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Abstract. We develop new rules for assigning available service representatives to cus-
tomers in customer contact centers and other large-scale service systems in order to create
effective work breaks for the service representatives from naturally available idleness.
These are unplanned breaks occurring randomly over time. We consider both announced
breaks as well as unannounced breaks. Our goal is to make the mean and variance of
the interval between successive breaks suitably small. Given a target break duration, we
propose assigning idle servers based on the elapsed time since their last break. We show
that our proposed server-assignment rules are optimal for the many-server heavy-traffic
(MSHT) fluid model. Extensive simulation experiments support the proposed server-
assignment rules in practical cases and confirm the MSHT approximation formulas when
the number of servers is very large.
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1. Introduction
In this paper we apply queueing models to investi-
gate new rules for assigning available (idle) servers to
customers that redistribute the cumulative idleness to
create effective work breaks for the service represen-
tatives. In doing so, we identify two different kinds
of unplanned work breaks, unlike the conventional
planned breaks that can be part of a daily schedule
posted in advance: (i) random announced breaks and (ii)
random unannounced breaks. For announced breaks, the
server is told they will be on break when the break
is announced, so that they are “off duty” during the
break; for unannounced breaks, the servers are not
told, so that they are always “on call” if needed to meet
customer demand.
We were motivated by customer contact centers (call

centers), but concern about the server experience also
arises more widely, for example, in the evolving shar-
ing economy, such as ad-hoc taxi services. For customer
contact centers, there is now a substantial body of
research developing methods for efficient staffing and
operation, as can be seen from Aksin et al. (2007). As
these contact centers strive to improve customer expe-
rience, a key step in the process may be overlooked:
how to enhance call center agent productivity. Without
productive agents, it is impossible to provide superior
customer support.

As reviewed in section 5 of Aksin et al. (2007) on
human resource issues, many studies on work-related
stress have documented emotional exhaustion and

burnout experienced by service representatives. This is
attributed to handling high volumes of calls and dif-
ficult customers, while being required to meet high
performance metrics, for example, see Sawyerr et al.
(2009) and Lin et al. (2010). In addition to work over-
load, service representatives often do the same routine
tasks every day and adhere to rigid call scripts, which
can be monotonous. This negative impact can decrease
productivity and job satisfaction.

One way to help improve employee satisfaction and
productivity is to provide adequate within-day work
breaks. In addition to the common meal breaks, which
last about an hour, it may be desirable to include
shorter within-day work breaks of about 5 minutes.
The importance of work breaks has been studied
within the literature on organizational behavior and
work psychology, beginning with the classic studies by
Taylor (1911) andMayo (1933), and expanding in recent
years, for example, Jett and George (2003), Trougakos
and Hideg (2009), and Fritz et al. (2013).

1.1. Our Objectives
We first consider unannounced breaks and then after-
ward announced breaks. Servers would naturally pre-
fer announced breaks, but unannounced breaks are
attractive because, unlike announced breaks, they can
be work conserving (nonidling); that is, no customer
waits in queue if there is an available server, so that
customers experience no performance degradation.

Our broad goal is to determine if it is possible to
redistribute idleness to create effective work breaks
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and, if so, how to do so. For that purpose, we assume
that we have a standard M/GI/n queueingmodel with
n homogeneous servers working in parallel and unlim-
ited waiting space. We assume that there is a target
break duration θ; we call any idle time exceeding θ a
break.
Motivated by call centers, for our simulation exam-

pleswe focus on a base case, which is the M/M/n model
with n � 100 servers, traffic intensity ρ � 0.9, mean ser-
vice time E[S] � 1, and θ � 5/3. We are thinking of
mean service times of 3 minutes, so we measure time
in units of 3 minutes. Roughly, we would like to obtain
a 5-minute break every one to two hours. That goal
translates to a break of length 5/3 every time interval
of 20–40. That goal is feasible for ρ � 0.9 because each
server is idle (1− ρ) × 100% � 10% of the time, which is
6 minutes every hour or 12 minutes every two hours.

We first study unannounced breaks. To evaluate
them, we introduce a specific criterion. Let T ≡ T(θ)
be the steady-state interval between successive breaks;
that is, the elapsed time from the end of one break to
the end of the next. Our main goal is to minimize E[T].

However, we also want to control the variability of T,
which we represent by the standard deviation SD(T).
We want both E[T] and SD(T) to be suitably small.
We will consider a strong form of optimality involving
lexicographical order in which we first minimize E[T]
and then, from the set of optimal policies, minimize
the standard deviation SD(T).

1.2. Our Main Contributions
1. We show that the standard longest-idle-server-

first (LISF) server-assignment rule and the natural alter-
native random routing (RR) rule, which generate unan-
nounced breaks, generate the breaks too infrequently.

2. We introduce server-assignment rules that assign
idle servers according to the elapsed time since their
last break ended, which we call “the age.” We first
assign idle servers who have completed a break (are
experiencing an idle time greater than or equal to θ),
assigning the idle server with the largest elapsed idle
time first. After all those servers are assigned, we
assign the idle servers not currently on break (with cur-
rent idle times less than θ), assigning the server with
the least age first. Thus we always assign the idle server
least due a break. We call this first server-assignment
rule D1 ≡ D1(θ), using D for “dynamic priority” and
“due for a break.”
3. We show that important insight into this server-

assignment problem can be gained by considering
the deterministic fluid model that arises in the many-
server heavy-traffic (MSHT) fluid limit in which the
arrival rate and number of servers are allowed to
grow, while the service-time distribution is held fixed.
In particular, we show that the D1 rule and the vari-
ant introduced for announced breaks are both optimal

for the fluid model, first minimizing E[T] and then
minimizing SD(T). Explicit formulas for the steady-
state performance show that (i) the distribution of the
random interval between breaks, T, is insensitive to the
arrival process beyond its rate, (ii) the mean E[T] is
also insensitive to the service-time distribution beyond
its mean, but (iii) the standard deviation S(T) increases
with increasing service-time variability.

4. We also consider announced work breaks, for
which we necessarily lose the nonidling property
(servers on break remain idle even if customers wait in
queue).We propose amodification of the rule D1(θ) for
announced breaks: with D2 ≡ D2(θ, τ, η) we announce
a work break whenever the age exceeds a threshold τ.
(For a busy server, the break begins upon service com-
pletion; for an idle server, the break begins immedi-
ately.) During the break, the server is then off duty, and
so unavailable to serve new demand until the break is
over. In addition, we impose an upper bound η on the
number of servers that can be on break at any time. If a
server cannot be given a break, it is given high priority
for a future break.

5. Finally, we report results of extensive simula-
tion experiments. These simulation experiments show
for the base case with n � 100 that the new server-
assignment rules are effective. For large n, the simula-
tions confirm the MSHT fluid formulas.

1.3. Related Literature and Organization
Other studies have recognized and responded to the
preferences and concerns of the service representa-
tives. First, Whitt (2006b) developed a mathematical
model to help analyze the benefit in contact-center
performance gained from increasing employee reten-
tion, which is in turn obtained by increasing agent
job satisfaction. Sisselman andWhitt (2007) introduced
preference-based routing as a means to allow call cen-
ter agents to help choose what calls they handle; see
Biron and Bamberger (2010) for a related industrial
psychology study. See section 5 of Aksin et al. (2007)
for further discussion.

Recent research by Chan et al. (2014) and Mandel-
baum et al. (2012) has responded to the concern that
server assignment rules should be fair to service repre-
sentatives as well as customers. This includes a recog-
nition that the service-time distributions of different
representativesmight not be identical; see Armony and
Ward (2010), Atar (2008), Atar et al. (2011).

There is a large literature on MSHT limits and ap-
proximations. The MSHT fluid model for the steady-
state performance in Section 3 is a variant of the
standard MSHT fluid model with the first-come,
first-served (FCFS) service discipline and, if consid-
ered, the LISF server-assignment rule, inWhitt (2006a),
Liu andWhitt (2012a), and Kaspi and Ramanan (2011),
but here we consider the underloaded quality-driven
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(QD) regime. Convergence to steady state for that stan-
dard fluid model is considered in section 5 of Liu and
Whitt (2011) and in Theorem 3.9 and section 6 of Kaspi
and Ramanan (2011). For the standard model, MSHT
limits are established in Kaspi and Ramanan (2011) and
Liu and Whitt (2012b, 2014). Since we are considering
the QD MSHT regime, the standard MSHT limit is the
same as for the infinite-server system in Theorem 3.1
of Pang and Whitt (2010).
This paper is organized as follows: In Section 2

we formalize the work-conserving server-assignment
rules and introduce a general Markov process that
describes the evolution of the system state for the D1
rule. We also discuss important conservation laws and
show that breaks occur too infrequently with the LISF
and RR rules. In Section 3 we establish our results
for the MSHT fluid model. We report results of sim-
ulation experiments for the D1 rule yielding unan-
nounced breaks in Section 4 and for the D2 rule yield-
ing announced breaks in Section 5. Finally, in Section 6
we draw conclusions. We present additional support-
ing material in the online appendix. In particular, we
describe how we implemented the server-assignment
rules D1, shortest-(least)-idle-server-first (SISF), and
D2 in our simulations; we present distribution and
renewal process details for the case of hyperexponen-
tial service times, andwe present additional simulation
results.

2. The Stochastic Model for
Server-Assignment Rules

We consider the standard M/GI/n multiserver queue-
ing model with n homogeneous servers working in
parallel and unlimited waiting space with customers
assigned to service in a FCFS order. The service times
come from a sequence of independent and identi-
cally distributed (i.i.d.) random variables Si having
finite mean and variance and cumulative distribution
function (cdf) F having a probability density function
(pdf) f , with F(t) � ∫ t

0 f (s) ds, t > 0. Without loss of
generality (by choosing the measuring units for time),
we let the mean service time be E[S] ≡ µ−1 ≡ 1, where
≡ denotes equality be definition. Then the variance
coincides with the squared coefficient of variation (scv;
variance divided by the square of the mean), which
we denote by c2

s . There is a Poisson arrival process
with arrival rate λ ≡ nρ (ρ < 1) that is independent of
the service times. Hence, the interarrival times Ui are
i.i.d random variables with an exponential distribution
having mean EU � 1/(nρ). We also assume that there
is a specified target break duration θ. We call any idle
time of length θ or longer a (work) break.

2.1. The Server-State Stochastic Process
Accounting for Breaks

For our server-assignment rules, we maintain the state
of each server, including the elapsed time since the last

break. Let Sk(t) be the state of server k, 1 ≤ k ≤ n, for
some designated order of the servers. Let the possible
values of Sk(t) be vectors of real numbers (b , a , c) in the
set Σ≡ {0, 1} × [0,∞)2, where b is an indicator variable
with b � 1 if the server is busy serving a customer and
b � 0 if the server is idle, a is the age, that is, the elapsed
time since the last break, and c is the elapsed time of
the current busy period if the server is busy or of the
current idle period if the server is idle. Thus the state
of all servers at time t is given by the vector S(t) ≡
(S1(t), . . . , Sn(t)) taking values in the setΣn . The state of
the full system at time t is then (Q(t), S(t)), where Q(t)
is the number of customers in the system. The overall
state space is thus S ≡ N × Σn , where N is the set of
nonnegative integers.

The stochastic process (Q , S) ≡ {(Q(t), S(t)): t ≥ 0}
evolves over time as a consequence of arrivals, service
completions, and server assignments. Arrivals are gen-
erated exogenously by the Poisson arrival process with
rate ρ, while service completions occur an independent
random service time with cdf F after the server has
been assigned to the customer. (There are no service
interruptions.) Hence, to understand the full evolution
of the system, it only remains to specify how the servers
are assigned to customers.

2.2. Work-Conserving Server-Assignment Rules
Server-assignment rules can be classified into two
types: work conserving or nonwork conserving. Work-
conserving (or nonidling) policies immediately assign
one of the idle servers to a customer whenever there is
a customer in need of service (in queue or upon arrival)
and there is an idle server. Nonwork-conserving poli-
cies might let the customer wait in queue and assign
to it an available server until a later time. These
notions are important for us because announced work
breaks require policies that are in general nonwork-
conserving, whereas unannounced work breaks do
not. To quickly see why announced breaks require
nonwork-conserving policies, note that a server could
be on a break of duration θ when a customer arrives;
that customer will wait in queue if there are no other
servers available.

The problem of choosing a good work-conserving
server-assignment policy can be formulated as a sto-
chastic decision process. We can formulate a discrete-
time general-state Markov decision problem as in
Puterman (2005) if we let the discrete times be the
successive arrival epochs and the service completion
times, but wewill look at the policy D1 and other work-
conserving policies directly in continuous time.

The server-assignment policies operate only when
a server assignment is needed and at least one idle
server is available; we call that a server-assignment
time. We will consider only stationary Markov service-
assignment rules, which at any server-assignment time
t depend only on the state S(t) at time t and are
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otherwise independent of t. A deterministic server-
assignment rule is thus a map π: Σn → {1, . . . , n} tak-
ing the server state S(t) at time t into the index of the
server to be assigned at time t; we thus write π(t) �
π(S(t)). A randomized server-assignment rule is a map
π: Σn→P({1, . . . , n}), where P({1, . . . , n}) is the space
of probability distributions on the set {1, . . . , n}. In this
case, π(S(t)) maps the state S(t) at time t into a prob-
ability distribution on the indices of the server to be
assigned at time t.
To formalize the work-conserving server-assignment

policies we consider, let I(t), E(t), and N (t) be the
sets of servers that, at time t, are idle, idle and cur-
rently experiencing a break, and idle but not experi-
encing a break, respectively; that is, I(t) ≡ {k: Sk , 1(t)
�0, 1≤ k ≤ n},E(t)≡ {k: Sk , 3(t) ≥ θ, k ∈I(t)} andN (t)≡
{k: Sk , 3(t) < θ, k ∈ I(t)}. First the LISF policy assigns
the idle server that has been idle the longest, that is,

πLISF(t) ≡ arg max {Sk , 3(t), k ∈ I(t)}. (1)

The RR rule is a randomized rule that assigns each
server in I(t)with equal probability.

The new D1 rule first assigns the server in E(t) that
has experienced the longest break, but if no server has com-
pleted a break, then D1 assigns the server in N (t) least
due a break; that is,

πD1
(t) ≡ argmax{Sk ,3(t): k∈E(t)} if E(t),�, and
≡ argmin{Sk ,2(t);k∈N (t)}

if E(t)�φ and N (t),φ. (2)

We also consider a myopic modification of D1, which
we call the shortest-(least)-idle-server-first rule, which
first looks for servers experiencing a break, just like D1,
but if there are none, then assigns the server whose
current idle time is least, that is,

πSISF(t)≡argmax{Sk ,3(t);k∈E(t)} if E(t),φ, and
≡argmin{Sk ,3(t);k∈N (t)}

if E(t)�φ and N (t),φ. (3)

Note that the age plays no role for SISF.

2.3. A Function-Valued Continuous-Time
Markov Process

To understand the approximating deterministic fluid
model for the policy D1 and other work-conserving
policies introduced in Section 3, it is convenient to con-
sider an alternative continuous-time representation.
Given that we have no special interest in individual
servers, we can focus on associated counting processes.
In particular, now using the subscript n to denote the
stochastic model with n servers, let

Bn(t , x , y) ≡
n∑

k�1
1{Sk , 1(t)�1, Sk , 2(t)≤x , Sk , 3(t)≤y} and

In(t , x , y) ≡
n∑

k�1
1{Sk , 1(t)�0, Sk , 2(t)≤x , Sk , 3(t)≤y} , (4)

where 1A is the indicator function of the set A; that is,
1A � 1 on A and 1A � 0 otherwise, so that Bn(t , x , y) is
the number of busy servers at time t with age at most
x and elapsed current service time at most y, while
In(t , x , y) is the number of servers that are idle at time
t with age at most x and elapsed idle time (since their
last service completion) at most y. (Necessarily, x ≥ y
for In(t , x , y).)
Thus, Bn ≡{Bn(t , ·, ·): t ≥ 0} and In ≡{Bn(t , ·, ·): t ≥ 0}

can each be regarded as a stochastic process with val-
ues in D2, where D is the function space of all right-
continuous real-valued functions with left limits, as in
Whitt (2002),whileD2≡D×D is theusual twofoldprod-
uct space. Aside from customer identity, the stochas-
tic process (Qn ,Bn ,In)≡{(Qn(t),Bn(t , ·, ·),In(t , ·, ·)): t≥0},
where Qn(t) is again the number in system at time t,
is equivalent to the stochastic process (Q ,S) in Sec-
tion 2.1 (with subscript n added now). Let Bn(t) ≡
Bn(t ,∞,∞) be the number of busy servers at time t; and
let In(t)≡ In(t ,∞,∞) be the number of idle servers at
time t. We clearly have Bn(t)�min{Qn(t),n} and In(t)�
max{n−Qn(t),0}.

For the M/GI/n model with ρ < 1 and the D1 server-
assignment rule, it is evident that the stochastic process

(Qn ,Bn , In)t ≡ (Qn(t),Bn(t , ·, ·), In(t , ·, ·))
≡ {{(Qn(t),Bn(t , x , y), In(t , x , y):

x ≥ 0, y ≥ 0}: t ≥ 0} (5)

as a function of t is a Markov process with general state
space. We will be interested in the steady-state behav-
ior, whichwe assume iswell defined. In particular, with
⇒ denoting convergence in distribution, we assume
that there exists a random element (Qn ,Bn , In)∞ such
that, for any initial state (Qn ,Bn , In)0, (Qn ,Bn , In)t ⇒
(Qn ,Bn , In)∞ as t→∞, and if the initial state (Qn ,Bn , In)0
is the limit (Qn ,Bn , In)∞, then (Qn ,Bn , In)t becomesa sta-
tionary stochastic process, distributed as (Qn ,Bn , In)∞
for all t. (We conjecture that this conclusion can be
proved as a theorem, but it does not follow immedi-
ately from standardMarkov process theory because the
state space is uncountably infinite.) When we refer to
the steady-state quantities, we omit the index t.

Remark 1 (Stochastic Process for Any Work-Conserving
Rule). It is significant that the stochastic process
{{Qn(t),Bn(t ,∞, y), In(t ,∞,∞): y ≥ 0}: t ≥ 0} is the
same for any work-conserving server-assignment rule.
The (work-conserving) server-assignment rule only
alters the server ages and current idle times, which are
excluded from the general form in (5) by the arguments
assigned the value∞ in this representation.

2.4. Conservation Laws
In this section we consider general server-assignment
rules, both work conserving and not, subject to the
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regularity conditions that (i) all arrivals are eventually
served, (ii) customer service times are not altered by
any of the server-assignment rules, and (iii) there is a
well-defined steady state (so we now omit t). We have
just formulated the D1 rule and assumed that it sat-
isfies condition (iii). In this general setting, conserva-
tion laws are important for understanding allocations
of idleness.
First, the following (well-known) expressions for the

steady-state mean values follow from Little’s Law, for
example, see Whitt (1991):

E[Bn]� ρn and E[In]� (1− ρ)n , (6)

where Bn ≡ Bn(∞,∞) and In ≡ In(∞,∞). Formula (6)
implies that, regardless of the server-assignment rule,
on average each server is idle a proportion 1− ρ of the
time. Thus we are concerned with ways to reallocate
the idle time subject to the constraint that (6) remains
unchanged. Henceforth, we omit the subscript n except
for (Qn ,Bn , In).
Let V denote the steady-state interval between suc-

cessive service times (now omitting the subscript n
even though the distribution of V depends on n), with
V taking on the value 0 when the server is immediately
reassigned. Given that each server experiences alter-
nating service times with E[S] � 1 and idle times, we
have the relations

1− ρ � E[V]
E[V]+ 1

, so that E[V]�
1− ρ
ρ

for all n. (7)

From (7), we see that, for given ρ, the number of servers
and the server-assignment rule cannot alter E[V].
Let D be the duration of a break (an idle time of at

least θ) and let T be the interval between successive
breaks (end-to-end, in steady state). Let β be the rate
breaks occur, let πβ (πβ, I) be the long-run proportion
of time (of the idle time) during which each server is
on break. As further conservation relations, we have

β �
1

E[T] , πβ �
E[D]
E[T] , and πβ, I �

πβ
1− ρ . (8)

We now apply these relations to characterize the rate
at which breaks occur. Consistent with intuition, the
maximum possible rate at which breaks could occur is
when all idle times are either θ or 0.
Theorem 1 (The Rate Breaks Occur). Given ρ and θ, the
rate at which breaks occur is a function of the distribution of
the idle time V , in particular,

β �
(1− ρ)P(V ≥ θ)

E[V] � ρP(V ≥ θ), (9)

so that
β ≤ β∗ ≡

1− ρ
θ

. (10)

The upper bound β∗ in (10) is attained if a proportion p ≡
E[V]/θ � (1− ρ)/(ρθ) of the idle times are θ and the rest
are 0.

Proof. First, we can combine (7) and (8) to obtain (9).
Thenwe can applyMarkov’s inequality with (9) and (7)
to obtain (10). Finally, it is easy to check that this bound
is attained by the two-point distribution concentrating
on {0, θ}. �

Remark 2 (Attaining and Approaching the Bound). For
the M/GI/n model, it is evident that the bound β∗ on
the rate breaks occur cannot be attained by any work-
conserving server-assignment rule, because we cannot
force all idle times to be either 0 or θ. However, we
conjecture that D1 attains this upper bound asymptot-
ically in the MSHT limit as n →∞. In Section 3 we
provide strong support for that conjecture by showing
that this upper bound is attained in the deterministic
fluid model that should arise in the MSHT limit.

2.5. LISF and RR in the Base Case
We started our research by studying the idleness in the
M/M/n model with the LISF and RR server-assign-
ment rules. For the M/M/n base case with n � 100,
ρ � 0.9, E[S] � 1 and target break θ � 5/3 to represent
5 minutes, (7) implies that the (expected) cumulative
idleness over [0, 40] (or 2 hours), is 4 (or 12 minutes),
which is evidently sufficient to produce effective work
breaks, but the LISF and RR rules do not generate them
frequently enough. To illustrate, Figure 1 shows his-
tograms estimated by simulation of the steady-state
idle-time pdf with LISF and RR for the base case. (The
atom at time 0 is omitted from the histogram.) The
histograms show that there is a significantly greater
chance that an idle time could serve as a work break
for RR than for LISF, but neither is sufficient, because
there is negligible mass above 1.0, but we need at least
1.67 to get a break.

Consistent with Figure 1, Our analysis indicates that,
in the base case, LISF produces a steady-state idle-time
V that has a distribution that is approximately a trun-
cated Gaussian distribution having P(V � 0) � 0.215,
E[V]� (1− ρ)/ρ � 0.1111 and SD(V)� 0.100. Since θ �

5/3 is 15.7 standard deviations above the mean, it is
highly unlikely that an idle time will be a break.

In contrast, with RR, our analysis indicates that V
has a distribution that is approximately a mixture of
exponential distributions, having E[V] � (1 − ρ)/ρ �

0.1111 and SD(V) � 0.176. The standard deviation is
larger than for LISF but still the target θ is more than 9
standard deviations above the mean.

3. The MSHT Fluid Model for the D1
Server-Assignment Rule

In this section we present our main theoretical result,
concluding that the new D1 server-assignment rule
achieves the maximum possible rate of breaks in The-
orem 1 for the fluid model. In Section 3.1 we intro-
duce the fluid model. In Remark 5 we briefly discuss
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Figure 1. (Color online) Histograms Estimated by Simulation (with the Atom At 0 Removed) of the Steady-State Idle-Time
Distribution with LISF (Left) and RR (Right) for the Base Case
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the MSHT limit (not proved here) that supports using
the fluid model as an approximation for the stochas-
tic model. In Section 3.2 we review properties from
renewal theory that we use. In Section 3.3 we state and
prove our main result. Finally, in Section 3.4 we discuss
the SISF server-assignment rule, which yields the same
mean time between breaks, but a higher variance.

3.1. The Deterministic MSHT Fluid Model for D1(θ)
We now consider the deterministic fluid model that
approximates the M/GI/n model with the D1 server-
assignment rule. In this model we replace discrete
customers and discrete servers that experience ran-
dom service times by continuous divisible determinis-
tic fluid. For treating server idleness, it is convenient
to consider both customer fluid and server fluid. Cus-
tomer fluid arrives exogenously over time at rate ρ < 1.
We let the service capacity be 1, so that we are consid-
ering an underloaded fluid model. In this underloaded
deterministic model, starting empty or in steady state,
there is never any customer fluid waiting in queue.
Somewhat informally, the individual atoms of cus-

tomer fluid arrive to be served and enter service imme-
diately upon arrival, where each atom of customer
fluid is matched with an atom of server fluid from the
pool of idle service capacity to provide that service.
Thus, both customer fluid and server fluid arrive at
the service facility at rate ρ, where these are joined
to provide service. Consistent with (6), in steady state
the quantity of customer fluid in service (together with
server fluid) at each time is ρ, while the quantity of
idle server fluid is 1 − ρ. The total service capacity is
the sum ρ+ (1− ρ)� 1.

Remark 3 (The Role of Proportions). It is natural to think
of the experience of individual atoms of fluid as follow-
ing stochastic processes, as in the previous paragraph,
but that can be formalized using proportions. For
example, a major component of the stochastic model is

a sequence of random service times. This is a sequence
of i.i.d. random variables each distributed as a random
variable S with cdf F. In the fluid model, these distri-
butions should be interpreted as proportions. For the
fluid model, we understand that F(x) is the proportion
of fluid that is served within time x after it started ser-
vice. Stochastic properties such as independence are
also captured in the natural way. The proportion of
server fluid that experiences two consecutive service
completions by time x is P(S1+S2 ≤ x), where S1 and S2
are i.i.d. random variables, with the usual convolution
distribution.

What we have said so far applies to any work-con-
serving server-assignment rule. Indeed, it corresponds
to the easy underloaded special case of the fluid model
in Whitt (2006a) and Liu and Whitt (2012a), where this
part of the fluidmodel is carefully formalized. The pol-
icy D1 plays a role when we keep track of the ages of
each atom of server fluid, that is, the time since its last
break ended, and need to determine which server fluid
is sent to the service facility to provide the required
service. Consistent with (2), the rule D1 first assigns
fluid from the idle server fluid with elapsed current
idle time at least θ, giving priority to the larger elapsed
current idle times. At that instant, when the atom of
server fluid is assigned, the age is reset to 0. If more
server assignment is needed, then D1 assigns the fluid
with elapsed current idle time less than θ, giving prior-
ity to the smaller ages. Aside from the instants at which
breaks end, as time advances the age of all server fluid
increases at unit rate.

The deterministic fluid process that describes the
evolution of the fluid model can be the natural ana-
log of the stochastic process (Bn , In) in (4). For the fluid
model, B(t , x , y) is the amount of busy server fluid at
time t with age at most x and elapsed current service
time at most y, while I(t , x , y) is the amount of idle
server fluid at time t with age at most x and elapsed
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idle time (since their last service completion) at most y.
(As before, x ≥ y for I(t , x , y).) We are interested in
the steady state of this fluid process (B, I), which we
denote by omitting the t.

Just as in Remark 1, part of the steady state is already
known. By Theorem 3.1 (a) of Whitt (2006a), for the
busy fluid we can write

B(∞, y) ≡
∫ y

0
bc(∞, u) du for bc(∞, y)� ρFc(y), y ≥ 0,

(11)
and for the idle fluid we can write I(∞,∞)� 1− ρ.
It remains to determine the full steady state of the

fluid process, given by {(B(x , y), I(x , y)): x ≥ 0, y ≥ 0}.
Just as Jackson (1957) originally found the steady-state
distribution of a Jackson queueing network, we will
obtain the steady state of the D1 fluid model by direct
construction, that is, by guessing the answer and veri-
fying that it works.

Remark 4 (Conservation Laws in the Fluid Model). The
conservation laws in Section 2.4 have natural analogs
for the associated deterministic fluidmodel considered
here. They are identical, except we remove the n in (6).

Remark 5 (MSHT Limits). Important insight into the
deterministic D1 fluid model we have developed can
be gained by seeing that it should serve as the limit in a
MSHT functional weak law of large numbers (FWLLN)
for an appropriately scaled sequence of the M/GI/n
models we introduced in Section 2. We let the mod-
els be indexed by n, where in model n the number of
servers is n and the arrival rate is λn � ρn for 0 < ρ < 1,
while the service-time distribution is held fixed. (For
these asymptotic results, we can extend the arrival pro-
cess from M to G; we only require that the arrival pro-
cess satisfy a FWLLN.) Since we have ρ < 1, the MSHT
limit is in the underloaded QDMSHT regime. The QD
regime is required for the idleness of each server to be
nonnegligible in the limit, as required for nonnegligi-
ble breaks.
In fact, we do not prove the full FWLLN here, but we

state it because it can help understanding. The conjec-
tured MSHT FWLLN states that

(Q̄n , B̄n , Īn)t⇒(Q ,B, I)t as n→∞ (12)

using the topology of uniform convergence for t over
bounded intervals, where the limit (Q ,B, I)t is the fluid
process and we average for each n; that is,

(Q̄n , B̄n , Īn)t ≡ n−1(Qn ,Bn , In)t for all t and n , (13)

with (Qn ,Bn , In)t defined in (5) for model n. It is signif-
icant that this MSHT FWLLN has been established for
the special case in Remark 1. That special case can be
regarded as a consequence of Theorem 3.1 of Pang and
Whitt (2010) or Liu and Whitt (2012b).

3.2. Relevant Renewal Theory
For nonexponential service-time distributions, the crit-
ical threshold τ∗ for the D1 fluid model depends on
the renewal function associated with the service times.
Indeed, it is natural that renewal theory should play
a role, because we are considering immediately reas-
signing fluid upon service completion. Renewal theory
naturally arises when we consider the number of times
that an atom of server fluid is assigned before the age
reaches τ∗ and the server is assigned a break. Thus we
need to review some properties of renewal processes.

Let N ≡ {N(t): t ≥ 0} be the renewal counting process
associatedwith successive i.i.d. service times Sk , that is,

N(t) ≡max {k ≥ 0: S0 + S1 + · · ·+ Sk ≤ t}, t ≥ 0, (14)

where S0 ≡ 0. We will exploit the mean of the renewal
process, called the renewal function,

m(t) ≡ E[N(t)], t ≥ 0, (15)

and the associated renewal excess (after time t),

R(t) ≡ SN(t)+1 − t , t ≥ 0. (16)

As in section 3.3 of Ross (1996), we apply Wald’s equa-
tion to express the expected value as

E[R(t)]� E[S](E[N(t)]+ 1) − t � E[N(t)]+ 1− t
for all t ≥ 0. (17)

3.3. The Steady-State of the D1 Fluid Model
Recall that we consider the M/GI fluid model with
(i) service capacity 1; (ii) arrival rate ρ < 1; (iii) each
fluid atom has a service time with cdf F(x) ≡ P(S ≤ x)
with mean 1 and scv c2

s ; (iv) the D1 server-assignment
rule with target work breaks of length θ, where E[V] ≡
(1 − ρ)/ρ < θ; and (v) in steady state. As a regular-
ity condition, we assume that m(t) is continuous and
strictly increasing with m(0) � 0, so that m(t) has a
unique inverse; it suffices for the service-time pdf f to
be continuous and positive in a neighborhood of the
origin (but not necessarily f (0) > 0); see section XI.3 of
Feller (1971). Let d

� denote equality in distribution.

Theorem 2 (The Steady State of the MSHT M/GI Fluid
Model with Rule D1(θ)). Under the conditions (i)–(v) spec-
ified in the previous paragraph,

(a) there exists a unique time τ∗≡ τ∗(ρ, θ, F), 0< τ∗ <∞,
such that all fluid completing service with age at least τ∗ is
given a break of length θ, and thus is assigned exactly θ
time units later, while all fluid completing service with age
less than τ∗ is reassigned instantaneously and so experiences
0 idle time. The critical time τ∗ is the unique root of the
equation

m(τ∗)� 1
p
− 1 > 0, (18)
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where p ≡ (1−ρ)/(ρθ)< 1 and m(t) is the renewal function
associated with the service-time cdf F in (15). As a conse-
quence, work breaks (idle times of length at least θ) occur at
the upper bound rate from Theorem 1,

β∗ �
1− ρ
θ

� pρ, (19)

independent of the service cdf F beyond its mean.
(b) The proportion of fluid that experiences time less than

or equal to x between breaks is P(T∗ ≤ x), where T∗ ≡ T(τ∗)
is a nondegenerate random variable with

T∗ d
� τ∗ +R(τ∗)+ θ � N(τ∗)+ 1+ θ, (20)

where N(t) is the renewal counting process associated with
the cdf F and R(t) is the renewal excess, so that

E[T∗]� m(τ∗)+ 1+ θ �
1
β∗

and Var(T∗)�Var(R(τ∗)).
(21)

(c) The steady-state densities of the server fluid content
in service with age x, b(x), and idle server fluid content with
age x, g(x), satisfy

b(x)� β∗1{0≤x<τ∗} + β
∗P(R(τ∗) ≥ x − τ∗)1{τ∗≤x<∞} (22)

and

g(x)� 0 · 1{0≤x<τ∗} + β
∗P(R(τ∗) ≤ x − τ∗)1{τ∗≤x<τ∗+θ}

+ β∗(P(x − τ∗ − θ ≤ R(τ∗) ≤ x − τ∗)1{τ∗+θ≤x<∞}
(23)

for β∗ in (19), τ∗ the solution of Equation (18) and R(t)
the renewal excess in (16). As a consequence, the associated
cumulative functions satisfy

0� I(τ∗ ,∞)< I(x ,∞)< I(∞,∞)≡ I � 1−ρ, τ∗ < x <∞,
(24)

and

B(τ∗ ,∞)�β∗τ∗<B(x ,∞)<B(∞,∞)≡B�ρ, τ∗< x<∞.
(25)

(d) As a consequence, D1 is lexicographically optimal for
the fluid model, first minimizing E[T] and then minimizing
Var(T) among all policies that yield the minimal E[T].

Proof. For D1, our idea is that, in steady state, there
ought to be a critical threshold τ such that, at all times,
all fluid completing service after time τ is given a
break, and so is assigned to service exactly θ time
units later, whereas all remaining fluid (the fluid with
age less than τ) is reassigned to service immediately.
Moreover, by Theorem 1 and Remark 4, the rate of
breaks is themaximumpossible.We show in the online
appendix that steady-state performance of the D1 fluid
model takes this form. It thus remains to show that a
unique policy of this form can be realized and what its
performance consequences are.

The key to a short proof is converting the present
model into the model in Whitt (2006a) and Liu and
Whitt (2012a) by creating new “macro service times,”
which combine the consecutive service times experi-
enced between breaks. Given τ∗, the new combined
service time is S̃≡ τ∗+R(τ∗)with cdf F̃ and pdf f̃ . Thus,
in the underloaded D1 fluid model, each atom of fluid
experiences alternating breaks of length θ, which we
think of as interarrival times, and service times with
cdf F̃. The steady-state performance of this D1 model
coincides with the previous M/GI fluid model, as in
Whitt (2006a) and Liu andWhitt (2012a), if we consider
the service-time cdf F̃ and a fluid arrival process with
rate β∗E[S̃]. The lower arrival rate resulting from the
higher mean of cdf F̃ is balanced by the longer service
time; that is,

b(x)� (β∗E[S̃]) f̃e(x)� (β∗E[S̃])(F̃c(x)/E[S̃])� β∗F̃c(x),
(26)

which coincides with (22). The density b in (26) then
coincides with (3.2) in Theorem 3.1 (a) ofWhitt (2006a).
The density g in (23) follows from observing that all
idle fluid remains exactly for time θ after it arrived.

It remains to show that there exists a unique pair
(τ∗ , β∗) satisfying (18) and (19). To start, the renewal
function has a unique inverse, because we have
made assumptions that ensure it is continuous and
strictly increasing. Thus, (18) necessarily has a unique
solution.

On the other hand, given the form of the busy-server
density b(x) in (22), and the total busy server content
B � ρ, we have ρ � β∗τ∗ + β∗E[R(τ∗)] � β∗(m(τ∗) + 1),
where β∗ is the rate breaks occur. Hence,

β∗ � ρ/(m(τ∗)+ 1). (27)

Given the D1 policy, for T∗ in (20), we also have T∗ d
�

τ∗ + R(τ∗)+ θ, where R(τ∗) is the residual service time
beyond τ∗, so that

β∗ �
1

E[T∗] �
1

m(τ∗)+ 1+ θ
. (28)

Combining (27) and (28), we obtain the unique solu-
tion with τ∗ in (18) and β∗ in (19). Because there is a
unique solution to Equation (18), there is a unique fluid
performance associated with D1.
Finally, it remains to establish the lexicographical

optimality. The previous analysis shows that mini-
mizing the mean E[T] requires the two-point idle-
time distribution, which is tantamount to immediately
assigning all fluid with age less than τ∗ the instant
it completes service. At first glance, it might appear
that D1 is the only server-assignment rule minimizing
E[T] (and maximizing the rate of breaks) for the fluid
model, but that is not the case. We can obtain alter-
native rules with the same E[T], but higher variance
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Var(T), by changing which fluid is immediately reas-
signed after completing service. The only remaining
freedom if we fix the mean E[T] at the optimal value
is which fluid we assign immediately upon complet-
ing service. The only alternatives involve randomizing
over the age while holding the mean E[T] fixed, but
that additional randomization necessarily increases the
variance, by virtue of convex stochastic order, as in sec-
tion 9.5 of Ross (1996). An example is the SISF rule
discussed in the next section. �

Remark 6 (Exponential Service). The solution in Theo-
rem 2 simplifies if the service time S is a mean-1 expo-
nential random variable M(1), because then m(τ∗) � τ∗
and R(x∗) d� M(1), so that τ∗ � (1/p)−1 and T∗ d

� τ∗+θ+
M(1). Then b(x)� pρ(1{0≤x<τ∗} + e−(x−τ∗)1{τ∗≤x}) and

g(x)� pρ((1− e−(x−τ
∗))1{τ∗≤x<τ∗+θ}

+ (e−(x−τ∗−θ) − e−(x−τ
∗))1{x≥τ∗+θ}).

Remark 7 (Approximating or Calculating the Renewal
Function and the Mean Excess). Because the service dis-
tribution has a density (and thus is nonlattice) with
σ2 <∞, see Proposition 3.4.8 of Ross (1996),

R(t)⇒ Se as t→∞ (29)

and

E[R(t)]→ E[Se]�
E[S2]
2E[S] �

E[S](c2
s + 1)

2 as t→∞,
(30)

where Se is a random variable with the equilibrium-
excess cdf Fe associated with the service time cdf F(t) ≡
(S ≤ t), that is,

Fe(t) ≡ P(Se ≤ t) ≡ 1
E[S]

∫ t

0
P(S > u) du , t ≥ 0. (31)

By Equation (2) of Eick et al. (1993),

E[Sk
e ]�

E[Sk+1]
(k + 1)E[S] , (32)

so that for our case in which E[S]� 1, we have (30) and

Var(Se)� E[S2
e ] − (E[Se])2 �

E[S3]
3 −

(
E[S2]

2

)2

. (33)

For applications, provided that t is not too small, we
thus might use the approximations

R(t) ≈ Se and E[R(t)] ≈ E[Se]. (34)

For special distributions, Se can serve as an upper
bound for R(t). In particular, if F has the increasing
mean residual life (IMRL) or decreasing failure rate
(DFR) property, then the distribution of R(t) is increas-
ing in t in the sense of increasing convex order or
stochastic order, respectively; see Brown (1980, 1981).
The H2 example we consider in Section 4.3 has the DFR
property.

Remark 8 (The Experience of Individual Servers Under
the D2 Rule). Individual servers (atoms of fluid) expe-
rience alternating busy periods distributed as TB

d
� τ∗+

R(τ∗) and idle periods of length TI ≡ θ, which form
an alternating renewal process with i.i.d. busy cycles
distributed as T∗ � TB + TI , as in section 3.4.1 of Ross
(1996). The form of the age densities in (22) and (23)
can be explained by this alternating renewal process
structure; for example, by Theorem 4.8.4 of Ross (1996),
b(x)� P(TB > x)/E[T∗]� β∗P(τ∗ +R(τ∗) > x).

3.4. Other Rules Maximizing the Rate of
Breaks: SISF

We now expand upon part (d) of Theorem 2 by illus-
trating an alternative server-assignment rule with the
optimal mean E[T], but higher variance Var(T). The
alternative rule is the SISF rule, which assigns the fluid
with current idle time greater than or equal to θ first,
just like D1, but then assigns the fluid with the least
(shortest) current idle time first. In fact, it is more evi-
dent that the SISF rule should produce the extremal
two-point steady-state idle-time distribution, because
it focuses directly on the current idle time. To formally
describe the evolution of the SISF fluid model, let Ŝ ≡∑N(p)

i�1 Si , where N(p) is a random variable with the
geometric distribution on the positive integers having
mean 1/p for p ≡ (1 − ρ)/(ρθ) and Si are i.i.d. mean-1
service-time random variables with cdf F and variance
σ2 that are independent of N(p).

Theorem 3 (The Steady State of the MSHT M/GI Fluid
Model with Rule SISF). For the SISF server-assignment rule
under the assumptions in Theorem 2,

(a) a proportion p of server fluid completing service is
given a break of length θ, and thus is assigned exactly θ time
units later, while a proportion 1−p of server fluid completing
service is reassigned instantaneously and so experience 0 idle
time.

(b) The time between successive breaks with SISF can be
represented by the random sum

T ≡ θ+ Ŝ (35)

so that

E[T]� θ+
1
p
� θ+

θ

E[V] �
θ

1− ρ �
1
β∗
, (36)

and

Var(T)�Var(S)E[N(p)]+E[S]2Var(N(p))

�
σ2

p
+

1− p
p2 �

pσ2 + 1− p
p2 , (37)

which equals 1/p2 � (ρθ/(1− ρ))2 when σ2 � 1.
(c) The steady-state densities of the server fluid content

in service with age x, b(x), and idle server fluid content with
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age x, g(x), satisfy

b(x)� β∗P(Ŝ ≥ x)1{x<∞} and
g(x)� β∗P(Ŝ ≤ x)1{x<θ} + β∗P(x − θ ≤ Ŝ ≤ x)1{x≥θ} (38)

for β∗ in (19).

Proof. Let λ and δ be the steady-state arrival rate of
customer fluid and the departure rate of customer fluid
(also the arrival rate of newly idle server fluid). By flow
conservation, we have λ � δ � ρ. Because the propor-
tion of server fluid goes on break from service comple-
tion is p, breaks occur at a rate pρ � β∗, reaching the
maximum possible value of breaks by Theorem 1. The
rate of assignment of fluid that has been idle for time
θ is therefore αθ � pρ � β∗, leaving α0 � (1 − p)ρ for
immediate reassignment. That is, the rule first assigns
all fluid that has been idle for time θ and then imme-
diately reassigns a proportion 1 − p of the newly idle
server content, which is consistent with the SISF rule.
Part (b) follows directly from part (a). The proof of

part (c) is analogous to that forpart (c) ofTheorem2. �
We can easily compare SISF to D1 for M service:

For D1, Var(T) � Var(R(τ∗)) � Var(M(1)) � 1, which is
less than 1/p2, typically much less. For the base case,
1/p � 15.0, so that Var(T) � 225 for SISF. We will show
that these fluid formulas are consistentwith simulation
for large n.

4. Simulation Experiments for
Unannounced Breaks: D1 and SISF

In Sections 2.1 and 2.2 of the online appendix we
indicate how we implement the D1 and SISF server-
assignment rules in the simulation. In Section 4.1 we
discuss how we execute the simulation and perform
the statistical estimates. In Section 4.2 we report simu-
lation results for the M/M/n model in the base case. In
Section 4.3 we report additional results for the D1 rule
with a hyperexponential (H2) service-time distribution.
(We present background for the H2 distribution in the
online appendix.)

4.1. Statistical Estimation
Our simulations used r � 20–50 i.i.d. replications of
an M/G/n system observed over a time interval of
length between 2,000–40,000 depending on the value
of n after a warm-up period of length 50–100 to allow
the system that started empty to approach steady state.
(We remark that the appropriate choices depend on n,
largely because the sample size is proportional to both
n and t; see Srikant andWhitt 1996, Whitt 1989, and Ni
and Henderson 2015.) Idle times and periods between
successive breaks are collected from all n servers.
To estimate the probability of an event, we first

compute the sampling frequency within each repli-
cation. Then the overall estimate is the sample aver-
age of the r values, which should be approximately

Gaussian distributed with unknown variance. Hence,
the 95%-confidence interval (CI) is constructed using
the Student-t distribution with t0.025(r − 1); for exam-
ple, see section 8 of Walpole et al. (1993). For a random
variable X, the first two moments mk ≡ E[Xk], k � 1, 2,
are estimated by the sample averages m̄1 and m̄2 within
each replication. Then the overall estimates m̄1 and m̄2
are taken to be the sample averages of the r values,
which again should be Gaussian; for example, see p. 2
of Ni and Henderson (2015). Hence, again the 95% CIs
can be constructed in the same way with t0.025(r − 1).
Within each replication, the variance formula is σ2 �

m2 −m2
1. We therefore estimate the standard deviation

(SD) within each replication by σ̄ �
√

m̄2 − m̄2
1. We then

obtain r estimates of the SD, one of each replication.We
estimate the overall SD as the sample average of these.
The way to construct CI for the SD is less straightfor-
ward, because σ̄ is not normally distributed because of
the fact that m2

1 is no longer Gaussian. To circumvent
this difficulty, we use sample quantiles to construct
the CI.

4.2. Simulation Results
We now report simulation results for D1 and SISF.
(More results appear in the online appendix.) We pri-
marily focus on the base M/M/n case with ρ � 0.9,
E[S]� 1, n � 100, and θ � 5/3. Table 1 provides simula-
tion estimates of the probability of short and large idle
times as a function of the scale n. We call idle times
small if they are less than 0.1, an arbitrary number less
than the mean 0.1111; we call idle times greater than
or equal to θ large. Figure 1 in the online appendix
shows that the idle-time distribution with D1 tends to
be like the two-point extremal distribution for the fluid
model.

Table 1 shows that the performance of the two rules
is very similar, but SISF produces an idle-time distri-
bution slightly closer to the desired two-point extremal
distribution in Theorem 1. The fluid model provides
the limiting case of n �∞.

Table 2 shows simulation estimates of the mean and
standard deviation of the interval between breaks, Tn ,
as a function of the scale n for the server-assignment
rules D1 and SISF in the base M/M/n case. As for the
fluid model in Section 3.4, the means are very simi-
lar, but the standard deviation is much smaller for D1.
The fluid model is very helpful for understanding the
advantage of D1 over SISF, but the fluid model does
not yield accurate approximations for the base case of
n � 100.
Let AB (AI) be a random variable with the distribu-

tion of the age of a busy (idle) server at an arbitrary
time in steady state, as discussed in Remark 8. Figure 2
shows histograms of these ages estimated from the
simulation results. The vertical y axis has been scaled
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Table 1. Simulation Estimates of the Probability of Short and Large Idle Times as a
Function of the Scale n for the Server-Assignment Rules D1 and SISF in the Base M/M/n
Case with ρ � 0.9, E[S]� 1 and θ � 5/3

D1 SISF
System
size P(Vn ≤ 0.1) P(Vn ≥ θ) P(Vn ≤ 0.1) P(Vn ≥ θ)

n � 25 0.7917± 0.0018 0.0163± 0.0003 0.8257± 0.0012 0.0217± 0.0003
n � 100 0.8240± 0.0013 0.0223± 0.0004 0.8341± 0.0008 0.0293± 0.0004
n � 250 0.8498± 0.0007 0.0317± 0.0003 0.8698± 0.0005 0.0386± 0.0003
n � 1,000 0.8896± 0.0008 0.0492± 0.0007 0.9028± 0.0005 0.0546± 0.0005
n � 5,000 0.9155± 0.0002 0.0601± 0.0010 0.9236± 0.0003 0.0628± 0.0002
n �∞ 0.9333± 0.0000 0.0633± 0.0000 0.9333± 0.0000 0.0667± 0.0000

Note. The fluid model provides the limiting case of n �∞.

Table 2. Simulation Estimates of the Mean and Standard Deviation of the Interval Between
Breaks, Tn , as a Function of the Scale n for the Server-Assignment Rules D1 and SISF in the
Base M/M/n Case with ρ � 0.9, E[S]� 1 and θ � 5/3

D1 SISF
System
size E[Tn] SD(Tn) E[Tn] SD(Tn)

n � 25 66.29± 1.12 38.04± 0.71 51.44± 0.49 52.31± 0.89
n � 100 48.06± 0.79 18.73± 0.41 37.85± 0.49 36.68± 0.52
n � 250 33.45± 0.33 9.47± 0.35 28.62± 0.21 27.01± 0.28
n � 1,000 20.84± 0.30 3.06± 0.12 20.28± 0.16 18.54± 0.16
n � 5,000 16.75± 0.07 1.38± 0.03 17.28± 0.05 15.59± 0.06
n �∞ 16.67± 0.00 1.00± 0.00 16.67± 0.00 15.00± 0.00

Note. The fluid model provides the limiting case of n �∞.

so that the area under each histogram is 1, making the
histogram an estimate of the density.
From the MSHT fluid model with rule D1, we expect

that the ages AB and AI have densities much like their
fluid counterparts b(x)/ρ and g(x)/(1− ρ) for b(x) and
g(x) in (22) and (23). Table 3 reports estimations of
the mean and standard deviation of these age random
variables for D1 as a function of n. As before, the case
n �∞ corresponds to the fluid model.
It is also useful to look at the pattern of successive

idle times over a long horizon. Figure 3 displays suc-
cessive idle times for a set of randomly selected servers
in the M/M/n base case. The vertical axis measures the
length of an idle time and the horizontal axis indexes
the successive idle times.
Figure 3 shows that D1 generates occasional long idle

times with many very short ones in between. Over a
long horizon, these work breaks occur fairly regularly.
From the results, we conclude that, unlike LISF and

RR, the D1 server-assignment rule can achieve the
desired work breaks. Nevertheless, there are three seri-
ous drawbacks in D1. First, Figure 4 shows that there
tend to be long idle periods that occur right before
many of the work breaks. We regard this as undesir-
able, because we want all long idle periods to be work
breaks. Second, closely rated to the first drawback, the
interval between successive breaks tends to be too long,

often being above the interval [20, 40]. Indeed, Table 1
shows that the mean is 48 for θ � 5/3. The full distri-
bution is shown in Figure 4, with a histogram on the
left and the empirical cumulative distribution function
(ecdf) on the right. Finally, we want to announce the
work breaks so that the server can be off duty during
the break, which is not possible with D1.

4.3. The D1 Rule with a Different Service-
Time Distribution

We also examined D1 with nonexponential service-
time distributions. We illustrate by briefly discussing
the case of a mean-1 hyperexponential (H2) distribu-
tion with variance σ2 � 4 and balanced means, as in
section 3.1 of Whitt (1982); additional discussion for
this example appears in the online appendix.

From (34) and Theorem 2, the key quantities for the
fluid model are

E[R(τ∗)] ≈ E[Se]� 2.50 and
SD(R(τ∗)) ≈ SD(Se)� 3.71.

(39)

At the end of Section 3.2, we noted that Se is an upper
bound for R(t) in stochastic order, because the H2 cdf is
DFR. The numerical values in (39) should be compared
to the corresponding values for M(1): E[R(τ∗)]� 1 and
SD(R(τ∗))� 1.
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Table 3. Simulation Estimates of the Mean and Standard Deviation of the Ages AB and AI
in the Base Case as a Function of n

Busy Idle

E[AB] SD(AB) E[AI] SD(AI)

n � 100 26.510± 0.051 19.146± 0.072 41.725± 0.068 19.725± 0.083
n � 500 13.178± 0.016 8.395± 0.033 24.858± 0.019 6.565± 0.024
n � 1,000 10.518± 0.011 6.380± 0.018 20.865± 0.013 3.828± 0.017
n � 5,000 8.399± 0.004 4.935± 0.011 17.378± 0.004 1.797± 0.007
n �∞ 7.533± 0.000 4.392± 0.000 15.833± 0.000 1.108± 0.000

Table 4 shows simulation estimates of the mean
and standard deviation of AB , AI and T as a function
of n in the M/H2/n model with rule D1, ρ � 0.9 and
θ � 5/3.
Tables 2–4 provide important confirmation of the

fluidmodelwith nonexponential service-time distribu-
tion and the approximation R(τ∗) ≈ Se in (34), because

Figure 3. (Color online) Two Sample Paths of Successive Idle Times Over a Period of Length 300 for D1 in the Base Case
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Figure 4. (Color online) The Histogram (Left) and ecdf (Right) Estimated from Simulation of the Distribution of T, the Time
Between Breaks, with Rule DP1 for θ � 5/3
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the estimates for n � 5,000 are close to the analyti-
cal values for n �∞. In particular, consistent with the
fluid model, Tables 2–4 indicate that the mean of T∗ is
independent of the additional service-time variability,
while the standard deviation increases in the variabil-
ity. The estimated value for SD(T) of 3.88 from simula-
tion for n � 5,000 is well approximated by SD(Se)� 3.71
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Table 4. Simulation Estimates of the Mean and Standard Deviation of AB , AI and T as a Function of n in the M/H2/n Model
with Rule D1, ρ � 0.9 and θ � 5/3

E[AB] SD(AB) E[AI] SD(AI) E[Tn] SD(Tn)

n � 100 27.145± 0.098 22.059± 0.102 37.622± 0.106 23.851± 0.115 41.663± 0.126 23.7531± 0.131
n � 250 18.277± 0.085 13.584± 0.092 29.473± 0.089 13.922± 0.079 31.748± 0.095 13.473± 0.104
n � 1,000 10.813± 0.062 7.249± 0.071 20.031± 0.075 5.883± 0.058 20.495± 0.047 5.568± 0.072
n � 5,000 8.765± 0.022 5.789± 0.030 17.017± 0.028 4.150± 0.025 16.725± 0.024 3.876± 0.030

in (39). However, as before, the fluid model approxi-
mations for n � 100 are not accurate.

5. The D2(θ, τ, η) Rule for Announced
Work Breaks

Theorem 2 for the fluidmodel suggests a naturalway to
modify D1 to create a rule for announced breaks: intro-
duce a threshold control parameter τ, paralleling τ∗.
For each server, we keep track of the age and announce
a break when the age exceeds τ; the server is then off
duty for time θ. (For a busy server, the break begins
upon service completion; for an idle server, the break
begins immediately.) Any breaks that occur before time
τ are unannounced breaks.
We first observe that Theorem 2 implies that D2 is

also optimal for the fluid model provided we choose
the correct parameters.

Corollary 1 (Equivalence for D2 with Appropriate Param-
eters). Under the conditions of Theorem 2, for the M/GI
fluid model, the server assignment rule D2(θ, τ) coincides
with the D1(θ) rule if τ � τ∗ and η ≥ 1− ρ.

Because the servers that are on break are off duty,
there can be servers not serving a customer even
though there are customers waiting in queue; that
is, now there is inevitably some level of performance
degradation for customers. To control that perfor-
mance degradation for customers, we further modify
D2 by imposing an upper bound η on the number of
servers that can be on break at any time. A server due
a break when the number of servers on break is η is
given high priority for a break in the future.

Table 5. 95% Confidence Intervals for the Proportion of Idle Time Spent on Announced
Work Breaks, pA, for Rule D2(θ, τ, η) as a Function of and τ and η for n � 100 and θ � 5/3

η � 4 η � 6 η � 8 η � 10

τ pA pA pA pA

τ � 15 0.3714± 9× 10−4 0.5130± 7× 10−4 0.5971± 6× 10−4 0.6301± 8× 10−4

τ � 20 0.3706± 9× 10−4 0.5090± 8× 10−4 0.5734± 8× 10−4 0.5774± 7× 10−4

τ � 25 0.3694± 9× 10−4 0.4939± 8× 10−4 0.5189± 9× 10−4 0.5002± 9× 10−4

τ � 30 0.3661± 9× 10−4 0.4588± 9× 10−4 0.4587± 9× 10−4 0.4489± 9× 10−4

τ � 35 0.3588± 9× 10−4 0.4109± 9× 10−4 0.4041± 9× 10−4 0.3970± 9× 10−4

τ � 40 0.3472± 9× 10−4 0.3672± 9× 10−4 0.3604± 9× 10−4 0.3552± 7× 10−4

Note. The entries in bold are maximal over η.

Clearly, the additional parameters complicate the
control. We propose introducing a cost function to
measure the trade-off between the cost to servers of not
getting enough announced breaks and the cost to cus-
tomers of performance degradation. We illustrate how
such cost functions can be constructed by using a cost
function that is a function of two steady-state propor-
tions: (i) the proportion of the idle time per server spent
on an announced break, pA, and (ii) the proportion of
customers delayed, pD ≡ P(Q ≥ n), measured relative
the value p∗D with no degradation at all.

Specifically, the proposed cost function is

C ≡ C(τ, η)� w(1− pA)+ (1−w)(pD − p∗D), (40)

where the performance measures pA and pD are func-
tions of the control parameters, while the weight w
with 0 ≤ w ≤ 1 represents our relative concern about
the two factors. We have used simulation to study the
performance of the D2(θ, τ, η) rule as a function of the
parameters, including choosing the optimal τ and η to
minimize the cost function in (40).

5.1. Simulation Results for the Base Case
We start by showing in Tables 5 and 6 how the two
performance measures pA and pD depend on the con-
trol parameters τ and η for the base M/M/n model
with n � 100 and ρ � 0.9. (For this base case, the delay
probability without extra degradation is p∗D � 0.223.)
In addition to the announced breaks, there also are

unannounced breaks. Paralleling Table 5, Table 7 shows
the proportion of idle time spent on idle periods of
size at least θ, denoted by pB , with rule D2(θ, τ, η). The
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Table 6. 95% Confidence Intervals for the Steady-State Delay Probability pD Associated
with D2(θ, τ, η) as a Function of and τ and η for n � 100 and θ � 5/3

η � 4 η � 6 η � 8 η � 10

τ pD pD pD pD

τ � 15 0.3368± 0.0018 0.4141± 0.0026 0.4860± 0.0020 0.5414± 0.0023
τ � 20 0.3330± 0.0021 0.4076± 0.0021 0.4603± 0.0023 0.4855± 0.0021
τ � 25 0.3319± 0.0022 0.3937± 0.0017 0.4218± 0.0020 0.4339± 0.0025
τ � 30 0.3291± 0.0018 0.3739± 0.0025 0.3887± 0.0025 0.3974± 0.0024
τ � 35 0.3246± 0.0021 0.3510± 0.0024 0.3598± 0.0022 0.3663± 0.0024
τ � 40 0.3206± 0.0020 0.3342± 0.0027 0.3413± 0.0020 0.3449± 0.0028

Table 7. 95% Confidence Intervals for the Proportion of Idle Time Spent on Idle Periods of
Size at Least θ, pB , with Rule D2(θ, τ, η) as a Function of τ and η for n � 100 and θ � 5/3

η � 4 η � 6 η � 8 η � 10

τ pB pB pB pB

τ � 15 0.5041± 6× 10−4 0.5731± 5× 10−4 0.6212± 6× 10−4 0.6407± 8× 10−4

τ � 20 0.5043± 7× 10−4 0.5684± 6× 10−4 0.6022± 9× 10−4 0.6032± 6× 10−4

τ � 25 0.5021± 7× 10−4 0.5587± 6× 10−4 0.5671± 7× 10−4 0.5616± 9× 10−4

τ � 30 0.4991± 9× 10−4 0.5349± 9× 10−4 0.5333± 7× 10−4 0.5278± 6× 10−4

τ � 35 0.4944± 7× 10−4 0.5091± 8× 10−4 0.5045± 9× 10−4 0.5009± 7× 10−4

τ � 40 0.4832± 8× 10−4 0.4872± 5× 10−4 0.4829± 7× 10−4 0.4797± 7× 10−4

Note. The entries in bold are maximal over η.

proportions are larger in Table 7, because both unan-
nounced and announced breaks are included.
These tables show that η makes much greater differ-

ence than τ. Moreover, there is a strong trade-off in the
choice of η. All three of pD , pA, and pB are monotone
in τ, but pA and pB are not monotone in η for fixed τ.
The entries in bold show that optimal η for each τ. The
values of η where these maximal proportions occur
are decreasing in τ. The corresponding plots for other
weights w are shown in the online appendix. Figure 5
shows the cost in (40) as a function of τ and η for the
base case with weight w � 0.5. Overall, we see that the
cost is minimized by choosing η � 8 with τ � 15 or
τ � 20. For higher τ, the optimal choice shifts to η � 6.

Figure 5. (Color online) The Cost in (40) as a Function of τ
and η for D2(θ, τ, η) in the Base Case with n � 100, θ � 5/3
and w � 0.5

4 5 6 7 8 9 10
0.33

0.34

0.35

0.36

0.37

0.38

0.39

�

� = 15
� = 20

� = 25
� = 30

� = 35
� = 40

Remark 9 (A Larger System). The online appendix
shows corresponding results for a large M/M/n sys-
tem with n � 1,000, but still ρ � 0.9 and θ � 5/3.

Remark 10 (An Alternative More Elementary Server-
Assignment Rule). We identified an alternative rule
that is easier to implement and has comparable per-
formance. This alternative rule still lets servers go
on break when their age exceeds the threshold τ,
but otherwise uses the standard LISF rule for server
assignment. Tables and plots for this alternative LISF-
based alternative to D2(θ, τ, η) are shown in the online
appendix.

6. Conclusions
In this paper we developed new rules for assign-
ing idle servers to customers requesting service in
a contact center in order to create effective work
breaks from available idleness. After showing that the
standard LISF rule and the RR alternative generate
breaks too infrequently in Section 2.5, we studied the
one-parameter rule D1 ≡ D1(θ) yielding unannounced
breaks while maintaining work conservation in Sec-
tions 3 and 4, and then studied the three-parameter
refined rule D2≡D2(θ, τ, η) yielding announced breaks
by sacrificing work-conservation in Section 5.

We provided strong theoretical support for these
proposed server-assignment rules in Section 3 by
analyzing them in the MSHT fluid model for the
M/GI/n model, which arises as the MSHT limit as
the number of servers n and the arrival rate increase
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toward infinity, while the traffic intensity (workload
per server) is held fixed at ρ < 1 (the quality-driven
MSHT regime). Theorem 2 and Corollary 1 show that
both rules are optimal for this fluid model, minimizing
E[T], the steady-state mean interval between breaks,
yielding the upper bound on the rate of breaks, estab-
lished in Theorem 1. However, in Section 3.4 we show
that there are multiple rules that achieve this opti-
mal mean. Among all rules that achieve this minimum
mean E[T], the rules D1 and D2 minimize the standard
deviation SD(T).
Since announced breaks are likely to be preferred,

there is interest in the rule D2(θ, τ, η), but it is compli-
cated because it causes performance degradation for
customers and has more parameters. In Section 5 we
show the parameters τ and η can be chosen by for-
mulating an optimization that expresses the trade-off
between the interests of servers and customers.
Finally, we conducted extensive simulation experi-

ments evaluating the new server-assignment rules D1
and D2. First, the simulation experiments reported in
Section 4 confirm the fluid limit and show that the rule
D1 is effective for generating unannounced breaks in
an M/M/n base case with n � 100 servers and ρ � 0.9.
Second, the simulation results in Section 5 show that
simulation can be used to solve the optimization prob-
lems yielding the control parameters.
Much work remains to be done in the future. While

we have shown that it is possible to create within-
day work breaks from available idleness, it remains to
investigate whether or not these rules would improve
the satisfaction of service representatives. Second, it
remains to investigate other server-assignment rules.
Third, it remains to establish the MSHT FWLLN show-
ing that the sequence of stochastic models converges
to the MSHT fluid model as the scale n increases;
the authors hope to report results for that in the
near future. Finally, there remain many other analyti-
cal challenges, such as deriving explicit formulas and
establishing optimality for the stochastic models.
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