
NUMERICAL INVERSION OF MULTIDIMENSIONAL

LAPLACE TRANSFORMS BY THE LAGUERRE METHOD

by

Joseph Abate,1 Gagan L. Choudhury2 and Ward Whitt3

June 28, 1995

Revision: June 21, 1996

1900 Hammond Road, Ridgewood, NJ 07450-2908
2AT&T Bell Laboratories, Room 1L-238, Holmdel, NJ 07733-3030; gagan@buckaroo.att.com
3AT&T Bell Laboratories, Room 2C-178, Murray Hill, NJ 07974-0636; wow@research.att.com

Abstract

Numerical transform inversion can be useful to solve stochastic models arising in the perfor-

mance evaluation of telecommunications and computer systems. We contribute to this technique

in this paper by extending our recently developed variant of the Laguerre method for numerically

inverting Laplace transforms to multidimensional Laplace transforms. An important application of

multidimensional inversion is to calculate time-dependent performance measures of stochastic sys-

tems. Key features of our new algorithm are: (1) an efficient FFT-based extension of our previously

developed variant of the Fourier-series method to calculate the coefficients of the multidimensional

Laguerre generating function, and (2) systematic methods for scaling to accelerate convergence

of infinite series, using Wynn’s ε-algorithm and exploiting geometric decay rates of Laguerre co-

efficients. These features greatly speed up the algorithm while controlling errors. We illustrate

the effectiveness of our algorithm through numerical examples. For many problems, hundreds of

function evaluations can be computed in just a few seconds.

Keywords: numerical transform inversion, Laplace transforms, multidimensional Laplace trans-

forms, Laguerre polynomials, Weeks’ algorithm, fast Fourier transform, accelerated summation,

Wynn’s ε-algorithm,

1. Introduction

In this paper we develop an effective algorithm for numerically inverting multidimensional

Laplace transforms by the Laguerre method. This paper is a sequel to our previous paper [1] in

which we developed a new variant of the Laguerre method for numerically inverting one-dimensional

Laplace transforms. Other one-dimensional variants of the Laguerre method are the original (1966)

Weeks [18] algorithm and ACM Algorithm 662 in Garbow, Giunta, Lyness and Murli [9], [10]. An-

other variant of the Laguerre method for multidimensional Laplace transforms has recently been

proposed by Moorthy [11] (which came to our attention while this paper was under review). The

general approach here is the same as in [11] and as in previous one-dimensional algorithms such as

[1], [9], [10], [18]. but there are important differences in implementation.

We are interested in multidimensional transform inversion because it allows us to calculate

quantities of interest in many important stochastic models arising in the performance analysis of

telecommunications and computer systems. Examples include time-dependent performance of sta-

tionary and non-stationary systems [5] and joint distributions in polling models [7]. Our algorithm

here provides an alternative to the Fourier-series algorithm for inverting multidimensional Laplace

transforms developed in Choudhury, Lucantoni and Whitt [4]. (Another variant of the Fourier-

series method for multidimensional Laplace transforms recently has been presented by Moorthy

[12].) As in the one-dimensional case, our experience is that the Fourier-series method tends to be

more robust (i.e., works for a larger class of functions without special tuning), but the Laguerre

method can be very fast for well-behaved functions, especially when function values are sought for

a large number of arguments.

For simplicity, we consider only the bivariate case, but the algorithm extends directly to n-

dimensional functions. Thus, our goal is to calculate values of a real-valued function f defined

on the positive quadrant of the plane,
� 2
+ ≡ [0,∞) × [0,∞), by numerically inverting its Laplace

transform

f̂(s1, s2) =

∫

∞

0

∫

∞

0
e−(s1t1+s2t2)f(t1, t2)dt1dt2 , (1)

which we assume is well defined, e.g., convergent and thus analytic for Re(s1) > 0 and Re(s2) > 0;

e.g., see Ditkin and Prudnikov [8] or Van der Pol and Bremmer [17].

The basis for our inversion algorithm is the classical Laguerre-series representation of f , which

we review in Section 2. We review how to compute the Laguerre functions in Section 3. In Sec-

tion 4 we develop an efficient algorithm to compute the Laguerre coefficients. It is based on the

1

multidimensional generating function inversion algorithm developed in [4], but greatly speeds it up

through several modifications, including a fast-Fourier-transform (FFT) implementation. In Sec-

tion 5 we develop scaling and summation acceleration techniques, extending those in [1], to speed

up the convergence of the Laguerre series. In Section 6 we give numerical examples from queueing

theory illustrating the algorithm. In particular, we calculate the complementary cumulative dis-

tribution function (tail probability) of the time-dependent workload (virtual waiting time) in the

transient M/G/1 queue with various service-time distributions. Finally, in Section 7 we summarize

the algorithm.

2. The Laguerre-Series Representation

As indicated in Section 1, our goal is to compute values of a bivariate function f from its two-

dimensional Laplace transform f̂ in (1). To do so, we exploit a connection between the Laplace

transform f̂ and the generating function of the coefficients of the Laguerre-series representation of

f .

For two dimensions, the classical Laguerre-series representation takes the form

f(t1, t2) =
∞
∑

n1=0

∞
∑

n2=0

qn1,n2ln1(t1)ln2(t2), t1 ≥ 0 and t2 ≥ 0 , (2)

where

ln(t) = e
−t/2Ln(t), t ≥ 0 , (3)

Ln(t) =
n
∑

k=0

(

n

k

)

(−t)k
k!
, t ≥ 0 , (4)

and

Q(z1, z2) ≡
∞
∑

n1=0

∞
∑

n2=0

qn1,n2z
n1
1 z
n2
2 = (1− z1)−1(1− z2)−1f̂

(

1 + z1
2(1 − z1)

,
1 + z2
2(1 − z2)

)

, (5)

with Ln(t) in (4) being the Laguerre polynomials, ln(t) in (3) the associated Laguerre functions,

qn1,n2 in (2) the Laguerre coefficients and Q(z1, z2) in (5) the Laguerre generating function.

The key connection between the Laguerre-series representation and the Laplace transform f̂ is

of course (5). The Laguerre-series representation of f can serve as a basis for inverting its Laplace

transform f̂ in (1) because the Laguerre generating functionQ in (5) is expressed directly in terms of

the Laplace transform f̂ . This occurs because the nth Laguerre function has the Laplace transform

l̂n(s) ≡
∫

∞

0
e−stln(t)dt = 2(2s− 1)n/(2s+ 1)n+1 . (6)

2

By (1), (2) and (6), the Laplace transform can be expressed as

f̂(s1, s2) = 4
∞
∑

n1=0

∞
∑

n2=0

qn1,n2
(2s1 − 1)n1
(2s1 + 1)n1+1

(2s2 − 1)n2
(2s2 + 1)n2+1

. (7)

By using the conformal mapping

(z1, z2) = (T (s1), T (s2)), (s1, s2) = (T
−1(z1), T

−1(z2)) (8)

with

z = T (s) =
2s− 1
2s+ 1

, s = T−1(z) =
1 + z

2(1 − z) . (9)

we obtain (5) from (7).

We can now summarize the algorithm. By (5), the Laplace transform f̂ enables us to obtain

the Laguerre generating function. We then invert the generating function to obtain the Laguerre

coefficients qn,n2 . The Laguerre coefficients plus the Laguerre functions `n in (3) enable us to

compute the desired function values f(t1, t2) via (2).

The bivariate Laguerre series representation was considered by Sumita and Kijima [10], but

they did not present an algorithm for computing the Laguerre coefficients qn1,n2 from the Laplace

transform, which is the major contribution of this paper.

Formula (2) implies that the mathematical basis for the inversion algorithm is the theory of

orthogonal polynomials. The product Laguerre functions ln1(t1)ln2(t2) form an orthonormal basis

for the Hilbert space L2(
� 2
+ ,

�
) of square integrable real-valued functions on

� 2
+ , with the inner

product

〈f1, f2〉 ≡
∫

∞

0

∫

∞

0
f1(t1, t2)f2(t1, t2)dt1dt2 , (10)

so that (2) is valid in the sense of convergence in L2(
� 2 ,

�
) for any f in L2(

� 2
+ ,

�
) with

qn1,n2 =

∫

∞

0

∫

∞

0
f(t1, t2)ln1(t1)ln2(t2)dt1dt2 ; (11)

see Rudin [14] and Szëgo [16]. If q
(i)
n1,n2 are the Laguerre coefficients associated with fi, then the

inner product can be expressed as

〈f1, f2〉 =
∞
∑

n1=0

∞
∑

n2=0

q(1)n1,n2q
(2)
n1,n2 . (12)

and the squared L2 norm as

||f ||22 = 〈f, f〉 =
∞
∑

n1=0

∞
∑

n2=0

q2n1,n2 <∞ . (13)

Modifications of the Laguerre-series representation also hold for a large class of non-square

integrable functions by virtue of scaling; see Section 5. The Laguerre series representation also

extends directly to complex-valued functions.

3

3. Calculating the Laguerre Functions

In order to calculate f(t1, t2) via the Laguerre-series representation in (2), we need to calculate

the Laguerre functions `n(t) and the Laguerre coefficients qn,n2 . We indicate how to calculate `n(t)

in this section and qn,n2 in the next section.

The Laguerre functions ln1(t1) and ln2(t2) are computed just as in the one-dimensional case.

Specifically, the following recursion is used:

ln(t) =

(

2n− 1− t
n

)

ln−1(t)−
(

n− 1
n

)

ln−2(t) , (14)

starting with l0(t) = e
−t/2 and l1(t) = (1− t)e−t/2.

A requirement for directly obtaining an effective algorithm using (2) is that the summands

qn1,n2ln1(t1)ln2(t2) must decay fast as either n1 gets large or n2 gets large. (Note that it is not

enough to have fast decay only when both n1 and n2 get large.) As noted in Section 3 of [1],

|ln(t)| ≤ 1 for all n and t, but ln(t) approaches 0 slowly in an oscillating manner as n→∞, i.e.,

ln(t) =
1√

π(nt)1/4
cos(2

√
nt− (π/4)) as n→∞ . (15)

Thus, it is crucial to have the Laguerre coefficients qn,n2 well behaved. We discuss their calculation

next.

4. The Algorithm to Compute the Laguerre Coefficients

Since the decay of ln(t) with n is very slow, in order to have an effective algorithm, qn1,n2 must

decay fast as either n1 gets large or n2 gets large. However, in many cases qn1,n2 obtained from

Q(z1, z2) in (5) may not actually decay fast with both n1 and n2. This difficulty is addressed in

Section 5. In some cases the slow convergence may be handled by appropriately scaling Q(z1, z2).

In other cases a summation acceleration technique applied to the double infinite sum (2) greatly

improves the accuracy. A combination of scaling and summation acceleration should handle most

of these problems.

Computation of qn1,n2 requires the double inversion of the bivariate generating function Q(z1, z2)

given in (5). This we do by applying the Fourier-series based inversion algorithm in Section 3 of

[4].

4

4.1. The Fourier-Series Algorithm

Through a slight modification of equation (3.5) in [4], we get the approximation

qn1,n2 ≈ q̄n1,n2 ≡
1

m1r
n1
1

{Re[Q̂(r1, n2)] + (−1)n1Re[Q̂(−r1, n2)]}

+

(m1/2)−1
∑

k=1

Re[exp(−2πikn1/m1)Q̂(r1e2πik/m1 , n2)] , (16)

where i =
√
−1,

Q̂(z1, n2) =
1

m2r
n2
2

(m2/2)−1
∑

k=−m2/2

exp(−2πikn2/m2)Q(z1, r2e2πik/m2) (17)

and the resulting aliasing error is given by

ea ≡ q̃n,n2 − qn,n2 =
∞
∑

j=0

∞
∑

k=0

qn1+jm1,n2+km2r
jm1
1 rkm22 .

j+k>0 (18)

If |qn1+jm1,n2+km2 | ≤ C for each j, k combination appearing in (18) and if we choose r1 =
10−A1/m1 and r2 = 10

−A2/m2 , then it can be shown that the aliasing error is bounded by

|ea| ≤
C(10−A1 + 10−A2)

(1− 10−A1)(1− 10−A2) ≈ C(10
−A1 + 10−A2) . (19)

the aliasing error may be effectively controlled by choosing A1 and A2 large, provided that C is not

large. Typically, A1 = 11 and A2 = 13 are sufficient for good accuracy.

In [4] we chose m1 = 2l1n1 and m2 = 2l2n2, where `i is a roundoff error control parameter. (To

be consistent with [4], we keep the same notation; these are not the Laguerre functions `n(t) in

(3).) The roundoff error may be reduced by increasing the parameters l1 and l2. Typically, l2 = 2

and l1 = 1 or 2 are sufficient for good accuracy. The above choice with mj changing with nj for

j = 1 and 2, is appropriate if we need inversion at only a few points. However, in the current

context, qn1,n2 has to be computed for all n1, n2 in the range 0 ≤ n1 ≤ N1−1 and 0 ≤ n2 ≤ N2−1,
i.e., at a total of N1N2 points, where N1 and N2 have to be sufficiently large so that accurate

evaluation of the double infinite sum in (2) is possible using qn1,n2 only in the above range, using

either truncation or a summation acceleration technique to be described in Section 5.

In the current context, we obtain a better algorithm by fixing m1 and m2, i.e., by making mi

independent of ni. Specifically, we choose m1 = 2l1N1 and m2 = 2l2N2 for all n1, n2 in the range

0 ≤ n1 ≤ N1 − 1 and 0 ≤ n2 ≤ N2 − 1. At first sight, this choice might seem inefficient, since by

5

looking at (16) and (17), we see that with mj = 2ljnj, the total number of summations performed

is
N1−1
∑

n1=1

N2−1
∑

n2=1

2l2n2(l1n1 + 1) ≈
l1l2N

2
1N
2
2

2
for large N1, N2 .

By contrast, the number of summations performed with the choice mj = 2ljNj is

N1−1
∑

n1=1

N2−1
∑

n2=1

2l2N2(l1N1 + 1) ≈ 2l1l2N21N22 for large N1, N2 ,

which is 4 times as much as in the first case. A similar difference exists in the number of multiplica-

tions as well. However, the main computational advantage comes from the fact that, with constant

m1 and m2, Q(z1, z2) needs to be computed at the same set of points for all choices of n1, n2.

If we compute the Q(z1, z2) values once and store them for later use, then great computational

saving results. Specifically, with the choice mj = 2ljnj, the number of times Q(z1, z2) needs to be

computed is
N1−1
∑

n1=1

N2−1
∑

n2=1

2l2n2(l1n1 + 1) '
l1l2N

2
1N
2
2

2
.

By contrast, with constant m1 and m2, the number of times Q(z1, z2) needs to be computed

is 2l2N2(l1N1 + 1) ≈ 2l1l2N1N2. This is a substantial savings for large N1 and N2. However, we
also need a storage of 2l1l2N1N2 complex quantities. With today’s computers, this is usually not

a problem, even with N1 = N2 = 128 and l1 = l2 = 2.

Besides the great savings in the computation of Q(z1, z2), further savings comes from an efficient

(2l1N1 × 2l2N2)-term bivariate FFT implementation for evaluating the double sum given by (16)
and (17), which we describe later. It is well known (see, e.g., Oppenheim & Schaffer [13]) that the

computational complexity of such an algorithm is about 4l1l2N1N2 log2(2l1N1) log2(2l2N2), which

for large N1 and N2, will be substantially less than the computational complexity of the mj = 2njlj

algorithm, given by l1l2N
2
1N
2
2 /2. However, the FFT implementation increases the required storage

further to 4l1l2N1N2. We summarize the performance of the proposed FFT-based algorithm for

computing qn1,n2 and compare it to the algorithm from [4] in Table 1.

6

performance measure algorithm in [4] the new FFT-based algorithm

number of times Q(z1, z2)

needs to be ≈ l1l2N
2
1N

2
2

2
≈ 2l1l2N1N2

computed

computational complexity

of other computations ≈ l1l2N
2
1N

2
2

2
≈ 4l1l2N1N2 log(2l1N1) log(2l2n2)

storage none ≈ 4l1N1l2N2

Table 1. A comparison of the FFT-based algorithm and the direct Fourier-series algorithm from

[4] for calculating the Laguerre coefficients qn1,n2 from Q(z1, z2).

An interesting point to note is that in the algorithm in [4] qn1,n2 is not computable if either

n1 = 0 or n2 = 0, so that we have to use other techniques in those cases. However, with mj = 2ljNj

no such alternate algorithm is needed when one or both nj’s are 0.

4.2. Error analysis of the new algorithm

The basic equations (16)–(19) still hold with the understanding that mj = 2ljNj instead of

2ljnj for j = 1 and 2. In the aliasing error expression (19), note that qn1,n2 appears only for either

n1 > N1 or n2 > N2. However, qn1,n2 has to be small when either n1 > N1 or n2 > N2 in order

for us to be able to compute the double infinite sum in (2) with only N1 and N2 terms for the two

indices. This implies that the quantity C in (20) should be small and the aliasing error will be

controlled pretty tightly. In fact, the C in the new algorithm will typically be much smaller than

the C in the algorithm in [3] and this is another minor advantage of the new algorithm.

Next, let’s turn to the roundoff error. Define l′j =
mj
2nj
= lj

Nj
nj
> lj . For the new algorithm,

the parameter l′j will control the roundoff error. Since l
′

j > lj, the new algorithm should have less

roundoff error than the algorithm in [4]. Of course, the absolute roundoff error is lower bounded

by the machine precision.

4.3. The FFT-Based Algorithm

For efficient FFT implementation, we assume that N1, l1,m1, N2, l2 and m2 are all nonnegative

powers of 2, with mi = 2`iNi as before. For example, we may choose N1 = 128, l1 = 1, N2 = 64,

7

l2 = 2. This would give m1 = m2 = 256. At first rewrite (16) and (17) as follows:

q̄n1,n2 =
1

m1r
n1
1

m1−1
∑

k=0

exp(−2πikn1/m1)Q̂(r1e2πik/m1 , n2) (20)

Q̂(z1, n2) =
1

m2r
n2
2

m2−1
∑

k=0

exp(−2πikn2/m2)Q(z1, r2e2πik/m2) . (21)

Now define the (m1 ×m2) dimensional sequences {an1,n2} and {bn1,n2} as follows, allowing n1
to range from 0 to m1 − 1 and n2 to range from 0 to m2 − 1:

an1,n2 = q̄n1,n2r
n1
1 r
n2
2 (22)

bn1,n2 = Q(r1e
2πin1/m1 , r2e

2πin2/m2) . (23)

Note that an1,n2 and q̄n1,n2 are only defined in the range 0 ≤ n1 ≤ N1 − 1, 0 ≤ n2 ≤ N2 − 1. We
extend the definition over the bigger range 0 ≤ n1 ≤ m1−1, 0 ≤ n2 ≤ m2−1 by the inverse discrete
Fourier transform (IDFT) relation

an1,n2 =
1

m1m2

m1−1
∑

j=0

m2−1
∑

k=0

exp

(

−2πijn1
m1

− 2πikn2
m2

)

bj,k , (24)

which follows from (20) and (21).

Equation (24) implies that {bn1,n2} is the two-dimensional DFT of {an1,n2} and conversely
{an1,n2} is the two-dimensional IDFT of {bn1,n2}. We at first compute {bn1,n2} using (24) and store
them. Next we compute an1,n2 using any standard two-dimensional FFT algorithm. Specifically we

used iterative one-dimensional “decimation in frequency” algorithms as in Oppenheim & Schafer

[8], which take the form

an1,n2 =
1

m1

m1−1
∑

j=0

exp(−2πijn1/m1)Cj,n2 (25)

Cj,n2 =
1

m2

m2−1
∑

k=0

exp(−2πikn2/m2)bj,k . (26)

Once the an1,n2 are obtained, q̄n1,n2 are obtained using equation (22).

Remark 4.1. It is interesting to compare our algorithm to a more naive direct FFT-based approach

in which it is assumed that qn1,n2 = 0 for n1 ≥ N1 or n2 ≥ N2. Then qn1,n2 would be a finite length
sequence and its DFT will be given by {Q(e2πin1/N1 , e2πin2/N2) : 0 ≤ n1 ≤ N1−1, 0 ≤ n2 ≤ N2−1}.
The desired Laguerre coefficients qn1,n2 could be recovered from this sequence by a two-dimensional

(N1 × N2)-term FFT computation. This is equivalent to our algorithm with r1 = r2 = 1 and
m1 = N1,m2 = N2. If qn1,n2 were indeed 0 for n1 ≥ N1 or n2 ≥ N2, then this procedure would

8

be correct. Indeed, it would also be faster than our algorithm, since it works on a smaller array.

However, if qn1,n2 does not vanish whenever either n1 ≥ N1 or n2 ≥ N2, then large aliasing errors
would be introduced. In contrast, our algorithm is effective even if |qn1,n2 | > 0 for n1 ≥ N1 or
n2 ≥ N2. (We only need it to be an O(1) quantity, which is a much milder requirement, since
we explicitly control the aliasing error using r1, r2 < 1 and then also control the roundoff error by

requiring (n1/N1) = 2l1 ≥ 2 and (m2/N2) = 2l2 ≥ 2.)

4.4. Accurate Computation of Very Small Laguerre Coefficients

In [1] we noted for the one-dimensional case that, if we need to compute f(t) for large t, then it

is important to compute the Laguerre coefficients qn accurately even when |qn| is small and below
the machine precision (say 10−14). We showed in [1] that it is possible to do that if qn has an

asymptotic decay rate that is geometric or faster. (For slower than geometric decay rates, this

problem is typically not present since |qn| is unlikely to get very small unless n is very large.) Here
we extend the same procedure to two dimensions.

The basic approach is to invert the scaled generating function Q̂(z1, z2) = Q(α1z1, α2z2) with

inverse function q̂n1,n2 , which remains large compared to machine precision even for large n1 and

n2, and hence may be computed accurately. Next the original sequence is recovered as

qn1,n2 = q̂n1,n2α
−n1
1 α−n22 . (27)

In [1], the scale parameter α was dynamically determined based on the recent-most computations

of qn, but in order to apply our new FFT-based algorithm we have to use static α1 and α2 in the

current context. From (27) it is clear that a good static choice for α1 and α2 would be the inverses

of the asymptotic geometric decay rates of qn1,n2 with respect to n1 and n2, respectively. For this

purpose, define the one-dimensional generating functions

Q̄(z1, n2) =
∞
∑

n1=0

qn1,n2z
n1
1 (28)

Q̂(n1, z2) =
∞
∑

n2=0

qn1,n2z
n2
2 . (29)

The generating functions Q̄(z1, n2) and Q̂(n1, z2) may be obtained by one-dimensional inversion of

Q(z1, z2). Let Q̄(1, n2) and Q̂(n1, 1) have geometric decay rates as follows:

Q̄(1, n2) = a2β
n2
2 + o(β

n2
2) as n2 →∞ (30)

Q̂(n1, 1) = a1β
n1
1 + o(β

n1
1) as n1 →∞ . (31)

9

We suggest using α1 = 1/β1 and α2 = 1/β2 as static scale factors. These decay rates can be found

using inversion, as in Choudhury and Lucantoni [3]. For further discussion of scaling to compute

very small function values, see Choudhury and Whitt [7].

5. Scaling and Summation Acceleration

If qn1,n2 does not decay fast with both n1 and n2, then often it is possible to speed up convergence

by working with the scaled function

h(t1, t2) ≡ h(t1, t2; b1, b2, σ1, σ2) = e−(σ1t1+σ2t2)f(t1/b1, t2/b2) (32)

for positive real numbers b1, b2, σ1 and σ2. Clearly, h has Laplace transform

ĥ(s1, s2; b1, b2, σ1, σ2) = b1b2f̂((s1 + σ1)b1, (s2 + σ2)b2) . (33)

If we can calculate h by numerically inverting ĥ, then we can recover f from h by setting

f(t1, t2) = e
σ1b1t+σ2b2th(b1t1, b2t2; b1, b2, σ1, σ2) (34)

The Laguerre generating function associated with h is

Qh(z1, z2) = b1b2f̂

(

b1(1 + z1)

2(1− z1)
+ b1σ1 ,

b2(1 + z2)

2(1 − z2)
+ b2σ2

)

/(1 − z1)(1 − z2) . (35)

Hence, if q
(h)
n1,n2 are the coefficients of Qh(z1, z2) in (35), then we calculate f by

f(t1, t2) = e
σ1b1t1+σ2b2t2

∞
∑

n1=0

∞
∑

n2=0

q(h)n1n2 ln1(b1t1)ln2(b2t2) (36)

for lni in (3).

The reason for scaling is to ensure faster convergence of q
(h)
n1,n2 with n1 and/or n2 compared to

qn1,n2 . One example is when f̂(s1, s2) has a singularity either at s1 = 0 or at s2 = 0. From (5) it is

clear that that will cause a singularity of Q(z1, z2) at either z1 = −1 or at z2 = −1 and cause slow
convergence of qn1,n2 with either n1 or n2. However, from (36) it is clear that by choosing σ1 > 0

or σ2 > 0 the corresponding singularity will be moved outside of the unit circle, resulting in faster

convergence of q
(h)
n1,n2 with both n1 and n2.

A major application of two-dimensional inversion is the computation of time-dependent proba-

bilities. In that setting usually the probabilities would not go to zero as time approaches infinity. If

t1 represents time, then f̂(s1, s2) would have singularity at s1 = 0, Q(z1, z2) would have singularity

10

at z1 = −1, causing slow convergence of qn1,n2 with n1, but q
(h)
n1,n2 would have fast convergence with

σ1 > 0.

Unfortunately, however, the scale factors do not solve all problems of slow convergence. Specif-

ically, similarly to what was shown in [1], if f̂(s1, s2) has a singularity either at s1 = −∞ or at
s2 = −∞, then that would cause a singularity of Q(z1, z2) either at z1 = +1 or at z2 = +1 (as
is clear from (5)). However, unlike the previous case, it is clear from (36) that whatever finite

σ1, σ2, b1, b2 we might use, Qh(z1, z2) would still have a singularity at z1 = +1 or z2 = +1.

If scaling alone cannot speed up convergence, then a second technique is to use a summation

acceleration technique instead of pure truncation. For that purpose, we first rewrite (37) as

f(t1, t2) = e
σ1b1t1

∞
∑

n1=0

q̄n(n1, t2)ln1(b1t1) (37)

q̄n(n1, t2) = e
σ2b2t2

∞
∑

n2=0

q(h)n1n2ln2(b2t2) . (38)

Note that (38) and (39) are in the form of one-dimensional Laguerre-series representations. So, just

as in [1], we can apply Wynn’s ε-algorithm to one or both equations (38) and (39); see Section 4 of

[1]. The ε-algorithm is defined by the recursion

εnk+1 = ε
n+1
k−1 + (ε

n+1
k − εnk)−1 , (39)

where εn
−1 = 0 and ε

n
0 = sn, where sn is the n

th partial sum in (38) or (39); see Wynn [20], [21]

or p. 138 of Wimp [19]. The final approximation is εn2m. The ε-algorithm is particularly suitable

if qn1,n2 has a slower than geometric decay rate with n1 or n2. Indeed, as in [1], a combination of

scaling and ε-algorithm can often remarkably improve accuracy.

Finally, if qn1,n2 does have a geometric decay rate with n1 or n2, then, as pointed out in [1], it

is usually possible to attain better accuracy than with the ε-algorithm by assuming pure geometric

decay beyond the point of truncation and using closed-form Laguerre-series sums of pure geometric

functions. The technique in two dimensions is similar to that in one dimension in [1] and so is not

repeated here.

6. Queueing Examples

As in Section 6.3 of Choudhury, Lucantoni and Whitt [4], we illustrate our multidimensional

inversion algorithm by calculating the complementary cumulative distribution function (ccdf, i.e.,

the probability of the interval (t,∞)) of the time-dependent workload (or virtual waiting time) in

11

an M/G/1 queue. Let the arrival rate be λ and the service-time cdf be H(t) with Laplace-Stieltjes

transform

ĥ(s) =

∫

∞

0
e−stdH(t) . (40)

Let there be i0 customers in the system at time 0 and let the customer in service be just beginning

service at time 0.

Let W (t) be the workload at time t. Then f(t1, t2) = P (W (t1) > t2) and its Laplace transform

is

f̂(s1, s2) =
1

s2

[

1

s1
− ĥ(s2)

i0 − s2P̂i00(s1)
s1 − s2 + λ− λĥ(s2)

]

, (41)

where

P̂i0,0(s) =
Ĝ(s)i0

s+ λ− λĜ(s)
(42)

and

Ĝ(s) = ĥ(s+ λ− λĜ(s)) . (43)

Note that Ĝ(s) is the Laplace-Stieltjes transform of the busy-period cdf, while P̂i0,0(s) is the Laplace

transform of the emptiness function Pi0,0(t); i.e., Pi0,0(t) is the probability that the system is empty

at time t given that it started out with i0 customers at time 0.

Usually the most time consuming part of the algorithm is the calculation of Ĝ(s), which is done

recursively [2]. However, note that Ĝ(s) is needed only for 2l1N1 distinct values. If we compute

these values once and store them for later use, then great computational savings are obtained.

Note that the function f(t1, t2) decays to 0 as t2 →∞ for each fixed t1, but not as t1 →∞ for
each fixed t2. Hence it is important to use the scaling σ1 > 0, but the scaling variable σ2 needs to

be positive only for certain service-time distributions.

Example 6.1. We first consider an exponential service-time distribution with mean 1, so that

ĥ(s) = (1 + s)−1. We also let λ = 0.7 and i0 = 1. Since the traffic intensity is ρ = λ = 0.7 < 1, the

model is stable, so that P (W (t1) > t2) converges to a proper steady-state ccdf as t1 →∞. For our
computations with the Laguerre algorithm, we use the scaling parameters σ1 = 0.2, σ2 = 0, and

b1 = b2 = 1. For this example, we use N1 = 64 and N2 = 32 with simple truncation in equation

(39) and the third-order epsilon algorithm in equation (38).

We compare the Laguerre algorithm with exact results for f(t1, t2) for several argument pairs

(t1, t2) in Table 1. The exact results were obtained in three different ways. For t1 = 0, the exact

results were obtained by noting that the workload is just the service time of the single initial

12

customer having an exponential distribution, i.e.,

f(0, t2) = P (W (0) > t2) = e
−t2 . (44)

For t1 > 0 and t2 = 0, the exact results were obtained by inverting the one-dimensional transform

P̂10(s) of the emptiness function; i.e.,

f(t1, 0) = P (W (t1) > 0) = 1− P10(t1) . (45)

Finally, for t1 > 0 nd t2 > 0, the exact results were obtained by inverting the two-dimensional

transform f̂(s1, s2) using the two-dimensional Fourier-series method [4]. As in [4], for each appli-

cation of the Fourier-series method, different values of the roundoff control parameters (l1, l2) were

used to provide an accuracy check.

Laguerre algorithm
t1 t2 exact σ1 = 0.2, σ2 = 0, b1 = b2 = 1

0 0 1.0000000 1.0000000
0 5 6.7379470D-03 6.7379470D-03
0 10 4.5399930D-05 4.5399774D-05
5 0 6.1864223D-01 6.1864223D-01
5 5 6.1113935D-02 6.1113935D-02
5 10 4.1009696D-03 4.1009696D-03
10 0 6.5395600D-01 6.5395600D-01
10 5 9.1511168D-02 9.1511168D-02
10 10 9.7185771D-03 9.7185771D-03

Table 2. A comparison of the Laguerre algorithm with exact results for the workload ccdf in the

transient M/M/1 queue with ρ = 0.7 in Example 6.1.

Since the results in Table 1 are very accurate, we see that there is no need for large N1 or N2.

We did use the epsilon algorithm in the time dimension, but we observed that accuracy suffers only

slightly without it. However, the accuracy suffers greatly if we set σ1 = 0, since qn1,n2 decays very

slowly with n1 in that case.

For this example with 9 points, the Laguerre algorithm took only 3 seconds on a SUN worksta-

tion and was already faster than the Fourier-series method. Furthermore, when we increased the

number of points to 100, the Laguerre method still took only about 5 seconds while the computa-

tion time of the Fourier-series method went up by a factor of 10. We also tried the algorithm in [4]

13

unchanged for computing qn1,n2 and it took several minutes of computation time.

Example 6.2 Here we consider an unstable (in the queueing sense) case of the previous example

by changing λ to 2.0 while keeping the service time exponentially distributed with mean 1. We use

the same initial conditions as before, with i0 = 1. Also we increase the upper limits of t1, t2. The

results are shown in Table 3. The Laguerre method again produced highly accurate results with

the same parameter settings and essentially the same computation time.

Laguerre algorithm
t1 t2 exact σ1 = 0.2, σ2 = 0, b1 = b2 = 1

0 0 1.0000000 1.000000
0 20 2.0611536D-09 1.9103449D-09
10 0 9.9436312D-01 9.9436312D-01
10 20 9.2662196D-02 9.2662196D-02
10 40 1.5626542D-04 1.5626546D-04
20 0 9.9954627D-01 9.9954622D-01
20 20 5.4237295D-01 5.4237295D-01
20 20 2.6159632D-02 2.6159632D-02

Table 3. A comparison of the Laguerre algorithm with exact results for the workload ccdf in the

transient M/M/1 queue with ρ = 2.0 in Example 6.2.

Example 6.3. Now we change the service-time distribution to a gamma distribution with mean

1 and squared coefficient of variation 2. The accuracy immediately suffered, because in this case

f̂(s1, s2) has a singularity at s2 = −∞; see [1] for a detailed explanation. To improve accuracy, we
increase both N1 and N2 by factors of 2 (which increased computation time by about 5 to 6 times)

used the epsilon algorithm in both dimensions and increased b2 to 5. All these steps improved

accuracy to a level that should be satisfactory for most applications, but the final accuracy is still

less than that of Example 6.1, as can be seen from Table 4.

Laguerre algorithm
t1 t2 exact σ1 = 0.2, σ2 = 0, b1 = 1, b2 = 5

0 0 1.0000000D0 0 0.9696784D0
0 5 2.5347319D-02 2.5347463D-02
0 10 1.5654023D-03 1.5656101D-03
5 0 5.8817561D-01 5.8123322D-01
5 5 1.0482486D-01 1.0482486D-01
5 10 1.7541753D-02 1.7541750D-02
10 0 6.2735311D-01 6.2729503D-01
10 5 1.4833812D-01 1.4833806D-01
10 10 3.2697995D-02 3.2697984D-02

14

Table 4. A comparison of the Laguerre algorithm with exact results for the workload ccdf in the

transient M/G/1 queue having a gamma service-time distribution with mean 1 and SCV 2 and

arrival rate ρ = 0.7 in Example 6.3.

Remark 6.1. It appears that if the transform does not have a singularity at si = −∞ for i = 1
or 2, then the Laguerre method with our efficient 2-dimensional FFT-based implementation would

clearly be the method of choice. Otherwise, the Fourier-series method, which is more robust, would

be preferable. In case the transform is badly behaved, instead of trying to fix the Laguerre method,

as we do in Example 6.3, a better approach might be to change the transform. In Example 6.3, if

we replace the gamma service-time distribution by a distribution with a rational Laplace transform

that matches the first several moments (e.g., the H2 distribution can match the first 3 moments),

then the Laguerre method would behave just as well as in Example 6.1.

7. Summary of the Algorithm

As with the one-dimensional algorithm in Section 10 of [1], we conclude this paper by sum-

marizing the algorithm. We describe the FFT variant, using the enhancements described in Sec-

tions 4.1–4.3. Since the further refinements here parallel those in [1], we refer to Section 10 of [1]

for a summary of further refinements.

Basic FFT-Based Algorithm

Step 1: Compute and store the approximate Laguerre coefficients q̄n1,n2 for 0 ≤ n1 ≤ N1 − 1 and
0 ≤ n2 ≤ N2 − 1. First, for i = 1, 2 specify the parameter Ni as powers of 2, e.g., N1 = N2 = 128.
Then specify the roundoff-error-control parameters `i (also as powers of 2), e.g., `1 = 1 and `2 = 2.

Then let mi = 2`iNi. Choose the parameters Ai to control the aliasing error in (18) and (19),

e.g., A1 = 11 and A2 = 13. Then let ri = 10
−Ai/mi for i = 1, 2. Successively compute and store

{bn1,n2}, {an1,n2} and {q̄n1,n2} via (23), (25)–(26) and (22), where Q(z1, z2) is obtained from the
given Laplace transform f̂(s1, s2) via (5). (The FFT is used in (25)–(26).)

Step 2: Compute and store the Laguerre function values `n(t) for 0 ≤ n ≤ max{N1 − 1, N2 − 1}
for each required t. It is convenient to let the set of argument pairs (t1, t2) be a product set T × T .
Then `n(t) is needed for each t ∈ T . For each t, the recursion (14) is used.
Step 3: Compute the desired function values f(t1, t2) from (2).

Step 4: Make an accuracy check. To verify accuracy, repeat the computation with a different pair

of roundoff-error-control parameters (`1, `2); e.g., if (`1, `2) was (1,2), then repeat the calculation

15

with (`1, `2) = (2, 2).

16

References

[1] J. Abate, G. L. Choudhury and W. Whitt, On the Laguerre method for numerically inverting

Laplace transforms, INFORMS J. on Computing, to appear.

[2] J. Abate and W. Whitt, “Solving probability transform functional equations for numerical

inversion,” Oper. Res. Letters 12, 275–281 (1992).

[3] G. L. Choudhury and D. M. Lucantoni, Numerical computation of the moments of a probability

distribution from its transform, Operations Res., 44, 368–381 (1996).

[4] G. L. Choudhury, D. M. Lucantoni and W. Whitt, Multidimensional transform inversion with

applications to the transient M/G/1 queue, Ann. Appl. Prob. 4, 719–740 (1994).

[5] G. L. Choudhury, D. M. Lucantoni and W. Whitt, Numerical solution of Mt/Gt/1 queues,

Oper. Res., to appear.

[6] G. L. Choudhury and W. Whitt, Computing distributions and moments in polling models by

numerical transform inversion, Perf. Eval., to appear.

[7] G. L. Choudhury and W. Whitt, Probabilistic scaling for the numerical inversion of non-

probability transforms, submitted.

[8] V. A. Ditkin and A. P. Prudnikov, Operational Calculus in Two Variables and Its Applications,

second ed., Academic, New York, 1962.

[9] B. S. Garbow, G. Giunta, J. N. Lyness and A. Murli, “Software for an implementation of

Weeks’ method for the inverse Laplace transform problem,” ACM Trans. Math. Software 14,

163–170 (1988).

[10] B. S. Garbow, G. Giunta, J. N. Lyness and A. Murli, “Algorithm 662: A FORTRAN software

package for numerical inversion of the Laplace transform based on Weeks’ method,” ACM

Trans. Math. Software 14, 171–176 (1988).

[11] M. V. Moorthy, Inversion of the multi-dimensional Laplace transform – expansion by Laguerre

series, Z. angew. Math. Phys. 46, 793–806 (1995).

[12] M. V. Moorthy, Numerical inversion of two-dimensional Laplace transforms – Fourier series

representation, Applied Numerical Mathematics 17, 119–127 (1995).

17

[13] A. V. Oppenheim and R. W. Schafer, Digital Signal Processing, Prentice-Hall, Englewood

Cliff, NJ, 1975.

[14] W. Rudin, Real and Complex Analysis, McGraw-Hill, New York, 1966.

[15] U. Sumita and M. Kijima, “The bivariate Laguerre transform and its applications: numerical

exploration of bivariate processes,” Adv. Appl. Prob. 17, 683–708 (1985).

[16] G. Szegö, Orthogonal Polynomials, 4th ed., American Math. Soc. Colloq. Pub. 23, 1975.

[17] B. Van der Pol and H. Bremmer, Operational Calculus, Cambridge University Press, 1955

(reprinted in 1987 by Chelsea Press, New York).

[18] W. T. Weeks, “Numerical inversion of Laplace transforms using Laguerre functions,” J. ACM

13, 419–426 (1966).

[19] J. Wimp, Sequence Transformations and Their Applications, Academic, New York, 1981.

[20] P. Wynn, “On a device for computing the em(Sn) transformation,” Math. Tables Aids Comput.

10, 91–96 (1956).

[21] P. Wynn, “On the convergence and stability of the epsilon algorithm,” SIAM J. Numer. Anal.

3, 91–122 (1966).

18

