
DECOMPOSITION APPROXIMATIONS FOR TIME-DEPENDENT

MARKOVIAN QUEUEING NETWORKS

by

Ward Whitt1

AT&T Labs

November 11, 1997

Revision: November 19, 1998

Operations Research Letters 24 (1999) 97–103

1AT&T Labs, Room A117, Shannon Laboratory, 180 Park Avenue, Florham Park, NJ 07932-
0971; email: wow@research.att.com



Abstract

Motivated by the development of complex telephone call center networks, we present a

general framework for decompositions to approximately solve Markovian queueing networks

with time-dependent and state-dependent transition rates. The decompositions are based on

assuming either full or partial product form for the time-dependent probability vectors at

each time. These decompositions reduce the number of time-dependent ordinary differential

equations that must be solved. We show how special structure in the transition rates can

be exploited to speed up computation. There is extra theoretical support for the decomposi-

tion approximation when the steady-state distribution of the time-homogeneous version of the

model has product form.
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1. Introduction

This paper was motivated by the desire to analyze the time-dependent behavior of com-

plex telephone call centers containing a network of interactive voice response systems and

agent groups, where there may be balking (failure to join upon arrival if service cannot be pro-

vided immediately or if the queue is too long), blocking (rejection of new arrivals when there

is no available capacity), reneging (customer abandonment after waiting) and retrying (cus-

tomer reattempts later after experiencing balking, blocking or reneging); e.g., see Andrews and

Parsons [1], Brigandi, Dargon, Sheehan and Spencer [2], Jennings, Mandelbaum, Massey and

Whitt [5], Mehrota [12] and Rappaport [15]. We propose modeling such a system as a Marko-

vian queueing network or a multidimensional birth-and-death process, with transition rates

that are both state-dependent and time-dependent. Time-dependence and state-dependence

are especially important to include in the model when dynamic routing strategies are being

considered. For example, when one site is heavily congested, a portion of its new arrivals may

be instantaneously routed to another site. Careful analysis is needed because it is hard to

anticipate the consequences of such actions.

The Markovian structure makes it possible to obtain a time-dependent description of per-

formance as the solution of a system of ordinary differential equations (ODEs), but the network

structure causes there to be a very large number of equations, tending to make the analysis

intractable. Hence there is a need for approximations. With suitable approximations, the

analytical approach can provide an alternative to simulation that is convenient for rapidly ex-

amining many candidate scenarios. A modest number of ODEs can be solved quite efficiently

using Runge-Kutta methods; e.g., see Green, Kolesar and Svoronos [3] and Taaffe and Ong

[18]. Increasing computer power makes it now possible to solve substantially larger systems

than previously.

In this paper we present a framework for decomposition approximations. Our proposed

procedure is a generalization of the decomposition approach used by Grier, Massey, McKoy

and Whitt [4] to analyze the time-dependent Erlang loss model with retrials. That model is a

special case of a two-node queueing network. The numerical results there illustrate how such

a decomposition procedure can perform. We leave to later work evaluating the effectiveness

of other specific implementations. It is hoped that the discussion here will encourage more

numerical studies.

The decomposition approach has also been considered previously by others, especially to
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analyze the time-dependent congestion in airports; see Koopman [7], Malone [8], Peterson,

Bertsimas and Odoni [14] and Schmeiser and Taaffe [17]. For airports, each queue is naturally

modelled as an Mt/Mt/s queue for small s, e.g., 1 ≤ s ≤ 4, corresponding to the number of

runways. The idea here is essentially the same, but the framework is more general. As shown in

this context, the decomposition approximation can be further accelerated by applying closure

approximations for single queues; see Rothkopf and Oren [16] and Taaffe and Ong [18]. Then

only one or two ODEs are needed for each queue. The general idea of a closure approximation

is to assume a parametric form for the marginal distributions and then have a small number

of ODEs to describe the time-dependent evolution of the characterizing parameters; e.g., these

might be for the first two moments.

The decomposition approach has also been a key way to develop approximations for the

steady-state distribution of time-homogeneous queueing network models; e.g., see Whitt (1995)

and references therein. There also are other candidate approximations for time-dependent be-

havior besides systems of ODEs. First, there are uniform acceleration asymptotic expansions,

possibly combined with heavy-traffic and asymptotics; see Massey and Whitt [11] and Man-

delbaum, Massey and Reiman [9]. For networks of infinite-server queues, exact solutions are

possible; see Massey and Whitt [10]. In that context, there are exact-decomposition and

exact-closure properties; i.e., (1) after determining the net arrival rates, the queues can be

analyzed separately, (2) the marginal distributions are Poisson, so that it suffices to have a

single ODE characterizing the mean for each queue; see Massey and Whitt [10] and Grier

et al. [4]. Hence, if there tend to be ample servers, a network of infinite-server queues can be

a convenient approximation. Here we are focusing on the case in which infinite-server models

are not appropriate.

Here is how the rest of this paper is organized. In Section 2 we specify the model and display

the exact solution as a system of ODEs. In Section 3 we briefly indicate how such models can be

used for telephone call centers. In Section 4 we consider decomposition approximations based

on assuming that the time-dependent probability vectors have product form. We consider

partial product form as well as full product form. In Section 5 we show the computational

advantage gained from assuming special structure in the transition rates.

In Section 6 we discuss the theoretical support provided by the steady-state distribution

associated with the time-homogeneous version of a model having product form. Finally, in Sec-

tion 7 we discuss non-exponential service-time distributions and non-Poisson arrival processes.

The extension to phase-type service-time distributions and interarrival-time distributions is
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treated naturally within our framework using partial product form. This extension follows

Ong and Taaffe [13] and Taaffe and Ong [18].

2. The Basic Model

Our model is a time-dependent and state-dependent generalization of a Jackson queueing

network, also known as a migration process or a multidimensional birth-and-death process;

e.g., see Chapters 2 and 3 of Kelly [6]. Let there be m queues. Let the system state at any

time be the vector n ≡ (n1, . . . , nm), where nj is the number of customers at queue j. Let ei

be the m-dimensional vector with a 1 in the ith place and 0’s elsewhere.

Let there be external arrivals to queue i at rate λi(t,n) when the system state is n at time

t. Let there be departures from queue i at rate µi(t,n) when the system state is n at time t.

Let a departure from queue i at time t be routed to queue j with probability pij(t,n) when

the system state (before the departure) is n at time t. These rates are understood to be 0 if

any component nj of n is negative. Moreover, µj(t,n) = 0 if nj = 0.

Let Qj(t) be the number of customers at queue j at time t. We assume that the vector-

valued process {(Q1(t), . . . , Qm(t)) : t ≥ 0} is a nonhomogeneous continuous-time Markov

chain (CTMC) with the transition intensities specified above. Let

q(t,n) = P (Q1(t) = n1, . . . , Qm(t) = nm) (2.1)

for n ≡ (n1, . . . , nm). Then the Markov assumption implies that the marginal (one-dimensional,

i.e., for single t) probabilities in (2.1) satisfy a system of ordinary differential equations (ODEs),

namely,

q̇(t,n) ≡
d

dt
q(t,n) =

m
∑

j=1

q(t,n− ej)λj(t,n− ej)

+

m
∑

i=1

m
∑

j=1

q(t,n+ ej − ei)µj(t,n+ ej − ei)pji(t,n+ ej − ei) , (2.2)

which can be solved given initial values q(0,n) for all possible state vectors n.

From a computational perspective, a serious difficulty with (2.1) is that there can be a very

large number of equations, one for each possible state n. If nj can assume any value between

0 and N −1, with all combinations possible, then the number of equations is Nm. Hence there

is motivation for introducing approximations that reduce the computational complexity.
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3. Telephone Call Center Models

We briefly describe how a telephone call center can be modelled by the Markovian queueing

network introduced in Section 2. Our goal here is to demonstrate general applicability; we leave

to future work careful analysis of specific models.

Customers (callers) may enter the system at several different nodes (queues). More than

one node might be used to represent different treatment depending on the calling or called

number. There are nominal time-dependent customer arrival rates at each node, say αi(t) at

node i.

The nominal arrival rates are then reduced in a state-dependent fashion (still with time

dependence) to account for balking and blocking upon arrival. The balking and blocking also

generate corresponding arrivals to separate (typically infinite-server) retrial nodes. Having

different balking and blocking retrial nodes lets us represent different retrial behavior for these

two different experiences. The customers who previously balked or were blocked spend a

random time in the retrial node and then transition to become new arrivals. Retrials from

blocking were considered by Grier et al. [4].

To be more concrete, suppose that there are si(t) servers (agents) and ni(t) extra waiting

spaces (e.g., due to a limited number of available trunk lines) at node i at time t. Then blocking

occurs when the number of customers at node i is si(t) + ni(t). Moreover, balking can occur

when the number of customers is k, si(t) ≤ k < si(t) + ni(t). Balking might then occur with

probability βi(t, k). With these features, the arrival rate at node i becomes state-dependent

as well as time-dependent. The arrivals that block or balk in turn may become arrivals at the

retrial nodes.

Customers entering the network at node i to receive service may receive service and then

be routed to another node j. For example, the first node might be a computerized integrated

voice response (IVR) system, after which the call is routed to one of several sites each with

many agents, or may leave the system. Consistent with actual systems, the routing within the

network may be both state-dependent and time-dependent.

Customers may also renege after starting service. Hence the nominal service rates should

be increased to reflect this possibility. Reneging customers are also routed to their own retrial

queues. With k customers and si(t) servers at node i at time t, the nominal departure (service

completion) rate can be µi(t)[k ∧ si(t)], where k ∧ si(t) ≡ min{k, si(t)}. With reneging, the

total departure rate can be increased to si(t)µi(t) + (k − si(t))ηi(t) when k > si(t), which
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represents a per-customer reneging rate of ηi(t) while waiting. If reneging customers from

node i retry with probability ξi(t), then there is an arrival rate of (k − si(t))ηi(t)ξi(t) into the

reneging retrial queue when there are k (> si(t)) customers at node i.

Thus, the telephone call center can be modeled as a Markovian queueing network with

external arrival rates λi(t,n), service rates µi(t,n) and transition probabilities pij(t,n). More-

over, these transitions rates often have special structure that can be exploited. (See Section 5

below.)

4. Product-Form Decomposition Approximations

We can reduce the computational burden of (2.2) by assuming, as an approximation, that

the time-dependent probabilities q(t,n) have special structure. There are different forms of

special structure that can be considered. Here we assume that the time-dependent probabilities

have product form. However, they need not have full product form. Instead, they could have

only partial product form.

Full product form is obtained by assuming that

q(t,n) =
m
∏

i=1

qi(t, ni) for all t ≥ 0 and n = (n1, . . . , nm) , (4.1)

where qi(t, ni) is a function of time t and the single component ni. Partial product form is

obtained by assuming that a generalization of (4.1) holds for designated subsets of queues. It

can be specified by considering the case of partitioning the queues into two disjoint subsets,

say queues 1, . . . ,m1 and m1 + 1, . . . ,m. Let n1 = (n1, . . . , nm1) and n2 = (nm1+1, . . . , nm).

Then partial product form is obtained by assuming that

q(t,n) = q1(t,n1)q2(t,n2) for all t ≥ 0 , (4.2)

and all n = (n1,n2).

The key simplification provided by (4.1) and (4.2) is that we have coupled smaller systems

of ODEs instead of one big system of ODEs. For example, with (4.1), we would calculate

qi(t+∆t, ni) for each i (separately) assuming that qi(s, ni) is known for s ≤ t for all i. Thus,

we simultaneously solve m systems of ODEs, each of which has say N equations, instead of

solving one system of Nm ODEs.

Suppose that we consider (4.2). Let e1j (e2j) be a m1-dimensional ((m−m1)-dimensional)

vector with a 1 in the jth and 0’s elsewhere. Then, instead of (2.2), we obtain

q̇1(t,n1) =
∑

n2

m1
∑

i=1

q1(t,n1 − e1i)q2(t,n2)λi(t,n− ei)
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+
∑

n2

m1
∑

i=1

m1
∑

j=1

q1(t,n+ ej − ei)q2(t,n2)µj(t,n+ ej − ei)pji(t,n1 + ej − ei)

+
∑

n2

m1
∑

i=1

m
∑

j=m1+1

q1(t,n1 − e1i)q2(t,n2 + e2j)µj(t,n+ ej − ei)pji(t,n+ ej − ei) , (4.3)

where the sum on n2 extends over all possible vectors n2. A similar system of ODEs holds for

q2(t,n2); indeed it can be regarded as (4.3) if we switch the labels.

This flexibility beyond full product form can be very useful. For example, our interest may

be focused on two queues, say queues 1 and 2, that are quite tightly coupled. Then we might

want to not assume product form for these two queues, but otherwise assume product form.

We could apply (4.2) with m1 = 2, also exploiting the fact that q2(t, n2) can be expressed in

the full product form (4.1). The number of equations for calculating q1(t,n1) is the number

of vectors (n1, n2). For the other components, we are calculating qj(t, nj) for j ≥ 3, where nj

ranges over the possible states of queue j only.

As indicated in the introduction, a special case of the product-form decomposition approx-

imation for a network with two queues was considered by Grier et al. [4]. They considered the

time-dependent Erlang loss model with retrials. The customers “in orbit” waiting to retry at a

later time constitute the second queue. Assuming that the number of servers in the loss model

is L and the maximum possible number of customers in retry mode is R (as an approximation

for infinity), the original number of ODE’s is (L+1)(R+1). (We might have R = L and L = 100

or L = 1000.) In contrast, the product-form decomposition approximation has only L+2 equa-

tions, because only a single equation for the mean is needed for the infinite-server retry mode in

isolation. The paper by Grier et al. [4] reports numerical results illustrating how the approx-

imation performs. The approximation quite accurately describes the time-dependent mean

number of busy servers and the time when the time-dependent blocking probability is highest,

but it only roughly describes the time-dependent blocking probability and the time-dependent

mean number of customers in retry mode. Even though the time-dependent blocking proba-

bility approximation is not very accurate, it can be sufficiently accurate for many engineering

purposes, such as determining time-dependent staffing levels, as in Jennings et al. [5].

5. Special Structure in the Transition Rates

A product-form approximation is likely to perform better if the system of queues is relatively

weakly coupled. A typical way weak coupling occurs is for the transition rates to depend only

on the states of the queues involved.
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Toward this end, first suppose that the external arrival rate λi(t,n) to queue i is only a

function of ni, the number of customers at queue i; then we write λi(t, ni). Similarly, suppose

that the departure rate µi(t,n) depends only on ni; then we write µi(t, ni). Finally, assume

that pij(t,n) is only a function of ni and nj; then we write pij(t, ni, nj).

Now we observe that the computations with product-form approximations simplify. Note

that we can sum over n2 in (4.3) to obtain

q̇1(t,n1) =

m1
∑

i=1

q1(t,n1 − e1i)λi(t, ni − 1)

+

m1
∑

i=1

n1
∑

j=1

q1(t,n1 + e1j − e1i)µj(t, nj + 1)pji(t, nj + 1, ni − 1)

+

m1
∑

i=1

m
∑

j=m1+1

q1(t,n1 − e1i)qj(t, nj + 1)µj(t, nj + 1)pji(t, nj + 1, ni − 1) , (5.1)

where qj(t, nj) is the one-dimensional marginal distribution, i.e.,

qj(t, nj) =
∑

n2:

n2j=nj

qj(t,n2) . (5.2)

The system of ODEs in (5.1) becomes especially attractive when full product form is

assumed within the second subset. Then the calculation (5.2) over all vectors n2 need not be

performed. Then the ODEs for one queue j in the second subset, m1 + 1 ≤ j ≤ m, become

q̇j(t, nj) = qj(t, nj − 1)λj(t, nj − 1) + qj(t, nj)µj(t, nj)pjj(t, nj, nj)

+ qj(t, nj − 1)
m
∑

k=m1+1

k 6=j

∑

nk

qk(t, nk + 1)µk(t, nk + 1)pkj(t, nk + 1, nj − 1)

+ qj(t, nj − 1)
∑

n1

q1(t,n1 + e1i)µi(t, ni + 1)pij(t, ni + 1, nj − 1) (5.3)

Finally, if we assume full product form as in (4.1) and the special transition structure, then

we get

q̇i(t, ni) = qi(t, ni − 1)λi(t, ni − 1) + qi(t, ni)µi(t, ni)pii(t, ni, ni)

+

m
∑

k=1

k 6=i

∑

nk

qi(t, ni − 1)qk(t, nk + 1)µk(t, nk + 1)pki(t, nk + 1, ni − 1) . (5.4)

If ni runs from 0 to N − 1 for each i, then the sum in (5.4) has mN terms and there are mN

ODEs to solve.
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6. The Steady-State Consistency Check

The product-form approximation has additional theoretical justification if the steady-state

distribution of the associated time-homogeneous CTMC has a product-form distribution. Then

the time-dependent probability vectors approximately have product form when the transi-

tion rates change slowly, because then the time-dependent distribution has approximately the

steady-state distribution. (This property is formalized and refined by UA approximations as in

Massey and Whitt [11].) For example, this is the case when, in addition to the special structure

we introduced in Section 4, λi(t, ni) and pji(t, nj, ni) are independent of ni; e.g., see p. 49 of

Kelly [6]. Note that we can allow dependence of µj(t, nj) and pji(t, nj, ni) upon nj. Hence this

case includes a network of Mt/Mt/s queues with time-dependent (but not state-dependent)

Markovian routing. There can be any number of servers at each queue. Moreover, the model

can be extended to allow general state-dependent service, so that queue-length dependent

reneging can be included as well.

On the other hand, the time-dependent Erlang loss model with retrials considered by Grier,

Massey, McKay and Whitt [4] fails to satisfy this consistency condition. It has arrivals at the

queue of customers in retry mode only when the main queue has all servers busy. In particular,

the transition rates for that model are

λ1(t,n) =

{

α(t), n1 < L
0, n1 ≥ L

λ2(t,n) =

{

0, n1 < L
prα(t), n1 ≥ L

(6.1)

µ1(t,n) = n1µc , µ2(t,n) = n2µr (6.2)

p12(t,n) = 0 , p21(t,n) = 1 . (6.3)

Intuitively, it is clear that the arrival process to the retry-mode queue is in fact more bursty

than predicted by the model, which explains why the approximation tends to underestimate

the number of customers in retry model. Exact and approximate steady-state distributions are

natural to consider for making refinements to time-dependent decomposition approximations.

When the model satisfies the steady-state consistency condition and the transition rates do

not change too quickly, we can anticipate that the approximation will perform well. In other

cases, the approximations may nevertheless help.
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7. Non-Exponential Service Times and Non-Poisson Arrival Processes

The model considered so far only naturally covers exponential service-time distributions

(and time-dependent generalizations) and Poisson external arrival processes. However, other

phase-type service-time distributions and interarrival-time distributions can be considered by

inserting extra queues to represent exponential phases, as in Ong and Taaffe [13] and Taaffe

and Ong [18]. For example, an Erlang Ek distribution can be represented by k queues in

series, while a hyperexponential distribution can be represented by k queues in parallel, with

probabilistic routing to the queues. The transition rates then depend on the set of queues

associated with a service-time distribution. For example, for the series of queues representing

an Mt/Mt/1 node, only one customer can be in the last k− 1 queues, and the service rate can

be positive only for the one customer in service.

The main point is that the model can be extended to cover non-exponential service times

and non-Poisson arrival processes by enlarging the network, so that it all fits within the given

framework. Then it is natural to use a partial product form in which all the queues representing

the service-time distribution at an original queue are kept intact; i.e., we do not assume product

form within these artificial queues, but even that could be modified.
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