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Abstract

We investigate how performance scales in the standard M/M/n queue in the presence of
growing congestion-dependent customer demand. We scale the queue by increasing the number
of servers. We let the arrival rate depend on the steady-state congestion, considering several
alternative congestion measures. We assume that the arrival rate is equal to the maximum
possible output rate (the individual service rate times the number of servers) multiplied by a
decreasing function of the congestion measure. Under minor regularity conditions, there is a
unique equilibrium arrival rate for each n and, as n increases, the queue is brought into heavy
traffic. The three different heavy-traffic regimes for multiserver queues identified by Halfin
and Whitt (1981) each can arise depending on the congestion measure used. In considerable
generality, there is asymptotic service efficency — the server utilization approaches one — even

if there is significant uncertainty about the arrival rate.

Keywords: queues, state-dependent queues, multiserver queues, heavy traffic, equilibrium,
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We are interested in the way performance scales in service systems that grow in response
to increasing customer demand. There are several ways that service systems can grow. The
service system could grow as a collection of an increasing number of separate service facilities
of approximately fixed size, e.g., as with a chain of gas stations. Here we shall consider a single
sevice facility modeled as a queue with either more servers (homogeneous servers working in
parallel) or a faster service rate. The case of an increasing number of servers is natural for a
telephone call (or more general contact) center or a modem bank maintained at a given location
by an Internet service provider. The case of increasing service rate is natural in communication
services with increasing bandwidth.

The growth of a service system depends upon many factors, including the nature of the
service being provided, the price of the service, customer preferences and competition from
alternative service providers. We will focus on the influence of congestion (thinking of the
price as fixed) and the structure of the service system as captured by a basic queueing model.
We will not consider customer preferences or competition directly. We will not consider specific
services; we seek general principles.

We cousider the classical M/M /n queue with n servers, unlimited waiting space and the
first-come first-served service discipline, without customer abandonment, where the arrival
rate is allowed to be a function of the steady-state congestion. We primarily consider the
asymptotic behavior as the number of servers is allowed to increase. For fixed arrival rate,
the congestion decreases as n increases. Hence, the congestion-dependent demand causes the
arrival rate to increase as n increases. Under regularity conditions, the congestion-dependence
brings the queue into heavy traffic as n — oo. This phenomenon occurs because of the economy
of scale associated with a larger system with more servers; e.g., see Smith and Whitt (1981)
and Whitt (1992). However, as shown by Halfin and Whitt (1981), there are actually three
different heavy-traffic regimes for the M /M /n queue as n — co. We show that each of these
three heavy-traffic regimes can result, depending on the way in which “congestion” is defined.

The three heavy-traffic regimes can be characterized by the asymptotic behavior of the
delay probability (the probability of having to wait before beginning service) as the arrival
rate and number of servers both approach infinity. In the standard heavy-traffic regime usually
associated with a fixed number of servers, the delay probability approaches 1. In the standard
heavy-traffic regime, properly scaled versions of the queue-length and waiting-time processes
converge to reflected Brownian motion (RBM), as we show in Theorem 2.2 below. In the

infinite-server heavy-traffic regime, the delay probability approaches 0; this regime is called



heavy traffic too because the number of customers in the system approaches infinity along with
the arrival rate and the number of servers, even though the server utilization (the proportion
of time each server is busy) approaches a limit strictly between 0 and 1.

In the intermediate heavy-traffic regime identified by Halfin and Whitt, the delay proba-
bility approaches a limit a with 0 < a < 1. As indicated by the delay probability asymptotics,
the intermediate regime is often the most realistic for multiserver queues. We provide addi-
tional support for the intermediate heavy-traffic regime here, but our analysis shows that it is
not automatic.

The standard and intermediate heavy-traffic regimes imply asymptotic service efficiency:
As n — oo the server utilization approaches one. The efficiency principle for multiserver
queues implies that we can satisfy given exogenous demand very efficiently in a multiserver
system by choosing an appropriate number of servers, n, when the arrival rate is very high,
provided that we actually know the arrival rate. However, if there is significant uncertainty
about the arrival rate, then it may be necessary to have extra servers to hedge against that
uncertainty. The need to hedge against uncertainty is especially strong if the service facility in
question is the sole service provider, and there is determination to provide very good quality
of service. Indeed, in many large multiserver service systems it is the uncertainty about the
arrival rate that holds back efficiency. For example, with large n such as n > 400, the target
server utilization may be set at about 92% when the queueing performance measures would
directly indicate 98% or more, because of uncertainty about the arrival rate. (At very high
efficiency, the need for server idle time may also play a role, even with non-human servers.)

However, in many cases the arrival rate is not actually determined exogenously. If the
arrival rate can be regarded as being a function of the congestion as we have postulated here,
then our analysis shows that the service system can be asymptotically efficient as the number
of servers increases even when there is significant uncertainty about demand, provided that
the initial “congestion-free” demand exceeds supply.

This paper was initially motivated by work on customer contact centers by Armony and
Maglaras (2001). For related work on contact (or telephone call) systems, see Whitt (1999),
Garnett, Mandelbaum and Reiman (1999), and references therein.

More generally, this investigation is intended to contribute to a better understanding of the
economics of queues, multiserver queues, state-dependent queues and heavy-traffic theory for
queues. For background on these topics, see Mendelson and Whang (1990), Mandelbaum and
Pats (1995), Hassin and Haviv (1997), Mandelbaum and Shimkin (2000), Whitt (1990, 1992,



2001) and references therein.
1. The Model with an Increasing Number of Servers

We consider the M /M /n queue, first letting n increase with a fixed service rate p. Without
loss of generality, let the individual service rate be 1. Let the arrival rate be A, and the traffic
intensity be p,, with the subscript n indicating the number of servers. Since the service rate
has been set at 1, p, = Ap/n. The traffic intensity coincides with the utilization of each server.

Let 7, be the steady-state delay probability, w,, the mean steady-state waiting time (before
beginning service), m the probability that the steady-state waiting time exceeds z, and 7, the
mean steady-state response (or sojourn) time — the mean service time plus the mean waiting

time. As a function of n and the traffic intensity p, the (steady-state) delay probability is

0 = 7a(p) = [(np)" (1 — p)]n(p) (1.1)
with -
vn(p) = [(np)"/nl(1 = p)) + 3 (mp)* kY . (1.2)
k=0

In terms of the delay probability, the other congestion measures can be expressed as

— Tn
r=n2(p) = mmexp{-n(l—pz}, >0,
Tm=Ta(p) = l4+wy,. (1.3)

In order to obtain congestion-dependent demand, we regard the arrival rate as a function
of a real-valued steady-state congestion measure. We will consider seven different cases for the

demand function. The first five have the general form

An =M (§) = f(é)n, (1.4)

where £ is the steady-state congestion measure and f is a strictly-decreasing continuous real-
valued function of a real variable with

f(0)=y>1 and lim f(z)=0, (1.5)

Z—Elim

where &, is the upper limit for the congestion measure £. The assumption (1.5) ensures
that demand would exceed supply if there were no congestion and that demand dissipates

completely as congestion approaches its upper limit. It will be elementary that, for each n,



there is an equilibrium arrival rate A} producing an equilibrium level of congestion &, such
that A% = A\, (&;). We will be interested in the way the equilibrium performance behaves as
n — 00.

The specific five steady-state congestion measures that will play the role of £ above are:
(1) the mean steady-state waiting time, w, (2) the steady-state waiting-time tail probability,
¥ for x > 0, (3) the steady-state delay probability, 7, (4) the (per-server) server utilization,
p, and (5) the mean steady-state response time, 7.

These one-dimensional summary statistics are plausible characterizations of the entire
steady-state performance. Since the steady-state waiting-time distribution is exponential with
an atom (positive probability) at the origin, it is fully described by two parameters. Similarly,
the steady state queue length (not counting customers in service) has a geometric distribution
with a modified mass at the origin, so it too depends on only two parameters.

In equation (1.4) the arrival rate is made proportional to the number of servers, n. We
should explain why we have the n. We assume that the number of servers is being increased
in response to a growing customer base. Thus we are thinking of a growing system with the
number of potential customers being proportional to n. With that framework, it seems natural
to regard the potential arrival rate with n servers, given no congestion, as being yn for v > 1.
Then individual customer preferences within the customer population of size proportional to
n makes it natural for the demand rate to assume the form in (1.4).

The sixth case is designed to reflect increasing customer expectations in the presence of a
growing service system. Specifically, we assume that customers learn to expect a better quality
of service as n increases. In the intermediate heavy-traffic regime of Halfin and Whitt the mean

waiting time is of order 1/4/n as n increases. Thus, in the sixth case, we let

An = M (w) = f(v/nw)n . (1.6)

Motivated by Armony and Maglaras (2001), the final seventh case has the potential demand
differing from the capacity n by order /n. Specifically, we assume that

An

An(w) = f(w)(n — 6pv/n) (1.7)

where

Opn =0, (1.8)

as n — 00, 0 is a constant and f is a strictly-decreasing function of w with f(0) = 1 and

flw) — 0 as w — oc.



In all seven cases above the function f is independent of n. A more general model would
have functions f, depending upon n. However, the more general model is essentially equivalent
to the model above if we assume that f,, — f as n — oo, with the convergence being uniform
over bounded intervals, and that f and f, for n > 1 all have the properties assumed for the
single function f above. Hence, we consider only a single function f.

In the sections below we analyze the seven cases of congestion-dependent demand specified
above. Afterwards we briefly consider the case of the M /M /n model with increasing service

rate u (and fixed n) and make concluding remarks. We place all proofs in the final section.

2. Function of the Mean Waiting Time

In this section we let the congestion-dependent arrival rate be as in (1.4) with £ = w, the
mean-steady-state waiting time. We first convert the congestion-dependent arrival rate into

an associated congestion-dependent traffic intensity: Equation (1.4) is obviously equivalent to

pu(w) = f(w) . (2.1)

On the other hand, we have the formula for the mean steady-state waiting time as a function
of the traffic intensity p in model n (with n servers) given in (1.3).

Given the two equations, we seek an equilibrium: we seek values w;, and p}, such that both

equations are satisfied simultaneously. We then want to describe the asymptotic behavior as

n — 00. These results are contained in the following theorem, whose proof draws heavily upon

Proposition 1 of Halfin and Whitt. Let f~! be the inverse of the strictly-decreasing function
f.

Theorem 2.1. Suppose that (2.1) holds. For each n, there exist unique numbers p}, and w}

such that 0 < pf < 1,0 < f71(1) < w} < oo,

wn(pp) = wy, (2.2)
and

pulw}) = pj (2.3

Moreover, p}, 1 > p;, and w}, | < wy, for alln. Asn — oo,

pn — 1,
i 1
n(l_pn) - f_l(l)a
m(pp) — 1,
wh = fH(1). (2.4)

ot



The case of heavy traffic produced by Theorem 2.1 has the equilibrium traffic intensities
Py, approach the limit 1 so rapidly that the heavy-traffic behavior is essentially the same as
for the M/M/n queue with fixed n, which in turn is the same as for the M/M/1 queue. To
state the results, let Q,,(¢) be the queue length (not counting the customers in service) at time
t and let W, ;. be the waiting time until beginning service for the k' customer to arrive after
time 0 for the n'" model with the equilibrium arrival rate determined by Theorem 2.1. For
simplicity, assume that the n'" system starts with n customers present (all in service) at time
0. (Other initial conditions can easily be treated.) Let @, (oc0) and W, o, be random variables
with the steady-state (limiting and stationary) distributions for these processes.

Let {R(t;m,0?) : t > 0} be reflected Brownian motion (RBM) starting at the origin with
drift m and diffusion coefficient o2. Let R(0o;m,o?) be a random variable with the steady-
state (limiting and stationary) distribution of RBM, which has an exponential distribution with
mean 02/2m. Let = denote convergence in distribution with the context as indicated. For
convergence of stochastic processes, we can use the function space D = D([0, ), R) with the
usual Skorohod J; topology; see Billingsley (1999) or Whitt (2001). Since the limit process has
continuous sample paths, the mode of convergence on D is equivalent to uniform convergence

over bounded intervals.

Theorem 2.2. Suppose that (2.1) holds for the M/M/n queue initially with n customers in
the system. For each n, let the arrival rate be the equilibrium arrival rate A\ = np, whose

ezistence is established in Theorem 2.1. Let ( = 1/f 1(1). Then, as n — oo,

{¢n™'Qu(¢?nt) : t >0} = {R(t;—1,2) : t > 0} (2.5)
and
{CWN,LC_QH%J 11> O} = {R(t; —1,2) 1t > 0} (26)
i D, and
¢n ' Qn(00) = R(00;—1,2) (2.7)
and
(Whnoo = R(00;—1,2) (2.8)

in R, where R(00;—1,2) is a mean-1 exponential random variable.

For background on heavy-traffic limits such as Theorem 2.2, see Chapters 5, 9 and 10 in

Whitt (2001). Note that (2.8) (with appropriate uniform integrability [p. 31 of Billingsley],



which can be established here) implies that 7 — 1 and w} — f (1), as concluded in (2.4).
In turn, since the distribution of W), , is exponential plus an atom at the origin, the limits for

n(py) and wy(pf) in (2.4) directly imply the limit in (2.8).

Remark 2.1. The waiting-time tail probability. By the same reasoning, essentially the same
heavy-traffic regime is obtained if the congestion measure is the steady-state waiting-time tail
probability 7%. If £ = «*, the demand function f in (1.4) maps the interval [0, 1] onto the
interval [0,y]. We obtain analogs of Theorems 2.1 and 2.2, again with p}  , > p;, for all n and

py, — 1 and 7, (p;,) — 1 as n — oo, but now with 7% | < 7p* for all n and

™ = ),
n(l—p;) — —zlogf (1),

wa(py) — 1/(—zlog fH(1)) . (2.9)
3. Function of the Delay Probability

In this section we let the congestion-dependent arrival rate be as in (1.4) with £ = 7, the
steady-state delay probability. As in the previous section, we work with the traffic intensity

instead of the arrival rate. Thus, instead of (2.1), here we have

pn(m) = f(7) . (3.1)

On the other hand, the steady-state delay probability with n servers is a function of the traffic
intensity, m,(p) as given in (1.1).

To state the analog of Theorem 2.1, let @ = «(f) be the (strictly-decreasing continu-
ous) function from (2.3) of Halfin and Whitt describing the nondegenerate limit for the delay

probability in the intermediate heavy-traffic regime,
a(B) = [1 + V2rp2(8) exp(8?/2) ", (3.2)

where ® is the standard normal cdf, i.e., ®(z) = P(N(0,1) < z). Halfin and Whitt show that
Vn(l —p,) = B with 0 < 8 < oo if and only if 7, (p,) = a as n — oo with 0 < @ < 1 for « in
(3.2).

Theorem 3.1. Suppose that (3.1) holds. For each n, there exist unique numbers p;, and =),

such that 0 < p} <1,0< 7} <1,
mnlp}) = (3.3)



and
on(ms) = o (3.4)

Moreover, p;, 1 > p;, and w0, <y, for alln. Asn — oo,

P — 1,
Vn(l=pp) — B=a '(f7H1),
m = [T =a(f)
Vnw, = a(B)/B . (3.5)

Since this case produces the intermediate many-server heavy-traffic regime considered by
Halfin and Whitt, we can apply that paper to obtain all desired associated heavy-traffic limits.
The congestion-dependent demand serves to determine the one asymptotic parameter § from

the functions f and « via 8 = o 1(f71(1)) in (3.5).
4. Function of the Server Utilization

In this section we let the congestion-dependent arrival rate be as in (1.4) with £ = p, the
(per-server) server utilization. When we convert the congestion-dependent arrival rate into the

congestion-dependent traffic intensity, we obtain the equation

pn(p) = f(p) - (4.1)

On the other hand, trivially, p,(p) = p. Thus we have the following elementary result.

Theorem 4.1. Suppose that (4.1) holds. There exists a unique number p* with 0 < p* < 1

such that
f™) =p". (4.2)
For all n,
pn(p®) = p" . (4.3)
Asn — oo,
m(pp) + 0
wn(pn) 4 0. (4.4)

This third case is the infinite-server heavy-traffic regime in which the arrival rate is kept
directly proportional to the number of servers, n, as n increases. This heavy-traffic regime was
first considered by Iglehart (1965); see also Glynn and Whitt (1991) and Chapter 10 of Whitt
(2001).



5. Function of the Mean Response Time

In this section we let the congestion-dependent arrival rate be as in (1.4) with £ = 7, the
mean steady-state response time. When we convert the congestion-dependent arrival rate into

the congestion-dependent traffic intensity, we obtain the equation

pn(7) = f(7) - (5.1)

The second equation involving 7,(p) is given in (1.3).

Since 7,(p) > 1 for all n and p, the performance depends critically on f(1). It turns out
that we obtain all three previous cases depending on whether f(1) is less than, equal to, or
greater than 1. To treat the case in which f(1) = 1, we assume that f has a continuous
derivative f'(1) in the neighborhood of 1. To state the result, let 4 be the (strictly decreasing)
function

9(8) = o(B)/ 5 (5.2)

for o in (3.2).

Theorem 5.1. Suppose that (5.1) holds. For each n, there ezist unique numbers p}, and T,

such that 0 < pf <1, max {1, f~1(1)} < 7 < o0,

Tn(Pn) =75 (5.3)
and
pn(Tn) = Py - (54)

Moreover, py 1 > p;, and 7,1 < 7, for all n. There are three cases to describe the behavior

as n — oo:

(a) If f(1) > 1, then

pn — 1
T = [N,
Tnlon) — 1,
wa(py) — [7H(1) -1
n(l—pp) — 1/(f71(1) =) (5.5)

(b) If f(1) =1 and f has a continuous derivative in the neighborhood of 1, then

pn — 1,



vi(l—py) — B=g ' (—f'(1)),
T, — 1,
wn(pp) — 0
Tloi) > alf) 6:)

for g in (5.2).
(c) If f(1) < 1, then
pn— f(1) <1,
T, = 1,
Tn(pn) = 0,

wa(ph) =0 . (5.7)
6. Function of the Scaled Waiting Time

We can obtain different limits by letting the argument of the function f in (1.4) depend upon
n. We illustrate in this section by obtaining the intermediate Halfin-Whitt many-server heavy-
traffic regime when the congestion measure in the congestion-dependent demand function is
the appropriately scaled mean steady-state waiting time, in particular, when (1.6) holds.

For a = a(f) in definition (3.2), let h = h(8) be the (strictly decreasing) function
h(B) = a(B)/B - (6.1)

Theorem 6.1. Suppose that (1.6) holds. For each n, there ezist unique numbers p}, and w;,

such that 0 < pf <1, 0 < f~1(1) < w}, < oo,

wn(pr,) = wp (6.2)

and

pn(wy,) = f(Vnwy) = pj, - (6.3)
Moreover, as n — 00,

P — 1,
Va(l—pp) = B=h(f7H(1),
mlpn) — a(B),
Viwy, = fTH1) =a(8)/8 (6.4)

where h and o are the functions in (6.1) and (3.2).

10



7. Closely Matching Potential Demand

We also can obtain the intermediate Halfin-Whitt heavy-traffic regime when the congestion
measure is the mean steady-state waiting time if we assume that the potential demand for
model n differs from n by order /n for all n sufficiently large. This parallels the assumption
made by Armony and Maglaras (2001) for their two-class model. However, it may be less
realistic to assume that potential demand matches capacity so closely.

Specifically, Instead of (1.4) with £ = w, we now assume that (1.7) and (1.8) hold. Then,
instead of (2.1), we obtain

pn(w) = f(w)(1 = dn/v/n) (7.1)
for the same f and §,.

Closely paralleling Theorem 5.1 (b), we obtain an asymptotic result under a smoothness

assumption by exploiting a Taylor series expansion of f about 0.

Theorem 7.1. Suppose that (7.1) and (1.8) hold. For each n, there exist unique numbers pj;

and w;, such that 0 < p}, < min{1,1 —§,/y/n}, 0 < wk < oo,

U)n(P;) = w;; (72)
and
pulwl) = g (7.3)

If in addition f has a continuous derivative in the neighborhood of 0, then

pn — 1,
vn(l—p,) — B,
mnlon) — a(f),
Viwy, = o(BY)/8° (7.4)

as n — oo, where « is as in (3.2) and [* is the unique (necessarily positive) solution to the

equation

pr—d6=—f(0)a(B")/B" - (7.5)
8. Increasing Service Rate

In this section we suppose that the capacity of the M /M /n queue increases by increasing
the service rate instead of by increasing the number of servers, n. Hence, here let the service

rate be p. The traffic intensity becomes p = A/nu.

11



We now think of the arrival rate growing with p. With a fixed number of servers, it is
natural to evaluate the waiting time relative to the service time. Thus we propose the demand

function
A= Mw, p) = flwp)np (8.1)

where f has the same structure as before and w is again the mean steady-state waiting time.
Note that if u is increased solely by changing the time units, then wy should remain unchanged
and A should increase directly proportional to u, just as in (8.1). That observation provides ad-
ditional motivation for (8.1). We will consider alternative expressions for the demand function
in the next section.

In terms of the traffic intensity p, (8.1) can be expressed equivalently as

p = p(w,p) = flwp) . (8.2)

On the other hand, w can be expressed as

w=ulp) = T (8:3)
For simplicity, let £ = wy. From (8.2) and (8.3), we obtain the two equations
p(z) = f(z) (8.4)
and
o) = 0 85)

with u suppressed in the notation. The following theorem is immediate.

Theorem 8.1. Consider the M /M /n queue with individual service rate u. Suppose that (8.1)
holds. Then, for all p > 0, there exist unique numbers x* and p* with 0 < p* < 1 and

0 < z* < oo such that

p(z") = p%
z(p*) = 7,
w*=w(p*,p) = z*/p,
T™=1("p) = 1+ u. (8.6)

12



9. Changing Expectations with Increasing Service Rate

If the service rate does increase substantially, it is evident that customer expectations about
their quality of service might not change correspondingly. Customer expectations for quality
of service might grow more slowly or more quickly. To illustrate these possibilities, we now

assume that, instead of (8.1), the arrival rate is given by

A= Aw,p) = fwp’)np (9.1)

for 0 < § < oo with § # 1. As before, we have (8.3).
Now let z = wu®. From (9.1) and (8.3), we obtain the two equations

plz) = plz,p) = f(z) (9:2)
and 5
_ ~ 0 m(p)
z(p) = z(p,p) = m . (9.3)

The following result shows that the performance scales very differently from the scaling in

Theorem 8.1 when § # 1.

Theorem 9.1. Consider the M /M /n queue with individual service rate u. Suppose that (9.1)
holds. Then, for all p > 0, there exist unique numbers p*(u), z*(p) and w*(u) with 0 <
p*(p) <1,0 < z*(u) < oo and 0 < w*(u) < oo such that

plz*p) = p*(p),

z(p"p) = z(n),

*

wp*,p) = w*(p) =p 'z (u) . (9.4)

There are two cases to describe the behavior as p — 0.

(a) If 6 < 1, then

pr(p) — 1,
z*(w) = [H(),
wi(p) — 0,
pw*(p) — oo (9:5)
(b) If 6 > 1, then
p(p) — 0,



' (p) = oo,
w'(p) = 0,

pw*(p) — 0. (9.6)

Note that there is asymptotic service efficiency (here meaning that p*(u) — 1) if 0 < § < 1,

but not otherwise.
10. Concluding Remarks

The analysis in Sections 2-7 supports the established notion of service efficiency of multi-
server queueing systems as the number of servers increases, as discussed in Whitt (1992), with
the exception of Section 4 and Theorem 5.1 (c), but these exceptions are understandable. The
server utilization used as the congestion measure in Section 4 does not actually represent con-
gestion as experienced by the arriving customers. The condition in Theorem 5.1 (c) artificially
constrains the traffic intensity, keeping it bounded away from 1.

More importantly, the analysis here eztends the notion of asymptotic service efficiency of
multiserver queues to the commonly arising situation in which there is significant uncertainty
about the arrival rate. Even in the presence of such uncertainty, asymptotic service efficiency
persists, provided that there is appropriate congestion-dependent demand, as postulated here.
With appropriate congestion-dependent demand, it is not necessary to hedge against the un-
certain demand by adding many extra servers.

Our results in this paper have been restricted to the M /M /n queue. From Halfin and Whitt,
it is clear that the results extend to GI/M /n queues. Even though only part of Proposition 1 for
the M /M /n queue in Halfin and Whitt (the implication in only one direction) is established for
GI/M/n queues in Theorem 4 there, it is not difficult to obtain the full analog of Proposition
1.

It is evident that the results here also extend to more general GI/PH /n queues with phase-
type service-time distributions, due to results established by Puhalskii and Reiman (2000), but
there remain some technical details to provide a complete demonstration. The conjectured
result is: /n(1 — pf) — B as n — oo for some [ with 0 < 8 < oo if and only if m,(pf) = «
as n — oo for some a with 0 < a < o©. A remaining challenge when the PH service-time
distribution is not M is to determine the functional form of «(f).

Heuristic approximations for the delay probability 7, in GI/G /n queues are proposed and

investigated in Section 3 of Whitt (1993). By letting n = mB? and p,, = 1 —1//m for some m

14



(e.g., m = 100), these heuristic approximations can be regarded as approximations for «(f3).
The steady-state distribution of the limiting diffusion process in Puhalsii and Reiman (2000)
evidently produces the exact value for GI/PH/n systems, though.

11. Proofs

Proof of Theorem 2.1. As a consequence of the assumptions, the composite function
pn(wn(p)) is a non-increasing continuous function mapping the closed interval [0,+] into it-
self, assuming the values v and 0 at the left and right endpoints. Moreover, this function
assumes the value 0 throughout the interval [1,~] and it is strictly decreasing on the interval

[0,1]. Thus, there exists a unique p}, with 0 < p} < 1 satisfying

pn(wn(p7)) = P - (11.1)

Similarly, the composite function wy, (pn(w)) is a non-increasing function mapping the extended
interval [0, 0o] = [0,00) U {oco} into itself. It assumes the value oo on the interval [0, f~1(1)]; it
is strictly decreasing and continuous on the interval (f 1(1),c0) with right limit co at the left
endpoint and limit 0 at co. Thus there exists a unique number w}, with 0 < f~1(1) < w} < oo
such that

wn(pn(w})) = ], (11.2)

Finally, it is easy to see that equations (2.2) and (2.3) hold. To see that, suppose that they

fail and deduce a contradiction. For example, if w,(p}) < w};, then

Pn. = Pnlwn(pn)) > pn(wy) (11.3)

and
wn(pp) > wn(pn(wy)) = wy, | (11.4)

which is a contradiction.

We now want to show that pj, ., > p; and wy,,; < wy, for all n. That follows because
the composite function p,(wy,(p)) is strictly increasing in n on the interval (0, 1), while the
composite function wy, (p, (w)) is strictly decreasing in n on the interval (f (1), c0).

Now we turn to the limits in (2.4). Clearly, the first limit is implied by the second, so we
focus on the second. Given that {n(1 — p}) : n > 1} is a sequence of positive numbers, there

must exist a subsequence {ny(1 — p;, ) : k > 1}, which approaches one of 0, +oc or ¢ for some
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¢ with 0 < ¢ < co. At this point we invoke Proposition 1 of Halfin and Whitt (1981), which
applies to subsequences as well as the full sequence. First suppose that ng(1 — p;;k) — 0 as
k — oo, which implies that p;, — 1 and \/ng(1 — p},,) — 0 as k — oo. Then Proposition 1
of Halfin and Whitt implies that w;, — oo, which in turn implies that p;, = pn, (w;k) — 0,
which is impossible.

Next suppose that ng(1—p;, ) — oo as k — oo. By (1.3), that implies that wy, (o}, ) — 0,
which in turn implies that p;, = pn, (W, (0}, )) — v > 1, which is impossible.

Suppose that ng(1 — p;, ) — ¢ for 0 < ¢ < oo. By Proposition 1 of Halfin and Whitt, that
forces the limit 7, (0, ) — 1 and w;, = wy, (0, ) — 1/¢. However, since p;, — 1, we must
have w};, = wp, (p},) — f~'(1). Hence, we must have ¢ = 1/f7'(1). Since all convergent
subsequences must have the same limits, the entire sequences must themselves converge to the

indicated limits in (2.4).

Proof of Theorem 2.2. First focus on the queue-length process. There are two parts to the
argument. One part is to show that, asymptotically, the state in which the queue is empty but
all servers are busy can be treated as a lower reflecting barrier. The second part is to establish
the limits for the queue-length process with this added lower barrier. We do this second part
first.

With the inserted lower barrier, we can relate the equilibrium queue-length process to the
queue-length process in the M/M/1 queue. Specifically, with the lower barrier in place, the
process {Qn(t/n) : t > 0} is distributed as the queue-length process of an M/M/1 queue with

service rate 1 and arrival rate p,. Thus, we obtain the limit

(1= p2)Qnl(1 = p)2/n) 11> 0} = {R(5;—1,2) : £ > 0} . (11.5)

We obtain the limit in (2.5) by multiplying and dividing by n in two places in (11.5) and using
the fact that n(1 — p}) — ¢ = 1/f71(1) by the second limit in (2.4).

Similarly, assuming the lower barrier, the process {anth it 2> 0} behaves like the process
{W};) : t > 0} in the M/M/1 queue with service rate 1 and arrival rate pj,. Hence, we have
the limit

{n(1 — pp)Wh, | (1=pz)-2¢) 1 T > 0} = {R(t;—1,2) : £ > 0} (11.6)

in D as n — oo. Since n(1 — p) — ¢ as n — oo, the limit in (11.6) implies the limit in (2.6).
It remains to complete the first part of the argument, i.e., to show that the given processes

are asymptotically equivalent to the processes with the inserted lower barrier, with the indi-
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cated scaling. We can show that by bounding the given processes above and below by processes
that converge to the same limit after scaling; e.g., see Corollary 12.11.6 in Whitt (2001); the
M, topology there is equivalent to the standard J; topology because the limit process almost
surely has continuous sample paths.

Let N,, = {N,(t) : t > 0} be the given birth-and-death process representing the number of
customers in the system in model n with traffic intensity p;,. Then the upper bound process
N} is the process N,, modified by inserting a reflecting lower barrier at n. For each ¢, a lower
bound process N is constructed from N,, by increasing the service rate in certain states, while
leaving the arrival rate unchanged. Specifically, for states k with k& > n, the service remains
fixed at n; for states k with n(1 —¢€) < k < n, let the lower-bound service rate be n instead of
k; for states k with 0 < k < n(1 —¢), let the lower-bound service rate be n(1 — €) instead of
k. We thus have lower-bound birth-and-death processes for each ¢ and n. We can order these

birth-and-death processes by a strong stochastic ordering, yielding
er,,’q Sst NA’Q Sst Nn Sst N;Lj' (11-7)

for all n, €1, €9 with €1 > €2, where <, means that there exists versions of the two stochastic
processes defined on the same underlying probability space such that the sample paths are
ordered with probability one; e.g., see Whitt (1981). Indeed, the processes can be constructed
for each n so the the sample paths are ordered for all the processes (for all €) by constructing
the transitions from thinned versions of common Poisson processes.

The process we considered above in (11.5) is the queue-length process associated with the

upper-bound process N, i.e.,
Qu(t)=Nj(t) —n,t > 0. (11.8)

The given queue-length process is

Qn(t) = [N,(t) —n]T,t >0, (11.9)

where [z]* = max {z,0}. The associated lower-bound processes are
Qbe(t) = N (t) —n,t > 0. (11.10)
As a consequence of (11.7), we have

Qi{el Sst lez Sst Qn Sst Qx (11-11)
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for all n, €1, €9 with € > eo. We will show that, after scaling, Qﬁf has the same limit as Q¥ as
first n — oo and then € — 0.

Note that {Q4¢(t/n) : t > 0} is a birth-and-death process on the integers k with k > —n.
For k > —ne, the birth rate is p}, and the death rate is 1; for 0 < k < —ne, the birth rate is p},

and the death rate is 1 — e. We will show that this structure implies that
(1= )@ (L= p)2t/m) 1> 0} = {Rec(ti—1,2) : £ 0} , (11.12)

where R, is RBM with reflecting barrier at —e starting at 0 and ¢ = lim;,_,c n(1 — p},).

We obtain (11.12) because {(1—p%)Q%¢((1—p%)~1t/n) : t > 0} is asymptotically equivalent
to {(1—p}) be*((1 — pr) tt/m) : t > 0}, where Q45" is the process Q%° modified by adding
a reflecting lower barrier at —ne. To see why that is so, observe that Qlﬂe’* can be obtained
from Qﬁf by deleting all the excursions below the level —ne, i.e., portions of the sample path
going below —ne until the process again goes above the level —ne. The negative values of
these segments correspond to the much-studied busy periods in the M/M/1 queue with traffic
intensity bounded above by 1 — €. In the presence of the heavy-traffic scaling, the cumulative
effect of these excursions over time and the maximum extent over space (over bounded time
intervals) are asymptotically negligible.

To show that the maximum extent over space is asymptotically negligible under heavy-

traffic scaling, let the lower-bound process Qﬁf be bounded above by the process Qf{e’“, which is

l,e,u

defined to be Qﬁf modified by adding an upper reflecting barrier at —ne. Then Z,, = —Qy ne
behaves like the queue-length process in an M/M /1 queue with traffic intensity p}; (1—e). Hence

{(1 = p)Za((1 = p3) 2t/n) : ¢ > 0} = {6() : ¢ > 0} (11.13)

in D, where 0(t) = 0 for all ¢ > 0, reasoning as in Section 5.3.2 of Whitt (2001). As a

consequence,

JnE (1= P @ (1= pi) 2t/m) = —Ce (11.14)

for any T'> 0 and € > 0, where ¢ = lim,, oo n(1 — p}).

To show that the cumulative extent of the excursions over time in the process {Q5(¢/n) :
t > 0} is asymptotically negligible under heavy-traffic scaling, note that (by virtue of M/M/1
busy-period properties) the length of an excursion below —ne is stochastically bounded above
by a random variable with mean (1 — €)~! for all n, while the interval between excursions is a

random variable with mean (1 — p};)~!, which explodes as n — co.
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As a consequence of these stochastic bounds, the distance between the scaled versions of
the two processes ng and Qﬁ{e* converges in distribution to 0. The demonstration is easily
done by applying the triangle inequality after comparing these two processes to the scaled
version of the process that remains constant at the lower barrier during each excursion.

Since

{(1 = p)QL* (1 = pi)~2t/m) > 0} = {Re(t:—1,2) : £ > 0} , (11.15)

where R, is RBM with reflecting barrier at —e starting at 0, by the argument used to treat
“ we can apply the convergence-together theorem, e.g., Theorem 11.4.7 of Whitt (2001), to
obtain (11.12).

Next, since R, is distributed as R — € started at 0, we have the ordering
R—e<4 R <gq R (11.16)
for all €, from which we can deduce that
Re=R in D (11.17)

as € — 0. Hence we do obtain (11.5) and thus (2.5).

Next note that the workload (or virtual waiting-time) process is easily seen to be the first
passage time to emptiness in the process @)y, ignoring future arrivals. Thus the bounding and
sandwiching argument extends directly to the workload process. The two bounding processes
correspond to the workload processes in the M /M /1 queue, so that they can be treated directly.
The waiting-time process can then be treated as a random time change of the workload process,
invoking the continuous mapping theorem with the composition map; e.g., see Section 13.2 of
Whitt (2001).

Finally, it remains to establish limits for the steady-state distributions. Since the steady-
state queue-length distribution is geometric except for a modified mass at the origin and the
steady-state waiting time is exponential except for a modified mass at the origin, the limits
can be obtained from the limits for 7y, (p}) and wn(p};). We use PASTA to deduce that the
probability distribution upon arrival is the same as at an arbitrary time; we use Little’s law to
relate wy(p}) to the mean queue length; we use well-known conditions for the convergence of

scaled geometric distributions to the exponential distribution; see p. 2 of Feller (1971).

Proof of Theorem 3.1. The proof closely parallels the proof of Theorem 2.1. Having

obtained the unique p}, and 7, we observe that the sequence {\/n(1 — p}) : n > 1} must have
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a subsequence converging to one of 0, co or § for 0 < § < co. Again applying Halfin and
Whitt, we find that the limits 0 and oo are not possible, because they lead to contradictions.
Thus there must be a subsequence with a finite positive limit. As a consequence, p;, — 1
through this subsequence. Thus we must have the corresponding subsequence of {r} : n > 1}
converge to f1(1). Since all subsequences must have this same limit, the entire sequence must
converge. And all full sequences must converge. In this case we obtain directly the many-server

heavy-traffic regime considered by Halfin and Whitt.

Proof of Theorem 5.1 (b). Note that p} = f(1 4+ wn(p})), so that, performing a Taylor

series expansion of f about 1, we obtain

1—pp=1—f(1) = f'(0n)mn (o) /n(1 = p},) (11.18)

where §,, — 1 as n — co. Hence we obtain

n(1— )% = —f'(O)ma(p}) (11.19)

We now apply Proposition 1 of Halfin and Whitt to subsequences. If the left side of (11.19)
has a subsequence converging to 0, then the corresponding subsequence of the right side must
converge to —f/(1) # 0, which is a contradiction. If the left side has a subsequence converging
to infinity, then the corresponding subsequence of the right side must converge to 0, which is a
contradiction. Suppose that the left side has a subsequence {ny(1—p})%} with ng(1—p%)? — 32

as k — oo. Then
_fl(dnk)ﬂ-nk (p;kbk) - —f’(l)&(ﬁ) ’ (1120)
so that we must have

B=g"(=f'1) (11.21)

for g in (5.2). Since all convergent subsequences must have the same limit, the full sequences

converge to the indicated limits.

Proof of Theorem 6.1. Paralleling the proof of Theorem 2.1, start by observing that the
sequence {y/nw} : n > 1} must have a subsequence converging to one of 0, co or n for
0 < n < co. The first two cases lead to counterexamples, because then the corresponding
subsequence of {p} : n > 1} must converge to f(0) =y > 1 and f(oco) = 0. The first case

is clearly impossible since p;, < 1 for all n. The second case implies that the corresponding
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subsequence of {y/nw}, : n > 1} must converge to 0, which is a contradiction with the infinite
limit in this case.

Given that we are in the third case, we must be in the intermediate Halfin-Whitt heavy-
traffic regime, which has the subsequence of {p} : n > 1} converge to 1. Thus, the limit
os the subsequence {y/nw} : n > 1} must be f~1(1). Since all convergent subsequences of
{vV/nw} : n > 1} and {pf : n > 1} must have these same two limits, the entire sequences
converge to these limits. From Proposition 1 of Halfin and Whitt, we deduce that the sequence
{V/n(1 — p}) : » > 1} must converge to some [ satisfying 0 < 8 < oco. We then deduce that
B=h"1(f"1(1)) for hin (6.1).

Proof of Theorem 7.1. The first parts are the same as in Theorem 2.1, so we only treat
the asymptotics. First note that we must have p;, — 1 and w;, = 0 as n — oo: To see why,
suppose that pj, — p < 1 for some subsequence. Then wy, — 0 by (1.3) and (7.1) implies
that p = 1, which is a contradiction. Given that p} — 1, (7.1) implies that we must also have
wy, — 0, because f(0) =1 and f(w) < 1 for all w > 0.

Given that p;, — 1 and w;, — 0 as n — oo, we focus on the possible limits for subsequences
{vnk(1—pj,, )} of the sequence {y/n(1—p;,)}. Use (7.1), Taylor’s theorem and the smoothness
condition to write

Vi = p) = b — £ (o) Vi), (11.22)

for some ¢, with 0 < (,, < wy}, for all n sufficiently large. Reasoning as before, we see that
convergence of subsequences of the sequence {\/n(1 — p};)} to 0 or oo lead to a contradiction:
First suppose that \/ng(1 — p;, ) — 0. Then, by (1.3), \/ngwn, — oo, which implies that
V(1 — pj,. ) — oo, which is a contradiction. Next suppose that \/ng(1 — pj,, ) — oo with
Py, — 1. Then \/ngwp, — 0, which implies that \/ng(1 — pj,, ) — ¢ by (11.22), which again
is a contradiction. On the other hand, convergence to a positive finite limit §* leads to the
associated limits in (7.4). Since all convergent subsequences must have the same limit, there
is convergence of the full sequences. The relation (11.22) leads to (7.5). There is a unique
solution to (7.5) because the right side of (7.5) is decreasing as a function of *, going from

+o0o to 0.
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