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Abstract

We show that probability distributions and moments of performance measures in many

polling models can be effectively computed by numerically inverting transforms (generating

functions and Laplace transforms). We develop new efficient iterative algorithms for computing

the transform values and then use our recently developed variant of the Fourier-series method to

perform the inversion. We also show how to use this approach to compute moments and

asymptotic parameters of the distributions. We compute a two-term asymptotic expansion of the

tail probabilities, which turns out to be remarkably accurate for small tail probabilities. The tail

probabilities are especially helpful in understanding the performance of different polling

disciplines. For instance, it is known that the exhaustive discipline produces smaller mean

steady-state waiting times than the gated discipline, but we show that the reverse tends to be true

for small tail probabilities. The algorithms apply to describe the transient behavior of stationary

or nonstationary models as well as the steady-state behavior of stationary models. We

demonstrate effectiveness by analyzing the computational complexity and by doing several

numerical examples for the gated and exhaustive service disciplines, with both zero and non-zero

switchover times. We also show that our approach applies to other polling models. Our main

focus is on computing exact tail probabilities and asymptotic approximations to them, which

seems not to have been done before. However, even for mean waiting times, our algorithm is

faster than previous algorithms for large models. The computational complexity of our algorithm

is O(N α ) for computing performance measures at one queue and O(N 1 + α ) for computing

performance measures at all queues, where N is the number of queues and α is typically between

0.6 and 0.8.



1. Introduction

Over the last thirty years a substantial literature on polling models has evolved, as can be seen

from Coffman and Hofri [20], Grillo [31] and Takagi [43,44]. Polling models have generated

great interest because they have many applications to the performance analysis of computer and

telecommunications systems. These applications include data transfer from terminals on multi-

drop lines to a central computer, token passing schemes in local and wide area networks, job

scheduling in telephone switching systems and scheduling moving arms in secondary storage

devices.

Multidimensional transforms of performance measures of interest have been derived for

several basic polling models with Poisson arrivals, general service-time and general switchover-

time distributions. These transform expressions have been successfully exploited to derive means

and sometimes second moments, but we are unaware of them being used to calculate the

distributions themselves, higher moments or asymptotic parameters. (However, distributions

have been calculated by other methods by Blanc [12] and Leung [35], but these methods are

computationally intensive so that they are feasible for only a few queues. Also approximate

distributions have been calculated by Federgruen and Katalan [25].) One reason that these other

characteristics have not previously been derived is that methods for transform inversion are not

especially well known. Another reason is that usually the transforms are not available directly;

instead the transform at one polling instant is expressed in terms of the transform at another

polling instant. However, as early as 1972, Eisenberg [23] suggested that this recursive relation

among the transforms could be exploited to compute the steady-state transform values.

In this paper we show that the approach suggested by Eisenberg [23] can indeed be carried

out. We show that these polling transforms often can be quite easily computed and inverted

numerically to calculate distributions, all moments and asymptotic parameters. We develop a
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new efficient recursive algorithm for computing transform values. Our operation count for

computing moments and distributions is O(N α ) for one queue and is O(N 1 + α ) for all queues of

an N-queue system, where α is typically in the range 0.6 to 0.8. It appears that our algorithm is

faster than other available algorithms for mean waiting time and queue lengths. To demonstrate,

in Section 6 we consider an asymmetric 1000-queue system and compute the mean waiting time

in less than 5 seconds, and several moments and tail probability values in a few minutes, using a

SUN SPARC-2 workstation.

We demonstrate the power of numerical inversion by specifically considering the gated and

exhaustive service models with unlimited waiting space, but we also show how numerical

inversion can be applied to many other polling models. In fact, from Resing [39], it is easy to see

that our approach extends in a straightforward way to the rich class of polling models in which

the vector queue-length process at polling instants of a fixed queue is a multitype branching

process with immigration as in Athreya and Ney [10]. However, the generating function

recursion needed by our approach does not readily extend to models outside of this class, such as

ones with customer-limited or time-limited service or probabilistic server routing; see [14,33].

The discrete-Fourier-transform approach in Leung [35] and the power-series approach in

Blanc [12] do apply to these more difficult models, but the computational complexity of their

approach is much higher than ours.

To perform the numerical inversion, we use the Fourier-series method in Abate and Whitt [5],

Choudhury, Lucantoni and Whitt [19], Choudhury and Lucantoni [17], and Abate, Choudhury,

Lucantoni and Whitt [1]. These references contain algorithms for one-dimensional probability

distributions, multi-dimensional functions, higher moments and asymptotic parameters. These

algorithms effectively control numerical errors and are very fast. For example, simple one-

dimensional transforms are usually inverted in a fraction of a second on a standard PC or

workstation with 8–12 decimal places accuracy. For the sake of completeness, we include the
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relevant inversion formulas here in an Appendix.

Computing full distributions instead of only means is important because in many performance

analysis applications we really want to know high percentiles, such as the 95th or 99th . In

emerging high-speed communication networks there is even great interest in very small tail

probabilities, such as 10 − 9 , in order to provide an appropriate quality of service. Hence, the

ability to compute full distributions should significantly increase the usefulness of polling

models. Moreover, simulation is usually quite effective for computing means, but simulation has

difficulty computing small tail probabilities. The advantage of analytical models over simulation

really shows up in computing small tail probabilities (although methods such as importance

sampling can improve simulation estimates of small tail probabilities).

Note that we compute all moments by numerical inversion, so that our method is the same for

the hundredth moment as it is for the first moment. By contrast, previous results for higher

moments, such as by Ferguson [26] and Konheim, Levy and Srinivasan [34], have been via

analytical differentiation of the transform, which leads to cumbersome expressions. So far,

analytical differentiation has only provided results for the first two moments, but we can easily

compute even the hundredth moment. Moreover, these higher moments are very useful for

performing numerical asymptotic analysis of the tail probabilities, as we demonstrate.

Unlike for the first-in first-out (FIFO) discipline [4,6,18,19,29,38], for polling models

computing transient performance measures tends to be easier than computing steady-state

performance measures, because we compute steady-state transforms by computing transient

transforms for a suitably large number of queue visits. Here we compute both transient and

steady-state performance measures for polling models. The transient performance measures are

computed only at polling instants, whereas the steady-state performance measures are computed

at both polling instants and arbitrary times. In the transient case, the model need not be
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stationary; i.e., the arrival rate, service-time distribution and switchover-time distribution can

change at polling instants. The nonstationary model allows us to study the effect of a sudden

overload. We are unaware of any previous work on time-varying polling models.

We also point out that qualitative properties of tail probabilities for polling models are

different from qualitative properties for means. To understand tail probabilities such as for a

steady-state waiting time W, it is useful to exploit asymptotics such as

P(W > x) ∼ αx β e − ηx as x → ∞ , (1.1)

where f (x) ∼ g(x) means that f (x)/ g(x) → 1 as x → ∞. We studied asymptotics of the form

(1.1) for the GI/G/1 queue with the first-in first-out (FIFO) service discipline in Abate,

Choudhury and Whitt [2,3] and for the M/G/1 queue with the last-in first-out (LIFO) service

discipline in Abate, Choudhury and Whitt [4]. Here we study the asymptotics (1.1) for polling

models by numerically deriving the parameters α , β and η, using the moment approach in

Choudhury and Lucantoni [17] and Abate, Choudhury, Lucantoni and Whitt [1]. We show that

the asymptote (1.1) is often quite accurate and that it reveals important properties of the polling

disciplines. Unlike FIFO, but like LIFO, our experience indicates that β ≠ 0 for M/G/1 polling

models. Indeed, the pure-exponential asymptotics with β = 0 typically holding with the FIFO

discipline seems to be the exception rather than the rule for other disciplines. When β ≠ 0, we

also do two-term asymptotic expansions, which significantly improve the accuracy.

To indicate the kind of insights we can obtain, consider a symmetric system (gated or

exhaustive) with N queues, mean switchover time r per queue and a fixed total server utilization.

First, for r = 0, if we increase N, then the mean waiting time remains constant, but often the

asymptotic parameter η in (1.1) decreases, and the tail probabilities increase. Next, for a fixed N,

if we increase r, then the mean waiting time increases significantly, but the asymptotic decay rate

η decreases (and the tail probabilities increase) only slightly. Finally, for r > 0 and N > 1, the
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mean waiting time is bigger for the gated discipline than for the exhaustive discipline. However,

the reverse is true for higher-order moments and for small tail probabilities.

Here is how the rest of this paper is organized. In Section 2 we develop new efficient

algorithms for computing transient and steady-state transforms for the gated service discipline.

We also show how the computational complexity (in the case of mean waiting times) compares to

that of previous algorithms. In Section 3 we briefly describe several other important polling

models for which our approach is applicable. In Section 4 we show how to extend our approach

to zero switchover times. There we derive a new iterative algorithm for computing the steady-

state transform values. In Section 5 we show how to do asymptotic analysis using the moment

computation algorithm, drawing on [1,17]. Finally, in Section 6 we provide several numerical

examples to illustrate the power of the transform inversion approach for computing moments and

distributions and for doing asymptotic analysis. We give a brief account of the numerical

transform inversion algorithm in an Appendix.

2. The Gated Service Model

There are N queues indexed by i, 0 ≤ i ≤ N − 1. There is a single server that moves

successively from queue i to queue i + 1 mod N, i.e., from i to i + 1 for i ≤ N − 2 and from N − 1

to 0. We assume that a gated policy is in use, so that the server serves all customers at a queue

that it finds upon arrival there, but no new customers that arrive after the server.

Customers arrive at queue i according to a Poisson process with the rate λ i . Each customer at

queue i requires a service time that has Laplace-Stieltjes transform (LST)

B̂ i (s) ≡ ∫
0

∞
e − stdB i (t). The server has a switchover (reply) time to go from queue i to queue

i + 1 mod N with LST R̂ i (s). The customer service times, server switchover times and customer

arrival processes are all mutually independent.
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2.1 Transient Analysis

We assume that the system starts at time 0 with some initial distribution of customers at the

various queues and with the server about to begin service at some queue. Let

L i,m ≡ (L i,m , 0 , . . . , L i,m ,N − 1 ) represent the vector of queue lengths at the instant the server is

about to begin service at queue i after having visited m queues. For analysis, it is significant that

{L i,m :m ≥ 0 } is a discrete-time Markov chain. Let p i,m ≡ (p i,m (k 0 , . . . , k N − 1 ) ) be the N-

dimensional probability mass function (pmf) of L i,m and let p̂ i,m be its N-dimensional generating

function, i.e.,

p̂ i,m (z) = E
j = 0
Π

N − 1
zj

L i ,m , j =
k0 = 0
Σ
∞

. . .
kN − 1 = 0

Σ
∞

j = 0
Π

N − 1
zj

k j p i,m (k 0 , . . . , k N − 1 ) (2.1)

for an N-dimensional vector of complex variables z = (z 0 , . . . , z N − 1 ). It is known that we can

express p̂ i,m (z) in terms of p̂ i − 1 ,m − 1 (z); e.g., p. 105 of Takagi [43]. The following is the

transient analog of the steady-state equations given in (5.231) of [43], which hold by the same

argument. For the statement, let w be the wrap-around function

w(k) = k mod N . (2.2)

Proposition 2.1. The generating function of the pmf p i,m is

p̂ i,m (z) = R̂ w(i − 1 ) (
j = 0
Σ

N − 1
(λ j − λ j z j ) )

× p̂ w(i − 1 ) ,m − 1 (z 0 , . . . , z i − 2 ,B̂ w(i − 1 ) (
j = 0
Σ

N − 1
(λ j − λ j z j ) ) , z i , . . . , z N − 1 ) . (2.3)

Using (2.3) recursively m times, we arrive at the following proposition. (The proof is by

mathematical induction.)

Proposition 2.2. The generating function in (2.3) can be expressed as
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p̂ i,m (z) =
k = 1
Π
m

R̂ w(i − k)



 j = 0

Σ
N − 1

(λ j − λ j zj
(k − 1 ) )





p̂ w(i − m) , 0 (z(m) ) (2.4)

where

zl
(k) =






B̂ l (

j = 0
Σ

N − 1
(λ j − λ j zj

(k − 1 ) )

zl
(k − 1 )

for l = w(i − k)

for l ≠ w(i − k)
(2.5)

and z0 = z.

The quantity p̂ w(i − m) , 0 (z(m) ) in (2.4) is the transform of the initial distribution and w(i − m)

is the index of the first queue polled. If the system is empty at t = 0, then p̂ w(i − m) , 0 (z) = 1 for

all z. If k 0 = (k 0 , 0 ,k 0 , 1 , . . . k 0 ,N − 1 ) represents a deterministic vector of initial queue lengths,

then

p̂ w(i − m) , 0 (z) =
j = 0
Π

N − 1
zj

k0 , j . (2.6)

To compute each term of the m-fold product in (2.4), the operation count is O(N) due to the

presence of the two N-fold sums in (2.4) and (2.5). We show below that the operation count may

be reduced to O( 1 ) by introducing the auxiliary variable

y (k) =
j = 0
Σ

N − 1
(λ j − λ j zj

(k) ) . (2.7)

We replace (2.4) and (2.5) by the following new set of recursions:

p̂ i,m (z) =
k = 1
Π
m

R̂ w(i − k) (y (k − 1 ) ) p̂ w(i − m) , 0 (z(m) ) , (2.8)

zl
(k) =






B̂ l (y (k − 1 ) )

zl
(k − 1 )

for l = w(i − k) ,

for l ≠ w(i − k)
(2.9)
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y (k) = y (k − 1 ) + λ w(i − k) (zw(i − k)
(k − 1 ) − zw(i − k)

(k) ) , (2.10)

with initial conditions z( 0 ) = z and

y ( 0 ) =
j = 0
Σ

N − 1
(λ j − λ j z j ) . (2.11)

Note that the computation of (2.10) and R̂ w(i − k) (y (k − 1 ) ) in (2.8) require O( 1 ) operations, and so

does the computation of (2.9) since only one z variable changes. The total operation count in

computing p̂ i,m (z) is thus O(m) and the total storage requirement is O(N) since we have to store

the vector z(k) and the scalar y (k) in each step. By contrast, the total operation count for the more

straightforward recursions in (2.4) and (2.5) is O(Nm) and storage requirement is O(N).

Once we get p̂ i,m (z), we can compute distributions and moments by numerical inversion. In

particular, by inverting p̂ i,m ( 1 , 1 , . . . , z j , . . .1 ) we get the marginal distribution at queue j. This

is one-dimensional inversion and is pretty fast. So we can get marginal distributions at all queues

even for pretty large N. (See Section 2.3 on the computational complexity). We can also

compute joint distributions of, say, queues 0, 1 and 2 by inverting p̂ i,m (z 0 ,z 1 ,z 2 , 1 , 1 , . . .1 ).

However, for joint distributions the computational complexity grows exponentially with the

number of dimensions [19].

For transient analysis we can even allow the system to be time-varying. In particular we can

allow each of the service time LSTs B̂ l (.), switchover time LSTs R̂ l (.) and arrival rates λ l to

change as a function of m. We illustrate this via numerical examples in Section 6.

We can also get (and numerically invert) transforms related to p̂ i,m (z). For this purpose, let

p̃ i,m (z) = p̂ i,m ( z̃) where z̃ k = 1 for k ≠ i and z̃ i = z. Let Ŝ i,m (s) be the LST of the time spent

by the server at queue i after having visited m queues. By (5.39a) of [43],

Ŝ i,m (s) = p̃ i,m (B̂ i (s) ) . (2.12)

Let Ĉ i,m (s) represent the LST of a cycle time that ends just before a visit to queue i and after m
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queue visits overall (m > N). Based on (5.39a) of [43],

Ĉ i,m (s) = p̃ i,m ( 1 − s /λ i ) . (2.13)

2.2 Steady-state Analysis

The transient transforms of Section 2.1 converge to proper steady-state values as m → ∞ if

the stability condition for this model is satisfied. The stability condition is well known to be

j = 0
Σ

N − 1
ρ j < 1, where ρ j ≡ λ j b j is the offered load at queue j and b j is the mean service time; e.g.,

see [8,30,39]. The steady-state limit, if it exists, has to be independent of the transform of the

initial distribution p̂ w(i − m) , 0 (z(m) ). This is possible only if z(m) approaches a vector of all 1’s.

We can apply Proposition 2.2 to obtain an explicit representation for the steady-state transform

p̂ i (z) ≡
m→ ∞
lim p̂ i,m (z).

Proposition 2.3. If L i,m converges to a proper limit L i as m → ∞, then its probability

generating function is

p̂ i (z) = E
j = 0
Π

N − 1
zj

L i , j =
k = 1
Π
∞

R̂ w(i − k) (y (k − 1 ) ) , (2.14)

zl
(k) =






B̂ l (y (k − 1 ) )

zl
(k − 1 )

for l = w(i − k) ,

for l ≠ w(i − k)
(2.15)

y (k) = y (k − 1 ) + λ w(i − k) (zw(i − k)
(k − 1 ) − zw(i − k)

(k) ) .

with initial conditions z( 0 ) = z and y ( 0 ) =
j = 0
Σ

N − 1
(λ j − λ j z j ). Furthermore,

k→ ∞
lim z (k) = ( 1 , 1 , . . . , 1 ) (2.17)
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k→ ∞
lim y (k) = 0 (2.18)

k→ ∞
lim R̂ w(i − k) (y (k − 1 ) ) = 1 . (2.19)

Explicit product-form expressions for transient and steady-state generating functions, such as

in Propositions 2.2 and 2.3, are not routinely reported in the polling literature. One is given for

the globally gated service discipline in [9], however. Following our approach and [39], it is

possible to get explicit product-form expressions for all ‘‘multitype branching process’’ type

polling models. In general, the special speeded-up recursion using the auxiliary variable zl
(k) that

we get for gated systems may not extend to all such models, but such speed-ups are possible for

many special cases (e.g., exhaustive systems).

To numerically compute p̂ i (z), we truncate the infinite product in (2.14) at k = I using the

stopping criterion

R̂ w(i − I) (y (I − 1 ) ) − 1 < ε (2.20)

for some suitably small ε. Other stopping criteria, based on (2.17) or (2.18) may also be used.

Note that in general I will depend on the particular z value at which the transform is needed. As

in the transient case, the computational complexity in computing each term in the product on the

right hand side of (2.14) is O( 1 ) and the overall computational complexity in computing one

transform value is O(I).

In this paper we do all computations using double precision arithmetic and typically aim for

about 8-to-10 place accuracy in the final answer. For this purpose, setting ε = 10 − 12 or 10 − 13 in

(2.20) is usually adequate.

Under the stability condition, the other transient transforms in (2.12) and (2.13) also approach

their steady-state values as given below:
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Ŝ i (s) = p̃ i (B̂ i (s) ) (2.21)

and

Ĉ i (s) = p̃ i ( 1 − s /λ i ) , (2.22)

where as before p̃ i (z) = p̂ i ( z̃) with z̃ k = 1 for k ≠ i and z̃ i = z.

We also have some steady-state transforms which do not have transient counterparts. As on

p. 109 of Takagi [43], the steady-state number of customers at queue i at an arbitrary time is

Q̂ i (z) =
λ i

k = 0
Σ

N − 1
r k

( 1 −
k = 0
Σ

N − 1
ρ k )

_ __________ .
z − B̂ i (λ i − λ i z)

B̂ i (λ i − λ i z)_ _____________ [ p̃ i (z) − p̃ i (B̂ i (λ i − λ i z) ) ] , (2.23)

where r i is the mean switchover time from queue i to queue (i + 1 ) mod N. As on p. 110 of

[43], the LST of the waiting time of an arbitrary customer at queue i is

Ŵ i (s) =

k = 0
Σ

N − 1
r k

( 1 −
k = 0
Σ

N − 1
ρ k )

_ __________ .
s − λ i + λ i B̂ i (s)

[ p̃ i (B̂ i (s) ) − p̃ i ( 1 − s /λ i ) ]_ ______________________ . (2.24)

2.3 Computational Complexity and Comparison With Other Algorithms

Our inversion algorithm for the computation of distributions and moments requires

computation of the transform at a number of complex values of z. From equation (A.13) and the

discussion after equation (A.8) in the Appendix, we see that the computation of the n th moment

requires computation of the transform at (nl + 1 ) values and the computation of one point of the

distribution requires computation of the transform at about 40l values, where l is a parameter for

roundoff error control. For 8-to-10-place accuracy we need l = 2 for the moment computation

and l = 1 for the distribution computation.
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In Sections 2.1 and 2.2 we have shown that the computational complexity for computing one

transform value is O(m) in the transient case and O(I) for the steady-state case, where m is the

number of queue visits and I is the number of iterations for convergence of the transform value,

determined by the stopping criterion (2.20). Hence, for all our moment and distribution

computations the complexity is O(m) in the transient case and O(I) in the steady-state case.

Henceforth we only discuss the computational complexity of the steady-state case since the

transient computation is faster.

A key measure of the computational complexity is the dependence of I upon N, the number of

queues. In Section 6 we show that I = O(N α ) where α is in the range 0.6 to 0.8. So for all our

computations also the complexity is O(N α ). This is for computing performance measures at one

queue. For computation at all queues the complexity is O(N 1 + α ). For the computation of mean

waiting times at gated or exhaustive systems the algorithm by Sarkar and Zangwill [40] has been

widely reported to be the fastest, e.g., see [44]. The computational complexity of that algorithm

is O(N 3 ) (same complexity for one queue and all queues) and hence is considerably slower than

ours for large N (see Example 1 in Section 6).

Recently Konheim, Levy and Srinivasan [34] developed an algorithm for computing the mean

and second moment of the waiting time with complexity O(N) for one queue and O(N 2 ) for all

queues. Since α < 1 we are somewhat faster than this algorithm as well. The algorithm in [34]

may be extended to higher moments as well but would involve pretty cumbersome expressions.

Of course, the main focus of our paper is on computing distributions and asymptotic parameters,

for which no previous work has been reported.

It is to be noted that both our method and the method in [34] are iterative, so that the

convergence becomes slow as the total server utilization ρ approaches 1. Dependence of I on ρ

and the target error ε is discussed in Section 6.3. The iterative scheme in [34] has computational
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complexity O( lnε/ lnρ). Our numerical experience discussed in Section 6.3 indicates that the

above is also an upper bound on our computational complexity. By contrast, the computational

complexity in [40] does not critically depend on ρ. Hence, for ρ sufficiently close to 1, the

algorithm in [40] would be faster. However, our algorithm does work adequately even at

ρ = 0. 95.

3. Other Polling Disciplines

An advantage of our iterative-transform-computation and transform-inversion approach is that

it is applicable not only to the gated case considered in Section 2 but to many other polling

models as well. We could give details for other disciplines as we did in the gated case, but to

save space we only provide brief descriptions. For these other models we can also readily

compute distributions and an arbitrary number of moments of several steady-state, transient and

time-varying performance measures of interest (such as waiting time, queue length and cycle

time). Furthermore, as in the gated case, we can do the computations quickly and thus handle

large models.

3.1 Exhaustive Service Discipline

The expressions for p̂ i,m (z) for this model may be readily obtained by replacing the service-

time transform in (2.5) by an M/G/1 busy-period transform and by replacing the expression

j = 0
Σ

N − 1
(λ j − λ j zj

(k − 1 ) ) in the same equation by

j≠w(i − k)
j = 0
Σ

N − 1
(λ j − λ j zj

(k − 1 ) ).

Other steady-state and transient transform expressions may also be readily obtained with

minor modifications of the corresponding expressions in the gated case; see [43]. The busy-

period transform may also be computed iteratively by starting the iteration with a transform value

of 0 or 1; see [6]. However, due to this additional iteration, the computation in the exhaustive

case is slower than for the gated case. However, there are other factors favoring the exhaustive
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case. For example, to compute the steady-state queue-length and waiting-time distributions, the

gated case requires two computations of p̃ i (.) (see (2.23) and (2.24)) whereas the exhaustive case

requires just one computation of p̃ i (.) (see (4.29) and (4.32) of [43]). We have implemented the

exhaustive case and provide numerical examples in Section 6. Our observation is that typically

the exhaustive case is about 5-to-10 times slower than the gated case.

3.2 Mixture of Gated and Exhaustive Disciplines

It is also not difficult to treat the more general model in which the exhaustive discipline is

used at some queues, while the gated discipline is used at others. In an iterative step for

computing p̂ i,m (z) use the equations for either the gated or the exhaustive case depending on the

service discipline at the previous queue. For all other transform expressions use the gated

expression if queue i has gated service and exhaustive expression if queue i has exhaustive service

discipline.

3.3 Polling Table

Here the server does not visit the queues in a strictly cyclic fashion. There is a bigger cycle of

length M( > N) which is repeated and within the bigger cycle each queue is visited one or more

times according to a fixed pattern or table [11,16]. A special case of the polling table, known as

elevator polling, has also received considerable attention [7,20,45]; then the bigger cycle is of the

form 1 , 2 , . . . , N ,N ,N − 1 , . . . , 2 , 1. Our iterative method for transform computation readily

extends to polling tables by noting that w(i − k) in (2.4) and (2.5) has to be replaced by the index

of the station appearing k steps earlier in the polling table. Of course there also has to be minor

modifications in other transform expressions.

3.4 Globally Gated Discipline

In this discipline [13] a gate is closed at the beginning of service at a specific queue (say

queue 0). For the next N queue visits only those customers are served that arrived before the gate
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closing instant. This case may be treated just like the gated case, but instead of relating the N-

dimensional generating functions of queue-length variables at polling instants in successive

queues, we have to do that at successive gate closing instants. The parameter m in Section 2

representing the number of queues visited prior to the current polling instant would have to be

replaced by a parameter representing the number of cycles prior to the current gate closing

instant. In each term of the m-fold sum in (2.4), instead of one term corresponding to one

switchover time, there has to be N terms corresponding to N switchover times between successive

gate closing instants. Other equations need to be adjusted similarly, but clearly the basic method

goes through without any difficulty.

3.5 Open Network Polling System

In this model [41] a customer, after getting service from queue i, leaves the system with

probability p i0 and goes to queue j with probability p i j (j = i is allowed). Clearly
j = 0
Σ
N

P i j = 1.

(To be consistent with the notation in [41], we now assume that the queue indices are 1 , 2 , . . . , N

instead of 0 , 1 , . . . , N − 1, as we assume in the rest of the paper.) As is clear from (3.2a) and

(3.2b) of [41], we get recursions very similar to those in Section 2.1 with the exception that a new

generating function P i (z) =
j = 0
Σ
N

p i j z j is also involved, which of course is readily computable.

So again the basic method goes through with appropriate modifications in the transform

expressions as given in [41].

3.6 Closed Polling System

In this model [9] there are no external arrivals and the total number of customers stays the

same, which is obtained by setting p i0 = 0 for i = 1 , 2 , . . . , N in the model of Section 3.5. The

transient behavior may be studied similarly to that in Section 3.5. However [9] shows that all the

steady-state transforms have explicit expressions, unlike nearly any other polling system. So our
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transform inversion method not only works, but it is very fast since no iterative step is required.

3.7 Other Models

Evidently many other models besides the six mentioned above can also be solved by

transform inversion. Two other important kinds of polling models that evidently can be solved

by the inversion method are models where a server stops whenever the system becomes empty

[24] and models with certain types of server interruptions [15]. Also, as pointed out by Resing

[39], for many polling systems (gated and exhaustive are special cases) the joint queue length

process at polling instants of a fixed queue is a multitype branching process with immigration.

For all these systems, joint generating functions at successive polling instants may be recursively

related, so that our inversion method would work.

4. Zero Switchover Times

As the switchover times approach zero, the average cycle time approaches zero and many

transient and steady-state quantities defined as averages at polling instants (such as number in

system, server visit time, etc.) also approach zero since there are infinitely many polling instants

in finite time whenever the system is empty. However, the steady-state queue length and waiting

time (whose transforms are given by (2.23) and (2.24) in the gated case) remain non-trivial and

well defined. We show that both these quantities can readily be computed by our iterative-

transform calculation and transform-inversion method. We explicitly do it only for the waiting

time but a very similar treatment is possible for the queue length. Also the same treatment should

be applicable for all the other models in Section 3. There has been a considerable literature

focusing on the case of zero switchover times and the relationship between zero and non-zero

switchover times [16,21,22,28,31,37,42], but there has not been any previous attempt at transform

inversion.
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We assume that the mean switchover time r k = r and that r → 0. In this section we

consider strictly cyclic polling and so the steady-state waiting times and queue lengths in the

limiting system as r k approaches zero are well defined. However, for non-strictly-cyclic polling

(such as polling tables) the limiting system is not well defined unless something more is

specified. In [24] the extra specification is the stipulation that the server stops at a specified queue

whenever the system is empty. In [16] the extra specification involves the fixed quantities

p k ≡
R→0
lim r k / R, where R is the total switchover time and r k is the switchover time between

pseudostations k and k + 1. (Pseudostation k is the k th station polled in the polling table. The

same station may appear more than once in the polling table, each time as a different

pseudostation). Note that the quantities p k add up to one and essentially p k represents the

probability that at the instant of a new message arrival an an empty system the server is in transit

between pseudostations k and k + 1. See [24] and [16] for more details. We just point out that for

non-strictly-cyclic cases we can use either the approach of [24] or [16].

For the cyclic polling system considered here, note that (2.24) may be written as

Ŵ i (s) =
s − λ i + λ i B̂ i (s)

( 1 −
k = 0
Σ

N − 1
ρ k )

_ _______________
Nr

p̃ i (B̂ i (s) ) − p̃ i ( 1 − s /λ i )_ ____________________ . (4.1)

As r → 0, R̂ i (s) → 1 for all i and s. Therefore, from (2.14), p̂ i (z) → 1 for all i and z. So both

the numerator and denominator of (4.1) approach zero. Applying L’Hospital’s rule to (4.1), we

get

Ŵ i (s) =
s − λ i + λ i B̂ i (s)

( 1 −
k = 0
Σ

N − 1
ρ k )

_ _______________
N

∂r

∂ p̃ i (B i (s) )_ _________r = 0 −
∂r

∂ p̃ i ( 1 − s /λ i )_ ___________r = 0
_ _________________________________ . (4.2)

Taking logarithms on both sides of (2.14) yields
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log p̂ i (z) =
k = 1
Σ
∞

log R̂ w(i − k) (y (k − 1 ) ) .

Taking derivatives on both sides with respect to r we get,

p̂ i (z)

∂r

∂ p̂ i (z)_ ______
_ _______ =

k = 1
Σ
∞

R̂ w(i − k) (y (k − 1 ) )

∂r

∂R̂ w(i − k) (y (k − 1 ) )_ _______________
_ ________________ . (4.3)

As r → 0, p̂ i (z) → 1 and R̂ w(i − k) (y (k − 1 ) ) → 1. Hence, we get

∂r

∂ p̂ i (z)_ ______r = 0 =
k = 1
Σ
∞

∂r

∂R̂ w(i − k) (y (k − 1 ) )_ _______________r = 0 . (4.4)

Since we are going to let r → 0, we specify how the switchover times depend on r. Let the

switchover times be i.i.d. random variables, each distributed as r times a fixed random variable

with mean 1, i.e., be X r ≡ rX 1 where X 1 is a nonnegative random variable with mean 1 and finite

higher-order moments. Since

∂r
∂Ee − srX 1

________r = 0 = E( − sX 1 e − srX 1 )r = 0 = − s , (4.5)

∂r

∂R̂ w(i − k) (s)_ __________r = 0 = − s . (4.6)

Combining (4.4) and (4.6), we get

∂r

∂ p̂ i (z)_ ______r = 0 = −
k = 1
Σ
∞

y (k − 1 ) . (4.7)

Now we can use the same iterations given by (2.14)–(2.19) but replace (2.14) with (4.7) above

to compute
∂r

∂ p̂ i (z)_ ______r = 0 , as needed in (4.2). Then the stopping criterion (2.20) has to be replaced

by the following stopping criterion derived from (2.18): Stop at k = I whenever

y (k) < ε (4.8)
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for suitably small ε. Noting that
∂r

∂ p̃ i (z)_ ______ =
∂r

∂ p̂ i_ ___ ( 1 , 1 , . . . , 1 ,z , 1 , . . . , 1 ) with z appearing in

the i th place, we can thus readily compute (4.2) which gives the steady-state waiting time

transform.

We believe that the iteration we have just derived for obtaining steady-state transform values

with zero switchover times is new. Note that the computational complexity in the zero

switchover time case is the same as in the non-zero switchover time case and is faster than

alternative algorithms (for mean waiting time and queue length computation).

5. Asymptotic Analysis

Even though we can exactly compute the steady-state waiting-time tail probabilities P(W > x)

by transform inversion, it is useful to seek an asymptotic form, because it provides insight,

because it often provides a good simple approximation to small tail probabilities, and because it

enables us to quickly compare two different distributions by looking at the asymptotic parameters

instead of looking at the entire distributions.

We conjecture that the steady-state waiting-time distribution for an arbitrary customer at a

queue in a polling system with gated or exhaustive service discipline has the following

asymptotic form:

P(W > x) ∼ αx β e − ηx as x → ∞ , (5.1)

for η > 0 and α > 0, where f (x) ∼g(x) means that f (x)/ g(x) → 1 as x → ∞, provided that the

service-time and switchover-time distributions have finite moment generating functions, i.e.,

B̂ i ( − s) < ∞ and R̂ i ( − s) < ∞ for some positive real s. In general, the parameters α ,β and η in

(5.1) may depend on the queue index and the type of service discipline. This conjecture is

supported by our previous work on GI/G/1 queues with the FIFO service discipline [2,3] and

M/G/1 queues with the LIFO service discipline [4], but it remains to be proved mathematically.
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We verify it in our examples numerically.

Clearly, among the three asymptotic parameters in (5.1) the most important one is η since it

represents the exponential decay rate, the next most important one is β since it represents a

polynomial growth/decay rate, and the least important is α since it represents just a constant

multiplier.

In this section we show how to compute α ,β and η numerically. From [1,17], we know that

if (5.1) holds, then the n th moment µ n has the following asymptote

µ n ∼
ηβ + n

α Γ(β + n + 1 )_ ___________ as n → ∞ . (5.2)

We can estimate α , β and η from moments µ n − 2 , µ n − 1 and µ n for large n. Specifically, let

a n = µ n /µ n − 1 (5.3)

η n =
a n − a n − 1

1_ ________ (5.4)

β n =
a n − a n − 1

a n − 1_ ________ − n + 1 (5.5)

α n =
Γ(β + n + 1 )

µ n ηβ + n
_ __________ (5.6)

Then it can be shown [1] that, under additional conditions,

α =
n→ ∞
lim α n β =

n→ ∞
lim β n and η =

n→ ∞
lim η n . (5.7)

Hence, if we compute α n , β n and η n for increasing n and if these quantities converge to some

limit, then we determine the asymptotic parameters. (For practical purposes, when we establish

(5.7), we also justify (5.1), but in general the implication is only one way: (5.1) implies

(5.2)–(5.7), but (5.2)–(5.7) does not imply (5.1). A counterexample is given in Section 2 of [1].

This numerical procedure is viable since we can compute the moments µ n accurately even for

very large n (100 or more) using the moment computation procedure of [17], which is described

briefly in the Appendix. However, when β ≠ 0 the estimators in (5.4)–(5.6) converge relatively
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slowly, in particular, at a rate of order O(n − 1 ). Much faster convergence can be obtained by

extrapolating, as described in [1]. We use the extrapolation to advantage here. Specifically, a

k th-order extrapolation has a convergence rate of O(n − k ). Typically, using k = 4 we can

estimate the asymptotic parameters more accurately using just the first 20 moments than we can

with the simple estimators in (5.4)–(5.6) even using 100 moments. This significantly speeds up

computation. Furthermore, using the more accurate extrapolation, we can even compute a two-

term asymptotic expansion of the form

P(W > x) − α 1 x β e − ηx ∼ α 2 x β − 1 e − ηx as x → ∞ , (5.8)

which provides a better approximation to the tail probabilities; see [1] for the details. Finally, we

mention that the simple estimators (5.4) and (5.6) converge very rapidly when β = 0. Then the

extrapolations are not needed (and do not help).

The most important asymptotic parameter η is also the dominant singularity (i.e., the

singularity closest to the origin) of the LST of the waiting-time distribution. Also it is on the

negative real axis. (In general we cannot preclude the existence of other singularities on the circle

of convergence). The parameter η is often not easy to find by a search procedure since the

dominant singularity need not be a simple pole and there may be other singularities nearby.

However, once we find η by the moment method, we can check the transform and verify that it

indeed represents the dominant singularity. The numerical method (5.2)–(5.7) thus clearly

supports the weaker logarithmic asymptotic statement

x→ ∞
lim x − 1 log P(W > x) = − η . (5.9)

6. Numerical Examples

In this final section, we first discuss ways we verified our accuracy and then we present five

illustrative examples.
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6.1 Verification

Since we are unaware of any published results on distributions and higher moments for the

models in this paper, an important issue is the verification of the accuracy of our numerical

computations. We could adapt the algorithms in [12,35] to check accuracy for small models and

we could check accuracy for larger models approximately using simulation or the approach in

[25]. We did not do these checks, but did take the following steps:

1. We implemented the algorithms in Ferguson and Aminetzah [27] and Sarkar and Zangwill

[40] and verified our mean computation in all cases except the largest example with

1000 queues, for which case the algorithms in [27] and [40] are too slow. Even for the

mean computation we use transform inversion. Hence, the fact that the transform

inversion is accurate for means leads us to believe that it is accurate in other cases as well.

The original algorithms in [27] and [40] are only for non-zero switchover times, whereas

our examples are for both zero and non-zero switchover times. To get the zero-

switchover-time cases, we used the appropriately modified versions of [27] and [40] as

described in Choudhury [16] and Garner [29].

2. For steady-state performance measures the fact that the transforms converge with an error

specification of about 10 − 12 − 10 − 13 shows that the transforms are being computed

accurately. Our experience with the transform inversion algorithms in other contexts

[5,17,19] tells us that if the transform is being computed accurately, it is most likely

inverted accurately as well.

3. In the special case of N = 1 and zero-switchover time, both the gated and exhaustive

disciplines should match exactly an M/G/1 queue with FIFO service for which alternate

Pollaczek-Khintchine transform expressions are available. We did observe that this is the

case.
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4. As explained in Section 5, we conjecture that P(W > x) ∼ αx β e − ηx as x→ ∞ and the

parameters α ,β ,η may be computed from three successive high order moments. We do

observe that the parameters α ,β ,η estimated from increasing higher-order moments

converge. Furthermore, since η is the location of the dominant (real) singularity of waiting

time LST it can be found alternatively by searching on the negative real-axis. We observe

that the two methods for finding η agree. This provides an indirect accuracy verification of

the moment computation algorithm. Next, the computed distribution has the computed

asymptote mentioned above. Thus the moment inversion and the distribution inversion

serve as checks on each other. In difficult cases, we can exploit the two-term asymptote in

(5.8) to obtain a more accurate check.

5. In example 3 we show that the transient cycle-time distribution approaches the steady-state

values. We observed this convergence in all other cases as well, showing that there are no

significant error involved in these computations.

6. As explained in the Appendix, there is a parameter l for controlling round-off error.

Typically l = 1 is sufficient for the distribution computation and l = 2 is sufficient for

moment computation. Different values of l correspond to different contours on the

complex plane. Hence, if two computations are done using different values of l and they

agree up to, say 8 decimal places, then it is very likely that they are both accurate up to that

many places. We verify all computations in this paper using l = 1 and 2 for distributions

and l = 2 and 3 for moments. In all cases the agreement is good.

For these reasons, we are confident that the accuracy of all computations to be shown are high

(8 or more decimal places), even though we do not show all the numerics up to that many places.

All computations in this paper are done on a SUN SPARC-2 workstation using double-

precision arithmetic.
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6.2 Example 1: 1000 Queues

We first consider an asymmetric 1000-queue system with gated service discipline. All queues

are assumed to have the same service time distribution, a two-stage Erlang (E 2 ) distribution with

mean 1 and coefficient of variation 0.5. All switchover times are assumed to be zero. The arrival

rates at queues 0 , 1 , . . . , 999 are

λ i =


2×10 − 4 + ( 1000 − i) ×2×10 − 6

2×10 − 4 + i×2×10 − 6

for 501 ≤ i ≤ 999 .

for 0 ≤ i ≤ 500
(6.1)

Formula (6.1) makes the smallest arrival rate 2×10 − 4 at queue 0, the largest arrival rate

1. 2×10 − 3 at queue 500, and the overall server utilization ρ = 0. 7.

We show below the first five moments and 3 points of the steady-state waiting-time

distribution seen by an arbitrary customer at queue 0.

_ __________________________________________________________________________

Performance 1st 2nd 3rd 4th 5th
Measure Moment Moment Moment Moment Moment_ __________________________________________________________________________

Value 3.497866 45.64751 1008.372 





31725.30 





1300039.0_ __________________________________________________________________________
_ __________________________________________________________________________
Performance

Measure Pr(W > 10 ) Pr(W > 20 ) Pr(W > 30 )_ __________________________________________________________________________
Value 0.1023567 0.02536360 0.00706867_ __________________________________________________________________________ 




























































Table 1. Numerical results for the steady-state waiting-time distribution in the 1000-queue
example.

The mean was computed in less than 5 seconds, all 5 moments were computed in a little over

1 minute, and the distribution values were computed in about 5 minutes. By contrast, we

estimated that the algorithm in [40] would have needed 3.5 hours to compute just the mean and

the algorithm in [27] would have taken substantially longer, again to compute just the mean.
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6.3 Example 2: Rate of Convergence to Steady State

All our steady-state computations have a complexity O(I) where I is the number of iterations

needed to satisfy (2.20) in computing one transform value. In this example we study numerically

how I depends on the number of queues, N, server utilization, ρ, and error criterion, ε. The

number I also depends on several other parameters, such as the service-time and switchover-time

distributions, whether the computation is for mean or for higher moments, and so on. However,

those factors have been observed to be less critical than N , ρ and ε.

We consider the average number of iterations needed per transform value in computing the

mean steady-state waiting time in a symmetric system with gated service discipline, zero

switchover time and a gamma service-time distribution with mean 1 and squared coefficient of

variation 2. Figure 1 shows how I grows with N for fixed ρ and ε; here ρ = 0. 7 and ε = 10 − 12 .

We see that the dependence is slower than linear. We also show how I would have grown if the

dependence were linear. It appears that I = O(N α ) where α ∼∼ 0. 77. We experimented with

several other cases and in the range of 1 to 100 queues we have found that consistently

I = O(N α ) for α between 0.6 and 0.8.

Next we fix N at 10, ε at 10 − 12 and show in Table 2 how I grows with ρ.

_ _____________________________________________
ρ 0.2 0.4 0.6 0.7 0.8 0.9 0.95_ _____________________________________________
I 73 118 196 270 413 824 1604_ _____________________________________________ 













































Table 2. Number of iterations required as a function of the traffic intensity ρ.

Clearly I approaches ∞ as ρ approaches 1. The growth rate is slower than − 1/ log ρ and faster

than 1/( 1 − ρ). This appears to be the case in other examples as well.

Finally, we fix N at 10, ρ at 0.8 and show in the table below how I grows with ε. I appears to

grow roughly linearly with − log ε.
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_ _________________________________
ε 10 − 8 10 − 10 10 − 12 10 − 14

_ _________________________________
I 172 297 413 530_ _________________________________ 






























Table 3. Number of iterations as a function of the specified error ε in the stopping criterion.

6.4 Example 3: Time-Varying Behavior

In this example we consider transient and time-varying behavior of a polling system. This

example is motivated by the fact that in many polling systems (e.g., AT&T’s 4ESS Switching

System [32]), some overload control action is taken whenever the cycle time (or the weighted

sum of several successive cycle times) exceeds a threshold. The threshold is chosen large enough

so that it is unlikely to be exceeded under normal traffic conditions. We do not study the effect of

any overload-control mechanism, but rather study how the transient cycle times behave under a

sudden surge of overload and specifically how the probability of exceeding a large threshold

changes during and after the overload. We consider a symmetric 10-queue system with a gated

service discipline. The switchover time is a 4-stage Erlang (E 4 ) distribution with mean 0.1 and

squared coefficient of variation 0.25. The service time is a 2-stage Erlang (E 2 ) distribution with

mean 1 and squared coefficient of variation 0.5. The arrival rate is time-varying and it changes

from cycle to cycle so that the instantaneous offered load ρ (the product of total arrival rate and

mean service time) changes with cycle number as shown in Figure 2.

We let the threshold be 40. When the offered load is stationary with ρ = 0. 8, the threshold is

8 times the mean cycle time, and the probability of exceeding it would be 8. 862472×10 − 4 (this

value we obtain from the steady-state analysis). Let C n represent the length of the n th cycle. In

Figure 3 we show how the time-dependent cycle-time tail probabilities P(C n > 40 ) evolve with

n under the time-varying load shown in Figure 2. Both during and after the overload, the

probability of exceeding the threshold remains much higher than the steady-state value. This

demonstrates that the observed cycle time should be a good indicator of an overload.
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6.5 Example 4: Asymptotic Parameters

In this example we show how to get insights by computing asymptotic parameters

numerically as explained in Section 5. We consider symmetric gated systems with a two-stage

Erlang (E 2 ) service-time distribution with mean 1 and squared coefficient of variation 0.5 at each

queue. The server utilization is 0.81. We first consider zero switchover times, and see how the

asymptotics depends on N. We consider 3 cases: N = 1 , 3 and 9. The results for the steady-state

waiting-time distribution are given in Table 4. In the cases N = 3 and N = 9 we give results

both for the estimators in (5.3)–(5.6) and the better results obtained by extrapolation.

Extrapolation is not used when N = 1.

For N = 1, the three estimators in (5.3)–(5.6) converge to limits by the 11th moment and

β = 0. This is no surprise since this case is identical to an M/G/1 queue with the FIFO service

discipline. In that setting it is known [3] that there is a pure-exponential asymptote and the

distribution approaches this limit pretty quickly. However, for N = 3 and 9, the convergence to

the asymptote is not nearly as quick. Moreover, significantly, β ≠ 0 when N > 1. Without

using the extrapolation in [1], even by the hundredth moment, η has only about 4 significant

digits, and α and β have only 1 significant digit. The error in η propogates to β and α, so that the

estimates of β and α without extrapolation tend to converge to the wrong limits. From the

numerical results, it would appear that α n and β n have 3 significant digits by n = 100, but this is

not the case, as can be seen from the extrapolation. The extrapolation does much better with 20

moments than the estimators in (5.3)–(5.6) do with 100 moments. However, since α and β are

less important parameters, we are pretty close to the true asymptote by approximating η , α and β

by their values obtained from the 100th moment. With extrapolation, all digits given are

significant.

We plot the true tail probabilities and the asymptotes in Figure 4. For N = 1, the asymptote
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and the true distribution are nearly indistinguishable. For N = 3 and N = 9, the asymptotic

approximation gets quite good for tail probabilities 10 − 3 or lower.

Table 4 has important implications for system performance. Even though the mean waiting

times are the same in all cases, the asymptotic exponential decay rates η are quite different,

resulting in considerably bigger tail probabilities with increasing N. A second observation is that

the second asymptotic parameter β evidently converges to − 1. We remark that β = − 1. 0

corresponds to a logarithmic singularity in the transform. We observed this phenomenon for

several other examples with zero switchover times as well (when N > 1 ).

Next we consider the effect of non-zero switchover times. For this purpose, we fix N at 3.

We look at three cases: Case 1 has zero switchover times; Case 2 has switchover times with mean

0.1 and an exponential distribution with squared coefficient of variation 1; Case 3 has relatively

long and highly variable switchover times; they have a gamma distribution with mean 1 and

squared coefficient of variation 10.

The results are shown in Table 5 and Figure 5. The degree of convergence of the asymptotic

parameters by the 100th moment is about the same as in Table 4. As in Table 4, the extrapolation

technique in [1] provides significantly greater accuracy. It is remarkable that Case 2 has a

considerably bigger mean than Case 1, but both cases evidently have the same asymptotic

exponential decay rate and therefore their small tail behaviors are not too different as can be seen

in Figure 5. However, in Case 3, both the mean and the small tail probabilities are much larger

than in Case 1 (η is considerably smaller). We observe that unlike between Cases 1 and 2, η

changes significantly in Case 3. The change evidently occurs in Case 3 because the asymptotic

decay rate η for the switchover-time distribution in Case 3 is 0.1, which is smaller than the

asymptotic decay rate η for the waiting-time distribution in Case 1. Evidently, in general, the η

for the waiting time has to be smaller than the η for switchover time. By contrast, the η for the
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switchover time in Case 2 is 10, which is much larger than the η for waiting time in Case 1. For

all cases we did verify by a search method that the dominant singularity of the waiting-time LST

is indeed located very near − η for η in Tables 4 and 5.

From Figure 5, we also observe that the asymptotic approximation is quite good in Cases 1

and 2 but it is not so good in Case 3. For Case 3 in Figure 5, we also show the two-term

asymptotic approximation

F c (x) ∼∼ α 1 x β e − ηx + α 2 x β − 1 e − ηx , (6.2)
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Case 1, N = 1_ __________________________________________________________
Moment

Order Moment α n η n β n_ __________________________________________________________
1 3.197368 — — —
3 285.9021 0.815720 0.2602494 0.011225

11 0. 9299524×1014 0.831021 0.2593260 0
12 0. 4303243×1016 0.831021 0.2593260 0_ __________________________________________________________ 






















































Case 2, N = 3_ ___________________________________________________________
Moment

Order Moment α n η n β n_ ___________________________________________________________
1 3.197368 — — —
3 354.8475 1.10836 0.2060491 −0.272482

98 0. 1146892×10227 6.52631 0.1758953 −0.981276
99 0. 6391126×10229 6.53219 0.1758950 −0.981445

100 0. 3597829×10232 6.53862 0.1758947 −0.981630
extrapolation 7.3487 0.175878 −1.00003_ ___________________________________________________________ 








































































Case 3, N = 9_ ___________________________________________________________
Moment

Order Moment α n η n β n_ ___________________________________________________________
1 3.197368 — — —
3 450.4123 1.37951 0.1661709 −0.465349

98 0. 185638×10234 5.76511 0.1480554 −0.980175
99 0. 1229012×10237 5.77150 0.1480551 −0.980377

100 0. 8219661×10239 5.77755 0.1480548 −0.980567
extrapolation 6.5744 0.148039 −1.0005_ ___________________________________________________________ 








































































Table 4. The asymptotic parameters of the steady-state waiting-time distribution with zero
switchover times.

where α 1 is the old α, as described in [1]. For Case 3, α 2 = 312. From Figure 5, we see that

the second term provides noticeable improvement for Case 3. Multi-term asymptotic

approximations were obtained in other cases, but they are not shown since they are

indistinguishable from the exact tail probabilities in Figure 5.
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Case 1. Switchover Time = 0_ ___________________________________________________________
Moment

Order Moment α n η n β n_ ___________________________________________________________
1 3.197368 — — —
3 354.8475 1.10836 0.2060491 −0.272482

98 0. 1146892×10227 6.52631 0.1758953 −0.981276
99 0. 6391126×10229 6.53219 0.1758950 −0.981445

100 0. 3597829×10232 6.53862 0.1758947 −0.981630
extrapolation 7.3487 0.175878 −1.00003_ ___________________________________________________________ 








































































Case 2. Switchover Time: Mean = 0.1, cb
2 = 1_ ___________________________________________________________

Moment
Order Moment α n η n β n_ ___________________________________________________________

1 4.25000 — — —
3 563.6498 1.1387 0.1995206 −0.148503

98 0. 4163636×10227 5.0027 0.1758908 −0.735567
99 0. 2326088×10230 5.0068 0.1758905 −0.735720

100 0. 1312734×10233 5.0099 0.1758903 −0.7358837
extrapolation 5.4534 0.175878 −0.7492_ ___________________________________________________________ 








































































Case 3. Switchover Time: Mean = 1, cb
2 = 10_ ___________________________________________________________

Moment
Order Moment α n η n β n_ ___________________________________________________________

1 18.22368 — — —
3 20856.95 0.2815 0.0900686 0.587808

98 0. 2172506×10272 10.9981 0.0605776 −0.938639
99 0. 3516792×10275 10.9650 0.0605779 −0.938166

100 0. 5750940×10278 10.9331 0.0605782 −0.937710
extrapolation 7.644 0.060593 −0.8894_ ___________________________________________________________ 








































































Table 5. Asymptotics of the steady-state waiting time with non-zero switchover times, N = 3.

6.6 Example 5: Comparing Gated and Exhaustive Disciplines

It is well known that for symmetric polling systems

E(W FCFS ) ≤ E(W Exhaustive ) ≤ E(W Gated ) , (6.3)

with equality holding in the case of zero switchover times. In this example we see how the

corresponding high-order moments and tail probabilities compare. However, instead of the entire

tail distribution we consider only the asymptotic exponential decay rate η.
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We consider symmetric 10-queue systems with gated or exhaustive service disciplines (either

all gated or all exhaustive), ρ = 0. 8, service times distributed as gamma with mean 1 and

squared coefficient of variation 2. Table 6 below describes the results with zero switchover times.

Note that the means are the same, but for all other moments (we only show 2nd and 3rd),

exhaustive is larger than gated. Of course both are larger than FIFO. Also the asymptotic

exponential decay rate is smaller for exhaustive than gated, resulting in bigger tail probabilities.

Next we consider two cases of non-zero switchover times distributed as two-stage Erlang with

squared coefficient of variation 0.5. The mean in the first case is 0.1 and in the second case 1.0.

The results are displayed in Table 7.

_ _________________________________________________
Service 1st 2nd 3rd η

Discipline Moment Moment Moment_ _________________________________________________
FIFO 6.0 92.00 2121.00 0.13007_ _________________________________________________
Gated 6.0 100.68 3391.36 0.07369_ _________________________________________________

Exhaustive 6.0 118.31 3954.61 0.06713_ _________________________________________________ 



























































Table 6. A comparison of the steady-state waiting times for three disciplines with zero
switchover times.
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Case 1. Switchover Time: Mean = 0.1, cb
2 = 0. 5_ _______________________________________________

Service 1st 2nd 3rd η
Discipline Moment Moment Moment_ _______________________________________________

Gated 8.725 181.303 6074.64 0.07369
Exhaustive 8.325 180.576 6482.96 0.06713_ _______________________________________________ 




























Case 2. Switchover Times: Mean 1, cb
2 = 0. 5

_ _____________________________________________________________________

Service 1st 2nd 10th 11th
Discipline Moment Moment Moment Moment η_ _____________________________________________________________________

Gated 33.2500 1654.51 0.352483×1020 0. 623732×1022 0.07369
Exhaustive 29.2500 1396.69 0. 351401×1020 0. 652084×1022 0.06713



































Table 7. A comparison of the steady-state waiting times for gated and exhaustive disciplines
with small and large switchover times.

In Case 1 the first moment is smaller for exhaustive than for gated, as is well known. The

second moment is also smaller, but the third and all subsequent moments are larger for exhaustive

than gated. In Case 2, the first 10 moments are smaller for exhaustive, but the 11th and higher

moments are larger for exhaustive. Also, in both Cases 1 and 2 the asymptotic exponential decay

rate is smaller for exhaustive compared to gated, which implies that if we go sufficiently far out in

the tail, the exhaustive tail probability will have bigger values than the gated ones.

Also note that in Table 7 the asymptotic decay rates η are unchanged going from Case 1 to

Case 2. This is consistent with Cases 1 and 2 in Table 5. Evidently the asymptotic decay rate

with switchover times is the same as without switchover times, provided that the switchover time

contribution does not dominate the zero-switchover contribution. This phenomenon can be

understood from decomposition results; see Fuhrmann [24] and references therein.

It is well known that if the objective is to minimize the mean delay, then we should prefer the

exhaustive discipline to the gated discipline. However, this example shows that if the object is to

minimize higher moments or tail probabilities, and if the switchover times are not too large, then

gated might be the discipline of choice.
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Appendix

In this appendix we provide a brief summary of the inversion formulas; see [5,17,19] for more

details. We only show one-dimensional formulas, which is all we use in our examples here, but it

is also possible to do multi-dimensional inversions (e.g., to compute multivariate distributions),

as explained in [19]. Multi-dimensional inversions are essentially iterated one-dimensional

inversions.

A.1 Distribution Values

Let X be a random variable with a cdf F(x) ≡ P(X ≤ x) and complementary cdf

F c (x) ≡ 1 − F(x). Then the Laplace-Stieltjes transform (LST) of F is

f̂ (s) ≡ Ee − sX =
0
∫
∞

e − sxdF(x) (A.1)

and the Laplace transform of F c (x) is

F̂
c
(s) ≡

0
∫
∞

e − sxF c (x) dx =
s

1 − f̂ (s)_ ______ , (A.2)

where s is a complex variable with Re(s) > 0. We calculate F c (x) using the inversion formula

F c (x) =
2lx

exp (A /2l)_ _________




F̂

c 

 2xl

A_ ___




+ 2
k1 = 1
Σ
l

k = 0
Σ
∞

( − 1 ) kRe[e − ik1 π/ lF̂
c 

 2lx

A_ ___ −
lx

ik 1 π_ ____ −
x

ikπ_ ___








(A.3)

where i ≡ √ − 1 and A and l are parameters for controlling errors.

The aliasing error is given by

E a =
j = 1
Σ
∞

e − A j F c (x + 2 j lx) . (A.4)

Since F c (x + 2 j lx) < 1, the aliasing error is bounded by



- A-2 -

E a ≤
1 − e − A

e − A
_ ______ . (A.5)

The aliasing error is controlled by choosing a suitably large A and the roundoff error is controlled

by choosing a suitably large l.

The infinite sum in (A.3) is computed using Euler summation. To describe Euler summation,

let

S =
k = 0
Σ
∞

( − 1 ) ka k (A.6)

and

S j =
k = 0
Σ
j

( − 1 ) ka k . (A.7)

The infinite sum S in (A.6) is approximated by the Euler sum

E(m ,n) =
k = 0
Σ
m

( 2
m) 2 − mS n + k . (A.8)

For the computations in this paper, we obtained at least 8-place accuracy by choosing l = 1,

A = 21, n = 30 and m = 11.

Next, let X represent a discrete random variable with probability mass function p k and

probability generating function P̂(z) =
k = 0
Σ
∞

p k z k . Then we calculate p k from P̂(z) using the

inversion formula

p k =
2lkr k

1_ _____



P̂(r) + ( − 1 ) kP̂( − r) + 2

j = 1
Σ

lk − 1
Re[P̂(re πi j / lk ) e − πi j / l ]





, (A.9)

where r and l are parameters for controlling errors. Let r = 10 − γ/2lk. Then the aliasing error in

the inversion formula (A.9) is
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E a =
j = 1
Σ
∞

10 − γ j p k + 2nlk . (A.10)

Since p k + 2nlk < 1, the aliasing error is bounded by

E a ≤
1 − 10 − γ

10 − γ
_ _______ . (A.11)

The aliasing error is controlled by choosing a bigger γ and the roundoff error is controlled by

choosing a bigger l. To get at least 8-place accuracy, a choice of l = 1 and γ = 10 is adequate.

A.2 Moments

Let M̂(z) represent the moment generating function of a random variable X. We assume M̂(z)

to be analytic at z = 0. If X is a random variable with LST f̂ (s) as in (A.1), then

M̂(z) ≡ E(e zX ) = f̂ ( − z) . (A.12)

If X is a discrete variable with probability generating function P̂(z), then

M̂(z) = P̂(e z ) . (A.13)

Let µ n represent the n th moment with µ 0 ≡ 1. Then µ n appears as the n th coefficient in the

power-series representation of M̂(z), i.e.,

M̂(z) =
n = 0
Σ
∞

µ n z n . (A.14)

To compute the moments, we first compute M̂(z) , using either (A.12) or (A.13), and then

obtain µ n using the inversion formula

µ n =
2nlr n αn

n!_ _______ 
M̂(αr) + ( − 1 ) nM̂( − αr)

+ 2
j = 1
Σ

nl − 1
Re[M̂(αre πi j / l ) e − πi j / l ]





, (A.15)

where
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r = 10 − γ/2nl (A.16)

and

α = (n − 1 ) µ n − 2 /µ n − 1 . (A.17)

Note that (A.15) differs in form from (A.9) because (A.15) has the dynamic scale parameter α in

(A.17) computed from the last two moment values. Note that (A.17) may be used to compute α

only for n ≥ 3. To compute µ 1 and µ 2 , at first a rough estimate is obtained using α = 1. Next

α is obtained from µ 1 and µ 2 which then is used to recompute a more accurate α. High accuracy

is typically obtained by choosing γ = 11 and l = 2.



Figure 1. The number I of iterations of the transform required to reach steady state as a
function of the number N of queues in a symmetric polling model with the gated
discipline and zero switchover times. Here ρ = 0. 7 and ε = 10 − 12 .



Figure 3. The time-dependent cycle-time tail probability (in log scale) for the time-varying
load in Figure 2.



Figure 4. Steady-state waiting-time tail probabilities and asymptotes (in log scale) in a
symmetric gated model with zero switchover times for the cases of N = 1 , 3 and 9.



Figure 5. Steady-state waiting-time tail probabilities and asymptotes (in log scale) in a
symmetric gated model with different switchover times.


