Chapter 9

Nonlinear Centering and
Derivatives

9.1. Introduction

In this chapter we continue to study the useful functions introduced in
Section 3.5 of the book and investigated in Chapter 13 of the book. Now we
consider supremum, reflection and inverse maps with nonlinear centering.

Following Mandelbaum and Massey (1995), we identify the limit of the
properly scaled function as a derivative. We also show how the convergence-
preservation results for the reflection map can be applied to establish heavy-
traffic limits for nonstationary queues.

To explain the derivative representation, recall that our previous results
on the preservation of convergence with linear centering started with the
assumed convergence

cn(tn—€e) >y in D, (1.1)

where ¢, — oo and e is the identity function, i.e., e(t) = ¢, ¢ > 0. Given
(1.1), we found conditions under which

cn(p(zy) —e€) >z in D (1.2)
for various functions ¢ and we identified the limit z. We also obtained some
extensions in which the linear centering function e in (1.1) is replaced by a
nonlinear function z; i.e., instead of (1.1), we assumed that

cn(zp —2) >y in D as n— oo, (1.3)
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where ¢, — oco. In particular, see Theorems 13.3.2, 13.7.2 and 13.7.4 and
Corollaries 13.4.1, 13.7.1 and 13.7.2 in the book. We now want to obtain
some further results of this kind.

Given (1.3), we have as a consequence

Tp, =z in D. (1.4)

Hence, for any continuous function ¢, we have

d(zn) = Pp(x) in D. (1.5)
Thus we want to find functions z € D and regularity conditions such that
cn(p(zn) —@p(x)) > 2 in D. (1.6)

The previous results with centering by e were of this form, where ¢(z) =
xz = e. The M topologies play an important role, because the limit z in (1.6)
may have discontinuities even when gy,  and x,, are all continuous functions.
In a probability context, (1.6) is interesting because it corresponds to
a FCLT refinement to a nonlinear FLLN. We may have scaled stochastic
processes {X,,(t) : ¢ > 0} which obey a nonlinear FWLLN of the form

Xp,=z in D, (1.7)

where z is a nonlinear deterministic function, and a FCLT refinement of the
form

cn(Xp—2)=Y in D, (1.8)
where ¢, — 0o. From the FWLLN (1.7) it follows directly that

d(Xn) = ¢(z) in D (1.9)

for a continuous function ¢. Our goal is to establish the FCLT refinement
of (1.9), i.e.,
cn(d(Xp) —d(z))=Z in D. (1.10)

As before, (1.10) follows from (1.8) when (1.6) follows from (1.3). Hence we
focus on obtaining (1.6) from (1.3).

It is interesting that, under regularity conditions, z in (1.6) can be
thought of as a derivative of the map ¢, in particular, a directional deriva-
tive of ¢ in the direction y, evaluated at x. To see that, it is convenient to
index the functions by € in such a way that x, becomes z. and ¢, becomes
¢~1. (That is without loss of generality.) Then (1.3) is equivalent to

e Nze—z) =y as €l0. (1.11)
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Without being too precise, we can rewrite (1.11) as
ze=z+ey+o(e) as €l0. (1.12)

Now, assuming that the function ¢ : D — D satisfies

(@ + 0(€)) — p(Tc) = o(e) as €0 (1.13)
for any Z¢ with . — = in D as € | 0 (which is not automatic), we have
d(xz) =P +ey)+ole) as €l0 (1.14)

and, given the e-analog of (1.6),
dr+ey) =d(r) +ez+o0(e) as €l0. (1.15)

From (1.15), it is evident that z can be given the directional derivative
interpretation. Moreover, (1.14) and (1.15) together imply that

€ Hop(ze) —p(z)) =2 as €l0. (1.16)

Equivalently, (1.3), (1.13) and (1.16) imply the desired (1.6).

Here is how the present chapter is organized: In Section 2 we investigate
when the convergence-preservation question (when (1.3) implies (1.6)) can
be reduced to the derivative determination in (1.15). Unfortunately, we are
not able to show that this can be done as generally as we would like. This
step seems to be the weak link in our analysis in this chapter. Hopefully
future research will provide further insights.

In Sections 9.3 — 9.5 we determine sufficient conditions for the derivatives
of the supremum and reflection maps to exist and determine their form. As
should be anticipated from Chapter 13 in the book, the reflection derivative
can be expressed in terms of the supremum derivative. The M; topology
plays an important role even if z and y in (1.3) are both continuous.

In Section 9.6 we apply the derivative calculation and convergence-preservation
results for the reflection map to establish heavy-traffic limits for nonsta-
tionary queues. For example, these results cover the My/M;/1 queue with
time-dependent arrival and service rates.

Finally, in Section 9.7 we consider the derivative of the inverse map.

9.2. Nonlinear Centering and Derivatives

In this section we investigate when the desired convergence-preservation
(when (1.11) implies (1.16)) can be deduced by determining the derivative
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via (1.15). For any function ¢ : D — D, a general approach to establish the
desired limit (1.16) for ¢(z.) is to exploit the triangle inequality:

(e [p(ze) — ¢(2)],2) < de [z +ey) — $(2)], )
+d(e [plze) — $(@)] e [$lz + ey) — H(@)])

for an appropriate metric d. A limit for the first term in (2.1) as € | 0
identifies z as the derivative of ¢ in the direction y evaluated at z. In
addition to establishing the existence of this derivative, we must also show
that the second term in (2.1) converges to 0 as € | 0. Surprisingly, the
second term presents difficulties. However, we are able to show that it is
negligible under regularity conditions. The results are in a good form when
y € C, but not so good when only y € D. (Recall that the limit z in (1.16)
may be discontinuous even if y € C, so the case y € C is interesting and
important.)

We now obtain results about the second term in (2.1) for general func-
tions ¢ : (Dy,d1) — (D2,ds), where D; = D([0,t;],R¥) for i = 1,2.

Theorem 9.2.1. (reduction of convergence preservation to the derivative)
Suppose that ¢ : (Dy,d1) — (Da,ds), where the metrics d; satisfy the prop-
erties:

di(cz1,cxo) = cdi(z1,22) forall ¢>0, i=1,2, (2.2)
di(:zl + x3,T9 + iL‘3) = di(.rl,l‘g), 1=1,2,
da(d(z1), Pp(z2)) < Kdi(x1,22) for some K >0, (2.4)

for all x1, x2, 3 € D;. Then
do(e [P(ae) — p(x)], e [p(z + ey) — d()]) < Kdi(e (2 —x),y) - (2.5)

Proof. The conditions imply that

dy(e p(ze) — ()], e (z + ey) — p()]) = € 'da(g(zc), p(x + €y))
< € 'Kdi(ze,x + ey)
= Kdi(e Yz —x),y) . =

Notice that the uniform metric satisfies conditions (2.2) and (2.3). The
following application of Theorem 9.2.1 is elementary.

Theorem 9.2.2. (reduction for the supremum and reflection maps with
the uniform metric) If d; and dy in Theorem 9.2.1 above are the uniform



9.2. NONLINEAR CENTERING AND DERIVATIVES 239

metric on D([0,t],R) and ¢ is the supremum function in equation (13.4.1)
in the book or the reflection map in equation (13.5.1) in the book, then the
conditions of Theorem 9.2.1 above are satisfied, so that conclusion (2.5)
holds.

Proof. It is evident that the uniform metric on D satisfies conditions (2.2)
and (2.3). The supremum and reflection functions also satisfy (2.4) with
respect to the uniform metric by Lemmas 13.4.1 and 13.5.1 in the book.

Example 9.2.1. The need for the map ¢ to be Lipschitz. To see the need
for ¢ : D — D being Lipschitz in Theorem 9.2.1, let ¢(z)(¢) = \/z(1),t > 0.
If ||z — z||+ — 0 for ¢t > 1, then ||¢p(z.) — ¢(z)||: — 0, but ¢ is not Lipschitz.
Suppose that z(t) = 0, y(t) = 1 and z.(t) = z(t) + ey(t) = ¢, t > 0. Then
le  (ze — ) —y|| = 0 for all ¢,

e p(we) — p(z)](t) = € [Ve—0] = €2 3500 as €l0. = (2.6)

Unfortunately, for the non-uniform Skorohod metrics on D, which we
will want to consider when y ¢ C, we do not have properties (2.2) and (2.3)
in Theorem 9.2.1.

Example 9.2.2. Failure for nonuniform metrics. Unlike with the uniform
metric, we cannot conclude that d(e 'z, e 'z +y) — 0 as € | 0 when
d(e Y(ze —z),y) = 0as e | 0 if d is the J;, My or My metric and y is not
continuous. To see this, let z(t) = tIj1)(t) + (2 —t)I}1,9(t), vy = Ijo,1) — Iz
and ze = (z + €)Ijp1_¢q + (& — €)I1_ 2 in D([0,2],R). Then e *(z — z) =
y o A, where A¢ € A with A(1) =1 —¢, A(0) = 0 and A\(2) = 2. Hence
dp(e (e —z),y) = |A —¢]| = ¢ = 0 as ¢ | 0. However ezl(2) =
elzl(1—€) = €7, while (e Lz +9)1(2) = (e lz+y)(1—) = e L +1, so that
dyp(€ 'z, e lz+y) > 1. =

However, under regularity conditions, we can also establish results start-
ing from Jy, M7 and My convergence. We state the following results for
the strong SJ;, SM; and SM, metrics on D([0,],R¥). Corresponding re-
sults for the product metrics for Lemmas 9.2.1 and 9.2.2 below follow; just
consider one coordinate at a time.

Recall that z is Lipschitz on [0, ¢] if there is a constant K so that |z(t1)—
z(t2)| < Klt1 — to| for 0 < t1,to < t. This regularity condition is typically
satisfied in applications, because x often satisfies an ordinary differential
equation (ODE). If z is absolutely continuous with derivative i, where & €
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D, then for each ¢ > 0, there exists K such that |#(s)| < K for 0 < s <t
and, for 0 <t < to <,

t2

t2) — alt)] < [ (s)lds < Klta —ta] (27)
t

so that z is Lipschitz.

Lemma 9.2.1. (subtracting a common Lipschitz function) Suppose that x

is Lipschitz in [0,t] with Lipschitz constant K. If d; is the SJy, SMy or

SMy metric on D([0,t],R¥), then

di(z1 —z,29 —x) < (1 4+ K)di(z1,22) - (2.8)

Proof. First consider J;. For all € > 0, there exist 7(e) > 0 and increasing
homeomorphisms A, of [0,¢] such that

lZ1 — 220 Aellt V [ Ae —elle < (1 +n(e))di(z1,2) -
It follows that
||.’131 — X9 0 )\th + ||$ —zxo )‘CHt
(1 +n(e))di(z1,22) + K[| Ae —ells
(1 +n(e) + K[1+n(e)])di (w1, 72) -

Since 7(e) can be made arbitrarily small, the proof for J; is complete. Now
consider M;. For all € > 0 and ¢ > 0, there exist n(e) > 0 and parametric
representations (u1,71¢) of 1 and (uge,7T1¢) of x2 such that

lute — ugel| V ||lrie — 7'25” < (1 + ﬂ(ﬁ))dt(ivl,w) .

Since z is continuous, (z o r1¢,71¢) and (z o 79, 79.) are parametric repre-
sentations of z, (u1e — x o r1¢,71¢) and (uge — T © T9¢,79¢) are parametric
representations of £1 — z and z9 — z, and

[(z1 — 2) — (72 — ) 0 Acllt

ININ A

||(ule — o 7'16) - (u2€ —Zxo 7'26)” < ||U15 - u2€|| + ||,7,' OT1e — IO 7'26”
< (T +mn(e))di(z1,z2) + Kllr1e — roc|
< (1T +n(e) + K[1+n(e)])di(z1, z2) -

Since 7)(€) can be arbitrarily small, the proof for M; is complete. Now
consider M. let (z1,t1) € Dy,. If (29,t2) € [y, is such that ||(z1,%1) —
(22,t2|| < 4, then (21 — .’I?(tl),tl) ely, —s (2‘2 — .I(tg),tz) €l'y,_5 and

[(z1 = 2(t1),t1) V (22 — 2(t2), t2) (21, 1) — (22, t2) | + [z (t1) — z(t2)]]
< S+ K|t —tof| <1+ K)5. =

IN

Next we generalize (2.2).
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Lemma 9.2.2. (deterministic scaling) Let d; be the SJ1, SMy or SMy met-
ric on D([0,t]),R¥). For any c > 0,

det(czi o c e, ey 0 c7le) = cdy(zy, o) (2.9)
or, equivalently,

di(cr1,cr2) = cdyy. (21 0 ce, T2 0 ce) < (¢ V 1)dy(z1, 72) - (2.10)

Proof. First, for SJi, note that A\ € A; if and only if cA o c™le € Ay for
c¢>0and
lexocle—elle =cl|XA—ells .
Hence
det(czi oc e, cxzg 0 cle)

= )\in/{ {llez1octe— (cxaocte)o(choc te)|e Vchoc te —ele}
€Nt
— inf _ _
Anf {cllz1 — @2 0 Mlle V |2 —ell¢}

= cdi(z1,19) .

Next, for SMy, note that c[', is the graph of cz; o ¢ te over [0,ct] if and

only if 'y, is the graph of z; over [0,¢]. Hence (2.9) holds. Finally, for SM;,
note that (cu;,cr;) is a parametric representation of cz; o c~le over [0, ct]
if and only if (u;,r;) is a parametric representation of z; over [0,¢]. Hence
(2.9) holds. =

Our next result goes beyond Theorem 9.2.1 by allowing the map ¢ to be
Lipschitz with respect to the SJi, SM; or S My metrics, but not the uniform
metric.

Theorem 9.2.3. (Lipschitz functions with respect to non-uniform metrics)
Suppose that y € D([0,1],RF') and x, z., = + ey all belong to a subset
A of D([0,t1],R¥1) for sufficiently small € > 0. Suppose that ¢ : A —
D([0, %], R¥2) is Lipschitz with respect to the metrics di on A and dy on
D([0,t], R¥2), i.e., there is a constant K such that

d2(p(z1), p(z2)) < Kdi (21, 72) (2.11)

for all z1,xz2 € A, where di and do are non-uniform Skorohod metrics (not
necessarily the same). Suppose that = is Lipschitz on [0,t1] and ¢(z) is
Lipschitz on [0,t2]. Then there is a constant K' such that

dy (e [p(ze) — p(z)], € plz + ey) — p(=)])
< K'e 'di(ze — 7, €y)
< K'lleHze — ) =yl - (2.12)
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Proof. By Lemmas 9.2.2 and 9.2.1 and the assumptions, for € < 1, there
are constants Ky, Ko and K3 such that

do(e () — p(@)], € Bz + ey) — p(x)))
< e dy(g(ze) — (), Pz + ey) — B(x))
< Ki€ 'dy(¢(e), p(z + ey))
< K1 Koe Yy (2, 2 + €)
< K1KoK3e 'dy(zc — , )
< K1 Ky Kse o —z — ey,
< K1 KoKslle Yze —x) —yllsy . m (2.13)

The final upper bound in Theorem 9.2.3 does not help with the supre-
mum and reflection maps because the supremum and reflection maps already
have the required Lipschitz properties with respect to the uniform metric,
by Theorem 9.2.2. In order to apply Theorem 9.2.3 without having to resort
to the cruder uniform metric bound, we need to have

di(ze —z,ey) =0(e) as €lO0. (2.14)

First, from this analysis, we see the need to be precise about what we mean
about o(¢) terms in (1.12)—(1.15). Next, we observe that d (e~ ![z. —z],y) —
0 does not directly imply that di(z. — z,ey) = o(e) as € | 0, but that it is
possible to have d (z.—x, ey) = o(e) as € | 0 without having ||z, —z—ey||¢, =
o(e) as € ] 0.

Example 9.2.3. Condition (2.14) is weaker than the usual limit. We would
like to have e 'di(z, — z,ey) — 0 as € | 0 whenever d;(e~(z. — z),y) = 0
as € | 0, so that we could improve upon (2.12), but that implication is not
valid. To see that, let z =y = I} 5) in D([0,2],R) and let z = z +e€l} 45, o]-
Then e !(z, —z) = Iji45.9) and d (e ! (z¢ —),y) = 6. On the other hand
e ldy, (v —z,ey) = e (e Adc), which converges to 0 if and only if e 15, — 0
as € — 0. Hence, we do not necessarily have e 'd;(z. — z,ey) — 0 as € | 0,
given dy(e~!(z. — x,9) — 0, but we could have it, as is the case here when
€16, = 0as e | 0. On the other hand, |[e ! (z.—z)—y|| =1foralle > 0. =

Example 9.2.4. A parametric family of examples. Consider Example 9.2.2
modified by having

Te = ('T + 6)I[O,l—d’) + (.’L‘ - G)I[l—eP,Q] . (215)
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Then z. —z = ey o Ac for Ae(1) =1 — €, A\(0) = 0 and A(2) = 2 with A,
defined by linear interpolation elsewhere. Thus

dj, (ze — z,ey) = dJ1(6*1($€ —z),y) =||[Ac—¢€|| =€, (2.16)

so that condition (2.14) holds if p > 1, but not if 0 < p < 1.

9.3. Derivative of the Supremum Function

In this section we consider the derivative of the supremum function; i.e.,
we find conditions under which the limit (1.15) is valid and identify the limit
zwhen ¢ : D — D is the supremum function. The supremum function maps
z € D = D([0,T],R) into z' € D for

z'(t) = sup z(s), 0<t<T. (3.1)
0<s<t

In order to treat the derivatives, we will find it necessary to consider
functions outside of D. Thus let Dy;,, be the set of functions with left and
right limits everywhere, but without having to be either left continuous or
right continuous at each discontinuity point. In general, we will only be able
to conclude (in Theorem 9.3.2 below) that the derivative belongs to Dyjyy,.
In our definition of the derivative, we start by allowing one function to be
in Dyjp,. For x € D, y € Dy, and € > 0, let

ze=z(z,y) =€ Y +ey)T —zN = (e lz4+y)t —e 'zt (3.2)

The derivative of the supremum function (in the direction y, evaluated at
z) is the limit of z. as € | 0, if it exists. We will show that the limit does
exist under regularity conditions and identify it. In this section we consider
pointwise convergence for all ¢; in the next section we consider M, and M,
convergence.

We start by stating two elementary lemmas; the second follows from the
first.

Lemma 9.3.1. (the case of constant y) If y(s) = ¢, 0 < s <t, then z(t) =
¢ for all e.

For z* be the infimum function; i.e., z¥ = —(—2)T.

Lemma 9.3.2. (monotone bounds) For all € > 0, y* < z. < yT.
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Even though z is right-continuous, it can approach its supremum from
the left (z(s) = sljp,)(s)) or right (z(s) = —sl[;4,)(s))- Let ®L(t) and
®2(t) be the subsets of time points in [0,#] at which the left and right limits
of x attain the supremum; i.e.,

L) ={s:0<s<tz(s—)=2x'(t)} (3.3)

and
SRt ={s:0< s <t,z(s+) =zT(t)} - (3.4)

Let ®,(t) = ®L(¢t) U®L(t). When z € C, ®L(t) = ®E(3).

Example 9.3.1. The possibility of empty sets. Tt is possible for ®L or ®E(¢)
to be empty: Let z(t) = tljg1)(t), ¢ > 0. Then, for t > 1, ®L(t) = {1}, while
OR(t) = ¢. However, ®L(t) U DE(t) £ ¢. =

These subsets need not be closed, but they have the following partial closure
property.

Lemma 9.3.3. (partial closure property) For any z € D and t > 0, ®L(¢)
is closed from the left, while ®E(t) is closed from the right; i.e., if s, T s in
[0,t] and s, € ®L(t) for all n, then s € ®L(t); if s, | s and s, € ®E(t) for
all n, then s € ®L(t). Moreover, if s, 1 s in [0,t] and s, € ®L(t) for all n,
then s € ®L(t); if s, | s in [0,t] and s, € ®L(t) for all n, then s € ®L(t).

Corollary 9.3.1. (compactness of ®,(t)) For each t > 0, ®,(t) is a com-
pact subset of [0,1].

We next show that z. is monotone in €.

Lemma 9.3.4. (monotonicity in €) For z. in (3.2), z(t) decreases as ¢
decreases for each t.

Proof. We want to show that
(e5'z+y)T —elal < (7t + )T — e tal
for €1 > €y or, equivalently,
'z +y) = (e +y) < (" —e N2l (3.5)
However, (3.5) follows from the relation
ol —zl <(z1—z)". =

We first establish pointwise convergence for z in (3.2).
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Theorem 9.3.1. (pointwise convergence) For each x € D,y € Dy, and
£>0,

limz(t) = 2(t) = sup y(s—)V sup {y(s),y(s+)} . (3.6)
€l0 s€DL(t) sEPL(L)

Proof. The convergence follows from the monotonicity established in Lemma,
9.3.3. Lemma 9.3.2 above provides a lower bound, which implies that there
is a proper limit for each t. For any § > 0, let s.(¢) be a point in [0,%] such
that

(€ 'z +1y)(set) > (e 'x+ )T () -6 . (3.7

(Since z and y need not be continuous, the supremum of ¢ 'z + y need not
be attained.) Then

y(set)) = ylse(t)) +e Halse()] —2"(1)}
> y(s)+elax(s) —zT(t)] =6 for 0<s<t
y(s—) —6 for se€ dL(2)

(
y(s) =6 for se€ ®E(1) (3.8)
( (

2>
y(s+)—4d for se @),
implying that
lim y(se(t)) > 2(t), t>0. (3.9)
n—oo
We now verify that
lim y(se(t)) <z(t), t>0. (3.10)
n—oQ

Start by choosing {s¢(t)} such that y(sc(t)) — Lim y(s¢(t)) as € 0. Since
n—oo

s¢(t) € [0,t], any subsequence from {s.(¢)} has a convergent subsequence
{s¢(t)} as € | 0. (Let € | 0 through countably many values.) So suppose
that se(t) — so(t) as € | 0. Without loss of generality, by taking a fur-
ther subsequence if necessary, we can assume that either s¢ () 1 so(¢) with
se(t) < so(t) for all € > 0 or s (t) | so(t) with se(t) > so(t) for all € > 0.
Suppose that se(t) 1 so(t). Then y(se(t)) — y(so(t)—). We can deduce
from (3.8) that there is a constant K such that, for all €',

—K < e Mz(sa(t)) —zT(#)] <0, (3.11)
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implying that z(s¢(t)) — zT(t) as € — 0, so that z(so(t)—) = z'(¢) and
so(t) € ®L(t). By this argument,

lim y(se(t)) < sup y(s—). (3.12)

n—00 SEBL(t)

On the other hand, if s¢(t) | so(t), we can deduce by the same reasoning
that

Tm y(sc(t) < sup {y(s),y(sH)} . (3.13)

n—00 SEBR(t)

Since one of (3.12) or (3.13) must hold, we have established (3.10). Finally,
from the first and last lines of (3.8),

0> e Ha(se(t)) — ()} > 2(t) —y(se(t)) - (3.14)

Since y(se(t)) — z(t), e 1 {z(s¢(t)) — 2T ()} — 0 as € | 0, which implies that
z(t) = 2(t) as e 0. =

Corollary 9.3.2. (simplification under extra conditions) Suppose that = €
C and y € Dyjp,. Then the limit z in (3.6) is

z(t) = sup {y(s—),y(s),y(s+)}. (3.15)
sED,(L)

If, in addition, y € C, then

) = sup {y(s)) . (3.16)
SED,(L)

We now determine the structure of the limit function z in (3.6). Since
®L(t), ®E(t) and ®,(t) are subsets of [0, ], we need a notion of convergence
of sets. For subsets A, and A of R, we say that A, — A if (i) for all
an € Ap, n > 1, {a,} has a convergent subsequence and the limits of all
convergent subsequences belong to A, and (ii) for all a € A, there exists
a, € Ap, n > 1, such that a,, — a as n — oco. In our set limits involving
®L(t) and ®E(t), only three special cases arise: (i) Ay, is independent of n for
all sufficiently large n, (ii) the sequence {4,} is eventually monotone, i.e.,
either A, C A, 41 for all sufficiently large n or A, D A,41 for all sufficiently
large n, and (iii) A = {a}, i.e., the limit set contains a single point.

When we consider ®,(t) = ®L () U ®£(¢), we have compact subsets of
[0,%]. Then the notion of set convergence above is induced by the Hausdorff
metric on the space C = C([0,00)) of compact subsets of [0, 00), defined in
(2.8) in Chapter V.
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However, even if 2 and 2 are continuous in , ®,(¢) is in general not con-
tinuous in ¢t. Moreover, at some time points, ®,(¢) is neither left-continuous
nor right-continuous.

Example 9.3.2. Lack of continuity from left or right in ®,(t). Suppose
that z(t) = (1 —t)1jo,1)(t) + (t — 1)I}1,00) (). Then ®,(t) = {0}, 0 <t < 2,
®,(2) = {0,1} and ®,(t — 1) = {t}, t > 2, so that &, is neither left-
continuous nor right-continuous at ¢ = 2. However, ®,(2) is the union of
the left and right limits ®,(2—) and ®;(2+). =

Example 9.3.3. Neither left-continuous everywhere nor right-continuous
everywhere. We can extend Example 9.3.2 to show that the limit 2z need not
be either a left-continuous function or a right-continuous function, even if x
and y are both continuous. Let

x(t) = (1=t)Ij,1y(t) + (E—1)I[1,3)(t) + (5 =) I[3.4) (1) + (£ —3) [[4,00) (t) (3.17)

and
Y(t) = —tljo,2.5) + 6(t — 2.5)I12.5,00) (%) - (3.18)
Then
o,(t) = {0}, 0<t<2, &,2) =102}
S,.(t) = {t}, 2<t<3, P (t) =13}, 3<t<5,
®,(5) = {3,5}, @.(t)={t}), t>5,
z(2) = 0 and z(5)=15. (3.19)

Then z is discontinuous at t = 2 and ¢t = 5, with z being left-continuous at 2
and right-continuous at 5. Hence z is neither left-continuous everywhere nor
right-continuous everywhere. On the positive side, z is either left-continuous
or right-continuous at each ¢ and z is upper semicontinuous everywhere. =

Example 9.3.4. Neither left-continuous nor right-continuous at one t. We
now show that the limit z in (3.8) need not be either left-continuous or
right-continuous at a single argument ¢ when z € C and y € D but y & C.
We construct y and x so that y and ®, have only one common discontinuity.
Let

y(t) = tho1)(t) + Inoy(t), t>0, (3.20)

and
z(t) = —tI[O,l)(t) + (t— 2)1[1,00) (t), t>0, (3.21)
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so that
D,(t) ={0},0<t<2,9,(2) ={0,2} and P,(t)=¢t, t>2. (3.22)
Hence y and ®, are continuous everywhere except ¢ = 2. Moreover,

z(2) = sup {y(s)}V sup{y(s—)}=0v1i=1, (3.23)
s€{0,2} se{2}
while z(¢) = 0 for all other . Hence the left and right limits coincide at
t = 2 but do not equal z(2), so that z ¢ D. It is easy to see that z.(2) =1
and
z2(t)=0, 0<t<2—¢ and t>2+e¢€,

with z. defined by linear interpolation elsewhere. Hence, z. has slope e !

on [2 — ¢,2], slope —¢ ! on [2,2 + ¢] and is 0 elsewhere. Consistent with
Theorem 9.3.1, 2z, converges pointwise to z. We will want to impose regu-
larity conditions to prevent such pathological behavior. As an alternative,
we could conclude that z, converges to a limit in one of the larger spaces E
or F in Chapter X. =

We now introduce a regularity condition under which the limit z in (3.6)
has left and right limits everywhere and is either left continuous or right
continuous everywhere (without necessarily being right continuous every-
where). Let D;, denote this space. We first define some subsets of [0, cc).
(We could alternatively restrict attention to a subinterval [0,7].) For any
z € D, let Rinc(z) and Linc(z) be the set of right-increase and left-increase
points of z, let Lconst(z) be the set of left-constant points of z, and let
Amaz(z) be the argmax set of z, i.e., the set of arguments at which z
equals its supremum, i.e.,

Rinc(z) = {t>0:z(t) <z(t+e¢) for all sufficiently small e X3p4)
Linc(x) = {t>0:z(t—e¢) <z(t) for all sufficiently small ¢ X325)
Leonst(z) = {t>0:z(t—e€) =z(t) for all sufficiently small e X326)
Amaz(z) = {t>0:te dE)}. (3.27)

We will look at these sets for the functions z and z. Of course, z! is
nondecreasing and right-continuous. Let Disc(z) be the set of discontinuity
points of z.

Theorem 9.3.2. (regularity properties of the limit z) Suppose that x, y €
D. Then z € Dy, where z is the limit in (3.6). At all t not in the set

Bad(z) = Rine(z") N Leonst(z") N Disc(x) N Linc(z) N Amaz(z) , (3.28)
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z is either left-continuous or right-continuous. For t € Bad(z), z(t+) =
y(t), 2(t—) is independent of {y(t—),y(t)} and 2(t) = max{z(t-), y(t-), y(t)},
so that z is left-continuous at t if z(t—) > y(t—) V y(t), right-continuous at
tif y(t) > y(t—) V z(t—), and neither left-continuous nor right-continuous

ify(t=) >y(t) vV z(t—). If
y(t—) < 2(t—) Vy(t) (3.29)
for all t € Bad(z), for which a sufficient condition is
Disc(y) N Bad(z) = ¢ , (3.30)
then z is either left-continuous or right-continuous at all t, so that z € Dy ;.

Corollary 9.3.3. (regularity for continuous y) If x € D and y € C, then
zZ € Dl,r-

Remark 9.3.1. Sufficient condition for having more than one point in the
set. Let |®,(t)| be the cardinality of the set ®,(t). Note that |®,(¢)] > 2
when t € Leonst(z") N Amaz(z), i.e.,

Leonst(z") N Amaz(x) C {t : |®,(t)| > 2}, (3.31)

so that t € Bad(z) when |®,(t)| > 2 and z(t —€) < z(t—) = z(t) = zT(t) <
21 (t + €) for all suitably small e > 0. =

Remark 9.3.2. The set Bad(z) is at most countably infinite. From (3.28),
it follows that Bad(z) C Disc(®,), where &, € D([0,00), (C,h)). Therefore,
Bad(x) is a countable set. =

Corollary 9.3.4. (regularity properties of the limit Z when Y is a stochas-
tic process) Suppose that {Y (t) : t > 0} is a stochastic process with sample
paths in D. If x € D and if P(t € Disc(Y)) = 0 for each t > 0, then
P(Z € D;,) =1, where Z is the limiting stochastic process defined by ap-
plying (3.6) to Y.

Proof. In Remark 9.3.2 it was noted that the set Bad(z) in (3.28) is
countable. Consequently,

P(Z e Dy,) =P(Disc(Y)NBad(z) =¢)=1. = (3.32)

Theorem 9.3.2 is proved by examining all relevant cases. We identify
appropriate cases and results for those cases in the following theorem.
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Theorem 9.3.3. (identification of relevant cases) The following is a set of
ezhaustive and mutually exclusive cases and subcases when xz,y € D:

1. t & Amax(z), ie., t € ®E(t): z is right-continuous with a left limit at

t.

2. ®R(t) = ®L(t) = {t} : 2(t) = y(t—) Vy(t), z is either right-continuous
or left-continuous at t.

3. ®E(t) = {t}, ®L(t) = ¢: z is right-continuous with a left limit at t.

4. t € ®L(t) C ®,(t) # {t}, so that cases 1-3 do not hold;

(a)
(b)

t € Rinc(z?), i.e., ®y(t) C ®y(u) for some u > t: z is right-
continuous with a left limit at t.

Condition (a) does not hold and t € Leonst(z") N Linc(x)¢, i.e.,
t is not isolated in Dy(t): z(t—) > y(t—) and z(t+) = y(t), so
that z is left (right) continuous at t if z(t—) > (<) y(¢).
Condition (a) does not hold, t is isolated in ®,(t) and t € Disc(x):
z(t+) = y(t) and z(t) = max{z(t—),y(t)}, so that z is left (right)
continuous if z(t—) > (<) y(t). (In this case z(t) does not depend
upon y(t—).)

Condition (a) does not hold, t is isolated in ®5(t) andt ¢ Disc(x),
i.e., t € Bad(z) in (3.28): z(t+) = y(t), 2(t—) is independent
of {y(t—),y(t)} and z(t) = max{z(t—),y(t—),y(t)}. Hence z is
neither left-continuous nor right-continuous at t if and only if
y(t—=) > 2(t—) Vy(t).

Proof. We prove Theorem 9.3.3 by examining all relevant subcases. We
provide a further characterization below, but do not give all details. For
this purpose, let

Ul = {s:0<s<tz(s—)=z"(t—)}, (3.33)
t) = {s:0<s<tz(s)=z"(t—)} (3.34)

and U, (t) = UL(t) U TE(¢).

Case 1:

In this case, z(¢) < z'(t) and zT(t—) = 2" (¢). Since z and 2T are

right-continuous, ®% and ®F are constant in [t,t + ¢€) for all suitably small
€ > 0, so that z is necessarily right-continuous. We identify three subcases:
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(i) If t ¢ WL(t), then z(t—) < z'(t—), so that ®L and ®F are constant in
(t — €,t + €) for all suitably small € > 0, so that z is constant in the same
subinterval. (i) If t € WL (¢) = ®L(¢) and ®,(¢) # {t}, then z jumps down at
time ¢, so that z(t—) = zT(t—) = z"(t) > z(t). Since ®,(t) # {t}, =" must
be constant in (¢ — ¢, t] for all suitably small ¢ > 0 and there must exist s < ¢
such that z(s) = z'(t) or z(s—) = (). Hence for s < ¢’ < t, ®L(#') and
®R(#') increase as t increases. Since t ¢ ®E(t), ®E(t') + ®E(t) as # 1 ¢, so
that ®% is continuous at ¢. Since ®L(#') increases as ¢’ increases, ®L(#') has
a limit as ¢’ 1 ¢, but this limit set may be separated from ¢ € ®L(¢). Hence,
in general z is right-continuous with a left limit at ¢, with z(¢) depending
upon y(t—) but not y(¢). In this case z is continuous at ¢ if and only if
z(t—) > y(t—). (iii) If t € UL(t) = ®L(¢) and ®,(t) = {t}, then again
z jumps down at time ¢, z(t—) = z'(t—). Since z' is increasing from the
left at ¢, there exists a sequence {t,} with ¢, 1 ¢ as n — oo such that
z(t,£) = z'(¢,) and @4 (t,) = {t,}. Moreover, for any s with ¢, < s < t,
necessarily ®,(s) C [t,, s]. Hence, ®,(s) — ®,(t) as s T ¢t. This implies that
z is continuous at ¢ with z(t) = y(t—). We remark that the case t € UL(¢)
but ¢ ¢ ®L(¢) cannot occur because it requires z(t—) = zT(t—) < zT(t),
which implies that £ make a jump up to a new maximum at time t, i.e.,
t € ®&(t), which contradicts our original assumption.

Case 2: ®f(t) = ®L(t) = {t}.

In this case z(t—) = z(t) = z'(t), so that z is continuous at ¢. Since
®,.(t) = {t}, ®z(u) C [t,u] for all u > t. Hence ®,(u) — P,(t) = {t} as
u | t, so that &, is right-continuous and z has a limit from the right with
z(t+) = y(t). In this case z' is increasing at ¢, and ®,(s) — ®L(t) as s 1 ¢,
so that @, is continuous at ¢ and z has the left limit z(¢—) = y(¢t—). Since
z(t) = y(t) Vy(t—), z is either left-continuous or right-continuous at ¢; z is
continuous at time ¢ if and only if y is.

Case 3: ®F(t) = {t} and ®L(t) = ¢.

In this case z(t—) # z(t) = z7(¢), so that z is discontinuous at ¢. As in
case 2 above, ®,(s) — ®,(t) = {t} as s | ¢, so that &, is right-continuous
at t and z has the right limit z(¢+) = y(¢). Since z(t) = y(t), z is right-
continuous in this case. We identify three subcases: (i) If ¢ ¢ WL(#), then
z(t—) < z'(t—) < z'(¢), so that z jumps up to a new maximum at time
t and ®L and ®F are constant in (¢ — ¢,¢) for all suitably small e. Hence
®L &2 and z have limits from the left, but may be discontinuous at t.
(ii) If U, (t) = {t}, then z(t—) = zT(t—) < z(t). As in (ii), = jumps up
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to a new maximum at ¢. Since ®,(t) = {t}, 2" is increasing from the left
at t. Hence, there exists a sequence {t,} with ¢, 1 ¢t as n — oo such that
z(tyt) = 21 (t,) T 2T (t—) and ®,(t,) = {t,}. Hence ®,(s) C [ty, s] for all s
with ¢, < s < t. Hence, ®,(s) — UL(t) = {t} as s 1 ¢, so that ®, and z have
limits from the left at ¢, with z(¢t—) = y(¢—). (iii) Suppose that ®L(¢) = ¢
and t € U,(t) # {t}. This is similar to case (ii). Since W,(t) # {t}, z' is
constant in [t — ¢, t) for all suitably small e. Thus, over (¢ — ¢,t), ®L(s) and
®2(s) increase to UL(¢) and UE(t) as s 1 t. Hence, z has a left limit at .
In general, z need not be continuous at t.

Case 4(a): Inthiscase z'(t) = zT(u) for some u > t. Hence ®% (u) | ®L(%)
and ®2(u) | ®E(t) as u | ¢ so that z is right-continuous at ¢. If ¢ is not
isolated in ®,(t), as in Case 4(b), then there exists ¢, 1 ¢ with z(¢t,—) = z'(¢)
or z(t,) = z'(t), so that z' is constant in [t — ¢,#] for all suitably small e.
Moreover, ®L(s) + ®L(t) and ®E(s) 1+ ®E(t) as s 1 t. Hence z has a
left limit z(t—) > y(t—). Moreover, ®L and ®£ are continuous at ¢. If
y(t—) < z(t—) < y(t), then y is right-continuous but not continuous. On
the other hand, if z(t—) > y(¢), then z is continuous at ¢. If instead ¢ is
isolated in ®,(t), as in Case 4(c), then ®L(s) and ®£(s) are constant in
(t — €,t) for all suitably small ¢, but ®£(t) = ®£(t—) U {t}. Hence, &L and
®F have limits from the left at t. Thus z has a limit from the left at ¢,
which does not depend on y(t—). If z(t—) < y(t), then z is discontinuous at
t; otherwise it is continuous.

Case 4(b): As in case 4(a), z has a left limit at ¢. If Case 4(a) does
not hold, then z'(t) < z'(t + ¢) for all sufficiently small e. In this case,
®,(s) — {t} as s | t, so that &, and z have limits from the right with
z(t+) = y(t). However, since ®,(t) # {t} by assumption, @, is not right-
continuous. In this case z is left (right) continuous if z(t—) > (<) y(¢).

Case 4(c): In this case
t € OK(z) = Rinc(z")NLeonst(z") N Disc(z)N Line(z)N Amaz(z) . (3.35)

Note that OK(z) in (3.35) differs from Bad(z) in (3.28) only by having
z(t—) < z(t). As noted for case 4(a) and 4(b), z has left limit z(¢—) and
right limit z(¢+) = y(t) at ¢, with z(t) = z(t—) V y(t). However, since
z(t—) < z(t) = z'(t), t & ®L(t), so that z(t) does not depend upon y(t—).
Hence z is either left-continuous or right-continuous at ¢.
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Case 4(d): In this case t € Bad(z). Since z(t—) = z(t) = z(t), t € ®L(t)
and z(t) > y(t—). As in Case 4(c), z has left and right limits at ¢ with
z(t+) = y(t) and 2(t) = max{z(t—),y(t—),y(t)}. =

Theorem 9.3.2 concluded that z € Dy;,, when z,y € D. By the same
reasoning, examining the cases in Theorem 9.3.3, we can obtain the same
conclusion when y € Dy,.

Theorem 9.3.4. (extension when y € Dy;,,) Suppose that z € D and y €
Dy Then z € Dyyy,. At all t not in the set

Bad(z,y) = [Bad; (z) N Disc(y)] U Badsa(y) (3.36)
where
Bad; (z) = Rinc(z") N Leonst(z") N Linc(z) N Amaz(z) (3.37)
and
Bady(y) = {t € [0,T] : y(t) > y(t=),y(t+)} , (3.38)

z 1is either left-continuous or right-continuous. At t € Bad(z) N Disc(x),
z(t+) = y(t+), z(t—) is independent of y(t—) and z(t) = z(t—)Vy(t)Vy(t+),
so that z is left-continuous if z(t—) > y(t) V y(t+), right-continuous if
y(t+) > y(t) V z(t—) and neither right-continuous nor left-continuous if
y(t) > z(t—) Vy(t+). At t € Bad(z) N Disc(z)¢, z(t+) = y(t+), z(t—)
is independent of y(t—) and z(t) = z(t—) V y(t—) V y(t) V y(t+), so that
z is left-continuous if z(t—) > y(t—) V y(t) V y(t+), right-continuous if
y(t+) > z(t—)Vy(t—)Vy(t) and neither left-continuous nor right-continuous
if y(t=) Vy(t) > z(t—) Vy(i+).

We get extra regularity conditions if we assume that x € C. Recall that z
is upper semicontinuous at ¢ if lim,_,; z(s) < z(t); z is upper semicontinuous
if it is upper semicontinuous at all ¢. Let D,;. be the subset of upper
semicontinuous functions in Dy;,,.

Theorem 9.3.5. (upper-semicontinuity when z € C) Suppose that x € C
and y € Dy, then z € Dyse. Then ®L(t) = ®E(t) = ®,(t) for allt > 0 and

z(t) = sup {y(s—) Vy(s) Vy(s+)} . (3.39)
SEDL()
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Proof. Since z € C, the only relevant cases in Theorem 9.3.3 are: 1(i),
2 and 4. Formula (3.39) follows directly from formula (3.6). The upper
semicontinuity follows from by considering the cases in Theorem 9.3.3. =

Remark 9.3.3. The need for x to be continuous. Without assuming that
x € C, we need not have z be upper semicontinuous. In Case 3 of Theorem
9.3.3, we can have z(t—) > z(t) = z(t+) = y(t+). =

From the point of view of applications, the two most common cases are

(i) z€eC and yeC
(i) z€C and yeD. (3.40)

We thus sumimnarize the situation in these two important cases.

First, with case (i) in (3.40) when both z € C and y € C, we can apply
Corollary 9.3.3 and Theorem 9.3.5 above to conclude that z € Dj; N Dy,
but Example 9.3.3 shows that we need not have z € D. Indeed, we will
always have z € D, N Dy, instead. For z € D, we have € Dy, only if
z(t) > z(t—) for all ¢. So it is important to have the space D, N Dys.

Second, with Case (ii) in (3.40) when z € C but only y € D, Theorem
9.3.2 shows that z € Dy, but Example 9.3.4 shows that we need not have
z € Dy, in general. However, under condition (3.29), which is implied by
condition (3.30), Theorem 9.3.2 implies that we do have z € D;,. Moreover
Theorem 9.3.5 shows that z € Dy,.. So, in Case (ii) we should also have
z € Dy N Dy, but we need to impose condition (3.30).

Because we assumed only that y € Dy, in Theorem 9.3.1, we can con-
sider z playing the role of y. For example, we could start by considering
Ze(z1,y) in (3.2) for some z; € D and obtain z; = z(z,y) as € L 0. Then we
could consider z¢(z2, z1) in (3.2) for another x5 € D and obtain zo = z(x2, 21)
as el 0.

9.4. Extending Pointwise Convergence to M; Convergence

We now want to extend the pointwise convergence of z. to z as € | 0 in
Theorem 9.3.1 to M; convergence. We first observe that monotone point-
wise convergence of continuous functions in D does not by itself imply M;
convergence.

Example 9.4.1. Monotone pointwise convergence of continuous functions
does not imply M, convergence. To see that monotone pointwise convergence
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of continuous functions does not imply M; convergence in D([0,2],R), let
Z9-n(0) = Zon(1 —27") = 29-n(1— 2"y =0

To-n(1 =327 D)) = gy (1 — 2= L 2=Cn4D)y — 50 (2) =1

for n > 1, with x5 » defined by linear interpolation elsewhere. Clearly x5 »
is continuous for each n. Let z = zo-n for 277 > € > 2™+ 1 > 1. Tt is
easy to see that £o-n(t) > Zo—(nt1)(t) | z(t) as n — oo for each ¢ > 0, so that
z(t) | z(t) as € | 0 for each ¢ > 0. Moreover z. — z in D as e | 0 with the
M> topology, but not in the M; topology, because, for any § > 0, z. crosses
the strip (1/3,2/3) for ¢ in [1 — 6,1 + 4] three times for all sufficiently small
€, whereas z crosses it only once; see Theorem 12.5.1 (v) in the book. =

In general (without continuity conditions) monotone pointwise conver-
gence does not imply even My convergence.

Example 9.4.2. Monotone pointwise convergence without continuity does
not imply Ms convergence. To see that Ms convergence does not follow from
monotone pointwise convergence in or D;, when neither the limit nor the
converging functions need be continuous, let z = Iy o) and zp, = 2I; -1 1)+
I[1,2]7 n>1. =

However, we can obtain a positive result when the converging functions
are continuous (without relying on the special structure associated with the
supremum).

Theorem 9.4.1. (M; convergence from monotone pointwise convergence
of continuous functions) If x € Dy,, z. € C for all € and z(t) | =(t) as
€l 0 for allt >0, then z. — z in (Dy,, M) as €] 0.

We can combine Theorems 9.3.1 and 9.4.1 above to obtain the following
corollary.

Corollary 9.4.1. (M, convergence of the supremum derivative) In the set-
ting of Theorem 9.3.1, if © and y are both continuous, then z. — z in
(Dl,TaMQ) as e *L 0.

However, by exploiting the special structure of the supremum function,
we will actually establish the stronger M; convergence under weaker con-
ditions. To prove Theorem 9.4.1, we exploit approximations by piecewise-
constant functions see Section 12.2 in the book.
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Proof of Theorem 9.4.1. Since the pointwise convergence is monotone,
ze(t) > z(t) for all t and e. For any v and § > 0, let Z be a piecewise-constant
function in D with ||z — Z||, < 6. Then z(t) < Z(t) + 6 for 0 < ¢ < u. Let
Z be the upper boundary (containing only vertical and horizontal pieces)
of the § neighborhood of the completed graph I'; s of £ + § for the time
set [0,%], using the Hausdorff metric, as depicted in Figure 9.1. Note that
z(s) > z(s) for 0 < s < t and hy(T'z,T'z) < 34, where h; is the Hausdorff
metric applied to the graphs with time set [0,%]. It thus suffices to show
that z¢(s) < Z(s) for all s, 0 < s < t, for all sufficiently small e.

Consequently, it suffices to show that z.(s) V Z(s) converges uniformly
to Z(s) for 0 < s <t as € | 0. However, Z has only finitely many discon-
tinuities. Since z. V Z is continuous and nonincreasing in €, we can apply
Dini’s theorem to get uniform convergence in any compact subset of [0, t]
excluding arbitrarily small open neighborhoods of each of the finitely many
discontinuities. To treat the discontinuities, we need to carefully treat the
neighborhood to the left (right) of a jump up (down). On the other side,
the limit function constrains z.(s) V Z(s) as € | 0. Now suppose that ¢ is
one of the finitely many discontinuities of Z. Then there is €y(¢) such that
|ze(t) — z(t)| < §/2 for all € < €y(t) by the pointwise convergence. Let
€9 be the minimum of the finitely many €(t). For any € < ¢ given, the
continuity of z., implies that, for each discontinuity point ¢, there is an
n(t) = n(t,e) > 0 such that |z(t) — z.(s)| < §/2 for all s with |s —t| < n(?).
Thus, |z.(s) — z(t)] < § for |s —¢| < n(t). On the critical side of each
discontinuity, the monotonicity implies that

ze(8) < ze(s) < ze(t) + /2

for all € < e. Let the open neighborhood about ¢ be (t —n(t)/4,t + n(t)/4).
Outside the finite union of those open intervals, we have the uniform conver-
gence; inside those intervals we have established that z.(s)V Z(s) < Z(s)+4.
Hence I';, is contained in the 4é-neighborhood of I'y, for suitably small e,
which implies the M» convergence. =

We will want to approximate y € D by y € D.. For this purpose, it is
important to understand how z¢ and z in (3.2) and (3.6) depend upon y.

Lemma 9.4.1. (uniform Lipschitz property of z. as a function of y) For
any € >0,t>0,z€ D and y1, y2 € D,

| ze(z, y1) — ze(@, y2)le < lyr — volle (4.1)

and
lz(z,y1) — 2z(z,y2)|l: < llyr — v2lle - (4.2)
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Proof. Property (4.2) follows immediately from (3.6). For (4.1), note that

|ze(z,y1) — ze(z, 92)lle = € (z+ey)" — (z+eya)T|le
< ez +eyr) — (z+ey2)lle
= |lyr—wellt- =

We also employ the following elementary, but useful, lemma.

Lemma 9.4.2. (z € D, when y € D.) Suppose that z, y € D. If, in
addition, y € D, and
Disc(y) N Bad(z) = ¢ (4.3)

for Bad(x) in (3.28), then z € D.. If y has k discontinuity points in (0,t),
then z has at most k discontinuity points in [0,t].

Proof. We use Theorem 9.3.2 to show that z € D. Since y € D,, for
any given interval [0,¢], there are time points tp = 0 < t; < -+ < t =t
such that y is constant on [t;_q,t;) and [t;_1,t] for 1 < j < k. Note that
z(t) = y(0) for ¢t € [0,¢1). From (3.6), it is obvious that z can only assume
one of the k values y(t;—1), 1 < j < k. The function z may change to
y(tj—1) in the interval [t;_1,t;), but it can only do so once. Transitions from
z(tj—1—) < y(tj—2) to y(tj—2) < y(tj—1) to y(tj—1) at t;—1 are ruled out by
condition (4.3). =

Theorem 9.4.2. (M; convergence of the supremum derivative) Suppose
that z,y € D and (4.3) holds for Bad(x) in (3.28). Then

ze—=2z in (Dy,My) as €l0

for z¢ in (3.2) and z in (3.6).

Proof. Lemmas 9.4.1 and 9.4.2 imply that it suffices to consider y € D,
in order to establish the M; convergence. By Theorem 9.3.2 and Example
9.3.2, the discontinuity condition (4.3) is necessary and sufficient to have
z € D. Under condition (4.3), it is possible to choose the piecewise-constant
approximation to y so that it too satisfies (4.3). So, henceforth, assume
that y € D, and satisfies (4.3). By Lemma 9.4.2, z € D, as well. Now, by
applying mathematical induction over the successive discontinuities of z, it
is not difficult to show that, for all sufficiently small € > 0, z(t) = z(¢) for
all ¢ outside a union of open neighborhoods of the discontinuities of z. (We
strongly exploit D, at this step.) For given discontinuities of y and z, by
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making e suitably small, these neighborhoods can be chosen to be disjoint
with the property that z. is monotone on each interval. The monotonicity
together with the pointwise convergence established in Theorem 9.3.1 im-
plies the local characterization of M convergence in Theorem 12.5.1 in the
book. =

Example 9.4.3. The need for My convergence. It is possible to have z, = z
at a discontinuity point of z: For z(t) =0, t > 0, z.(t) = z(t) = y'(¢) for all
t > 0. Then z and z have the discontinuities of y. A typical case requiring
the M; convergence is y = Ijj o) and z(t) = —tljg1)(t) + (t — 2)I[1 o0)(?)-
Then

ze(t) =€ N2 —t4 ) o2y () + Ip,00) (1) = 2(t) = Ip o0y (t) in (D, M) .

Finally, we can combine Theorems 9.2.3, 9.4.2 and the triangle inequal-
ity (2.1) to obtain a preservation-of-convergence result for the supremum
function.

Theorem 9.4.3. (convergence preservation for the supremum map with
nonlinear centering) For € > 0, let ., y € D and let x be a Lipschitz
function in C. If

dpy, (e — z,ey) =0(€) as €l0, (4.4)
for which a sufficient condition is
e H(ze—z) —ylls =0 as €l0 forall t>0, (4.5)
and if (4.8) holds for Bad(x) in (3.28), then
ezl -2 =2 in (D, M) as €l0 (4.6)
for z in (3.6).

Corollary 9.4.2. (convergence preservation starting with the standard ini-
tial limit (4.5)) For ¢ > 0, let zc € D and z,y € C with x being Lipschitz.
If (4.5) holds, then (4.6) holds for z in (3.39) and z € Dys. N Dy,.

9.5. Derivative of the Reflection Map
Now we consider the reflection map ¢ : D — D defined by

dz)=z+ (—zVv0)'; (5.1)
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see Section 13.4 in the book.
Results for the reflection map ¢ in (5.1) above follow from the results
for the supremum map in Sections 9.3 and 9.4 above, because

bc(@,y) = € [p(x + ey) — p(x)] = y + m(—z,—y) , (5.2)
where
me(z,y) =€ H((z +ey)" VO — (=T V0). (5.3)
Note that mc(z,y) in (5.3) differs from z.(z,y) in (3.2) only by the ex-
tra maximum with respect to 0. In most applications, we will have z(0) =
y(0) = 0, in which case the extra maximum V0 is superfluous; then m.(z,y) =
Ze(z,y). Thus, in this common case we can immediately apply the results
in Section 9.3 to obtain corresponding results for the reflection map.

Theorem 9.5.1. (derivative of the reflection map in the common case) Sup-
pose that x € D, y € D and z(0) = y(0) = 0. Then, for each t >0,

lim ¢c(z,)(t) = &(¢) (5.4)

where

<
=
Il
<
—
8
s
—
=

= y(t)—< inf ){y(s—)}/\ inf {y(S)}> (5.5)

sedl (1 sedl (t)
and qf) € Dyjp- If, in addition,
Disc(y) N Bad(—z) = ¢ , (5.6)
then q’) € D, and
be(w,y) = d(z,y) in (Dip,My) as €l 0. (57)

If, in addition, x € C, then q5 € Dysc. If, in addition, x is Lipschitz and
y € C, then there is convergence preservation: If

le Y(ze —z) —yllt =0 as el 0 forall t (5.8)
then
€ (d(@d) = $(@)) = dlw,y) in (Dip,Mi) as €l0. (59)
for _
H =y~ il {y()}. (510)
where

O L(t)={s:0<s<tz(s)=x"t)}, t>0. (5.11)
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Proof. The pointwise limit in (5.4) follows from Theorem 9.3.1, noting
that —(—y)" = y*. The fact that ¢ € Dy, follows from Theorem 9.3.2. The
stronger conclusion that ¢ € D, under condition (5.6) also follows from
Theorem 9.3.2, exploiting condition (3.30). The M; convergence in (5.7)
follows from Theorem 9.4.2. Finally, the convergence preservation ((5.8)
implies (5.9)) follows from Corollary 9.4.3. =

We now return to the general case. For that purpose, let
t; = ty(z) = inf{t > 0: 27(¢) = 0} (5.12)

and
ty = ty(x) = sup{t > 0:2'(t) = 0} , (5.13)

with #; = t, = oo if zT(t) < 0 for all . In many applications we will have
z(0) = 0; then ¢; = 0 and ¢, = oo. It is easy to see that for any ¢, 0 < ¢ < ¢,
me(z,y)(t) = 0 for all sufficiently small positive e. Similarly, for any ¢,
ty <t < o0, me(z,y)(t) = ze(x,y)(t) for all sufficiently small positive e. We
need to examine the interval (¢; — €,t, + €) more carefully. To do so, we
exploit the following analog of Lemma 9.4.1, which is proved in the same
way.

Lemma 9.5.1. (uniform Lipschitz property for m, as a function of y) For
anye€e>0,t>0,z€ D and y1,y2 € D,

lme(z,y1) — me(z,y2) |t < llyr — v2llt -

Our analog of Theorems 9.3.1, 9.3.2, 9.3.5 and 9.4.2 for m. is the follow-
ing.

Theorem 9.5.2. (the derivative in the general case) Suppose that x,y € D.
For each t > 0, m¢(z,y)(t) is decreasing in € and

=]

, t<
y(t=) vyt)vo, t=1
(t)vo, h<t<t, (5.14)
z(t—=)VOVy(t), t=t,
z(t), t >ty

N

limme(z,)(t) = m(z,)(t) =

for me in (5.3), t; in (5.12), t,, in (5.13) and z(t) in (3.6). The limit m(z,y)
in (5.14) has limits from the left and right at all t. If z € C, then z is given
by (3.39) and z and m are upper semicontinuous. At all t not in the set

B(z) = {t;} U (Bad(z) N (t, 00)) (5.15)



9.5. DERIVATIVE OF THE REFLECTION MAP 261

for Bad(z) in (3.28), m is either left-continuous or right-continuous. At
t = t;, m is left-continuous if y(t—) V y(t) < 0, m is right-continuous if
y(t) > y(t—) V0, and neither left-continuous nor right-continuous if y(t—) >
y(t) v 0. If

(1) y(t—) <2(t=) Vy@) VO for te€ B(x) N[t L] (5.16)
and
(id) y(t—) < z(t=) Vy(t) for te€ B(z)N (tu,00) , (5.17)
for which a sufficient condition is
Disc(y) N B(z) = ¢, (5.18)

then m is either left-continuous or right-continuous at all t, so that m € Dy ;.
Then
me(xay) —>m(z(;,y) in (Dl,’raMl) as €l0.

Proof. First, forany § > 0and T > 0, m¢(z,y)(t) = 0in [0, (OV(t;—0))AT]
and me(z,y)(t) = zc(z,y)(t) in [(t, + 0) A T,T] for all sufficiently small
positive e. We apply Theorems 9.3.1, 9.3.2 and 9.4.2 to treat the subinterval
[(ty + 0) AT, T]. Hence it suffices to focus on the subinterval (t; — 4, t,, + J).
By Lemmas 9.4.1 and 9.5.1, it suffices to assume that y € D.. The argument
then is as for Theorems 9.3.1, 9.3.2, 9.3.5 and 9.4.2. =

Corollary 9.5.1. (convergence) If x,y € D, then
pe(z,y)(t) L y(t) + m(—z,—y)(t) as €l0
for ¢¢ in (5.2), each t > 0 and m in (5.14). If in addition (5.18) holds, then
be(5,9) > y+ml—z,—y) in (Diy,Mi) as €l0.

Finally, paralleling Theorem 9.4.3 for the supremum function, we can
combine Theorems 9.2.3, 9.5.2 and the triangle inequality in (2.1) to obtain
a preservation-of-convergence result for the reflection map.

Theorem 9.5.3. (M; convergence for the reflection derivative) For e > 0,
let ze,y € D and let x be a Lipschitz function in C. If condition (4.4) holds,
for which a sufficient condition is (4.5), and if (5.18) holds, then

€ (d(ze) — d(2)) =y +m(~z,~y) in (D, My) as el0 (519
for m in (5.14).

Corollary 9.5.2. Fore >0, let z. € D and z,y € C with = being Lipschitz.
If (4.5) holds, then (5.19) holds for m in (5.14), where m € Dys. N Dy,
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9.6. Heavy-Traffic Limits for Nonstationary Queues

In this section we apply the convergence-preservation results in the last
section to establish heavy-traffic limits for nonstationary queues. We assume
that the queue-length process can be represented directly as the reflection
map applied to a net-input process, which is the difference of two nonde-
creasing processes admitting nonstationary rates.

As background, note that the queue-length process {Q(¢) : t > 0} in the
M/M/1 queue starting empty with arrival rate A and service rate y has such
a representation. In particular, for the M/M/1 queue,

Q) = ¢(X)(®), t=0, (6.1)
where X is the net-input process, satisfying
X(t)=XT(AT(t) - X" (A1) , (6.2)
with Xt and X~ being rate-1 Poisson processes and
AT(t) =X and A (t)=uput, t>0. (6.3)

Then Xt o AT is a rate-\ Poisson process.

Similarly, for the M;/M;/1 queue with (integrable) time-dependent arrival-
rate function A(¢) and service-rate function y(t), (6.1) and (6.2) remain valid
with AT and A~ redefined as

+ = t s)ds an - = t s)ds. .
A(t)—/omd a A1) /Ou()d (6.4)

It is easy to see that there are many generalizations. First, we obtain
the queue-length process in an MMPP/MMPP/1 queue with independent
Markov modulated Poisson process (MPPP) arrival and service processes if
AT and A~ are independent stationary versions of finite-state continuous-
time Markov chains. (We then assume that X, X, AT and A~ are mu-
tually independent. We obtain the queue-length process in a more general
MMPP;/MMPP; /1 queue with independent time-dependent MMPP arrival
and service processes if AT and A~ are independent time-dependent finite-
state CTMCs, governed by time-dependent transition functions.

We construct associated fluid queue models by letting X and X~ be
other Lévy processes instead of Poisson processes. Without loss of gener-
ality, these again can be rate-1 processes. For nodes in a communication
network with fixed bandwidth, it is natural to let X~ (¢) = ¢, ¢ > 0, but
generalizations are possible.
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We now establish limits for a sequence of models indexed by n. For
each n, we have the four-tuple of stochastic processes (X,/, X, , A}, A,)
with sample paths in D*. We then form the associated scaled stochastic
processes by letting

XFt) = X (nt) —nzt(2)]

X, (t) = ¢, [X, (nt) — nz(t)]

AT@) = ' [AT() —nyt(t)]

AL(t) = AL (D) —ny™(2)]

Xn(t) = C_l[XJr(A:{( )) X (A7 (1) —na™ (y" (1) — 27~ (y~ (1))]
Xo(t) = o' X7 (A7 (1) — X7 (AL ()] ¢ 20, (6.5)

We think of the centering terms z©, z—, y© and y~ as deterministic func-
tions, but that is not necessary.

The following limit for the net-input process is a direct consequence of
Theorem 13.3.2 in the book.

Theorem 9.6.1. (FLLN and FCLT for the net-input process) Suppose that
(X7, X5, Af, A7) = (UH U, VE V) in (DLWM)  (6.6)

for the processes in (6.5), where x+ and x~ have continuous derivatives
2T and 27, yT and y~ are continuous nonnegative and strictly increasing,
¢p — 00, nfcy, — 00 and
Disc(UT oy™) N Disc(V*') =
Disc(U™ oy~ )N Disc(V™)
Disc(Ut oy™ + (T oy™)VT)

¢
¢
n

) =

Disc(U oy™ + (2" oy )V7) = ¢. (6.7)
Then, R
X, =z in (D,M) (6.8)
and
X, =X in (D,M), (6.9)
for X, and X,, in (6.5), where
z=xt oyt —x oy~ (6.10)

and

X=Utoy" +(@Toy") VI —U 0y — (37 0y )V ™. (6.11)
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Proof. As usual, start by applying the Skorohod representation theorem
to replace the convergence in distribution in (6.6) by convergence w.p.1 for
special versions, without introducing new notation for the special versions.
Then apply Theorem 13.3.2 in the book, after rewriting X' as

XF () = (n/ep)n ' X (nt) —zt ()], t>0, (6.12)
and similarly for the other functions. That yields
(X oAl —nztoy™ X, oA, —nzoy")
= UToy" + (" oy )V, U oy™ + (@7 0y")V7) (6.13)
in (D%, W Mjy). Multiply by ¢,/n in (6.13) to get
nHX oA, X oA)= (zt oy, 27 0yT) in (D2, WM;) (6.14)
Finally, given the last condition in (6.7), we can apply addition to go from
(6.13) and (6.14) to (6.9) and (6.8). =

We now apply Theorem 9.5.1 to obtain a corresponding result for the
queue-length processes. Let

Qn(t) = ¢ (Qn(nt) — ng(t)), ¢>0. (6.15)
and
Q.(t) =n"'Qn(nt), t>0. (6.16)

Theorem 9.6.2. (FLLN and FCLT for the queue-length process) If, in
addition to the assumptions of Theorem 9.6.1, y* and y~ are Lipschitz
continuous, £(0) =0, P(X(0) =0) =1 and

P(UY, U, VT,V )eCchH =1, (6.17)
then
Q.=q in (D,M) (6.18)
and
Qn = Q in (Dl,raMl) (619)
for Q in (6.16) and Q,, in (6.15), where
q = ¢(z) (6.20)
for x in (6.10) and
Q=X+ z(—z,—X) (6.21)

for z in (6.10), X in (6.11) and z in (3.16). The limit process Q then has
upper semicontinuous sample paths.
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Example 9.6.1. The M;/M;/1 queue. Now let us examine the special case
of the M¢/M;/1 queue in more detail. For the My/M;/1 queue, ¢, = /n,
zT =z~ =eand UT,U~ are independent Brownian motions. It is natural
to have

t t
+ = :tS S all + = :l:S S .
An<t>—/0 N(s)ds and g (1) /OA (s)d (6.22)

where A5 and A* are deterministic functions. We can then have
nPOEE) - nAE (1) o> yE(#) as n— oo (6.23)

uniformly in [0, 7], where y™ and v~ are deterministic, which implies that
¢
AE() > / v (s)ds = V*E . (6.24)
0
Thus the assumptions of Theorems 9.6.1 and 9.6.2 are satisfied and

t
o(t) = /0 AF(s) — A (s)lds, ¢>0, (6.25)

X = Ut ( /Ot)\+(s)ds>

_uU- ( /0 t)\_(s)ds) 4 /0 ‘I s) — (s (6.26)

while

where Ut and U~ are independent standard Brownian motions and the rest
involves continuous deterministic functions. It is easy to see that X is equal
in distribution (on D) to

U ( /0 ‘) + A‘(s)]ds) + /0 ) (s, 30, (6.27)

where U is a standard Brownian motion.

The FWLLN limits  and g can be regarded as the net-input and buffer-
content processes, respectively, in a fluid-queue model with time-dependent
deterministic input rate A (¢) and time-dependent deterministic potential
output rate A7(¢). Then

_(—2)* = — min { /0 () — )\+(r)]dr} (6.28)

0<s<t
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represents the cumulative potential output that is lost (i.e., does not occur
during the interval [0, ¢] because of insufficient input. Then

®_4(t) = {s:0<s<t,q(s) =0,—(-2)*(s) = —(—a)*(1)}  (6.29)

ie., ®_,(t) is the set of times s at which the buffer is empty (g(s) = 0) and
there is no potential output los over [s, t].

An important special case is when A} and A\ in (6.22) are independent
of n. Then v (t) = v~ (t) = 0 for all £ > 0 and the deterministic function
fot[y’L(s) — v (s)]ds in (6.27) is identically 0. Then the limit for the queue-
length process has one of three forms over subintervals: time-scaled standard
Brownian motion (BM), time-scaled canonical reflected Brownian motion
(RBM) and the zero function. There can be discontinuities in the sample
path when the set function ®_,(t) is discontinuous in ¢. We display possible
sample paths of (AT, \7), (—z, (—=xz)1), ®_,(t), ¢ and Q when X\~ is the
constant function in Figure 9.2 below. We identify nine intervals associated
with nine time points tp =0 < t; < --- < 3.

In this example, the fluid rates start out ordered by AT (t) < A~ (1).
Thus —z(t) = fg [A™(s) — AT (s)]ds is initially increasing, which implies that
®_,(t) = {t}. Thus Q(t) = q(¢t) = 0 for these t. At time ¢;, the ordering
switches to AT (t) > A~ (t). Thus after ¢;, —z is decreasing, so that ® ,(t) =
{t1}. At time t5, the ordering switches back to AT (t) < A~ (t), but —z(t)
does not reach (—z)T(t) = (—z)(t1) and ¢(t) does not return to 0 until ¢ = ¢3.
In the interval (¢1,%3), g is positive and @ is time-scaled BM.

At time t3, there is a discontinuity in the set-valued function ®_, and
a corresponding jump in the stochastic process Q. In the interval (¢3,%4),
—z is still increasing and ®_,(t) = {t}, so that ¢(t) = Q(¢) = 0, just as
in [0,¢1). In the interval (¢4,%5), AT(f) = A, so that —z is constant and
D_,(t) = [ts,t], ta <t <t5. In the interval (t4,%5), @ evolves as RBM. At
t5, AT increases, so that —z decreases and ® ,(t) = ® . (t5) = [t4,ts5] for
ts <t < t7. At tg, \T starts to decrease again and at t7 q(t) = 0 for the
first time. Hence, @ evolves as BM in the interval (¢5,%7).

At t7, there is a second discontinuity in ®_, and a corresponding jump
in . In the subsequent interval [t7,%g], AT(t) = A™, so that —z remains
constant. Then ®_,(t) = [ts,t5] U [t7,t] for t7 <t < tg. During the interval
[t7,ts8], q(t) = 0 and @ evolves as RBM. At tg, AT starts to decrease and
thereafter remains below A~. Hence, ®_, has another discontinuity at ts.
After tg, ®_,(t) = {t} and ¢(t) = Q(¢) = 0.

We conclude this section by relating the three possible kinds of heavy-
traffic limits for the case of the M/M;/1 queue with fixed arrival and service
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rate functions AT (t) and p (t) to the values of a time-dependent traffic
intensity, defined by

p(t) = sup {/Ot/\+(r)dr//:/\_(r)dr}, £>0.  (6.30)

0<s<t
Notice that the buffer-content deterministic fluid limit ¢ satisfies
q(t) = =z(t)— inf z(s)

0<s—t

—  sup {a(t) — (s)}
0<s<t

¢
— sup { / I (r) — )\_(r)]dr} , (6.31)
o<s<t (Js
so that ¢(¢) > 0 if and only if p*(¢) > 1.
Moreover, we can have ¢(t) = 0 but P(Q(¢) = 0) = 0 for all £ in an
interval (a,b) if and only if p*(¢) = 1 in (a,b). First, we must have p* <1
since ¢(t) = 0. However, in this region we must also have

/3 () = A~ (r)]dr = 0 (6.32)

for some s suitably chose to t. For that s,

/5 N (r)dr/ / () =1 (6.33)

which implies that p*(¢) > 1. Since both p*(¢) < 1 and p*(¢) > 1, we must
have p*(t) = 1.

We thus say that the queue is overloaded, critically loaded or underloaded
in an open interval (a,b) if p*(t) > 1, p*(t) = 1 or p*(¢) < 1 throughout the
interval (a,b). In Figure 9.2 above, in the intervals (0,%1), (t1,t3), (t3,%4),
(ta,t5), (t5,t7), (t7,18) and (tg, T'), we have successively p*(t) < 1, > 1, < 1,
=1,>1,=1and < 1.

9.7. Derivative of the Inverse Map

In this section we obtain convergence-preservation results for the inverse
map

7 (t) =inf{s > 0:z(s) >t}, t>0, (7.1)
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defined on the subset D,, of functions unbounded above in D = D([0, o), R),
as in Section 13.6 of the book. As in previous sections here, we approach
convergence preservation through a derivative representation.

To determine the derivative of the inverse map, we introduce yet another
topology on D. Recall that we introduced the M| topology on D([0,], R)
by appending a segment to the graphs, i.e., by letting

. =T, U{(az(0),0):0<a <1}, (7.2)
where I'; is the graph of z, i.e.,

I'y ={(z,5) e Rx[0,t]:
z=az(s—)+ (1 —a)z(s) forsome o, 0<a<1}. (7.3)

We now construct a similar M{' topology on D([0,t),R) by also appending
the vertical line at ¢ to the graph, i.e., by setting

I =T U (R x {t}) (7.4)

for T, in (7.2). Note that the function value at the right endpoint ¢ plays
no role in the M{ topology.

As done before for the graph I'; in (7.3), we define a lexicographic order
relation on the graph I'/ by saying that (z1, s1) < (22, s2) if either (i) s < s2
or (ii) s;1 = s and |z(s1—) — 21| < |z(s1—) — 22|. The definition makes the
relation < a total order on the graph I'. A parametric representation
of the graph I'J or the function z is a continuous nondecreasing function
(u,7) mapping [0,1] into the graph I'” such that r(0) = 0, u(0) = 0 and
r(1) = t. We allow the parametric representation of I'J to cover only part
of the vertical line at ¢. If r(s) < ¢ for all s < 1, then the parametric
representation (u,r) covers only the single point (z(t—),t). If r(s) =t for
a < s <1, then (u,r) covers a compact subinterval of either {(z,t) : z >
z(t—)} or {(z,t) : z < z(t—)}. (Since (u,r) maps [0, 1] into I'), we must
have (u(1),7(1)) € T, which implies that |u(1)| < oo.) Let II”(z) be the
set of all parametric representations of T'.

A metric d} inducing the M]' topology on D([0,t), R) is defined by letting

di (z1,m2) =  inf  {[Jug —ugL V |Ir1 —r2ll1} . (7.5)
(uiﬂé)zelg'(%)
We have the following lemma linking the M| and M7 topologies with
bounded function domains.
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Lemma 9.7.1. Let z,z, € D([0,00),R). If z,, - x as n — oo for the
restrictions in D([0,t2), R, M{") for 0 < t3 < 0o, then z, — x as n — oo for
the restrictions in D([0,t1],R, M{) for each t; € Disc(x)® with 0 < t1 < to.

As before, we say that z,, — z in D([0, 00), R) with any of the topologies
My, M{ or M{ if z, — z for the restrictions in D([0,],R) (D(][0,?),R) for
MJ)) with the same topology for all ¢ in a sequence {t;} with ¢ — oo as
k — oo. (The boundary points ¢; can be taken from Disc(z)¢.) We obtain
the following result from Lemma 9.7.1.

Lemma 9.7.2. The M and M]' topologies coincide on D([0,00),R).

We can combine Lemma 9.7.2 here and Theorem 13.6.3 in the book to
obtain the following connection between M7 and M;.

Lemma 9.7.3. If

zn =z in D([0,00),R,M]) ,
where 2(0) = 0, then

zn, —x in D([0,00),R, M) .

A metric d” inducing the M]" topology on D([0,00),R) is defined by
letting

o0
" (1, 79) = / e LA ! (21, 5)]d | (7.6)
0

where df (z1, z2) is understood to be the d} metric applied to the restrictions
of z1 and z3 to [0,¢). There is convergence d”’(zy,z) — 0 if and only if there
exist parametric representations (u,r) of z and (uy,,r,) of z,, n > 1 with
domains [0, c0), such that ||u, — u||; V ||r, —r|; = 0 as n — oo for each ¢.

To apply the approach in Section 9.2, we need the inverse map to be
Lipschitz. The Lipschitz property is valid on an appropriate subset of D with
an appropriate choice of metrics. Recall that D, is the subset of functions
z in D = D([0,00),R) that are unbounded above and have z(0) > 0. For
positive t1,t, let Dy (t1,t2) be the subset of z in D, with zT(t;) > t,.
Clearly D, (t1,t2) is a closed subset of D,,. Moreover,

Dy = M35y U, D(k,m) . (7.7)

We now show that the inverse map from D, (t1,%2) C D,([0,%1], R, M)
to D([0,12), R, M{") is Lipschitz.
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Lemma 9.7.4. For t > 0, let d} be the M{ metric on D([0,t),R) and let
dy be the My metric on D([0,t],R). If z1, zo € Dy(t1,12), then

:f; (xfl’ﬁz;l) < dtl ($I A tQ"/Eg A t2) < dtl ('TI,:E;) < dtl (‘Tla -7"2) . (7'8)

where (z] Aty)(s) = xj(s) Ntg, 0 < s <t.

i

Proof. For z; € Dy(t1,te), let (u;,7;) be an arbitrary M; parametric rep-
resentation of mZT Aty over [0,t1]. Then (r;,u;) is an M{ parametric rep-
resentation of z; ' over [0,%3) with the special property that u;(1) = ;.
Hence

Yzl 25t < dy (2] Ao,z Ato) (7.9)

It is not difficult to see that
dy, (2] Aty 2h A to) < dy, (2, 2]) < dyy (21, 22)

Hence the proof is complete. =

Lemmas 9.7.2 and 9.7.4 imply that the inverse map from D, ([0, c0), R, M)
to Dy ([0, 00), R, M]) is continuous, which is weaker than Theorem 13.6.2 in
the book. We now want to establish an analog of Theorem 9.2.3. For that
purpose, we need both z and z~! to be Lipschitz on [0,] for all £ > 0. The
following lemma, provides natural conditions.

Lemma 9.7.5. (conditions for both z and z ! to be Lipschitz) If z € D,
is absolutely continuous, i.e., x(t) = fg z(s)ds for t > 0, with £ € D and
with 1(t) < &(t) < u(t) for all t > 0 where 0 < I¥(t) < u'(t) < oo for all t,
then

t
sL(t) = / (/i (s)]ds for all >0 (7.10)
0
and z and £~' are both Lipschitz on [0,t] for all t > 0, with

d

& () E(fl)(t) =1/i(z"'(2)) - (7.11)

Proof. Clearly z is strictly increasing and continuous, so that x is a home-
omorphism of [0, 00) and zoz~! = e, where o is the composition map. Thus
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which implies that

t
1) = (z71(s))]ds ;
. (t)—/0[1/< (s)lds, >0

The Lipschitz properties hold because

lz(t2) — z(t1)| = /t2 (s)ds < ul(ta)|t2 — ta]

t1

and
|z~ (t2) — 2~ (t)| = \ 2[1/9'5(55_1(8))]615 <ty — 1|/l (t2) .

We now want to establish an analog of Theorem 9.2.3. Since the M/
analog of Lemma 9.2.2 is evident, we only establish the M analog of Lemma
9.2.1.

Lemma 9.7.6. (reduction of convergence to the derivative with the M
topology) Suppose that x is Lipschitz on [0,t] with Lipschitz constant K.
Let d} be the M{" metric on D([0,t),R). Then

dy (w1 — 2,22 — ) < (1 + K)dy (21, 22) -

Proof. For all € > 0, there exists n(e) > 0 and parametric representations
(’u’i,éa Ti,e) € Hé’(.’L‘Z) such that

lur,e = tz,cll VlIre = rall < (14 n(e))dy (21, 72) - (7.12)

We now want natural modifications of the parametric representations of z;
to serve as parametric representations of z and x; — z. To obtain such para-
metric representations for z, we need to allow for the line segment joining
(2(0),0) to (0,0). Hence we first modify the parametric representations of
z;. Let (uf 7 ) € II{(z;) be scaled versions of the parametric representa-

tions (ue, 7i¢) on [4,1] with (u] (s),7;.(s)) = (0,0), 0 < s <4, i.e,

1,€

d.

(e (6 +5), 7§ (8 4 5)) = (uie((1 = 0)18),rie(L—=0)7"s), 0<s<1—
(7.13)

Then

e = el V IIrte = roell = llua,e — w2l Ve = rall - (7.14)
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Since z € C, (u} 7} ,) € I"(z) for i = 1,2, if

2,67 " 1,€

!
" _Jzor, §<s<l1
(8)_{0, s=0

with u; defined by linear interpolation on (0,0). Then (u;, —uj,,7i ) €
I"(z; — z) and

||(ull,e - ulll,e) - (U’IQ,E - ug,e)” \% ||Tll,e - Tl2,e||
(Hull,e - uIZ,eH + ||‘T OTl,e —TO T2,€”) v ||Tll,e - Tl2,e||
(14 K)(1+ n(e)d{ (z1,22) .

d;f,(xl —Z,T2 — IE)

ININ N

Since n(e) — 0 as € — 0, the proof is complete. =
We now obtain the M{'-analog of Theorem 9.2.3. By Lemma 9.7.2, the
M and M7 topologies agree on D([0,00), R).

Theorem 9.7.1. Suppose that z,z. € D,([0,00),R) and that z satisfies
the condition of Lemma 9.7.5. If di(z¢ — xz,ey) = o(€) as € — 0 for t in a
sequence {ty} with ty — 0o as k — oo, for which a sufficient condition is
lle *(ze — ) —yllt = 0 as €} O for all t > 0, then

de et =z ez +ey) t=2 ) =0 as €l0, (7.15)

where d' is the M| metric on D([0, o0, R).

Proof. For any ty > 0, choose t; such that dy, (zc—z, ey) = o(€) as e | 0 and
7 Y(t2) < t1. The assumptions imply that ||z. —z||;, — 0 and |ley||;, — 0 as
e } 0. Hence, for all sufficiently small €, z., z+ey € D, (t1,t2). On D, (t1,12),
we can apply Lemmas 9.7.4 and 9.7.6, and the M analog of Lemma 9.2.2
to conclude for € < 1 that there are constants K and K5 such that

(et — o e+ e)t — )
< o @b e) o)
Kie ' dy, (a7 (@ + ey) ™)
Kie tdy, (e, z + €y)
K1 Koe Yy, (e — x, ey)
K1 Ks||(eH (ze — 2) =yl - (7.16)

IANIN N DA

This argument applies for arbitrarily large to provided that we increase t;
appropriately. =
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We now focus on the derivative of the inverse map. Let
Ze = ze(z,y) =€ (@ +ey) Tt — a7 (7.17)
We first observe that z. in (7.17) is monotone decreasing in y.

Lemma 9.7.7. For any x € D, and y € D, if y1(t) < yo(t) for all t, then
ze(z,y1)(t) > ze(x,y2)(t) for all € and t, where z¢ is defined in (7.17).

We now show that it suffices to consider piecewise-constant functions y,
because under regularity conditions, z.(z,y) as a function of y is Lipschitz.
Hence, for z and y given, we can replace y by y. € D..

Lemma 9.7.8. Suppose that ¢ € Dy, & € D, y1 € D, t; = z7'(t2) + 1,
0<a< |2l <ooand [[yilley < K. If lyr — yallt, <1, then

1ze(,y1) = ze(2, y2) [l < (2/a)llyr — v2lln
provided that € < a/[K + 1].

Proof. By the monotonicity established in Lemma 9.7.7,

Ze(xayl - 6) > ze(xayl)aze(xayZ) > ze(xayl + 5)

on [0,t] provided that ||y1 — y2||s, < ¢ for a suitably large ¢;. For the given
ti1and § <1,

(@+ey) ') < (z4+elyr—0)7' (1)
< (o —e(K+6)7\)
< m‘l(t)+€(Ka—+5)§t1

provided that d <1 and e < a/(K +1). Hence, if ||Z]|s; > a and ||y1|ly, < K
for that ¢;, the inverses are all contained in [0,#;]. Then, for ||y1 — y2lls, <
d<1,

1ze(2,y1) — Ze(2, y2) e < Nl2e(2; 91 +0) — 2ze(2, 1 — Ot
= (@ +elyr —0))" = (@+elyr + )l
< .Ccfl(tg) +25/a . =
We now establish pointwise convergence. For this purpose, let
Pos(z) ={t>0:z(t) >0} . (7.18)

We obtain the following result by examining the indicated cases.
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Theorem 9.7.2. Ify € D and z € D, satisfies the condition of Lemma
9.7.5, then

z)=e Mz +ey) 't)—2z @) = 2(t) in R as €l0

for each t, where

: _ —y(= (1))

(1) 2(t) = Fa0) <0 (7.19)
iFya()-) > 0 B

(i) ()= 2@ _®) (7.20)

i(z~1(t))
f y(z71(t)—) < 0 and y(z~1(t)) < 0 or if y(z~1(t)—) = 0, sup{Pos(y o
“HN[0,t)} <t and y(z~1(t)) <0;

(#48) 2(t) =0 (7.21)

otherwise: if one of: (a) y(x='(t)—) = 0 and sup{Pos(y o x) N [0,t)} = t,
(b) y(z~'(t)—) < 0 and y(z=(t)) = 0, (c¢) y(z~'()-) = 0, sup{Pos(y o
z) N[0,8)} <t and y(z~(t)) =0, or (@) y(z~'(t)—) <0 < y(z'(t)).

Consequently, z is either left-continuous or right-continuous at t unless
y(z(t)—) < 0 < y(x(t)), in which case z(t—) > z(t) > z(t+).

Proof. It is elementary that z.(¢) converges pointwise to z(t) for z(t) in
(7.20) when both % and y are continuous at z7!(t), so that z is continuous
at t. For the other cases, we apply Lemma 9.7.8 to approximate y by a
piecewise-constant function. We then exploit Lemma 9.7.7 and the fact
that £ and y are elements of D. We obtain the conclusions by examining
the different cases. =

Remark 9.7.1. In order to have the pointwise convergence in Theorem
9.7.2, at a single t, it suffices to have the conditions on x and y hold only
in a neighborhood of 27 !(¢). Then z need not be absolutely continuous or
strictly increasing everywhere.

Remark 9.7.2. We have difficulty at some ¢ if z is only an increasing home-
omorphism of [0, 00). Then we can have &(z~!(¢)) = 0 and 27! (t)) = oo for
some t, so that z.(t) — oo as € ] 0.

We now want to establish M| convergence in D. However, first we note
that the limit z does not necessarily belong to D, because it may be neither
left-continuous nor right-continuous at discontinuity points.
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Example 9.7.1. We need not have z € D. To see that we need not have
z€D,evenifz € C,let z=e and let y = —Ijg 1) + Ij1,o0)- Then

Ze(t) = I[O,lfe) (t) + 6_1(1 — t)I[1*€,1—|—€) (t) — I[1+€,OO) (t) (722)

and
z = I[O,l) - I(l,oo) (723)
so that z(1) = 0, but z(1—) = 1 and z(14+) = —1. However, z(1) is in

between z(1—) and z(1+). =

Since z(t) lies between z(¢t—) and z(t+) for all ¢, the space D* of such
functions with the M; and M’, topologies is equivalent to D because func-
tions in D and D* have the same graphs.

Theorem 9.7.3. (conditions for convergence to the right-continuous ver-
sion) If y € D and x € D, satisfies the condition of Lemma 9.7.5 with
z € D, then

2=z in (D,M]) as €l0

for z¢ in (7.17) and z4 the right-continuous version of z, i.e. z4(t) = z(t+),
t >0 and z in (7.19). If z,(0) = 0, the convergence is in M.

Proof. First, for z and y given, with & satisfying the conditions of Lemma
9.7.5, the conditions of Lemma 9.7.8 are satisfied. Since £ € D and y € D,
z € D* for z defined in (7.19). Start by replacing z by its right-continuous
version, which has the same graph. Invoking Lemma 9.4.1, for any ¢ > 0,
let Z € D, be such that ||z — Z||; < 6;. Suppose that =1(¢;) and z~!(¢) are
two successive discontinuity points of y (where t1,t9 < t), regarded as an
element of D.. Suppose that y(s) = ¢ > 0 in [z7(t1),z71(¢2)). Then, for
any 02 > 0, z.(s) 1 2(s) in (t1 + d2,t2 — d2). Since 2z, and Z + 07 are both
continuous in (t1 + d2, to — d2), we can apply Dini’s theorem to conclude that
z¢(8) NZ(s) — 01 converges uniformly to Z(s)—d7 in (t1 4 d2,t2 —d2). Similarly,
if y(s) = ¢ < 0 in [t1,12), then we can conclude that z.(s) V (Z(s) + 61)
converges uniformly to Z(s) 4+ 61 in (¢1 + d2,t2 — d2). It thus suffices to
establish local M; convergence at each of the isolated discontinuity points
of Z; see Theorem ?7?. However, z. is monotone in a neighborhood of each
of these discontinuity points for all sufficiently small e. Together with the
pointwise convergence at all continuity points established in Theorem 9.7.2,
this implies the required local M; convergence. To get the strengthened
convergence to M, apply Theorem 13.6.3 in the book. =
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The derivative result in Theorem 9.7.3 holds for arbitrary y € D. By
applying Theorem 9.7.1, we obtain a corresponding preservation result, but
only under the extra condition of uniform convergence of ¢~ !(z. — z) to y
as € | 0, which holds if y € C.

Below let U be the topology on D([0, c0), R) of uniform convergence over
compact subsets.

Corollary 9.7.1. Suppose that z¢, x € E. Under the conditions of Theorem
9.7.3, if le H(ze — z) —yllt = 0 as € L 0 for all t > 0, then

_1_
€

e Nz ) >z in (D,M]) as €l0

for z4 as in Theorem 9.7.3.

9.8. Chapter Notes

As indicated at the outset, this chapter is largely based on Mandelbaum
and Massey (1995). They formulate convergence preservation in terms of
the directional derivative. We focus on the second term of the triangle
inequality in (2.1). Thus The results in Section 9.2 here are new. It would
be nice if the upper bound Ke 'di(z. — x,y) in Theorem 9.2.3 could be
replaced by Kdi (e !(z.—x),y) under reasonable regularity conditions. The
existing bound in terms of Ke 'di(z. — z,y) may be suitable for applying
strong approximations. It thus also would be nice to develop such strong
approximations to apply with Theorem 9.2.3 here.

Section 9.3 on the derivative of the supremum function is also based
on Mandelbaum and Massey (1995). We provide extensions allowing the
functions z and y appearing in z.(z,y) in (3.2) to be discontinuous. We
also do not require that the limit z have only finitely many discontinuities
in each finite interval. The arguments are quite a bit more complicated as a
result. Some simplification is achieved here by exploiting approximations by
piecewise-constant functions. In particular, for establishing M; convergence,
Lemma 9.4.2 is key.

Given the intimate connection between the reflection and supremum
maps, most of the work on the derivative of the reflection map in Section
9.5 is done in Sections 9.3 and 9.4. The application of Sections 9.3 — 9.5
in Section 9.6 to obtain heavy-traffic limits for nonstationary queues also
follows Mandelbaum and Massey (1995). They focused on the M;/M;/1
queue with fixed arrival-rate and service-rate functions A*(¢) and A~ (t),
drawing on the strong approximation for Poisson processes. We show how
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the results can be generalized by applying convergence-preservation results
for the composition function with nonlinear centering in Chapter 13 of the
book.

Section 9.7 on the derivative of the inverse function is new. The M7
topology extends the M| topology introduced in Puhalskii and Whitt (1997).



278 CHAPTER 9. NONLINEAR CENTERING AND DERIVATIVES

8>

L 4 | — T+44§

/\/x
;TN
\5:—5

Figure 9.1: A possible function z, piecewise-constant approximation Z, up-
per bound Z + § and upper boundary & of the J-neighborhood of the graph
I';+5 used in the proof of Theorem 9.4.1.
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Figure 9.2: Graphs of the time-dependent arrival-rate and service-rate func-
tions (AT (¢), A" (¢)) with A~ constant, the functions (—z, (—z)"), the set-
valued function ®_, and the limits ¢ and () for a typical realization of the
M;/M;/1 queue.
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