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Abstract

We explore the issue of when and how to partition arriving customers into service groups

that will be served separately, in a first-come first-served manner, by multi-server service

systems having a provision for waiting, and how to assign an appropriate number of servers to

each group. We assume that customers can be classified upon arrival, so that different service

groups can have different service-time distributions. We provide methodology for quantifying

the tradeoff between economies of scale associated with larger systems and the benefit of

having customers with shorter service times separated from other customers with longer service

times, as is done in service systems with express lines. To properly quantify this tradeoff, it

is important to characterize service-time distributions beyond their means. In particular, it is

important to also determine the variance of the service-time distribution of each service group.

Assuming Poisson arrival processes, we then can model the congestion experienced by each

server group as an M/G/s queue with unlimited waiting room. We use previously developed

approximations for M/G/s performance measures to quickly evaluate alternative partitions.

Keywords: queues, multi-server queues, service systems, service-system design, resource shar-

ing, service systems with express lines



1. Introduction

In this paper we consider how we can exploit information about customers to design effective

service systems. We start with an arrival stream of customers requiring service. The required

service is characterized by its duration — a service time. We assume that it is possible to

classify these customers according to some attributes, so that we obtain different classes with

identifiable service-time distributions. We consider partitioning these customer classes into

disjoint subsets that will be served separately in multi-server queues with unlimited waiting

space and the first-come first-served (FCFS) service discipline. In addition to selecting the

service groups, we determine how many servers to assign to each. Our goal is to efficiently

meet customer performance requirements. In particular, we seek the partition and server

assignment that minimizes the total number of servers used, subject to constraints on the

waiting-time distribution of each class.

Of course, there are other ways to provide different levels of service to the different classes,

e.g., by using a non-FCFS service discipline, such as a priority or round robin scheme, within

a single facility. There also are other possible motivations for partitioning customers besides

efficiently meeting performance objectives; e.g., different customers may require very different

kinds of service or different customers may be geographically separated. Even when there is

flexibility in partitioning, as we have defined it, there are typically other costs and benefits,

e.g., see Larson (1987) and Rothkopf and Rech (1987). Nevertheless, we believe our narrow

focus is useful for developing a better understanding about the performance of service systems.

As background for the analysis here, it is useful to recall what is known about the case

in which all customers have the same service-time distribution. In that situation, it is known

that it is more efficient to have aggregate systems, everything else being equal; e.g., see Smith

and Whitt (1981) and Whitt (1992). Of course, sometimes we are constrained to use a given

set of service facilities with at least one server in each; see Green and Guha (1995) for an

analysis of that situation (with common service-time distributions). However, with flexibility

and common service-time distributions, we should select a single aggregate system. In contrast,

here we are interested in the case of different service-time distributions. With different service-

time distributions, the service-time distributions are altered in the partitioning process. With

different service-time distributions, there is a tradeoff between the economies of scale gained

from larger systems and the cost of having customers with shorter service times have their

quality of service degraded by customers with longer service times. Thus, there is a natural
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motivation for separation, as in the express checkout lines in a supermarket.

We assume that all customer classes arrive in independent Poisson processes. Thus the

arrival process for any subset in the partition, being the superposition of independent Poisson

processes, is also a Poisson process. Hence, we model the performance of each subset as

an M/G/s service system with s servers, an unlimited waiting space and the FCFS service

discipline. The problem is to form a desirable partition and assign an appropriate number of

servers to each subset in the partition.

When the different classes have different service-time distributions, the service-time distri-

bution for each subset in the partition is a mixture of the component service-time distributions.

This makes the mean just the average of the component means. If the component means are

quite different, though, then the subset service-time distribution will tend to be highly variable,

as reflected by its squared coefficient of variation (SCV, variance divided by the square of its

mean). This high variability will in turn tend to degrade the performance of the M/G/s queue

for the subset.

The problem we have posed is challenging, because even though the M/G/s model is a

familiar standard queueing model, it is difficult to calculate exact performance measures for it,

and we want to be able to rapidly calculate performance measures for many instances of the

model to do optimization. Hence, we use relatively simple approximations, as in Whitt (1992,

1993). In fact, there now is a substantial literature on the use of such queueing approximations

to design and analyze complex service and manufacturing systems, often involving networks of

queues; e.g., see Bitran and Dasu (1992), Buzacott (1996), Buzacott and Shanthikumar (1992,

1993), Mandelbaum and Reiman (1998) and references therein. Thus, to a large extent, the

present paper should be regarded as an expository paper illustrating that general approach in

a relatively simple focused context, in the same spirit as Whitt (1985), which considered the

problem of determining the best order for queues in series.

Before proceeding, we want to emphasize some assumptions that we are making. First,

we are exploiting only customer-class information; we are not considering dynamic assignment

based on the state of the servers and queues. Second, we allow no sharing among different

service groups after the partitioning is done; the arrivals from each group always go to their

designated service system. In contrast, many partitioned service systems in practice, such

as in supermarket check out with express lines, allow some customers to have the option of

joining other queues. A form of sharing is also achieved by jockeying, i.e., moving from one

queue to another, which is discussed by Rothkopf and Rech (1987). Unfortunately, separate
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queues with sharing tend to be difficult to analyze; see Green (1985) for an analysis of the

two-group case with sharing. Results without sharing may provide lower bounds for cases in

which sharing is allowed, representing the guaranteed performance for each service group in

worst-case scenarios in which all other service groups are in overload, and thus provide no

opportunity for sharing. (We are assuming that sharing will be beneficial if it is appropriate

controlled.)

Third, we assume that the customer service-time distributions are unaffected by the par-

titioning, but in general that need not be the case. Combining classes might actually make it

more difficult to provide service, e.g., because servers may need different skills to serve different

classes. This variation might be analyzed within our scheme by introducing parameters ηij

for each pair of classes (i, j) with i 6= j. We could then have each service time of a customer
of class i multiplied by ηij if classes i and j belong to the same subset in the partition. This

would cause the mean to be multiplied by ηij but leave the SCV unchanged. This modification

would require recalculation of the two service-time moments for the subsets in the partition,

but we still could use the M/G/s analysis described here. More general variants take us out

of the M/G/s framework, and thus remain to be considered.

Here is how the rest of this paper is organized: In Section 2 we illustrate the advantages

of separating disparate classes by considering a numerical example with three classes having

very different service-time distributions. In Section 3 we illustrate the potential advantage

of partitioning according to service requirement by considering a numerical example with a

Pareto service-time distribution. We use the Pareto-distribution because it is a typical heavy-

tailed distribution, with occasional very large values. Such heavy-tailed distributions have

been found to occur in computer and communication systems; e.g., see Crovella and Bestavros

(1996), Willinger, Taqqu, Sherman and Wilson (1995) and references therein. When there are

customers with extra long service times, there is a natural motivation to separate them from

other customers in some way. We split the Pareto distribution into five subintervals. We show

there that the partition may well be preferred to one aggregate system. For both examples

in Sections 2 and 3, an analysis using M/M/s models (ignoring the service-time distribution

beyond its mean) leads to the incorrect conclusion that a single aggregate service group is

optimal.

In the remaining sections we specify the analysis techniques. In Section 4 we review the

simple approximations for M/G/s performance measures that we use. In Section 5 we indicate

how to calculate the parameters of the subset service-time distributions when we partition
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according to service times. In Section 6 we indicate how to calculate service-time parameters

when we aggregate classes. In Section 7 we indicate how we can select a reasonable initial

number of servers for an M/G/s system, after which we can tune for improvement. In Section 8

we briefly discuss other model variants; e.g., we point out that the situation is very different

when there is no provision for waiting. Finally, in Section 9 we state our conclusions.

2. A Multi-Class Example

In this section we give a numerical example illustrating how to study the possible par-

titioning of classes into service groups. We let the classes have quite different service-time

distributions to demonstrate that aggregation is not always good. In particular, we consider

three classes of M/M input, each with common offered load 10. The offered load for class i is

the arrival rate λi times the mean service time ESi = mi1. Classes 1, 2 and 3 have arrival-rate

and mean-service-time pairs (λi,mi1) of (10.0, 1.0), (1.0, 10.0) and (0.1, 100.0), respectively.

Each class separately arrives according to a Poisson process and has exponential service times.

Thus each class separately yields an M/M/s queue when we specify the number of servers, but

the expected service times are very different.

We consider all possible aggregations of the classes, namely, the subsets {1, 2}, {1, 3},
{2, 3} and {1, 2, 3} as well as the classes separately. The arrival rates and offered loads of the
subgroups are just the sums of the component arrival rates and offered loads. However, the

aggregated subgroups differ qualitatively from the single classes because the service-time dis-

tributions are no longer exponential. Instead, the service-time distributions of the aggregated

subgroups are mixtures of exponentials (hyperexponential distributions) with SCVs greater

than 1. (See Section 6.) The penalty for aggregation is initially quantified by the service-time

SCV. The service-time SCVs for classes {1, 2}, {1, 3}, {2, 3} and {1, 2, 3} are 5.05, 50.0, 5.05
and 26.4, respectively. Consistent with intuition, from these SCVs, we see that the two-class

service group {1, 3} should not be as attractive as the other two-class service groups {1, 2} and
{2, 3}.
We use a scheme discussed in Section 7 to initially specify the number of servers. In

particular, in each case we let s be approximately ω +
√
ω, where ω is the offered lead. Thus,

for each class separately we let s = 13; for the two-class subgroups we let s = 25; and for the

entire three-class set we let s = 36. This initial server-assignment rule exhibits the economy of

scale. Since more servers are used with smaller groups (relatively), we also consider the three-

class set with 39 servers, which is the sum of the separate numbers assigned to the separate
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classes.

We display performance measures calculated according to Section 4 in Table 1. From

classes in server group
1 2 3 1, 2 1, 3 2, 3 1, 2, 3

λ 10.0 1.0 0.1 11.0 10.1 1.1 11.1
ES 1.0 10.0 100.0 1.818 1.980 18.18 2.703
ω = λES 10.0 10.0 10.0 20.0 20.0 20.0 30.0
s 13 13 13 25 25 25 36 39
ρ = ω/s 0.7692 0.7692 0.7692 0.800 0.800 0.800 0.833 0.769
c2s = SCV (S) 1.0 1.0 1.0 5.05 50.0 5.05 26.4

P (W > 0) 0.324 0.324 0.324 0.250 0.250 0.250 0.250 0.124
E(W |W > 0) 0.333 3.33 33.3 1.10 10.1 11.0 6.17 4.11
EW 0.108 1.08 10.8 0.28 2.53 2.75 1.54 0.51
P (W > 1) 0.016 0.240 0.315 0.101 0.227 0.228 0.212 0.098
P (W > 10) 3.0 × 10−13 0.016 0.240 0.00011 0.092 0.101 0.049 0.011
P (W > 100) 1.6 × 10−131 3.0 × 10−13 0.016 8.2 × 10−39 1.3 × 10−5 2.8 × 10−5 2.3 × 10−6 3.5 × 10−12

Table 1: Performance measures for the three classes separately and all possible aggregated
subsets in the multi-class example in Section 2.

Table 1, we see that the mean wait is about 10% of the mean service time for each class

separately. Also the probability that the wait exceeds one mean service time, P (W > ES) is

0.016 for each class separately. In contrast, these performance measures degrade substantially

for the class with the shorter service times after aggregation. Consistent with intuition, the

performance for service group {1, 3} is particularly bad. The full aggregate service group
containing classes {1, 2, 3} performs better with 39 servers than 36, but in both cases the
performance for class 1 is significantly worse than the performance for class 1 separately.

In contrast to the mean EW and the tail probability P (W > ES), the probability of delay

P (W > 0) improves with aggregation in Table 1. The reason is that the probability of delay

in an M/G/s model tends to be insensitive to the service-time distribution beyond its mean.

Indeed, the approximation we use has this insensitivity property; see (4.3). Thus, when the

performance criterion is probability of delay, aggregation tends to be good.

When the customer classes are specified at the outset, it is natural to formulate our design

problem as an optimization problem. The goal can be to minimize the total number of servers

used, while requiring that each class meet a specified performance requirement, e.g., the steady-

state probability that a class-i customer has to wait more than di should be less than or equal

to pi for all i. These requirements might well not be identical for all classes. It is natural to

measure the waiting time (before beginning service) relative to the service time or expected

service time; i.e., customers with longer service times should be able to tolerate longer waiting
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times (although it is easy to think of exceptions). The alternatives that must be considered

in the optimization problem are the possible partitions that can be used and the numbers

of servers that are used in the subsets. When there are not many classes, this optimization

problem can be easily solved with the aid of the approximations by evaluating all (reasonable)

alternatives.

Given a specification of performance requirements, e.g., delay constraints P (Wi > di) ≤ pi
for class i, i = 1, 2, 3, we can easily find the minimum number of servers satisfying all the

constraints (exploiting the best aggregation scheme) by doing calculations for a range of s for

each possible service group. (By “calculations” we mean the M/G/s approximations specified

in Section 4.) Starting from the initial s above, we can increase or decrease s by 1 until the

constraint is just met. For example, if di = ESi and pi = 0.020, then having the three separate

classes is optimal. For the classes separately, as in the first three columns of Table 1, with 12,

13 and 14 servers, P (Wi > ESi) ≈ 0.064, 0.016 and 0.0041, respectively. Hence, a unit change
in the number of servers makes a big change in the performance measures. The total number

of servers required for the aggregate system to have P (W > 1) ≤ 0.020 is 46, seven more than
with the three separate classes.

This example illustrates the importance of considering the service-time distribution beyond

its mean. If instead we assumed that the aggregate system were an M/M/s system, then the

service-time SCV would be 1 instead of 26.4. Then the M/M/s model underestimates the

correct mean by approximately by a factor of 13.7. Using the M/M/s model for the aggregate

system, we would deduce that we only needed 37 servers in order to have P (W > 1) ≤ 0.020
(then P (W > 1) ≈ 0.015). We would also wrongly conclude that the aggregate system is
better than the separate classes.

We believe that it usually should be reasonable to use class-dependent waiting-time criteria,

as above. Everything else being equal, it is natural to relate the delay to the mean service time

of the class, as above. However, we might also be interested in overall average behavior. From

Table 1, we see that in this example the overall average expected wait for the three classes,

each with 13 servers, is also less than the expected wait in the single combined system with 39

servers. In particular,

10(0.108) + 1(1.08) + 0.1(10.8)

10 + 1 + 0.1
=
3.24

11.1
= 0.29 < 0.51 .

The queueing formulas show that there are strong economies of scale motivating larger

aggregate service groups, but this example illustrates that in some circumstances (e.g., with
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very different service requirements) partitioning may be desirable.

3. A Distribution-Splitting Example

In the most favorable circumstance, we may be able to learn (or closely approximate) each

customer’s required service time upon arrival. Then we can consider classifying the customers

upon arrival according to their required service times. We can then partition the positive

halfline into finitely many disjoint subsets and let customers with service times in a common

subset all belong to the same service group. If the subsets are subintervals, then partitioning

customers according to service times tends to reduce variability; i.e., the variability within

each class usually will be less than the overall variability. (But see Remark 5.1.)

Since there are (infinitely) many possible ways to partition service times into subintervals,

there are (infinitely) many possible designs. The problem can be simplified by exploiting

two basic principles: First, the advantage of partitioning usually stems from separating short

service times from long ones. Thus, it is natural for all the partition subsets to be subintervals.

The second principle is that we should not expect to have a very large number of subsets

in the partition, because a large number tends to violate the efficiency of large scale. Thus

it is natural to only look for and then compare the best (or good) partitions of size 2, 3, 4,

and 5, say. For example, it is natural to consider giving special protection to one class with

the shortest service times; e.g., express lanes in supermarkets. It is also natural to consider

protecting the majority of the customers from the customers with the largest service times;

e.g., large file transfers over the internet. If only these two objectives are desired, then only

three classes are needed. It is not difficult to examine candidate pairs of boundary points

within a specified ordering, by essentially employing exhaustive search.

We now illustrate the service-time partitioning by considering a numerical example. We

start with a single M/G input consisting of a Poisson arrival process having arrival rate λ = 100

and a Pareto service-time distribution. Let G be the service-time cdf and let Gc(t) = 1−G(t)
be the associated complementary cdf (ccdf). The Pareto ccdf is

Gc(t) =
1

(1 + bt)α
, t ≥ 0 , (3.1)

and the associated density is

g(t) =
bα

(1 + bt)α+1
, t ≥ 0 . (3.2)

A Pareto distribution is a good candidate model for relatively more variable (heavy-tailed)

service-time distributions. The mean is infinite if α ≤ 1. If α > 1, then the mean is (α− 1)−1.
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If 1 < α ≤ 2, then the variance is infinite. If α > 2, then the SCV is

c2s = 1 + 2

[

(α− 1)2
α− 2 − α

]

. (3.3)

We consider the specific Pareto ccdf in (3.1) with α = 2.1 and β = (1.1)−1, so that it

has mean 1 and SCV c2s = 21 (but infinite third moment). The offered load is 100, so that

the total number of servers must be at least 101 in order to have a stable system. Using the

initial sizing formula in Section 7, we initially let s = 100 +
√
100 = 110 in the single-group

partition. This yields a probability of delay of P (W > 0) = 0.2838, a conditional mean delay

of E(W |W > 0) = 1.21 and a mean delay of EW = 0.3433. The median of the chosen Pareto
distribution is 0.43, so that 50% of the service times are less than 0.43. Indeed, the conditional

mean service time restricted to the interval [0, 0.43] is ES = 0.179. The conditional mean

wait given that it is positive, of 1.21 is about 6.8 times this mean; the actual mean wait 0.343

is about 2 times the mean service time. These mean waits might be judged too large for

the customers with such short service requirements. Thus, assuming that we know customer

service requirements upon arrival, we might attempt to make waiting times more proportional

to service times by partitioning the customers according to their service-time requirements.

Here we consider partitioning the customers into five subsets using the boundary points

0.43, 2.2, 10 and 1000. The first two boundary points were chosen to be the 50th and 90th

percentiles of the service-time distribution, while the last two boundary points were chosen to

be one and three orders of magnitude larger than the overall mean 1, respectively. (The heavy

tail of the Pareto distribution makes large boundary points reasonable.) In particular, from

formula (5.8), we find that the probabilities that a service time falls into the interval (0, 0.43),

(0.43, 2.2), (2.2, 10), (10, 1000) and (1000,∞) are 0.50, 0.40, 0.092, 0.0078 and 0.61 × 10−6,
respectively.

For each subinterval, we calculate the conditional mean and second moment given that

the service time falls in the subinterval (using formulas (5.9) and (5.10)), thus obtaining the

subinterval mean and second moment. The subinterval SCV is then obtained in the usual way.

We display these results in Table 2. Note that these subgroup service-time SCVs are indeed

much smaller than the original overall Pareto SCV of c2s = 21.

Given the calculated characteristics for each subinterval, we can treat each subinterval as a

separate independent M/G/s queue. The arrival rate is 100 times the subinterval probability.

The offered load, say ωi, is the arrival rate times the mean service time. Using the initial-sizing

formula in Section 7, we let the number of servers in each case be the least integer greater than
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ωi +
√
ωi. We regard this value as an initial trial value that can be refined as needed. Finally,

the traffic intensity ρi is just the offered load divided by the number of servers, i.e., ρi = ωi/si.

We display all these results in Table 2.

Next we describe the performance of each separate M/G/s queue using the formulas in

Section 4. From Table 2, we see that the mean wait EWi for each class i is substantially less

than the mean service time of that subclass. We also calculate the probability that the waiting

service-time intervals
(0, 0.43) (0.43, 2.2) (2.2, 10) (10, 1000) (1000,∞)

probability 0.5000 0.4004 0.0918 0.0078 0.00000061

subgroup
mean mi1 0.1787 0.9811 3.935 19.94 1910
SCV c2si 0.463 0.218 0.193 1.25 4.75

λi 49.99 40.04 9.18 0.78 0.000061
ωi 8.94 39.28 36.12 15.54 0.117
si 12 46 42 20 1
ρi 0.745 0.853 0.864 0.778 0.117

P (Wi > 0) 0.299 0.251 0.298 0.252 0.117
E(Wi|Wi > 0) 0.043 0.088 0.411 5.03 6215

EWi 0.0128 0.0222 0.122 1.27 724
P (Wi > ESi) 0.0045 0.000004 0.000021 0.0048 0.086

Table 2: Service-time characteristics and M/G/s performance measures when the original
Pareto service times are split into five subgroups.

time exceeds the mean service time of that class, using approximation (4.11) in Section 4. For

all classes, P (Wi > ESi) is consistently small.

We conclude this section with a word of caution. The approximations in Section 4 are

not intended for the case of heavy-tailed service-time distributions. The approximations can

be very optimistic for heavy-tailed service-time distributions, so the approximations for any

service group containing the last class should be used with caution. Note, however, that

this caution does not apply to the other classes, which all have bounded service times as a

consequence of the partitioning. We discuss the heavy-tailed case further at the end of Section

4.

Remark 3.1. To illustrate the difficulty with heavy-tailed service-time distributions, we could

consider a Pareto distribution with α < 2. (The Pareto service-time distribution in the example

we have considered has finite variance since α = 2.1 > 2.) Similar results hold if the service-

time distribution has infinite variance or even infinite mean. When the service-time distribution

has finite mean but infinite variance (when 1 < α ≤ 2), the service-time variance is finite for
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all subclasses but the last because of truncation. The service-time distribution for the last

class then has finite mean and infinite second moment. In the example here with one server

assigned to the last class, we then have P (W > 0) = ρ < 1, but EW = ∞. When the mean
service-time is infinite for the last class (when α ≤ 1), the waiting times for that class diverge
to +∞. However, the other classes remain well behaved. Clearly, the splitting may well be
deemed even more important in these cases. But approximations for the waiting-time cdf of a

service group including the last class should be regarded as optimistic.

Now we consider what happens if we aggregate some of the subgroups. First, we consider

combining the last two subgroups. We keep the total number of servers the same at 21. If

we group the last two classes together, then the new service time has mean 20.09 and SCV

5.29. Note that, compared to the (10, 1000) class, the mean has gone up only slightly from

19.94, but the SCV has increased significantly from 1.25. (The SCV is even bigger than it

was for the highest group.) The M/G/s performance measures for the new combined class

are P (W > 0) = 0.1921, E(W |W > 0) = 11.85, EW = 2.28 and P (W > ES) = 0.035.

This combination might be judged acceptable, but the performance becomes degraded for the

customers in the (10, 1000) subgroup.

Next, we consider aggregating all the subgroups. If we keep the same numbers of servers

assigned to the subgroups, then we obtain 121 servers instead of 110. This should not be

surprising, because the ω +
√
ω algorithm should produce fewer extra servers with one large

group than with five subgroups. However, it still remains to examine the performance of the

original system when s = 121. When s = 121, P (W > 0) = 0.062, E(W |W > 0) = 0.634,
EW = 0.0393, P (W > 0.1787) = 0.0438, and P (W > 0.9811) = .0094. The delay probability

is clearly better than with the partition, as it must be using approximation (4.3), but the

conditional mean wait is worse for the first three subgroups, and much worse for the first two.

The overall mean EW is worse for the first two subgroups, and much more for the first one.

The tail probabilities P (W > ESi) are much worse for the first two subgroups as well. Hence,

even with all 121 servers, performance in the single aggregated system might be considered far

inferior to performance in the separate groups for the first two groups.

Finally, we can clearly see here that an M/M/s model fails to adequately describe the

performance. In this case, the mean EW would be underestimated by a factor of 11 in the

aggregate system, and overestimated somewhat for the first three service groups. Moreover,

we would incorrectly conclude that the aggregate system must be better.
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Remark 3.2. In this section we did not specify a specific optimization problem, but it is easy

to do so. We could give criteria for forming the service groups. We might specify upper and/or

lower bounds on the proportion of the total arrival rate that can be in each group. As in Section

2, we can specify constraints on the delay distributions, which could be expressed in terms of

the mean service time of that service group, e.g., P (Wi > cESi) ≤ p for all i. As in Section 2,
we can minimize the total number of servers required subject to those constraints. The optimal

solution can be found by searching over the number of service groups (e.g., initially considering

up to three, and then considering higher numbers only if three is better than fewer), the service

group boundaries (e.g., expressed as percentiles of the known service-time distribution, in units

of 0.02, say, with small last “tail” groups allowed, in units of 10−k, say) and the number of

servers in each service group. For the number of servers in each group, we can start with

the initial value ω +
√
ω and then increase or decrease by one until finding the point that the

constraint is just met.

4. Review of M/G/s Approximations

In this section we review the approximations for the performance measures of M/G/s sys-

tems. The approximations make it possible to quickly determine the approximate performance

of an M/G/s system, so that we can quickly evaluate possible partition schemes. We use the

steady-state probability of having to wait, P (W > 0), and the steady-state conditional ex-

pected wait given that the customer must wait, E(W |W > 0). The product of these two is
of course the mean steady-state wait itself, EW . We also use the steady-state tail probability

P (W > t). Relevant choices of t typically depend on the mean service time, here denoted by

ES.

The basic model parameters are the number of servers s, the arrival rate λ and the service-

time cdf G with kth moments mk, k ≥ 1. The traffic intensity is ρ = λm1/s; we assume that
ρ < 1, so that a proper steady state exists. This condition puts an obvious lower bound on

the number of servers in each service group. The service-time SCV is c2s = (m2 −m21)/m21.
The approximations have been quite extensively studied, e.g., see Whitt (1993), so we

do not address their accuracy here. We could use simulation or more involved numerical

algorithms, as in de Smit (1983), Seelen (1986) and Bertsimas (1988), to more accurately

calculate the exact performance measures, but we contend that it is usually not necessary

to do so, because the approximation accuracy tends to be adequate and the approximations

are much easier to use and understand. The adequacy of approximation accuracy depends in
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part on the intended application to determine the required number of servers. As we saw in

Section 2, a small change in the number of servers (e.g., by one) typically produces a significant

change in the waiting-time performance measures. This means that the approximation error

has only a small impact on the decision. Moreover, the approximation accuracy is often much

better than our knowledge of the underlying model parameters (arrival rates and service-time

distributions). If, however, greater accuracy is deemed necessary, then one of the alternative

exact numerical algorithms can be used in place of the approximations here.

We now specify the proposed approximations. First recall that the exact conditional wait

for M/M/s is

E(W (M/M/s)|W (M/M/s) > 0)) = m1
s(1− ρ) , (4.1)

which is easy to see because an M/M/s system behaves like an M/M/1 system with service

rate s/m1 when all s servers are busy. As in Whitt (1993) and elsewhere, we approximate the

conditional M/G/s wait by

E(W (M/G/s)|W (M/G/s) > 0) ≈ (1 + c2s)

2
E(W (M/M/s)|W (M/M/s) > 0)

=
(1 + c2s)m1
2s(1− ρ) , (4.2)

which is exact for s = 1.

Following Whitt (1993) and references cited there, we approximate the probability of delay

in an M/G/s system by the probability of delay in an M/M/s system with the same traffic

intensity ρ, i.e.,

P (W (M/G/s) > 0) ≈ P (W (M/M/s) > 0) (4.3)

where

P (W (M/M/s) > 0) = [(sρ)s/s (1− ρ)]ζ (4.4)

with

ζ =

[

(sρ)s

s!(1− ρ) +
s−1
∑

k=0

(sρ)k

k!

]−1

. (4.5)

Algorithms are easily constructed to compute the exact M/M/s delay probability in (4.4).

However, we also propose the more elementary Sakasegawa (1977) approximation

P (W (M/M/s) > 0) ≈ ρ
√
2(s+1)−1 . (4.6)

When we combine (4.2) and (4.3), we obtain the classic Lee and Longton (1959) approxi-

mation formula for the mean, i.e.,

EW (M/G/s) ≈ (1 + c
2
s)

2
EW (M/M/s) ≈ (1 + c

2
s)m1

2s(1− ρ) P (W (M/M/s) > 0 , (4.7)
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which we complete either with an exact calculation or approximation (4.6).

We may know roughly what the probability of delay will be; e.g., we might have P (W >

0) ≈ 0.25. Then we can obtain an explicit back-of-the-envelope approximation by substituting
that approximation into (4.7). A simple heavy-traffic approximation is obtained by letting

P (W (M/M/s) > 0) ≈ 1 in (4.7) or, equivalently, EW ≈ E(W |W > 0), which amounts to
using (4.2). Then for fixed ρ, there is a clear tradeoff between s (scale) on the one hand and

(1+c2s)m1 (a combination of mean and variability of the service-time distribution) on the other

hand.

Remark 4.1. As indicated above, we can do a heavy-traffic analysis to quickly see the benefits

of service-time splitting. Suppose that we allocate servers proportional to the offered load, so

that ρi = ρ for all i. Since ρ = λm1/s,

si =
λimi1
ρi

=
λimi1
ρ
=

(

λimi1
λm1

)

s . (4.8)

Then, by (4.2),

EW ≈ m1(1 + c
2
s)

2s(1− ρ) (4.9)

and

EWi ≈
mi1(1 + c

2
si)

2si(1− ρi)
=
λm1(1 + c

2
si)

2λis(1− ρ)
=
λ(1 + c2si)

λi(1 + c2s)
EW (4.10)

for EW in (4.9). Hence, we should have EWi < EW if and only if (1+ c
2
si)/λi < (1+ c

2
s)/λ. If

the original classes each have deterministic service times, then this condition becomes 1+ c2s >

λ/λi. This simple analysis shows that important role played by service-time variability, as

approximately described by the SCVs c2s and c
2
si.

We can approximate the tail probability roughly by assuming that the conditional delay is

exponential, i.e.,

P (W > t) ≈ P (W > 0)e−t/E(W |W>0) , t > 0 . (4.11)

Approximation (4.11) is exact for M/M/s, but not more generally.

As mentioned in Section 3, approximation (4.11) is likely to be very optimistic for heavy-

tailed service-time distributions. To understand how optimistic approximation (4.11) can be,

we give an approximation for P (W > t) in the single-server case (M/G/1) when the service-

time ccdf Gc has a heavy tail, which is asymptotically correct (in ratio) as t → ∞. The
approximation is

P (W > t) ≈ ρ

1− ρ

∫ ∞

t/ES
Gc(u)du ; (4.12)
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see Abate, Choudhury and Whitt (1994). Formula (4.11) differs dramatically from (4.11); it

shows that P (W > t) inherits the heavy-tail property of Gc.

For the M/G/s system with a heavy-tailed service-time ccdf and s > 1, we know no good

simple approximation for P (W > t). However, it is known that P (W > t) still inherits the

heavy-tail property from the service-time ccdf Gc; see Whitt (1998). The M/G/s algorithms

by de Smit (1983), Seelen (1986) and Bertsimas (1988) can be applied after approximating the

service-time distribution by a light-tailed distribution such as a hyperexponential distribution

or a phase-type distribution; see Asmussen, Nerman and Olsson (1996), Feldmann and Whitt

(1998) and Harris and Marchal (1999).

5. Splitting by Service Times

Suppose that we are given a single M/G input with arrival rate λ and service-time cdf

G. We can create m classes by classifying customers according to their service times, which

we assume can be learned upon arrival. We use m − 1 numbers x1, x2, . . . , xm−1 with 0 <
x1 < x2 < · · · < xm−1. Let x0 = 0 and xm = ∞. We say that an arrival belongs to class i,
2 ≤ i ≤ m−1, if its service time falls in the interval (xi−1, xi]. For class 1 the interval is [0, x1];
for class m the interval is (xm−1,∞).
Since the service times are assumed to be independent and identically distributed (i.i.d),

this classification scheme partitions the original Poisson arrival process into m independent

Poisson arrival processes. Thus one M/G input has been decomposed into m independent

M/G inputs (without yet specifying the numbers of servers).

The arrival rate of class i is thus

λi = λ[G(xi)−G(xi−1)] (5.1)

(regarding G(0) as G(0−) = 0) and the associated service-time cdf is

Gi(x) =















0, x ≤ xi−1
G(x)

G(xi)−G(xi−1)
, xi−1 ≤ x ≤ xi

1, x > xi .

(5.2)

The kth moment of Gi is

mik =
1

[G(xi)−G(xi−1)]

∫ xi

xi−1

xkdG(x) . (5.3)

It is significant that the moments of the split cdf’s can be computed in practice, as we now

illustrate.

14



Example 5.1. (exponential distributions). Suppose that the cdf G is exponential with

mean µ−1, so that the density is

g(t) = µe−µt, t ≥ 0 . (5.4)

If Gi is G restricted to the interval (xi−1, xi], then

G(xi)−G(xi−1) = e−µxi−1 − e−µxi . (5.5)

The first two moments of Gi are then

mi1 =
1

µ[G(xi)−G(xi−1)]
(e−µxi−1(1 + µxi−1)− e−µxi(1 + µxi)) (5.6)

and

mi2 =
1

µ2[G(xi)−G(xi−1)]
(e−µxi−1(2 + 2µxi−1 + µ

2x2i−1)− e−µxi(2 + 2µxi + µ2x2i )) . (5.7)

Example 5.2. (Pareto distributions). Now consider the Pareto ccdf in (3.1) used in Sec-

tion 3. If Gi is G restricted to the interval (xi−1, xi], then

G(xi)−G(xi−1) = Gc(xi−1)−Gc(xi) =
1

(1 + bxi−1)α
− 1

(1 + bxi)α
. (5.8)

We can apply formula (5.3) to calculate the first two moments of Gi. They are

mi1 =
α

b[G(xi)−G(xi−1)]

(

(1 + bxi)
1−α − (1 + bxi−1)1−α
1− α

+
(1 + bxi)

−α − (1 + bxi−1)−α
α

)

(5.9)

and

mi2 =
α

b2[G(xi)−G(xi−1)]

(

(1 + bxi)
2−α − (1 + bxi−1)2−α
2− α

+
2(1 + bxi−1)

1−α − 2(1 + bxi)1−α
1− α +

(1 + bxi−1)
−α − (1 + bxi)−α
α

)

. (5.10)

Remark 5.1. When we split service times, we expect to have c2si < c
2
s, but that need not be the

case. First, if G is uniform on [0, x], then Gi is uniform on (xi−1, xi) and c
2
si < c

2
s1 = c

2
s = 1/3.

Second, suppose that G assigns probabilities ε/2, ε/2 and 1 − ε to 0, x1 and x1 + δ. Then
c2s1 = 1 for all ε > 0 and δ > 0, while c

2
s → 0 as ε→ 0, so that we can have c2s1 >> c2s.

Remark 5.2. Although the approximations for the M/G/s queue in Section 4 depend on

the service-time distribution only through its first two moments, the two moments for each

class obtained by splitting the service-time distribution G depend on the full distribution of G

(beyond its first two moments).
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6. Aggregation

Suppose that we are given m independent M/G inputs with arrival rates λi and service-

time cdf’s Gi having k
th moments mik, 1 ≤ i ≤ m. Then the m classes can be combined

(aggregated) into a single M/G input with arrival rate the sum of the component arrival rates,

i.e.,

λ =

m
∑

i=1

λi (6.1)

and service-time cdf a mixture of the component cdf’s, i.e.,

G(t) =

m
∑

i=1

(λi/λ)Gi(t), t ≥ 0 , (6.2)

having moments

mk =

m
∑

i=1

(λi/λ)mik . (6.3)

Thus the aggregate SCV is

c2s =
Σλi(1 + c

2
si)m

2
i1

λm21
− 1 . (6.4)

It should be evident that if a single M/G input is split by service times as described in

Section 3 and then recombined, we get the original M/G input characterized by λ and G back

again.

7. Initial Numbers of Servers

In this section we indicate how to initially select the number of servers in any candidate

M/G/s system. Our idea is to use an infinite-server approximation, as in Section 2.3 of Whitt

(1992) or in Jennings, Mandelbaum, Massey and Whitt (1996). In the associated M/G/∞
system with the same M/G input, the steady-state number of busy servers has a Poisson

distribution with mean (and thus also variance) equal to the offered load (product of arrival

rate and mean service time, say ω. The Poisson distribution can then be approximated by a

normal distribution. We thus let the number of servers be the least integer greater than or

equal to ω + c
√
ω, which is c standard deviations above the mean. A reasonable value of the

constant is often c = 1; and we will use it. Then the number of servers is

s = dω +
√
ωe . (7.1)

A rough estimate (lower bound) for the probability of delay is then

P (W > 0) ≈ P (N(0, 1) > 1) = Φc(1) = 0.16 , (7.2)
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where N(a, b) denotes a normal random variables with mean a and variance b, and Φc is the

complementary cdf of N(0, 1), i.e., Φc(x) = P (N(0, 1) > x). This choice tends to keep the

waiting time low with the servers well utilized. Of course, the number of standard deviations

above the mean and/or the resulting number of servers can be further adjusted as needed.

8. Other Model Variants

So far, we have considered service systems with unlimited waiting space. A very different

situation occurs when there is no waiting space at all. The steady-state number of busy servers

in an M/G/s/0 loss model has the insensitivity property; i.e., the steady-state distribution of

the number of busy servers depends on the service-time distribution only through its mean.

Thus, the steady-state distribution in the M/G/s/0 model coincides with the (Erlang B) steady-

state distribution in the M/M/s/0 model with an exponential service-time distribution having

the same mean. Thus, the full aggregated system is always more efficient for loss systems, by

Smith and Whitt (1981).

Similarly, if there is extra waiting space, but delays are to be kept minimal, then it is natural

to use the M/G/∞ model as an approximation, which also has the insensitivity property.
Hence, if our goal can be expressed in terms of the distribution of the number of busy servers

in the M/G/∞ model, then we should again prefer the aggregate system.
Even for the M/G/s delay model, our approximation for the probability of experiencing any

wait in (4.3) has the insensitivity property. Hence, if our performance criterion were expressed

in terms of the probability of experiencing any wait, then we also should prefer the aggregate

system. In contrast, separation can become important for the delays, because the service-time

distribution beyond its mean (as described by the SCV) then matters, as we have seen.

So far, we have considered a stationary model. However, in many circumstances it is more

appropriate to consider a nonstationary model. For example, we could assume a nonhomo-

geneous Poisson arrival process, denoted by Mt, for each customer class. It is important to

note that the insensitivity in the M/G/s/0 and M/G/∞ models is lost when the arrival pro-
cess becomes Mt; see Davis, Massey and Whitt (1995). The added complexity caused by the

nonstationarity makes it natural to consider the Mt/G/∞ model as an approximation. Since
insensitivity no longer holds, full aggregation is not necessarily most efficient. Partitioning in

this nonstationary setting can also be conveniently analyzed because the partitioning of non-

homogeneous Poisson processes produces again nonhomogeneous Poisson processes. Hence, all

subgroups behave asMt/G/s systems. For example, the server staffing and performance calcu-
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lations for each subset can be performed by applying the approximation methods in Jennings,

Mandelbaum, Massey and Whitt (1996). The formula for the mean number of busy servers at

time t in (6) there shows that the service-time distribution beyond the mean plays a role, i.e.,

m(t) = E[λ(t− Se)]E[S] , (8.1)

where λ(t) is the arrival-rate function and Se is a random variable with the service-time

equilibrium-excess distribution, i.e.,

P (Se ≤ t) =
1

ES

∫ t

0
Gc(u)du ; (8.2)

also see Eick, Massey and Whitt (1993). The linear approximation

m(t) ≈ λ(t− λ′(t)E[Se])E[S] = λ(t)ES − λ′(t)[ES]2
(c2s + 1)

2
(8.3)

in (8) of Eick et al. shows the first-order effect of the service-time SCV.

So far, we have only considered Poisson arrival processes. We chose Poisson arrival pro-

cesses because, with them, it is easier to make our main points, and because they are often

reasonable in applications. However, we could also employ approximation methods to study the

partitioning of more general (stationary) G/G inputs. In particular, we could use approxima-

tions for aggregating and splitting of arrival streams in the queueing network analyzer (QNA)

in Whitt (1983) to first calculate an SCV for the arrival process of each server group and then

calculate approximate performance measures. When we go to this more general setting, the

arrival-process variability then also has an impact. With non-Poisson arrival processes, the

partitioning problem nicely illustrates how a performance-analysis software tool such as QNA

can be conveniently applied to study design problem.

It should be noted, however, that the QNA formulas for superposition (aggregation) and

splitting assume independence. The independence seems reasonable for aggregation, but may

fail to properly represent splitting. For aggregation, the assumed independence is among the

arrival processes for the different classes to be superposed, which we have already assumed in

the Poisson case.

For splitting, we assume that the class identity obtained by splitting successive arrivals are

determined by independent trials. Thus, if c2a is the original arrival-process SCV and pi is the

probability that each arrival belongs to class i, then the resulting approximation for the class-i

SCV c2i from Section 4.4 of Whitt (1983) is

c2i = pic
2
a + 1− pi , (8.4)
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which approaches the value 1 as pi → 0. Formula (8.4) is exact for renewal processes and is
consistent with limits to the Poisson for more general stationary point processes. However, in

applications it is possible that burstiness (high variability) may be linked to the class attributes,

so that a cluster of arrivals in the original process all may tend to be associated with a common

class. That means the independence condition would be violated. Moreover, as a consequence,

the actual SCV’s associated with the split streams should be much larger than predicted by

(8.4). In such a situation it may be better to rely on measurements, as discussed in Fendick

and Whitt (1989).

9. Conclusions

We have shown how to evaluate the performance costs and benefits of partitioning cus-

tomers into service groups to be served in separate M/G/s FCFS systems. The possibility for

doing so depends on the ability to identify customer classes and their service-time distribu-

tions. When the service-time distributions of the customer classes do not differ greatly, then

greater efficiency usually can be obtained by combining the systems. On the other hand, if

the service-time distributions are very different, then it may be better to partition. To see the

advantage of partitioning, it is crucial to go beyond M/M/s models to M/G/s models, where

the service-time distribution can be partially characterized by its mean and SCV (or, equiv-

alently, by its first two moments). Previously established simple approximations for M/G/s

performance measures make it possible to evaluate alternatives very rapidly. Afterwards, the

conclusions can be confirmed by more involved numerical algorithms, computer simulations

or system measurements. (It was noted that the partial characterization of the waiting-time

distribution in terms of the first two moments of the service-time distribution tends to be very

optimistic if the service-time distribution has a heavy tail.)

It remains to further study and compare other schemes for providing different levels of

service to different customer classes, including dynamic assignment based on system state,

static partitioning with forms of sharing and single service groups with various non-FCFS

service disciplines, such as round robin.
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