from the general form in (2.5) by the arguments assigned the value ∞

in this representation.

2.4 Conservation Laws

In this section we consider general server-assignment rules, both work-conserving and not, subject to

the regularity conditions that (i) all arrivals are eventually served, (ii) customer service times are not

altered by any of the server-assignment rules and (iii) there is a well defined steady state (so we now

omit t). We have just formulated the D1 rule and assumed that it satisfies condition (iii). In this

general setting, conservation laws are important for understanding allocations of idleness.

First, the following (well known) expressions for the steady-state mean values follow from Little’s

law, e.g., see Whitt (1991):

E[Bn] = ρn and E[In] = (1− ρ)n, (2.6)

where Bn ≡ Bn(∞,∞) and In ≡ In(∞,∞). Formula (2.6) implies that, regardless of the server-

assignment rule, on average each server is idle a proportion 1−ρ of the time. Thus we are concerned with

ways to re-allocate the idle time subject to the constraint that (2.6) remains unchanged. Henceforth,

we omit the subscript n except for (Qn, Bn, In).

Let V denote the steady-state interval between successive service times (now omitting the subscript

n even though the distribution of V depends on n), with V taking on the value 0 when the server is

immediately reassigned. Given that each server experiences alternating service times with E[S] = 1

and idle times, we have the relations

1− ρ =
E[V ]

E[V ] + 1
, so that E[V ] =

1− ρ
ρ

for all n. (2.7)

From (2.7), we see that, for given ρ, the number of servers and the server-assignment rule cannot alter

E[V ].

Let D be the duration of a break (an idle time of at least θ) and let T be the interval between

successive breaks (end-to-end, in steady state). Let β be the rate breaks occur, let πβ (πβ,I) be the long-

run proportion of time (of the idle time) during which each server is on break. As further conservation

relations, we have

β =
1

E[T ]
, πβ =

E[D]

E[T ]
and πβ,I =

πβ
1− ρ

. (2.8)

We now apply these relations to characterize the rate at which breaks occur. Consistent with

intuition, the maximum possible rate at which breaks could occur is when all idle times are either θ or

0.
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Theorem 2.1 (the rate breaks occur) Given ρ and θ, the rate at which breaks occur is a function of

the distribution of the idle time V , in particular,

β =
(1− ρ)P (V ≥ θ)

E[V ]
= ρP (V ≥ θ), (2.9)

so that

β ≤ β∗ ≡ 1− ρ
θ

. (2.10)

The upper bound β∗ in (2.10) is attained if a proportion p ≡ E[V ]/θ = (1 − ρ)/(ρθ) of the idle times

are θ and the rest are 0.

Proof. First, we can combine (2.7) and (2.8) to obtain (2.9). Then we can apply Markov’s inequality

with (2.9) and (2.7) to obtain (2.10). Finally, it is easy to check that this bound is attained by the

two-point distribution concentrating on {0, θ}.

Remark 2.2 (attaining and approaching the bound) For the M/GI/n model, it is evident that the

bound β∗ on the rate breaks occur cannot be attained by any work-conserving server-assignment rule,

because we cannot force all idle times to be either 0 or θ. However, we conjecture that D1 attains this

upper bound asymptotically in the MSHT limit as n → ∞. In §3 we provide strong support for that

conjecture by showing that this upper bound is attained in the deterministic fluid model that should

arise in the MSHT limit.

2.5 LISF and RR in the Base Case

We started our research by studying the idleness in the M/M/n model with the LISF and RR server-

assignment rules. For the M/M/n base case with n = 100, ρ = 0.9,. E[S] = 1 and target break

θ = 5/3 to represent 5 minutes, (2.7) implies that the (expected) cumulative idleness over over [0, 40]

(or 2 hours), is 4 (or 12 minutes), which is evidently sufficient to produce effective work breaks, but the

LISF and RR rules do not generate them frequently enough. To illustrate, Figure 1 shows histograms

estimated by simulation of the steady-state idle-time pdf with LISF and RR for the base case. (The

atom at time 0 is omitted from the histogram.) The histograms show that there is a significantly

greater chance that an idle time could serve as a work break for RR than for LISF, but neither is

sufficient, because there is neglible mass above 1.0, but we need at least 1.67 to get a break.

Consistent with Figure 1, Our analysis indicates that, in the base case, LISF produces a steady-

state idle time V that has a distribution that is approximately a truncated Gaussian distribution having
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Figure 1: Histograms estimated by simulation (with the atom at 0 removed) of the steady-state idle-
time distribution with LISF (left) and RR (right) for the base case.

P (V = 0) = 0.215, E[V ] = (1 − ρ)/ρ = 0.1111 and SD(V ) = 0.100. Since θ = 5/3 is 15.7 standard

deviations above the mean, it is highly unlikely that an idle time will be a break.

In contrast, with RR, our analysis indicates that V has a distribution that is approximately a

mixture of exponential distributions, having E[V ] = (1 − ρ)/ρ = 0.1111 and SD(V ) = 0.176. the

standard deviation is larger than for LISF but still the target θ is more than 9 standard deviations

above the mean.

3 The MSHT Fluid Model for the D1 Server-Assignment Rule

In this section we present our main theoretical result, concluding that the new D1 server-assignment rule

achieves the maximum possible rate of breaks in Theorem 2.1 for the fluid model. In §3.1 we introduce

the fluid model. In Remark 3.3 we briefly discuss the MSHT limit (not proved here) that supports

using the fluid model as an approximation for the stochastic model. In §3.2 we review properties from

renewal theory that we use. In §3.3 we state and prove our main result. Finally, in §3.4 we discuss the

SISF server-assignment rule, which yields the same mean time between breaks, but a higher variance.

3.1 The Deterministic MSHT Fluid Model for D1(θ)

We now consider the deterministic fluid model that approximates the M/GI/n model with the D1

server-assignment rule. In this model we replace discrete customers and discrete servers that experience

random service times by continuous divisible deterministic fluid. For treating server idleness, it is

convenient to consider both customer fluid and server fluid. Customer fluid arrives exogenously over
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time at rate ρ < 1. We let the service capacity be 1, so that we are considering an underloaded fluid

model. In this underloaded deterministic model, starting empty or in steady state, there is never any

customer fluid waiting in queue.

Somewhat informally, the individual atoms of customer fluid arrive to be served and enter service

immediately upon arrival, where each atom of customer fluid is matched with an atom of server fluid

from the pool of idle service capacity to provide that service. Thus, both customer fluid and server

fluid arrive at the service facility at rate ρ, where these are joined to provide service. Consistent with

(2.6), in steady state the quantity of customer fluid in service (together with server fluid) at each time

is ρ, while the quantity of idle server fluid is 1−ρ. The total service capacity is the sum: ρ+(1−ρ) = 1.

Remark 3.1 (the role of proportions) While it is natural to think of the experience of individual atoms

of fluid as following stochastic processes, as in the paragraph above, but that can be formalized using

proportions. For example, a major component of the stochastic model is a sequence of random service

times. This is a sequence of i.i.d. random variables each distributed as a random variable S with cdf

F . In the fluid model, these distributions should be interpreted as proportions. For the fluid model,

we understand that F (x) is the proportion of fluid that is served within time x after it started service.

Stochastic properties such as independence are also captured in the natural way. The proportion of

server fluid that experiences two consecutive service completions by time x is P (S1 + S2 ≤ x), where

S1 and S2 are i.i.d. random variables, with the usual convolution distribution.

What we have said so far applies to any work-conserving server-assignment rule. Indeed, it corre-

sponds to the easy underloaded special case of the fluid model in Whitt (2006a) and Liu and Whitt

(2012a), where this part of the fluid model is carefully formalized. The policy D1 plays a role when we

keep track of the ages of each atom of server fluid, i.e., the time since its last break ended, and need to

determine which server fluid is sent to the service facility to provide the required service. Consistent

with (2.2), the rule D1 first assigns fluid from the idle server fluid with elapsed current idle time at

least θ, giving priority to the larger elapsed current idle times. At that instant, when the atom of server

fluid is assigned, the age is reset to 0. If more server assignment is needed, then D1 assigns the fluid

with elapsed current idle time less than θ, giving priority to the smaller ages. Aside from the instants

at which breaks end, as time advances the age of all server fluid increases at unit rate.

The deterministic fluid process that describes the evolution of the fluid model can be the natural

analog of the stochastic process (Bn, In) in (2.4). For the fluid model, B(t, x, y) is the amount of busy

server fluid at time t with age at most x and elapsed current service time at most y, while I(t, x, y)
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is the amount of idle server fluid at time t with age at most x and elapsed idle time (since their last

service completion) at most y. (As before, x ≥ y for I(t, x, y).) We are interested in the steady-state

of this fluid process (B, I), which we denote by omitting the t.

Just as in Remark 2.1, part of the steady-state is already known. By Theorem 3.1 (a) of Whitt

(2006a), for the busy fluid we can write

B(∞, y) ≡
∫ y

0
bc(∞, u) du for bc(∞, y) = ρF c(y), y ≥ 0, (3.1)

and for the idle fluid we can write I(∞,∞) = 1− ρ.

It remains to determine the full steady-state of the fluid process, given by {(B(x, y), I(x, y)) : x ≥

0, y ≥ 0}. Just as Jackson (1957) originally found the steady-state distribution of a Jackson queueing

network, we will obtain the steady-state of the D1 fluid model by direct construction, i.e., by guessing

the answer and verifying that it works. For D1, our idea is that, in steady state, there ought to be a

critical threshold τ such that, at all times, all fluid completing service after time τ is given a break, and

so is assigned to service exactly θ time units later, whereas all remaining fluid is reassigned to service

immediately. It is evident that this policy is consistent with D1. The key is to show that there exists

a unique threshold τ∗ such that the above policy is consistent with the fluid model. (We elaborate on

the critical threshold at the end of the online supplement.)

Remark 3.2 (conservation laws in the fluid model) The conservation laws in §2.4 have natural analogs

for the associated deterministic fluid model considered here. They are identical, except we remove the

n in (2.6).

Remark 3.3 (many-server heavy-traffic (MSHT) limits) Important insight into the deterministic D1

fluid model we have developed can be gained by seeing that it should serve as the limit in a many-

server heavy-traffic (MSHT) functional weak law of large numbers (FWLLN) for an appropriately-scaled

sequence of the M/GI/n models we introduced in §2. We let the models be indexed by n, where in

model n the number of servers is n and the arrival rate is λn = ρn for 0 < ρ < 1, while the service-time

distribution is held fixed. (For these asymptotic results, we can extend the arrival process from M to

G; we only require that the arrival process satisfy a FWLLN.) Since we have ρ < 1, the MSHT limit

is in the underloaded quality-driven (QD) MSHT regime. The QD regime is required for the idleness

of each server to be non-negligible in the limit, as required for non-negligible breaks.

In fact, we do not prove the full FWLLN here, but seeing it can help understanding. The conjectured

MSHT FWLLN states that

(Q̄n, B̄n, Īn)t ⇒ (Q,B, I)t as n→∞ (3.2)
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using the topology of uniform convergence for t over bounded intervals, where the limit (Q,B, I)t is

the fluid process and we average for each n; i.e.,

(Q̄n, B̄n, Īn)t ≡ n−1(Qn, Bn, In)t for all t and n, (3.3)

with (Qn, Bn, In)t defined in (2.5) above for model n. It is significant that this MSHT FWLLN has

been established for the special case in Remark 2.1. That special case can be regarded as a consequence

of Theorem 3.1 of Pang and Whitt (2010) or Liu and Whitt (2012b).

3.2 Relevant Renewal Theory

For non-exponential service-time distributions, the critical threshold τ∗ for the D1 fluid model depends

on the renewal function associated with the service times. Indeed, it is natural that renewal theory

should play a role, because we are considering immediately reassigning fluid upon service completion.

Renewal theory naturally arises when we consider the number of times that an atom of server fluid is

assigned before the age reaches τ∗ and the server is assigned a break. Thus we need to review some

properties of renewal processes.

Let N ≡ {N(t) : t ≥ 0} be the renewal counting process associated with successive i.i.d. service

times Sk, i.e.,

N(t) ≡ max {k ≥ 0 : S0 + S1 + · · ·+ Sk ≤ t}, t ≥ 0, (3.4)

where S0 ≡ 0. We will exploit the mean of the renewal process, called the renewal function,

m(t) ≡ E[N(t)], t ≥ 0, (3.5)

and the associated renewal excess (after time t),

R(t) ≡ SN(t)+1 − t, t ≥ 0. (3.6)

As in §3.3 of Ross (1996), we apply Wald’s equation to express the expected value as

E[R(t)] = E[S](E[N(t)] + 1)− t = E[N(t)] + 1− t for all t ≥ 0. (3.7)

3.3 The Steady-State of the D1 Fluid Model

Recall that we consider the G/GI fluid model with: (i) service capacity 1, (ii) arrival rate ρ < 1, (iii)

service-time proportions with cdf F (x) ≡ P (S ≤ x) having pdf f with mean 1 and finite scv c2s, (iv)

the D1 server-assignment rule with target work breaks of length θ, where E[V ] ≡ (1−ρ)/ρ < θ and (v)

in steady-state. As a regularity condition, we assume that m(t) is continuous and strictly increasing
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with m(0) = 0, so that m(t) has a unique inverse; it suffices for the service-time pdf f to be continuous

and positive in a neighborhood of the origin (but not necessarily f(0) > 0); see §XI.3 of Feller (1971).

Let
d
= denote equality in distribution.

Theorem 3.1 (the steady-state of the MSHT G/GI fluid model with rule D1(θ)) Under the conditions

above, (a) there exists a unique time τ∗ ≡ τ∗(ρ, θ, F ), 0 < τ∗ < ∞, such that all fluid completing

service with age at least τ∗ is given a break of length θ, and thus is assigned exactly θ time units later,

while all fluid completing service with age less than τ∗ is reassigned instantaneously and so experiences

0 idle time. The critical time τ∗ is the unique root of the equation

m(τ∗) =
1

p
− 1 > 0, (3.8)

where p ≡ (1 − ρ)/(ρθ) < 1 and m(t) is the renewal function associated with the service-time cdf F

in (3.5). As a consequence, work breaks (idle times of length at least θ) occur at the upper bound rate

from Theorem 2.1,

β∗ =
1− ρ
θ

= pρ, (3.9)

independent of the service cdf F beyond its mean.

(b) The proportion of fluid that experiences time less than or equal to x between breaks is P (T ∗ ≤ x),

where T ∗ ≡ T (τ∗) is a nondegenerate random variable with

T ∗
d
= τ∗ +R(τ∗) + θ = N(τ∗) + 1 + θ, (3.10)

where N(t) is the renewal counting process associated with the cdf F and R(t) is the renewal excess, so

that

E[T ∗] = m(τ∗) + 1 + θ =
1

β∗
and V ar(T ∗) = V ar(R(τ∗)). (3.11)

(c) The steady-state densities of the server fluid content in service with age x, b(x), and idle server

fluid content with age x, g(x), satisfy

b(x) = β∗1{0≤x<τ∗} + β∗P (R(τ∗) ≥ x− τ∗)1{τ∗≤x<∞} (3.12)

and

g(x) = 0 · 1{0≤x<τ∗} + β∗P (R(τ∗) ≤ x− τ∗)1{τ∗≤x<τ∗+θ}

+β∗(P (x− τ∗ − θ ≤ R(τ∗) ≤ x− τ∗)1{τ∗+θ≤x<∞} (3.13)
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for β∗ in (3.9), τ∗ the solution of equation (3.8) and R(t) the renewal excess in (3.6). As a consequence,

the associated cumulative functions satisfy

0 = I(τ∗,∞) < I(x,∞) < I(∞,∞) ≡ I = 1− ρ, τ∗ < x <∞, (3.14)

and

B(τ∗,∞) = β∗τ∗ < B(x,∞) < B(∞,∞) ≡ B = ρ, τ∗ < x <∞. (3.15)

(d) As a consequence, D1 is lexicographically optimal for the fluid model, first minimizing E[T ] and

then minimizing V ar(T ) among all policies that yield the minimal E[T ].

Proof. It is immediately evident that the claimed performance is consistent with the D1 rule, because

all idle server fluid content that has been idle for exactly θ experiences a break and is then immediately

assigned to service. On the other hand, all the rest of the fluid (the fluid with age less than τ∗) is

immediately reassigned upon service completion. Moreover, by Theorem 2.1 and Remark 3.2, the rate

of breaks is the maximum possible. However, it remains to show that a unique policy of this form can

be realized and what its performance consequences are.

The key to a short proof is converting the present model into the model in Whitt (2006a) and Liu

and Whitt (2012a) by creating new “macro service-times,” which combine the consecutive service times

experienced between breaks. Given τ∗, the new combined service-time is S̃ ≡ τ∗ + R(τ∗) with cdf F̃

and pdf f̃ . Thus, in the underloaded D1 fluid model, each atom of fluid experiences alternating breaks

of length θ, which we think of as interarrival times, and service times with cdf F̃ . The steady-state

performance of this D1 model coincides with the previous G/GI fluid model, as in Whitt (2006a) and

Liu and Whitt (2012a), if we consider the service-time cdf F̃ and a fluid arrival process with rate

β∗E[S̃]. The lower arrival rate resulting from the higher mean of cdf F̃ is balanced by the longer

service time; i.e.,

b(x) = (β∗E[S̃])f̃e(x) = (β∗E[S̃])(F̃ c(x)/E[S̃]) = β∗F̃ c(x), (3.16)

which coincides with (3.12). The density b in (3.16) then coincides with (3.2) in Theorem 3.1 (a) of

Whitt (2006a). The density g in (3.13) follows from observing that all idle fluid remains exactly for

time θ after it arrived.

It remains to show that there exists a unique pair (τ∗, β∗) satisfying (3.8) and (3.9). To start, the

renewal function has a unique inverse, because we have made assumptions that ensure it is continuous

and strictly increasing. Thus, (3.8) necessarily has a unique solution.
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On the other hand, given the form of the busy-server density b(x) in (3.12), and the total busy

server content B = ρ, we have ρ = β∗τ∗ + β∗E[R(τ∗)] = β∗(m(τ∗) + 1), where β∗ is the rate breaks

occur. Hence,

β∗ = ρ/(m(τ∗) + 1). (3.17)

Given the D1 policy, For T ∗ in (3.10), we also have T ∗
d
= τ∗ + R(τ∗) + θ, where R(τ∗) is the residual

service time beyond τ∗, so that

β∗ =
1

E[T ∗]
=

1

m(τ∗) + 1 + θ
. (3.18)

Combining (3.17) and (3.18), we obtain the unique solution with τ∗ in (3.8) and β∗ in (3.9). We remark

that, as an alternative argument, we could also apply (2.7) and Remark 3.2: On average, each server

experiences, m(τ∗) idle times of length 0 followed by one of length θ. Hence,

E[V ] =
θ

m(τ∗) + 1
=

1− ρ
ρ

, (3.19)

from which we also obtain (3.8). Because there is a unique solution to equation (3.8), there is a unique

fluid performance associated with D1.

Finally, it remains to establish the lexicographical optimality. The analysis above shows that mini-

mizing the mean E[T ] requires the two-point idle-time distribution, which is tantamount to immediately

assigning all fluid with age less than τ∗ the instant it completes service. At first glance, it might appear

that D1 is the only server-assignment rule minimizing E[T ] (and maximizing the rate of breaks) for the

fluid model, but that is not the case. We can obtain alternative rules with the same E[T ], but higher

variance V ar(T ), by changing which fluid is immediately reassigned after completing service. The only

remaining freedom if we fix the mean E[T ] at the optimal value is which fluid we assign immediately

upon completing service. The only alternatives involve randomizing over the age while holding the

mean E[T ] fixed, but that additional randomization necessarily increases the variance, by virtue of

convex stochastic order, as in §9.5 of Ross (1996). An example is the SISF rule discussed in the next

section.

Remark 3.4 (exponential service) The solution in Theorem 3.1 simplifies if the service time S is a

mean-1 exponential random variable M(1), because then m(τ∗) = τ∗ and R(x∗)
d
= M(1), so that

τ∗ = (1/p)− 1 and T ∗
d
= τ∗ + θ +M(1). Then b(x) = pρ(1{0≤x<τ∗} + e−(x−τ

∗)1{τ∗≤x}) and

g(x) = pρ((1− e−(x−τ∗))1{τ∗≤x<τ∗+θ} + (e−(x−τ
∗−θ) − e−(x−τ∗))1{x≥τ∗+θ}).
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Remark 3.5 (approximating or calculating the renewal function and the mean excess) Because the

service distribution has a density (and thus is nonlattice) with σ2 < ∞, see Proposition 3.4.8 of Ross

(1996),

R(t)⇒ Se as t→∞ (3.20)

and

E[R(t)]→ E[Se] =
E[S2]

2E[S]
=
E[S](c2s + 1)

2
as t→∞, (3.21)

where Se is a random variable with the equilibrium-excess cdf Fe associated with the service time cdf

F (t) ≡ (S ≤ t), i.e.,

Fe(t) ≡ P (Se ≤ t) ≡
1

E[S]

∫ t

0
P (S > u) du, t ≥ 0. (3.22)

By equation (2) of Eick et al. (1993),

E[Ske ] =
E[Sk+1]

(k + 1)E[S]
, (3.23)

so that for our case in which E[S] = 1, we have (3.21) and

V ar(Se) = E[S2
e ]− (E[Se])

2 =
E[S3]

3
−
(
E[S2]

2

)2

. (3.24)

For applications, provided that t is not too small, we thus might use the approximations

R(t) ≈ Se and E[R(t)] ≈ E[Se]. (3.25)

For special distributions, Se can serve as an upper bound for R(t). In particular, if F has the increasing

mean residual life (IMRL) or decreasing failure rate (DFR) property, then the distribution of R(t) is

increasing in t in the sense of increasing convex order or stochastic order, respectively; see Brown (1980,

1981). The H2 example we consider in §4.3 has the DFR property.

Alternatively, we can explicit numerical results by computing m(t) ≡ E[N(t)] and E[R(t)] numeri-

cally, e.g., by numerical transform inversion, as discussed in §13 of Abate and Whitt (1992).

Remark 3.6 (the experience of individual servers) Individual servers (atoms of fluid) experience alter-

nating busy periods distributed as TB
d
= τ∗+R(τ∗) and idle periods of length TI ≡ θ, which form an al-

ternating renewal process with i.i.d. busy cycles distributed as T ∗ = TB+TI , as in §3.4.1 of Ross (1996).

The form of the age densities in (3.12) and (3.13) can be explained by this alternating renewal process

structure; e.g., by Theorem 4.8.4 of Ross (1996), b(x) = P (TB > x)/E[T ∗] = β∗P (τ∗ +R(τ∗) > x).

With simulation data, it is natural to observe the steady-state age of busy and idle fluid. Thus,

we naturally observe densities of random variables AB and AI having the conditional age distribution
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for fluid in service (or idle) in steady state, conditional on it being busy (or idle). Clearly, AB and AI

have densities b(x)/ρ and g(x)/(1− ρ), respectively. What we see at an arbitrary time in steady state

can be understood from the renewal structure.

3.4 Other Rules Maximizing the Rate of Breaks: SISF

We now expand upon part (d) of Theorem 3.1 by illustrating an alternative server-assignment rule with

the optimal mean E[T ], but higher variance V ar(T ). The alternative rule is the shortest-idle-server-

first (SISF) rule, which assigns the fluid with current idle time greater than or equal to θ first, just

like D1, but then assigns the fluid with the least (shortest) current idle time first. In fact, it is more

evident that the SISF rule should produce the extremal two-point steady-state idle-time distribution,

because it focuses directly on the current idle time.

The steady-state idle fluid content in the SISF fluid model can be represented by I(y) =
∫ y
0 g(u) du,

t ≥ 0, which represents the idle server content that has been idle for time y. The SISF rule dictates

that we first assign fluid with idle time θ (or above, if present) and then assign idle fluid with age 0

(or above, if necessary). If SISF can achieve routing from the two end points only, then the density g

will be uniform over the interval [0, θ].

To see what is possible, we start with the fluid flow rates. Let λ, δ and α be the steady-state

arrival rate of customer fluid, the departure rate of customer fluid (also the arrival rate of newly idle

server fluid), and the assignment rate of idle server content. These have the obvious steady-state values

λ = δ = α = ρ. Let α0 and αθ be the rate of assignment of fluid that has been idle for time 0 and θ,

respectively. If feasible, then we have α = α0 + αθ. By Theorem 2.1, the maximum possible value of

breaks is αθ = β∗ = (1−p)/θ = pρ, where p can be interpreted as the proportion of idle fluid on break,

leaving α0 = (1 − p)ρ for immediate reassignment. Thus, SISF does assign fluid from the two end

points only. SISF first assigns all fluid that has been idle for time θ and then immediately re-assigns

a proportion 1 − p of the newly idle server content. That makes g(y) = (1 − ρ)/θ, 0 < y < θ, and

αθ = g(θ−) (the left limit at θ), where g(θ−) = (1− ρ)/θ = [(1− ρ)/(ρθ)]ρ = pρ. That routing occurs

at each successive service completion time. Thus, the proportion of time between successive breaks

with SISF can be represented by the random sum

T ≈ θ +

N(p)∑
i=1

Si, (3.26)

where N(p) is a random variable with the geometric distribution on the positive integers having mean

1/p for p ≡ E[V ]/θ = (1 − ρ)/(ρθ) and Si are i.i.d. mean-1 service-time random variables with cdf F
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and variance σ2 that are independent of N(p), so that

E[T ] = θ +
1

p
= θ +

θ

E[V ]
=

θ

1− ρ
=

1

β∗
, (3.27)

as it should, and

V ar(T ) = V ar(S)E[N(p)] + E[S]2V ar(N(p)) =
σ2

p
+

1− p
p2

=
pσ2 + 1− p

p2
=

(
ρθ

(1− ρ)

)2

. (3.28)

which equals 1/p2 = ((ρθ/(1− ρ))2 when σ2 = 1.

We can easily compare SISF to D1 for M service: For D1, V ar(T ) = V ar(R(τ∗)) = V ar(M(1)) = 1,

which is less than 1/p2, typically much less. For the base case, 1/p = 15.0, so that V ar(T ) = 225 for

SISF. We will show that these fluid formulas are consistent with simulation for large n.

4 Simulation Experiments for Unannounced Breaks: D1 and SISF

In §2.1 and §2.2 of the online supplement we indicate how we implement the D1 and SISF server-

assignment rules in the simulation. In §4.1 we discuss how we execute the simulation and perform the

statistical estimates. In §4.2 we report simulation results for the M/M/n model in the base case. In

§4.3 we report additional results for the D1 rule with a hyperexponential (H2) service-time distribution.

(We present background for the H2 distribution in §3.3 of the online supplement.)

4.1 Statistical Estimation

Our simulations used r = 20− 50 i.i.d. replications of an M/G/n system observed over a time interval

of length between 2000− 40, 000 depending on the value of n after a warmup period of length 50− 100

to allow the system that started empty to approach steady state. (We remark that the appropriate

choices depend on n, largely because the sample size is proportional to both n and t; see Srikant and

Whitt (1996),Whitt (1989) and Ni and Henderson (2015).) Idle times and periods between successive

breaks are collected from all n servers.

To estimate the probability of an event, we first compute the sampling frequency within each repli-

cation. Then the overall estimate is the sample average of the r values, which should be approximately

Gaussian distributed with unknown variance. Hence, the 95%-confidence interval (CI) is constructed

using the Student-t distribution with t0.025(r − 1); e.g., see §8 of Walpole et al. (1993). For a random

variable X, the first two moments mk ≡ E[Xk], k = 1, 2, are estimated by the sample averages m̄1 and

m̄2 within each replication. Then the overall estimates m̄1 and m̄2 are taken to be the sample averages

of the r values, which again should be Gaussian; e.g., see p. 2 of Ni and Henderson (2015). Hence,

again the 95% CI’s can be constructed in the same way with t0.025(r − 1).
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Within each replication, the variance formula is σ2 = m2−m2
1. We therefore estimate the standard

deviation (std) within each replication by σ̄ =
√
m̄2 − m̄2

1. We then obtain r estimates of the std, one

of each replication. We estimate the overall std as the sample average of these. The way to construct

CI for the std is less straightforward, because σ̄ is not normally distributed due to the fact that m2
1 is

no longer Gaussian. To circumvent this difficulty, we use sample quantiles to construct the CI.

4.2 Simulation Results

We now report simulation results for D1 and SISF . (More results appear in the appendix.) We

primarily focus on the base M/M/n case with ρ = 0.9, E[S] = 1, n = 100 and θ = 5/3. Table 1

provides simulation estimates of the probability of short and large idle times as a function of the scale

n. We call idle times small is they are less than 0.1, an arbitrary number less than the mean 0.1111;

we call idle times greater than or equal to θ large. Figure 1 in the online supplement shows that the

idle-time distribution with D1 tends to be like the two-point extremal distribution for the fluid model.

Table 1 shows that the performance of the two rules is very similar, but SISF produces an idle-time

distribution slightly closer to the desired two-point extremal distribution in Theorem 2.1. The fluid

model provides the limiting case of n =∞.

system D1 SISF

size P (Vn ≤ 0.1) P (Vn ≥ θ) P (Vn ≤ 0.1) P (Vn ≥ θ)

n = 25 0.7917± 0.0018 0.0163± 0.0003 0.8257± 0.0012 0.0217± 0.0003

n = 100 0.8240± 0.0013 0.0223± 0.0004 0.8341± 0.0008 0.0293± 0.0004

n = 250 0.8498± 0.0007 0.0317± 0.0003 0.8698± 0.0005 0.0386± 0.0003

n = 1000 0.8896± 0.0008 0.0492± 0.0007 0.9028± 0.0005 0.0546± 0.0005

n = 5000 0.9155± 0.0002 0.0601± 0.0010 0.9236± 0.0003 0.0628± 0.0002

n =∞ 0.9333± 0.0000 0.0633± 0.0000 0.9333± 0.0000 0.0667± 0.0000

Table 1: Simulation estimates of the probability of short and large idle times as a function of the scale
n for the server-assignment rules D1 and SISF in the base M/M/n case with ρ = 0.9, E[S] = 1 and
θ = 5/3. The fluid model provides the limiting case of n =∞.

Table 2 shows simulation estimates of the mean and standard deviation of the interval between

breaks, Tn, as a function of the scale n for the server-assignment rules D1 and SISF in the base

M/M/n case. As for the fluid model in §3.4, the means are very similar, but the standard deviation

is much smaller for D1. The fluid model is very helpful for understanding the advantage of D1 over

SISF , but the fluid model does not yield accurate approximations for the base case of n = 100.
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system D1 SISF

size E[Tn] SD(Tn) E[Tn] SD(Tn)

n = 25 66.29± 1.12 38.04± 0.71 51.44± 0.49 52.31± 0.89

n = 100 48.06± 0.79 18.73± 0.41 37.85± 0.49 36.68± 0.52

n = 250 33.45± 0.33 9.47± 0.35 28.62± 0.21 27.01± 0.28

n = 1000 20.84± 0.30 3.06± 0.12 20.28± 0.16 18.54± 0.16

n = 5000 16.75± 0.07 1.38± 0.03 17.28± 0.05 15.59± 0.06

n =∞ 16.67± 0.00 1.00± 0.00 16.67± 0.00 15.00± 0.00

Table 2: Simulation estimates of the mean and standard deviation of the interval between breaks, Tn,
as a function of the scale n for the server-assignment rules D1 and SISF in the base M/M/n case with
ρ = 0.9, E[S] = 1 and θ = 5/3. The fluid model provides the limiting case of n =∞.

Let AB (AI) be a random variable with the distribution of the age of a busy (idle) server at an

arbitrary time in steady state, as discussed in Remark 3.6. Figure 2 shows histograms of these ages

estimated from the simulation results. The vertical y axis has been scaled so that the area under each

histograms is 1, making the histogram an estimate of the density.

From the MSHT fluid model with rule D1, we expect that the ages AB and AI have densities much

like their fluid counterparts b(x)/ρ and g(x)/(1 − ρ) for b(x) and g(x) in (3.12) and (3.13). Table 3

reports estimations of the mean and standard deviation of these age random variables for D1 as a

function of n. As before, the case n =∞ corresponds to the fluid model.

Busy Idle

E[AB ] std(AB) E[AI ] std(AI)

n = 100 26.510± 0.051 19.146± 0.072 41.725± 0.068 19.725± 0.083

n = 500 13.178± 0.016 8.395± 0.033 24.858± 0.019 6.565± 0.024

n = 1000 10.518± 0.011 6.380± 0.018 20.865± 0.013 3.828± 0.017

n = 5000 8.399± 0.004 4.935± 0.011 17.378± 0.004 1.797± 0.007

n =∞ 7.533± 0.000 4.392± 0.000 15.833± 0.000 1.108± 0.000

Table 3: Simulation estimates of the mean and standard deviation of the ages AB and AI in the base
case as a function of n.

It is also useful to look at the pattern of successive idle times over a long horizon. Figure 3 displays

successive idle-times for a set of randomly selected servers in the M/M/n base case. The vertical axis

measures the length of an idle-time and the horizontal axis indexes the successive idle times.
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(a) n = 100 (b) n = 500 (c) n = 5000

(d) n = 100 (e) n = 500 (f) n = 5000

Figure 2: Histograms of the ages AB of a busy server (top) and AI of an idle server (bottom) estimated
from computer simulation for the in the base M/M/n model with rule D1 for three values of n: n = 100,
n = 500 and n = 5000.
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Figure 3: Two sample paths of successive idle times over a time interval of length 300 for D1 in the
base case.

Figure 3 shows that D1 generates occasional long idle times with many very short ones in between.

Over a long horizon, these work breaks occur fairly regularly.

From the results above, we conclude that, unlike LISF and RR, the D1 server-assignment rule can

achieve the desired work breaks. Nevertheless, there are three serious drawbacks in D1. First, Figure

23



4 shows that there tend to be long idle periods that occur right before many of the work breaks. We

regard this as undesirable, because we want all long idle periods to be work breaks. Second, closely

rated to the first drawback, the interval between successive breaks tends to be too long, often being

above the interval [20, 40]. Indeed, Table 1 shows that the mean is 48 for θ = 5/3. The full distribution

is shown in Figure 4, with a histogram on the left and the empirical cumulative distribution function

(ecdf) on the right. Finally, we want to announce the work breaks so that the server can be off duty

(a) Histogram (b) ECDF

Figure 4: The histogram (left) and ecdf (right) estimated from simulation of the distribution of T , the
time between breaks, with rule DP1 for θ = 5/3

during the breeak, which is not possible with D1.

4.3 The D1 Rule with a Different Service-Time Distribution

We also examined D1 with non-exponential service-time distributions. We illustrate by briefly dis-

cussing the case of a mean-1 hyperexponential (H2) distribution with variance σ2 = 4 and balanced

means, as in §3.1 of Whitt (1982); additional discussion for this example appears in the appendix.

From (3.25) and Theorem 3.1, the key quantities for the fluid model are

E[R(τ∗)] ≈ E[Se] = 2.50 and SD(R(τ∗)) ≈ SD(Se) = 3.71 (4.1)

At the end of §3.2, we noted that Se is an upper bound for R(t) in stochastic order, because the H2

cdf is DFR. The numerical values in (4.1) should be compared to the corresponding values for M(1):

E[R(τ∗)] = 1 and SD(R(τ∗)) = 1.

Table 4 shows simulation estimates of the mean and standard deviation of AB, AI and T as a

function of n in the M/H2/n model with rule D1, ρ = 0.9 and θ = 5/3.

Tables 2-4 provide important confirmation of the fluid model with non-exponential service-time

distribution and the approximation R(τ∗) ≈ Se in (3.25), because the estimates for n = 5000 are
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E[AB ] std(AB) E[AI ] std(AI) E[Tn] std(Tn)

n = 100 27.145± 0.098 22.059± 0.102 37.622± 0.106 23.851± 0.115 41.663± 0.126 23.7531± 0.131

n = 250 18.277± 0.085 13.584± 0.092 29.473± 0.089 13.922± 0.079 31.748± 0.095 13.473± 0.104

n = 1000 10.813± 0.062 7.249± 0.071 20.031± 0.075 5.883± 0.058 20.495± 0.047 5.568± 0.072

n = 5000 8.765± 0.022 5.789± 0.030 17.017± 0.028 4.150± 0.025 16.725± 0.024 3.876± 0.030

Table 4: Simulation estimates of the mean and standard deviation of AB, AI and T as a function of n
in the M/H2/n model with rule D1, ρ = 0.9 and θ = 5/3.

close to the analytical values for n = ∞. In particular, consistent with the fluid model, Tables 2-

4 indicate that the mean of T ∗ is independent of the additional service-time variability, while the

standard deviation increases in the variability. The estimated value for SD(T ) of 3.88 from simulation

for n = 5000 is well approximated by SD(Se) = 3.71 in (4.1). However, as before, the fluid model

approximations for n = 100 are not accurate.

5 The D2(θ, τ, η) Rule for Announced Work Breaks

Theorem 3.1 for the fluid model suggests a natural way to modify D1 to create a rule for announced

breaks: introduce a threshold control parameter τ , paralleling τ∗. For each server, we keep track of the

age and announce a break when the age exceeds τ ; the server is then off duty for time θ. (For a busy

server, the break begins upon service completion; for an idle server, the break begins immediately.)

Any breaks that occur before time τ are unannounced breaks.

We first observe that Theorem 3.1 implies that D2 is also optimal for the fluid model provided we

choose the correct parameters.

Corollary 5.1 (equivalence for D2 with appropriate parameters) Under the conditions of Theorem 3.1,

for the G/GI fluid model, the server assignment rule D2(θ, τ) coincides with the D1(θ) rule if τ = τ∗

and η ≥ 1− ρ.

Because the servers that are on break are off duty, there can be servers not serving a customer even

though there are customers waiting in queue; i.e., now there is inevitably some level of performance

degradation for customers. To control that performance degradation for customers, we further modify

D2 by imposing an upper bound η on the number of servers that can be on break at any time. A server

due a break when the number of servers on break is η is given high priority for a break in the future.

Clearly, the additional parameters complicate the control. We propose introducing a cost function

to measure the tradeoff between the cost to servers of not getting enough announced breaks and the cost
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to customers of performance degradation. We illustrate how such cost functions can be constructed by

using a cost function that is a function two steady-state proportions: (i) the proportion of the idle time

per server spent on an announced break, pA, and the proportion of customers delayed, pD ≡ P (Q ≥ n),

measured relative the value p∗D with no degradation at all.

Specifically, the proposed cost function is

C ≡ C(τ, η) = w(1− pA) + (1− w)(pD − p∗D), (5.1)

where the performance measures pA and pD are functions of the control parameters, while the weight

w with 0 ≤ w ≤ 1 represent our relative concern about the two factors. We have used simulation to

study the performance of the D2(θ, τ, η) rule as a function of the parameters, including choosing the

optimal τ and η to minimize the cost function in (5.1).

5.1 Simulation Results for the Base Case

We start by showing in Tables 5 and 6 how the two performance measures pA and pD depend on the

control parameters τ and η for the base M/M/n model with n = 100 and ρ = 0.9. (For this base case,

the delay probability without extra degradation is p∗D = 0.223.)

η = 4 η = 6 η = 8 η = 10

τ pA pA pA pA

τ = 15 0.3714± 9× 10−4 0.5130± 7× 10−4 0.5971± 6× 10−4 0.6301± 8× 10−4

τ = 20 0.3706± 9× 10−4 0.5090± 8× 10−4 0.5734± 8× 10−4 0.5774± 7× 10−4

τ = 25 0.3694± 9× 10−4 0.4939± 8× 10−4 0.5189± 9× 10−4 0.5002± 9× 10−4

τ = 30 0.3661± 9× 10−4 0.4588± 9× 10−4 0.4587± 9× 10−4 0.4489± 9× 10−4

τ = 35 0.3588± 9× 10−4 0.4109± 9× 10−4 0.4041± 9× 10−4 0.3970± 9× 10−4

τ = 40 0.3472± 9× 10−4 0.3672± 9× 10−4 0.3604± 9× 10−4 0.3552± 7× 10−4

Table 5: 95% confidence intervals for the proportion of idle time spent on announced work breaks, pA,
for rule D2(θ, τ, η) as a function of and τ and η for n = 100 and θ = 5/3. The entries in bold are
maximal over η for that τ .

In addition to the announced breaks, there also are unannounced breaks. Paralleling Table 5, Table

7 shows the proportion of idle time spent on idle periods of size at least θ, denoted by pB, with rule

D2(θ, τ, η). The proportions are larger in Table 7, because both unannounced and announced breaks

are included.

These tables show that η makes much greater difference than τ . Moreover, there is a strong tradeoff

in the choice of η. All three of pD, pA and pB are monotone in τ , but pA and pB are not monotone
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η = 4 η = 6 η = 8 η = 10

τ pD pD pD pD

τ = 15 0.3368± 0.0018 0.4141± 0.0026 0.4860± 0.0020 0.5414± 0.0023

τ = 20 0.3330± 0.0021 0.4076± 0.0021 0.4603± 0.0023 0.4855± 0.0021

τ = 25 0.3319± 0.0022 0.3937± 0.0017 0.4218± 0.0020 0.4339± 0.0025

τ = 30 0.3291± 0.0018 0.3739± 0.0025 0.3887± 0.0025 0.3974± 0.0024

τ = 35 0.3246± 0.0021 0.3510± 0.0024 0.3598± 0.0022 0.3663± 0.0024

τ = 40 0.3206± 0.0020 0.3342± 0.0027 0.3413± 0.0020 0.3449± 0.0028

Table 6: 95% confidence intervals for the steady-state delay probability pD associated with D2(θ, τ, η)
as a function of and τ and η for n = 100 and θ = 5/3.

η = 4 η = 6 η = 8 η = 10

τ pB pB pB pB

τ = 15 0.5041± 6× 10−4 0.5731± 5× 10−4 0.6212± 6× 10−4 0.6407± 8× 10−4

τ = 20 0.5043± 7× 10−4 0.5684± 6× 10−4 0.6022± 9× 10−4 0.6032± 6× 10−4

τ = 25 0.5021± 7× 10−4 0.5587± 6× 10−4 0.5671± 7× 10−4 0.5616± 9× 10−4

τ = 30 0.4991± 9× 10−4 0.5349± 9× 10−4 0.5333± 7× 10−4 0.5278± 6× 10−4

τ = 35 0.4944± 7× 10−4 0.5091± 8× 10−4 0.5045± 9× 10−4 0.5009± 7× 10−4

τ = 40 0.4832± 8× 10−4 0.4872± 5× 10−4 0.4829± 7× 10−4 0.4797± 7× 10−4

Table 7: 95% confidence intervals for the proportion of idle time spent on idle periods of size at least
θ, pB, with rule D2(θ, τ, η) as a function of τ and η for n = 100 and θ = 5/3. The entries in bold are
maximal over η for that τ .

in η for fixed τ . The entries in bold show that optimal η for each τ . The values of η where these

maximal proportions occur are decreasing in τ . The corresponding plots for other weights w are shown

in the appendix. Figure 5 shows the cost in (5.1) as a function of τ and η for the base case with weight

w = 0.5. Overall, we see that the cost is minimized by choosing η = 8 with τ = 15 or τ = 20. For

higher τ , the optimal choice shifts to η = 6.

Remark 5.1 (a larger system) The appendix shows corresponding results for a large M/M/n system

with n = 1000, but still ρ = 0.9 and θ = 5/3.

Remark 5.2 (an alternative more elementary server-assignment rule) We identified an alternative

rule that is easier to implement and has comparable performance. This alternative rule still lets servers

go on break when their age exceeds the threshold τ , but otherwise uses the standard LISF rule for
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Figure 5: The cost in (5.1) as a function of τ and η for D2(θ, τ, η) in the base case with n = 100,
θ = 5/3 and w = 0.5

server assignment. Tables and plots for this alternative LISF-based alternative to D2(θ, τ, η) are shown

in the appendix.

Remark 5.3 (comparison to the M/M/(n− b) model with a fixed number b on break) It is interesting

to compare the server-assignment rule D2 to what happens with a fixed number of servers on break.

The appendix shows that the D2 outperforms the alternative with a fixed number b of servers on break,

where a range of b is considered ranging from the greatest integer less than or equal to the average

number on break to the bound η.

6 Conclusions

In this paper we developed new rules for assigning idle servers to customers requesting service in a

contact center in order to create effective work breaks from available idleness. After showing that the

standard longest-idle-server-first (LISF) rule and the random routing (RR) alternative generate breaks

too infrequently in §2.5, we studied the one-parameter rule D1 ≡ D1(θ) yielding unannounced breaks

while maintaining work conservation in §3 and §4, and then studied the three-parameter refined rule

D2 ≡ D2(θ, τ, η) yielding announced breaks by sacrificing work-conservation in §5.

We provided strong theoretical support for these proposed server-assignment rules in §3 by analyzing

them in the many-server heavy-traffic (MSHT) fluid model for the G/GI/n model, which arises as the

MSHT limit as the number of servers n and the arrival rate increase toward infinity, while the traffic

intensity (workload per server) is held fixed at ρ < 1 (the quality-driven MSHT regime). Theorem
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3.1 and Corollary 5.1 show that both rules are optimal for this fluid model, minimizing E[T ], the

steady-state mean interval between breaks, yielding the upper bound on the rate of breaks, established

in Theorem 2.1. However, in §3.4 we show that there are multiple rules that achieve this optimal mean.

Among all rules that achieve this minimum mean E[T ], the rules D1 and D2 minimize the standard

deviation SD(T ).

Since announced breaks are likely to be preferred, there is interest in the rule D2(θ, τ, η), but it is

complicated because it causes performance degradation for customers and has more parameters. In §5

we show the the parameters τ and η can be chosen by formulating an optimization that expresses the

tradeoff between the interests of servers and customers.

Finally, we conducted extensive simulation experiments evaluating the new server-assignment rules

D1 and D2. First, the simulation experiments reported in §4 confirm the fluid limit and show that

the rule D1 is effective for generating unannounced breaks in an M/M/n base case with n = 100

servers and ρ = 0.9. Second, the simulation results in §5 show that simulation can be used to solve the

optimization problems yielding the control paramters.

Much work remains to be done in the future. While we have shown that it is possible to create

within-day work breaks from available idleness, it remains to investigate whether or not these rules

would improve the satisfaction of service representatives. Second, it remains to investigate other

server-assignment rules. Third, it remains to establish the MSHT FWLLN showing that the sequence

of stochastic models converges to the MSHT fluid model as the scale n increases; the authors hope to

report results for that in the near future. Finally, there remain many other analytical challenges, such

as deriving explicit formulas and establishing optimality for the stochastic models.
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