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Abstract

We show how dynamic priority (DP) rules for assigning available service representatives to ar-
riving customers in customer contact centers can be used to create effective work breaks for the
service representatives from naturally available idleness, assuming that the service system is staffed
adequately to provide non-negligible idleness. We start by establishing many-server heavy-traffic
limits to develop useful approximations for the distributions of server idle times with the custom-
ary longest-idle-server-first (LISF) rule and a random-routing (RR) alternative. We show that the
pattern of idleness with these rules is totally different but neither produces effective work breaks.
We then develop three DP rules and conduct simulation experiments to show that the new DP
rules can indeed create effective work breaks from the available idleness. The first DP rule yields
unannounced breaks, while the other more refined rules yield announced breaks.

Keywords: customer contact centers, call centers; work breaks; server-assignment rules; many-server

queues.
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1 Overview

This is an appendix to the main paper, Sun and Whitt [2016]. In §2 we summarize the notation used in

the paper, indicating where it is defined and first used. In §3 we elaborate on fitting a truncated normal

distribution, which is used in §3 of the main paper. In §4 we elaborate on the simulation methodology.

Finally, in §5 we present additional simulation results.

2 List of Abbreviations and Symbols, Plus Location in Text

We now give an overview of the notation in the main paper, indicating where it is first introduced and

defined.

LISF Longest-Idle-Server-First (server assignment rule), §1
RR Randomized-Routing (server assignment rule), §1
ρ traffic intensity, §2.1
Ui interarrival times, §2.1
λ arrival rate, §2.1
Si service times, §2.1
µ service rate of individual servers, §2.1
s number of servers, §2.1
N(t) number of customers in the system at time t, §2.1
B(t) number of busy servers at time t, §2.1
I(t) number of idle servers at time t, §2.1
N steady-state number of customers in the system, §2.1
B steady-state number of busy servers, §2.1
I steady-state number of idle servers, §2.1
D duration of a work break, §2.2
T interval between successive work breaks, §2.2
β long-run proportion of time server is on break, §2.2
βt long-run proportion of idle time server is on break, §2.2
θ target duration of a work break, §2.2

Table 1: The notation used in §1 and §2 of the main paper.
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Φ cumulative distribution function (cdf) of a standard normal random vari-
able, §3.1

φ probability density function (pdf) of a standard normal random variable,
§3.1

α steady-state delay probability for the standard M/M/s queueing model,
§3.1

ξ quality-of-service parameter for the square-root staffing rule, §3.1
N(m, v) normal random variable with mean m and variance v, §3.1
V steady-state idle time, §3.2
C(t) cumulative idleness in an interval [0, t], §3.3
Vc completed idle time in cycle in progress, §3.3
M(t) completed idle time in cycle in progress, §3.3
A ≡ A(I) random number of arrivals required for RR assignment, §3.4

Table 2: The notation used in §3 of the main paper.

DP dynamic priority (rule), §4
DP1(θ) first DP rule (1 for 1 control parameter), §4.1
βn Proportion of idle times that are work breaks, §4.1
DP2(θ, τ) second DP rule (2 for 2 control parameters), §4.2
pB proportion of breaks that are announced, §4.2
pD steady-state delay probability, §4.2
Q steady-state queue-length, §4.2
τ threshold control for interval between successive work breaks, §4.2
Sb(t) number of servers on break, §4.2
Id(t) number of idle servers, allowing negative values, §4.2
G(t) gap, §4.2
γ long-run average gap, §4.2
DP3(θ, τ, η) third DP rule (3 for 3 control parameters), §4.3
η Maximum possible number of servers on break at the same time, §4.3
C(pB, pD) cost function to choose optimum η, §4.3

Table 3: The notation used in §4 of the main paper.
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3 Fitting a Truncated Normal Distribution

In §3.1 of the main paper we observed that we could fit a truncated normal distribution to the steady-

state number of idle servers, I. In particular, in equation (3.3) we observed that I ≈ (s −N(m, v))+.

However, it remains to determine the parameters m and v consistent with the known exact values of

P (I = 0), E[I] and E[I2]. We elaborate here.

Since N has a Poisson distribution in the M/GI/∞ model, we approximate the conditional dis-

tribution of I given I > 0 by a truncated normal distribution. Thus, for the M/GI/s model, we

approximate by

B ≈ N(m, v) ∧ s, and I ≈ (s−N(m, v))+, (3.1)

where the mean m and variance v can be obtained by solving the equations

P (I = 0) ≈ P ((N(m, v) ≥ s) ≈ α

E[(I)k] ≈ (1− α)E[(s −N(m, v))k|N(m, v) < s] for k = 1, 2, (3.2)

where

E[s −N(m, v)|N(m, v) < s] = s− E[N(m, v)|N(m, v) < s] (3.3)

E[(s −N(m, v))2|N(m, v) < s] = s2 − 2sE[N(m, v)|N(m, v) < s] + E[N(m, v)2|N(m, v) < s]

and

E[N(m, v)|N(m, v) < s] =
√
vE[N(0, 1)|N(0, 1) < (s−m)/

√
v] +m

E[N(m, v)2|N(m, v) < s] = vE[N(0, 1)2 |N(0, 1) < (s−m)/
√
v]

+2m
√
vE[N(0, 1)|N(0, 1) < (s −m)/

√
v] +m2, (3.4)

with explicit formulas given, e.g., in Proposition 18.3 of Browne and Whitt [1995]. After solving for m

and v, we obtain the tail probability approximation

P (I > x) ≈ P (N(m, v) < s− x) = Φ((s− x−m)/
√
v) = Φc((x− (s−m))/

√
v), x ≥ 0, (3.5)

where Φc(x) ≡ 1− Φ(x).

It is natural to calculate the parameter pairs (m, v) by doing an exhaustive search in the neighbor-

hood of the overall mean and variance (E[I], V ar(I)) = (1−ρ)s, ρs(1−α)). Of course, the approxima-

tion is asymptotically correct if s is very large for ρ < 1. Then we may use the associated QD MSHT

approximation in which α ≈ 0.
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With exhaustive search in mind, we observe that we can apply (3.2) and (3.3) to rewrite the two

moment equations as

E[N(m, v)|N(m, v) < s] = s(ρ− α)/(1 − α)

E[N(m, v)2|N(m, v) < s] = ρs+ ρ2s2 − [α(1 − ρ2)s2]/(1 − α). (3.6)

Note that the formulas in (3.6) are correct for α = 0. To find the appropriate m and v, we can calculate

the righthand sides and then compute for (m, v) near (E[B], V ar(B)) = (ρs, ρs(1−α)) and find where

the two equations in (3.6) are satisfied.

We now illustrate this algorithm for the base case in §2.3 of the main paper. In particular, we

consider the M/M/s model with LISF, λ = 90, µ = 1 and s = 100.

4 Simulation Methodology

The simulation results for the idle time distribution in the M/M/s model with the LISF and RR

routing rules and model parameters s = 100, µ = 1, λ = 90 and ρ = 0.9 are reported in §3 of the main

paper; e.g., see the histgrams for LISF and RR in Figure 1 of the main paper. These were based on

100 i.i.d. replications of the M/M/100 system observed over a time interval of length 10, 000 after a

warmup period of length 100 to allow the system that started empty to approach steady state. Idle

time data were collected from all 100 servers. We used all observed idle times that started before time

9, 980, allowing a final interval of length 20 to avoid terminal end effects.

As usual, the first two moments mk ≡ E[V k], k = 1, 2, are estimated as sample averages within each

replication. Within each replication, the estimated variance is σ2 = m2−m2
1. Then the overall estimates

m̄1 and σ̄2 are estimated as the sample averages of the 100 values. Moreover, 95% confidence intervals

are estimated for the overall averages in the usual way based on a sample of 100 i.i.d. observations.

We examine the sample distribution of the 100 values to verify that the approach is reasonable.

We now do a rough analysis to estimate the statistical precision for the estimate of the mean E[V ].

First, because the mean service time was 1 and the mean idle time was (1− ρ)/ρ = 0.1111, the mean

service cycle was 1.1111. Hence, each server has about 14, 980/1.111 ≈ 13, 400 or 1.34× 104 idle times

per replication. For all 100 servers, that produces about 1.34 × 106 idle times per replication. Given

that the mean and variance are E[V ] = 0.111 and V ar(V ) = 0.01 by Theorem 3.2 and Example 3.2,

acting as if the idle times are mutually independent (which we know they are not), the sample mean

m̄1 would have sample variance about V ar(m̄1) ≈ (0.01)/1.34 × 106 = 75 × 10−8 and the standard

error would be s̄ ≡
√

V ar(m̄1) ≈ 8.6 × 10−4 = 0.00086. Allowing for positive dependence, we might
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conservatively anticipate a sample variance of about 4−5 times greater or 400×10−8 = 4×10−6, from

which we get the estimated standard error s̄ = 2× 10−3 = 0.002 within each replication.

Finally, 100 replications leads to V ar(m̄1) ≈ 4 × 10−8 with standard error s̄ ≡
√

V ar(m̄1) ≈
2 × 10−4 = 0.0002. Thus, we would anticipate 95% confidence intervals for E[V ] = 0.11111 based on

n = 100 i.i.d. replications of about

E[V ]± 1.96s̄√
n

= 0.11111 ± 1.96(0.0002)

10
≈ 0.11111 ± 0.00004 or [0.11107, 0.11115].

The way to estimate the variance V ar(V ) is less straightforward. As indicated above, we estimate

the variance within each replication as σ̄2 = m̄2 − m̄2
1. We thus obtain 100 estimates of the variance,

one of each replication. We then estimate the overall variance as the sample average of these, and

estimate the CI assuming that these are Gaussian distributed with unknown variance. We examine the

distribution of these sample variance estimates.

Finally, we estimate the distribution of V by constructing a histogram based on all the data.

5 More Simulation Results
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(a) η = 3
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(b) η = 4
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(d) η = 6
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(f) η = 8
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(g) η = 9
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(h) η = 10

Figure 1: Histogram of the idle times with rule DP3(θ = 5/3, τ = 20, η) estimated from simulation
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(a) η = 3 (b) η = 4 (c) η = 5 (d) η = 6

(e) η = 7 (f) η = 8 (g) η = 9 (h) η = 10

Figure 2: Empirical CDF of the idle-time with rule DP3(θ = 5/3, τ = 20, η) estimated from simulation

(a) η = 3 (b) η = 4 (c) η = 5 (d) η = 6

(e) η = 7 (f) η = 8 (g) η = 9 (h) η = 10

Figure 3: Empirical CDF of the inter-break-time distribution with rule DP3(θ = 5/3, τ = 20, η)
estimated from simulation
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Figure 4: Sample paths of G(t) ≡ Sb(t)− I(t), with rule DP3 as a function of η for θ = 5/3 and τ = 20

8



References

d

S. Browne and W. Whitt. Piecewise-linear diffusion processes. In J. Dshalalow, editor, Advances in Queueing,
pages 463–480. CRC Press, Boca Raton, FL, 1995.

X. Sun and W. Whitt. Creating work breaks from available idleness. Columbia University,
http://www.columbia.edu/∼ww2040/allpapers.html, 2016.

9


