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ABSTRACT

Traffic measurements from communication networks have shown that network
traffic is quite complex, exhibiting phenomena such as long-tail probability
distributions, long-range dependence and self similarity. Thus, in order to de-
sign and control new communication networks, we are motivated to consider
new source traffic models and new ways to analyze network performance when
there are many independent sources each with traffic that can be described
by such models. We present a candidate source traffic model: The required
bandwidth (arrival rate) as a function of time for each source is represented
as the sum of two stochastic processes: (1) a macroscopic (longer-time-scale)
level process and (2) a microscopic (shorter-time-scale) within-level variation
process. We let the level process be a finite-state semi-Markov process (SMP),
allowing general (possibly long-tail) level holding-time distributions, and we
let the within-level variation process be a zero-mean piecewise-stationary pro-
cess. An important special case is the traditional on-off traffic model, where
the on and off times are allowed to have long-tail probability distributions.
(Then there is no within-level variation process.) To cope with the added
model complexity, we suggest making design and control decisions based on
the likelihood that aggregate demand (the input rate from a set of sources) will
exceed capacity (the maximum possible output rate), using a specification of
the sources and their source traffic models to predict demand. This approach
to model analysis avoids the customary queueing detail (focus on buffer content



and overflow). The presence of substantial variation in a long time scale sug-
gests that the current network state can be very useful for predicting network
behavior over shorter time scales. Thus we propose using transient analysis
for control, conditioning on the level and elapsed level holding time of each
source. In doing so, we exploit asymptotics associated with multiplexing a
large number of sources. A conditional law of large numbers supports approx-
imating the future aggregate demand conditional on current state information
by its conditional mean value. The conditional aggregate mean can be ex-
pressed compactly in terms of its Laplace transform and efficiently calculated
by numerical transform inversion. When level holding times are long relative
to the times of interest for control, we propose a single-transition approxima-
tion that can be computed without numerical transform inversion.

Key Words: source traffic model, admission control, congestion control,
overload control, transient analysis, deterministic fluid approximation, long-
tail distributions, Laplace transforms, numerical transform inversion, statisti-
cal multiplexing, value of information

1. Introduction

It is a pleasure to participate in this special issue honoring Marcel Neuts.
One of the highlights of Marcel’s very productive career is his systematic study
of markov chains of GI/M/1 and M/G/1 type, which is well set forth in Neuts
[29]. These structured Markov chains are generalizations of the embedded
Markov chains in the classical GI/M/1 and M/G/1 queueing models. These
structured Markov chains allow us to model queues with very complex traffic
(arrival and service processes) and yet still be able to compute the performance
measures of interest. They take us well beyond the basic Poisson modeling
found in elementary textbooks.
The need for more flexible performance models is supported by recent traffic

measurements in communication networks. The traffic measurements have
shown that network traffic is quite complex, exhibiting phenomena such as
long-tail probability distributions, long-range dependence and self-similarity;
e.g., see Cáceres, Danzig, Jamin and Mitzel [6], Leland, Taqqu, Willinger, and
Wilson [25], Paxson and Floyd [30], Crovella and Bestavros [11] and Feldmann
[15].
Even with the greatly improved modeling and analysis capabilities provided



by structured Markov chains, we are faced with a serious problem in developing
source traffic models that can be both realistically fit to data and successfully
analyzed.
In this paper, we attempt to address this problem in two ways: First, we

propose a specific traffic source model and, second, we propose ways to ana-
lyze systems with many independent sources each represented by this model
(allowing different parameters for different sources). In order to capture im-
portant traffic features, we allow the model to be relatively complex; e.g., we
allow periods of high demand in each source to have long durations; i.e., these
periods may have long-tail (also known as heavy-tail or fat-tail) distributions
such as the Pareto distribution. Such long-tail distributions are known to
cause self-similarity in aggregate traffic; see Willinger, Taqqu, Sherman and
Wilson [34].
On the other hand, to achieve the required analyzability with this added

model complexity, we propose a simplified kind of analysis. In particular, we
avoid the customary queueing detail (focus on buffer content and overflow) and
instead focus only on the probability that aggregate demand (the input rate
from a collection of sources) exceeds capacity (the maximum possible output
rate) at any time. That is, we propose an offered-load or infinite-capacity
approximation; see Duffield and Whitt [12], Jennings, Mandelbaum, Massey
and Whitt [23] and Leung, Massey and Whitt [26] for related work in this
direction. (This approach also can generate approximations describing loss
and delay with finite capacity; e.g., see [23] and Section 5 of [12].)
A key to being able to analyze the full system with sources represented

by our general source traffic model is exploiting asymptotics associated with
multiplexing a large number of sources. The ever-increasing network band-
width implies that more and more sources will be able to be multiplexed. As
the scale increases, describing the detailed behavior of all sources becomes pro-
hibitively difficult, but fortunately it becomes easier to describe the aggregate,
because the large numbers produce statistical regularity. As the size increases,
the aggregate demand can be well described by laws of large numbers, cen-
tral limit theorems and large deviation principles. In particular, our principal
approximation in this paper is to approximate the aggregate demand by its
mean; that step is justified by the law of large numbers.
We have in mind two problems: First, we want to do capacity planning

and, second, we want to do real-time connection admission control and conges-
tion control. The present paper is devoted to the second problem. However,
in both cases, we want to determine whether any candidate capacity is ade-



quate to meet the aggregate demand associated with a set of sources. In both
cases, we represent the aggregate demand simply as the sum of the bandwidth
requirements of all sources. In forming this sum, we regard the bandwidth
processes of the different sources as probabilistically independent.
The performance analysis for capacity planning is coarser, involving a

longer time scale. Hence, for capacity planning we propose a steady-state anal-
ysis. When we consider connection admission control and congestion control,
we suggest focusing on a shorter time scale. We are still concerned with the
relatively long time scale of connections, or the times between scene changes in
video, instead of the shorter time scales of cells or bursts, but admission con-
trol and congestion control are sufficiently short-term that we propose focusing
on the transient behavior of the aggregate demand process.
To a large extent, the transient analysis for control that we propose is also

supported by the structure revealed by the traffic measurements. The presence
of long-range dependence and long-tail holding-time distributions tends to in-
crease the opportunity to exploit the demand history to predict the demand
in the not-to-distant future. For example, for an exponentially distributed
lifetime in progress, knowledge of the elapsed lifetime does not help predict
the remaining lifetime, by the lack-of-memory property of the exponential dis-
tribution. In contrast, for a long-tail lifetime distribution such as the Pareto
distribution, a long elapsed lifetime is a very strong indication of a long re-
maining lifetime. Our approach using transient analysis is designed to exploit
this property.
In fact, even for capacity planning, the transient analysis plays an impor-

tant role. The transient analysis determines how long it takes to recover from
rare congestion events, as we discussed in our previous paper [12]. If the recov-
ery time from overload is relatively long, then we may elect to provide extra
capacity (or reduce demand) so that overload becomes less likely. In this paper
we only discuss transient analysis for control, but in a companion paper [13]
we discuss transient as well as steady-state analyses with the source model
introduced here for capacity planning.
The specific model we propose has two components. For each source, the

required bandwidth (input rate) as a function of time {B(t) : t ≥ 0} is repre-
sented as the sum of two stochastic processes: (1) a macroscopic (longer-time-
scale) level process {L(t) : t ≥ 0} and (2) a microscopic (shorter-time-scale)
within-level variation process {W (t) : t ≥ 0}, i.e.,

B(t) = L(t) +W (t) , t ≥ 0 . (1.1)

These processes are continuous-time processes, and thus are (general) stochas-



tic fluid models, giving a flow rate at each time t. We let the macroscopic level
process {L(t) : t ≥ 0} be a semi-Markov process (SMP) as in Chapter 10 of
Çinlar [10] or Chapter 9 of Heyman and Sobel [22]; i.e., the level process is
constant except for jumps, with the jump transitions governed by a Markov
process, while the level holding times (times between jumps) are allowed to
have general distributions depending on the originating level and the next
level. Given a transition from level j to level k, the holding time in level j
has cumulative distribution function (cdf) Fjk. Conditional on the sequence
of successive levels, the holding times are mutually independent. To be con-
sistent with traffic measurements, we allow the holding-time cdf’s Fjk to have
long tails.
We assume that the within-level variation process {W (t) : t ≥ 0} is a

zero-mean piecewise-stationary process. During each holding-time interval in
a level, the within-level variation process is an independent segment of a zero-
mean stationary process, with the distribution of each segment being allowed
to depend on the level. We allow the distribution of the stationary process
segment to depend on the level, because it is natural for the variation about
any level to vary from level to level. As a concrete example, the within-level
variation process segments could be chosen to be segments from independent
stationary Ornstein-Uhlenbeck (O-U) diffusion processes. Then the two O-U
parameters (drift and diffusion parameters) for each segment can be a function
of the level. Alternatively, the stationary segments could be increments of
fractional Brownian motion. In choosing within-level processes for our model,
we do not necessarily require that the nonnegativity B(t) ≥ 0 hold. However,
we only exploit a limited partial characterization of the within-level variation
process. Fortunately, it turns out that the fine structure of the within-level
variation process plays no role in our analysis. Indeed, that is one of our main
conclusions.
Our purpose in this paper is to show how this source model can be used

to determine the likelihood that aggregate demand will exceed capacity at
future times, so that network control can be performed. We intend to discuss
the important problem of model fitting in a subsequent paper. Nevertheless, it
seems worthwhile to briefly consider how the level process might be fit to data.
One way to fit the level process to data exploits a window length w ≡ w(L)
and a threshold τ ≡ τ(L) for each level (both positive numbers). Assume that
we start in some level L0. We then look at the observed (empirical) input rates
over successive windows (i.e., the number of arrivals divided by the window
length). The successive windows could be jumping windows ((k − 1)w, kw]



for positive integers k) or sliding windows ((t, t + w] for positive real t). We
construct the level process sample path by staying in the initial level until the
first time the observed input rate differs from the initial level by more than
the threshold τ(L0). At that time the level is made equal to this new average
input rate falling outside the interval [L0−τ(L0), L0+τ(L0)]. And we proceed
from there recursively.
The specified construction shows how the level process {L(t) : t ≥ 0} can

be fit to data, i.e., a sample path of {B(t) : t ≥ 0}. Then the within-level
variation process can be defined by taking (1.1) as the definition. Of course,
with this empirical construction, there is no guarantee that the within-level
variation process will have either mean zero or the required stationarity. The
additional properties are approximations in the spirit of the construction. As
a refinement to the construction above, we can redefine the level between
transitions as the average rate there. Then the within-level process will have
zero mean.
In fact, in several examples of processes which we envisage modeling by

these methods, there will only be the level process. First, the level process
may be some smoothed functional of a raw bandwidth process. This is the
case with algorithms for smoothing stored video by converting into piecewise
constant rate segments in some optimal manner subject to buffering and delay
constraints; see Salehi, Zhang, Kurose and Towsley [32]. With such smoothing,
the input rate will directly be a level process as we have defined it. Alterna-
tively, the level process may stem from rate reservation over the period between
level-shifts, rather than the bandwidth actually used. This would be the case
for Renegotiated Constant Bit Rate (RCBR) of Grossglauser, Keshav and Tse
[21]. In this situation we act as if the reservation level is the actual demand,
and thus again have a level process.
Thus, an important special case of our model is the level process alone, and

much of our analysis is focused only on the level process. An important special
case of the level process is the two-valued on-off process, which has positive
rate in one level and zero rate in the other. When the off times are relatively
long compared to on times, superpositions of independent and identically dis-
tributed (i.i.d.) on-off sources are well approximated by the M/G/∞ model,
which we analyzed in our previous paper [12]. The holding-time distributions
in the M/G/∞ model is an average of the on-time distributions; the Poisson
arrival rate λ is chosen to make the offered loads match; e.g., if m1 and m2 are
the mean off and on times for each of n homogeneous sources, then the offered
loads in the two models are λm2 and nm2/(m1+m2). It is well known that as



n→∞ with the total offered load held fixed that the M/G/∞ approximation
is asymptotically correct. Hence in [12] we already analyzed an important
special case of the model introduced here.
Our level process model is also a generalization of Markov-modulated fluid

models such as in Anick, Mitra and Sondhi [4], Elwalid and Mitra [14] and
Roberts [31]. First, the multi-level level process here can apply to individual
sources, not just the aggregate. Second, in the level process here we allow the
level holding-time distribution to be non-exponential. Traffic measurements
indicate that the level holding-time distributions should often be far from
exponential. Moreover, as shown in Section 8 of [12], when the level holding-
time distribution has a long-tail, we are able to strongly exploit the age of the
level holding times for prediction.
The remainder of this paper is devoted to showing how to do transient

analysis with the source traffic model. As in our previous paper [12], we
suggest focusing on the future time-dependent mean conditional on the present
state. The present state of each level process consists of the level and age
(elapsed holding time in that level). Because of the anticipated large number
of sources, the actual bandwidth process should be closely approximated by
its mean, by the law of large numbers (LLN). As in [12], the conditional mean
can be thought of as a deterministic fluid approximation; e.g., see Chen and
Mandelbaum [7]. Since the within-level variation process has mean zero, the
within-level variation process has no effect upon this conditional mean. Hence,
the conditional mean of the aggregate bandwidth process is just the sum of
the conditional means of the component level processes.
Unlike the more elementary M/G/∞model considered in [12], however, the

conditional mean here is not available in closed form. Nevertheless, we show
that the Laplace transform of the conditional mean aggregate demand can be
expressed concisely, so that the conditional mean itself can be very efficiently
computed by numerically inverting its Laplace transform; see Section 3. To
carry out the inversion, we use the Fourier-series method in Abate and Whitt
[1, 2] (the algorithm Euler exploiting Euler summation), but other alternative
methods could be used, such as the Gaver-Stehfest and Post-Widder algo-
rithms reviewed in [1] or the Laguerre-series method in [3]. The inversion
of the conditional mean here is remarkably tractable, being analogous to the
inversion of the Laplace transforms of the time-dependent mean of reflected
Brownian motion and the renewal function (with respect to time), discussed
in Sections 10 and 13 of [1].
With our approach, we are able to treat much much larger models than



we can for queueing models. For example the inversion algorithms to compute
steady-state and transient distributions in the BMAP/G/1 queue in Choud-
hury, Lucantoni and Whitt [8] and Lucantoni, Choudhury and Whitt [27] are
effective for only about 100 environment states in the batch Markovian ar-
rival process (BMAP). That restriction permits 100 homogeneous (one class)
Markovian on-off sources or 10 each of two classes of homogeneous Marko-
vian on-off sources. In contrast, here we can easily treat 1000 heterogeneous
non-Markovian on-off sources.
Indeed, we can avoid the inversion entirely and treat much larger models

if we can assume that the level holding times are relatively long compared
to the times of interest for control. Under that condition, we can apply a
single-transition approximation, which amounts to assuming that the Markov
chain is absorbing after one transition. Then the conditional mean is directly
expressible in terms of the level holding-time distributions; see Section 4. Sim-
plified inversion algorithms can also be developed by considering only a few
transitions.
When multiple transitions are relevant, the numerical inversion remains a

viable alternative. An essential initial step in the transform inversion, though,
is obtaining the Laplace transform of the conditional residual level holding
times in each state given the age for each source. Unfortunately, in general, it
is not straightforward to compute the Laplace transform of a conditional distri-
bution given the Laplace transform of a unconditional distribution. Moreover,
the Laplace transform of the unconditional distribution is unknown for some
unconditional distributions of interest, such as the Weibull distribution. Nev-
ertheless, we obtain practical solutions to these problems. First, we exploit the
fact that many classes of distributions satisfy a closure property with respect
to conditioning on the age. A conditional phase-type distribution of order m,
obtained by conditioning a phase-type distribution of order m upon its age is
again a phase-type distribution of order m; see p. 45 of Neuts [28]. Similarly,
conditional hyperexponential, Pareto, uniform and deterministic distributions
are of the same form. Second, we can obtain suitable Laplace transforms for
distributions such as the Weibull and Pareto distributions by approximating
these distributions by distributions for which Laplace transforms are avail-
able. For the Weibull, Pareto and other decreasing-failure-rate (DFR) distri-
butions, we can use hyperexponential distributions using the fitting algorithm
in Feldmann and Whitt [16], which was shown there to yield remarkably good
fits. For more general phase-type distributions, we can use the expectation-
maximization (EM) algorithm, as in Asmussen, Nerman and Olsson [5] and



Turin [33]. Since long-tail distributions tend to have few finite moments, fit-
ting by moment matching as in Johnson and Taaffe [24] tends to be ineffective
in this context.

2. Transient Analysis for Control

The key idea for control is to observe the system state and exploit it to
predict the future demand. In the context of our source model, the relevant
system state is the level and elapsed level holding time in that level for each
source. We assume that we do not observe and, thus do not use, the state of
the within-level variation process. Since the within-level variation process is
intended to capture “higher frequency” variations, it is natural to neglect it in
predicting the future (assuming the future time of interest is suitably distant,
roughly in the time scale of the level-process transitions). The elapsed level
holding time is very important to predict the remaining holding time when
the holding-time distribution is not nearly exponential. When the holding-
time distribution is decreasing failure rate (DFR) with a long tail, then a large
elapsed holding time means that a large remaining holding time is very likely;
see Section 6 below and Section 8 of [12].
Conditional on the specified state information, we can compute the proba-

bility that each source will be in each possible level at any time in the future,
from which we can calculate the conditional mean and variance of the ag-
gregate required bandwidth by adding. The Lindeberg-Feller central limit
theorem (CLT) for non-identically-distributed summands can be applied to
generate a normal approximation; see p. 262 of Feller [17]. There are technical
regularity conditions in the CLT, which we assume are satisfied. A sufficient
condition is for all the summands to be uniformly bounded and for the sum of
the variances to diverge as the number of sources increases; see Example (e)
on p. 264 of [17]. In practice, this extra condition cannot be directly verified
because it is on the asymptotic behavior as the number of sources increases,
while we only have finitely many sources in an application. Practically, it
suffices to check that the aggregate is not dominated by only a few sources.
To state the conditional CLT, let 0 represent current time. Let B(t) and

I(t) denote the aggregate required bandwidth and state information at time t,
respectively. Let (B(t)/I(0)) denote the random variable with the conditional
distribution of B(t) given the information I(0), here regarded as known and
deterministic. Let N(m, σ2) denote a normally distributed random variable
with mean m and variance σ2. Let⇒ denote convergence in distribution. The



conditional CLT states that, for fixed t > 0,

(B(t)|I(0))− E(B(t)|I(0))
√

Var(B(t)|I(0))
⇒ N(0, 1) (2.1)

as the number of sources gets large. As a corollary, we obtain the (weak) law
of large numbers (LLN) stating that

(B(t)|I(0))
E(B(t)|I(0)) ⇒ 1 (2.2)

as the number of sources gets large. The LLN can also be obtained under more
general conditions (without necessarily having the CLT); see Theorem 5.2.3
on p. 111 of Chung [9] for necessary and sufficient conditions.
Since the conditional mean alone tends to be very descriptive, we use the

LLN approximation
(B(t)|I(0)) ≈ E(B(t)|I(0)) . (2.3)

We will show that the conditional mean in (2.3) can be efficiently computed,
so that it can be used for real-time control. From (2.1), we see that the error
in the approximation (2.3) is approximately characterized by the conditional

standard deviation
√

Var(B(t)|I(0)). We also will show how to compute this
conditional standard deviation, although the required computation is more
difficult. If there are n sources that are roughly homogeneous, than the condi-
tional standard deviation will be O(

√
n), while the conditional mean is O(n).

We anticipate that the conditional standard deviation
√

Var(B(t)|I(0)) will
increase with t because Var(L(0)|I(0)) = 0, so that the accuracy of approxima-
tion (2.3) should decrease with t. For larger t, a convenient rough estimate of
the conditional variance Var(B(t)|I(0)) is the steady-state variance V in [13].
However, for the times relevant for control (involving relatively few transitions
in each level process), we anticipate that the conditional standard deviation
√

Var(B(t)|I(0)) will be substantially less than
√
V .

Given that our approximation is the conditional mean, and given that
our state information does not include the state of the within-level variation
process, the within-level variation process plays no role because it has zero
mean. Let i index the source. Since the required bandwidths need not have
integer values, we index the level by the integer j, 1 ≤ j ≤ Ji, and indicate
the associated required bandwidths in the level by bij. Hence, instead of (1.1),
the required bandwidth for source i can be expressed as

Bi(t) = biLi(t) +WLi(t)(t) , t ≥ 0 . (2.4)



Let P
(i)
jk (t|x) be the probability that the source-i level process is in level k at

time t given that at time 0 it was in level j and had been so for a period x (i.e.,
the age or elapsed level holding time at time 0 is x). If j ≡ (j1, . . . , jn) and
x ≡ (x1, . . . , xn) are the vectors of levels and ages of the n source level processes
at time 0, then the state information is I(0) = (j,x) = (j1, . . . , jn; x1, . . . , xn)
and the conditional aggregate mean is

E(B(t)|I(0)) ≡ M(t|j,x) =
n
∑

i=1

Ji
∑

ki=1

P
(i)
jiki
(t|xi)biki . (2.5)

From (2.5), we see that we need to compute the conditional distribution of

the level, i.e., the probabilities P
(i)
jk (t|x), for each source i. In this section we

show how to compute these conditional probabilities. By similar reasoning, it
is possible to describe the transition probabilities of the entire Markov process
(elapsed holding time plus level). To proceed, we consider a single source and
assume that its required bandwidth process is a semi-Markov process (SMP).
(We now have no within-level variation process.) We now omit the superscript
i. Let L(t) and B(t) be the level and required bandwidth, respectively, at time
t as in (2.4). The process {L(t) : t ≥ 0} is assumed to be an SMP, while the
process {B(t) : t ≥ 0} is a function of an SMP, i.e., B(t) = bL(t), where bj is
the required bandwidth in level j. If bj 6= bk for j 6= k, then {B(t) : t ≥ 0}
itself is an SMP, but if bj = bk for some j 6= k, then typically {B(t) : t ≥ 0} is
not an SMP.
Let A(t) be the age of the level holding time at time t. We are interested

in calculating the transition probabilities

Pjk(t|x) ≡ P (L(t) = k|L(0) = j, A(0) = x) (2.6)

as a function of j, k, x, and t. The state information at time 0 is the pair (j, x).
The transition probabilities in (2.6) can be calculated by standard conditioning
arguments. In analogy to delayed renewal processes, we are treating a delayed
SMP. The transition probabilities satisfy a Markov renewal equation that can
be solved explicitly in the transform domain. To express the result, let P be
the transition matrix of the DTMC governing level transitions and let Fjk(t)
be the holding-time cdf given that there is a transition from level j to level k.
For simplicity, we assume that F cjk(t) > 0 for all j, k, and t, so that all positive
x can be level holding times. Let P (t|x) be the matrix with elements Pjk(t|x)
and let P̂ (s|x) be the Laplace transform (LT) of P (t|x), i.e., the matrix with



elements that are the Laplace transforms of Pjk(t|x) with respect to time, i.e.,

P̂jk(s|x) =
∫

∞

0
e−stPjk(t|x)dt. (2.7)

We will derive an expression for P̂ (s|x). For this purpose, let Gj be the
holding-time cdf in level j, unconditional on the next level, i.e.,

Gj(x) =
∑

k

PjkFjk(x) . (2.8)

For any cdf G, let Gc be the complementary cdf, i.e. Gc(x) = 1−G(x). Also
let

Hjk(t|x) =
PjkFjk(t+ x)

Gcj(x)
and Gj(t|x) =

∑

k

Hjk(t|x) (2.9)

forGj in (2.8). Then let ĥjk(s|x) and ĝj(s|x) be the associated Laplace-Stieltjes
transforms (LSTs), i.e.,

ĥjk(s|x) =
∫

∞

0
e−stdHjk(t|x) and ĝj(s|x) =

∫

∞

0
e−stdGj(t|x) . (2.10)

Let ĥ(s|x) be the matrix with elements ĥjk(s|x). Let q̂(s) be the matrix with
elements Q̂jk(s), where

Qjk(t) = PjkFjk(t) and q̂jk(s) =
∫

∞

0
e−stdQjk(t) . (2.11)

Let D̂(s|x) be the diagonal matrix with diagonal elements

D̂jj(x|x) ≡ [1− ĝj(s|x)]/s (2.12)

Let D̂(s) be the diagonal matrix with diagonal elements

D̂jj(s) ≡ [1− ĝj(s)]/s , (2.13)

where ĝj(s) is the LST of the cdf Gj in (2.8).

Theorem 2.1 The transient probabilities for a single SMP source have the
matrix of Laplace transforms

P̂ (s|x) = D̂(s|x) + ĥ(s|x)P̂ (s|0) , (2.14)

where
P̂ (s|0) = (I − q̂(s))−1D̂(s). (2.15)



Proof. In the time domain, condition on the first transition. For j 6= k,

Pjk(t|x) =
∑

l

∫ t

0
dHjl(u|x)Plk(t− u|0) ,

so that
P̂jk(s|x) =

∑

l

ĥjl(s|x)P̂lk(s|0),

while

Pjj(t|x) = Gcj(t|x) +
∑

l

∫ t

0
dHjl(u|x)Plj(t− u|0) ,

so that

P̂jj(s|x) =
1− ĝj(s|x)

s
+
∑

l

hjl(s|x)P̂lj(s|0).

Hence, (2.14) holds. However, P (t|0) satisfies a Markov renewal equation, as
in Section 10.3 of Çinlar [10], i.e., for j 6= k,

Pjk(t|0) =
∑

l

∫ t

0
dQjl(u)Plk(t− u|0)

and
Pjj(t|0) = Gcj(t) +

∑

l

∫

∞

0
dQjl(u)Plj(t− u|0) ,

so that
P (t|0) = D(t) +Q(t) ∗ P (t|0)

where ∗ denotes convolution, and (2.15) holds.
Remark 2.1. Note that as x→ 0, D̂(s|x)→ D̂(s) and ĥ(s|x)→ q̂(s), so that
P̂ (s|x)→ P̂ (s|0) in (3.9) and (3.10), because

P̂ (s|x)→ D̂(s) + q̂(s)(1− q(s))−1D̂(s)
= D̂(s) + q̂(s)

∞
∑

n=0

q(s)nD̂(s)

= (I − q̂(s))−1D̂(s).

To compute the LT P̂ (s|0), we only need the LSTs f̂jk(s) and ĝj(s) as-
sociated with the basic holding-time cdf’s Fjk and Gj. However, to compute

P̂ (s|x), we also need to compute D̂(s|x) and ĥ(s|x), which require comput-
ing the LSTs of the conditional cdf’s Hjk(t|x) and Gj(t|x) in (2.9). We will



show how to compute these conditional LSTs for a large class of holding-time
distributions in Section 5.
If the number of levels is not too large, then it will not be difficult to

compute the required matrix inverse (I− q(s))−1 for all required s. Note that,
because of the probability structure, the inverse is well defined for all complex
s with Re(s) > 0. To illustrate with an important simple example, we next
give the explicit formula for an on-off source.
Example 2.1. Suppose that we have an on-off source, i.e., so that there are
two states with transition probabilities P12 = P21 = 1 and holding time cdf’s
G1 and G2. From (2.9) or by direct calculation,

P̂ (s|0) ≡
(

P̂11(s|0) P̂12(s|0)
P̂21(s|0) P̂22(s|0)

)

= (I − q̂(s))−1D̂(s)

=
1

s(1− ĝ1(s)ĝ2(s))

(

1− ĝ1(s) ĝ1(s)(1− ĝ2(s))
ĝ2(s)(1− ĝ1(s)) 1− ĝ2(s)

)

.

(2.16)

Suppose that the levels are labeled so that the initial level is 1. Note that
all transitions from level 1 are to level 2. Hence when considering the matrix
ĥ(s|x) in (2.10) it suffices to consider only the element ĥ12(s|x). Since

Hc12(t|x) = Gc1(t|x) =
Gc1(t + x)

Gc1(x)
, (2.17)

ĥ12(s|x) = ĝ1(s|x) =
∫

∞

0
e−stdG1(t|x) . (2.18)

Since P11(t|x) = 1 − P12(t|x), it suffices to calculate only P12(t|x). Hence, in
this context

P̂12(s|x) =
ĝ1(s|x)(1− ĝ2(s))
s(1− ĝ1(s)ĝ2(s))

. (2.19)

We now determine the mean, second moment, and variance of the band-
width process of a general multi-level source as a function of time. It is ele-
mentary that

mj(t|x) = E(B(t)|L(0) = j, A(0) = x) =
∑

k

Pjk(t|x)bk (2.20)

sj(t|x) = E(B(t)2|L(0) = j, A(0) = x) =
∑

k

Pjk(t|x)b2k (2.21)

vj(t|x) = Var(B(t)|L(0) = j, A(0) = x) = sj(t|x)−mj(t|x)2 . (2.22)



We can calculate mj(t|x) and sj(t|x) by a single inversion of their Laplace
transforms, using

m̂j(s|x) ≡
∫

∞

0
e−stmj(t|x)dt =

∑

k

Pjk(s|x)bk (2.23)

and
ŝj(s|x) =

∑

k

P̂jk(s|x)b2k. (2.24)

To properly account for the within-level variation process when it is present,
we should add its variance in level j, say wj(t, x), to vj(t, x), but we need make
no change to the mean Mj(t, x). We anticipate that wj(t, x) will be much less
than vj(t, x), so that wj(t, x) can be omitted, but it could be included.
Finally, we consider the aggregate bandwidth associated with n sources.

Again let a superscript i index the sources. The conditional aggregate mean
and variance are

M(t|j,x) ≡ E(B(t)|I(0)) =
n
∑

i=1

miji(t|xi) (2.25)

and

V (t|j,x) ≡ Var(B(t)|I(0)) =
n
∑

i=1

[viji(t|xi) + w
i
ji
(t, xi)] , (2.26)

where j = (j1, . . . , jn) is the vector of levels and x = (x1, . . . , xn) is the vector
of elapsed holding times for the n sources with the single-source means and
variances as in (2.20) and (2.22).
It is significant that we can calculate the conditional aggregate mean at

any time t by performing a single inversion. We summarize this elementary
but important consequence as a theorem.

Theorem 2.2 The Laplace transform of the n-source conditional mean aggre-
gate required bandwidth as a function of time is

M̂(s|j,x) ≡
∫

∞

0
e−stM(t|j,x)dt =

n
∑

i=1

Ji
∑

ki=1

P̂
(i)
jiki
(s|xi)bki , (2.27)

where the single-source transform P̂
(i)
jiki
(s|xi) is given in Theorem 2.1.

Unlike the aggregate mean, for the aggregate variance we evidently need to
perform n separate inversions to calculate viji(t|xi) for each i and then add to
calculate V (t|j,x) in (2.26). Hence, we suggest calculating only the conditional
mean on line for control, and occasionally calculating the conditional variance
off line to evaluate the accuracy of the conditional mean.



3. The One-Transition and Two-Transition Approxima-

tions

The most complicated part of the conditional aggregate mean transform
M̂(s|j,x) in (2.27) is the matrix inverse (I − q̂(s))−1 in the transform of the
single-source transition probability in (2.15). Since the matrix inverse calcu-
lation can be a computational burden when the number of levels is large, it is
natural to seek approximations which avoid this matrix inverse. We describe
such approximations in this section.
The matrix inverse (I − q(s))−1 is a compact representation for the series

∑

∞

n=0 q(s)
n. For P (t|x), it captures the possibility of any number of transitions

up to time t. However, if the levels are relatively long in the time scale relevant
for control, then the mean for times t of interest will only be significantly
affected by a very few transitions. Indeed, often only a single transition need
be considered, and that is the main approximation we propose here.
The single-transition approximation is obtained by making the Markov

chain absorbing after one transition. Hence, the single-transition approxima-
tion is simply

Pjk(t|x) ≈ Hjk(t|x) , j 6= k , (3.1)

and
Pjj(t|x) ≈ Gcj(t|x) +Hjj(t|x) (3.2)

for Hjk(t|x) in (2.9) and Gj(t|x) in (2.9). From (3.1) and (3.2) we see that no
inversion is needed.
Alternatively, we can develop a two-transition approximation. (Extensions

to higher numbers are straightforward.) Modifying the proof of Theorem 2.1
is a straightforward manner, we obtain

Pjk(t|x) =
∫ t

0
Gck(t− u)dHjk(u|x) +

∑

`

∫ t

0
P`kFlk(t− u)dHj`(u|x) (3.3)

for j 6= k and

Pjj(t|x) = Gcj(t|x) +
∑

`

∫ t

0
P`jFlj(t− u)dHj`(u|x) . (3.4)

Expressed in the form of transforms, (3.3) and (3.4) become

P̂jk(s|x) = ĥjk(s|x)
(1− ĝk(s))

s
+
∑

`

ĥj`(s|x)P`k
f̂lk(s)

s
(3.5)



for j 6= k and

P̂jj(s|x) =
1− ĝj(s|x)

s
+
∑

`

ĥj`(s|x)Plj
f̂lj(s)

s
. (3.6)

Numerical inversion can easily be applied with (3.5) and (3.6). However, since
the time-domain formulas (3.3) and (3.4) involve single convolution integrals,
numerical computation of (3.3) and (3.4) in the time domain is also a feasible
alternative. Moreover, if the underlying distributions have special structure,
then the integrals in (3.3) and (3.4) can be calculated analytically. For exam-
ple, analytical integration can easily be done when all holding-time distribu-
tions are hyperexponential.
Example 3.1. To illustrate how the two approximations compare to the
exact conditional mean, we give a numerical example. We consider a single
source with four levels. The transitions move cyclically through the levels:
P12 = P23 = P34 = P41 = 1. The level holding-time ccdf’s are:

Gc1(t) = 0.5e−10t + 0.5e−0.1t , Gc2(t) = e
−0.1t ,

Gc3(t) = 0.9e−2t + 0.1e−0.1t , Gc4(t) = e
−0.1t , t ≥ 0 .

The level bandwidths are b1 = b3 = 100 and b2 = b4 = 0. Suppose that
we start in level 1 with an age of 8. From the form of Gc1(t), we see that
the conditional level-1 holding-time ccdf Gc1(t|x) is then approximately e−0.1t.
Hence the first two mean level holding times are approximately 10. Hence we
might consider the one-transition and two-transition approximations in the
interval [0, 10]. The two approximations are compared to the exact value of
the conditional mean in Figure 1. (All are computed by numerical transform
inversion.) The approximations are very good up to t = 1 or 2, but they
start to degrade by t = 10. The two-transition approximation performs not
so well for larger t because the actual holding time in level 3 is likely to be
quite short. More generally, our experience is that the one-transition and two-
transition approximations tend to perform quite satisfactorily if the mean level
holding times in the first few levels are substantially larger than the times t
of interest. In this example the approximations are quite good in the interval
[0, 1].



Figure 1: A comparison of the one-transition and two-transition approxima-
tions with the exact conditional mean aggregate demand in Example 3.1.

4. Computing Laplace-Stieltjes Transforms of Level

Holding-Time Distributions

In order to apply numerical transform inversion to compute the transforms
P̂ (s|x) in Theorem 2.1 and M̂(s|j,x) in Theorem 2.2, or the two-transition
approximation in (3.5) and (3.6), we need to be able to calculate all component
transforms. This means that we need to be able to calculate the LSTs ĝj(s),

ĝj(s|x) and ĥjk(s|x).
Since some distributions do not have convenient LST’s, we suggest approx-

imating such distributions by distributions with convenient LSTs. For this
purpose, Feldmann and Whitt [16] present an algorithm for approximating
decreasing failure rate (DFR) distributions, including long-tail distributions
such as Weibull and Pareto distributions, by hyperexponential (Hk) distribu-
tions. More generally, the EM algorithm can be used to approximate arbitrary
distributions by a phase-type (PH) distribution, as in Asmussen, Nerman and
Olsson [5]. Since phase-type distributions are dense in the space of all probabil-
ity distributions, this should offer enough candidates. Previous algorithms for
fitting phase-type distributions by moment matching are described in John-
son and Taaffe [24] and references therein, but these algorithms tend to be
ineffective for long-tail distributions with few (e.g., 0 or 1) finite moments.
An Hk complementary cdf (ccdf) has the form

Gc(t) =
k
∑

i=1

pie
−λit, t ≥ 0. (4.1)

The associated Hk cdf G has LST

ĝ(s) ≡
∫

∞

0
e−stdG(t) =

k
∑

i=1

piλi/(λi + s) . (4.2)

Phase-type distributions are discussed in Chapter 2 of Neuts [28]. In the
notation there, a phase-type (PH ≡ PH(m)) distribution is characterized by



an m-dimensional vector α and an m×m matrix T . With that notation, the
ccdf is

Gc(t) = αeT tu , t ≥ 0, (4.3)

where u = (1, 1, . . . , 1)t. The LST of the associated cdf G is

ĝ(s) = αm+1 + α(sI − T )−1(−Tu) (4.4)

where αm+1 = 1− αu.
If we require that α be a probability vector, then the PH distribution

does not have the atom αm+1 at the origin. Then the PH distribution has a
probability density function (pdf) and thus will tend to cause no problems in
the numerical inversion algorithms (see [1]). An Hk distribution always has a
pdf (provided that we exclude λi =∞ from (4.1)).
It is significant that, when a holding-time cdf G is Hk or PH, the condi-

tional remaining holding-time cdf has the same form. Similar results hold for
the Pareto and uniform distributions. We state the result as a theorem, but
omit the elementary proof.

Theorem 4.1 (a) If G is Hk as in (4.1), then G(·|x) is Hk with

Gc(t|x) =
k
∑

i=1

pi(x)e
−λit , t ≥ 0 , (4.5)

where

pi(x) =
pie
−λix

∑k
j=1 pje

−λjx
, x ≥ 0 . (4.6)

(b) If G is PH as in (4.3), then G(·|x) is PH with

Gc(t|x) = α(x)eT tu, t ≥ 0, (4.7)

where

α(x) =
αeTx

αeTxu
, x ≥ 0 . (4.8)

(c) If G is Pareto of the form

Gc(t) = (1 + bt)−a , t ≥ 0 , (4.9)

for a > 0, then G(·|x) is Pareto with

Gc(t|x) = (1 + b(x)t)−a , t ≥ 0, (4.10)



where

b(x) =
b

1 + bx
. (4.11)

(d) If G is uniform on [a, b] with ccdf

Gc(t) =
b− t
b− a , a ≤ t ≤ b , (4.12)

then G( · |x) is uniform on [x, b] for a < x < b, i.e.,

Gc(t|x) = b− t
b− x , x ≤ t ≤ b . (4.13)

By parts (a) and (c), we could approximate a Pareto by anHk and condition
in either order. Since conditioning with respect to the age x with a Pareto
(a, b) distribution corresponds simply to a rescaling of time, this conditioning
applied to the approximating Hk ccdf in (4.5) would lead to

Gc(t|x) =
k
∑

i=1

pie
−λi(x)t , t ≥ 0 , (4.14)

where
λi(x) = λi/(1 + bx) , x ≥ 0 ; (4.15)

i.e., we would keep the Hk form but adjust the exponential rates λi instead of
the probability weights pi as in (4.5) and (4.6). For greater accuracy in the
approximation, it is usually better to condition first and then approximate.
However, when x is not too large and enough exponential components are
used, the order does not matter. This was confirmed using the H13 fit to the
Pareto (2,2, 0.83) in Section 6 of Feldmann and Whitt [16].

5. The Value of Information

We can use the source model to investigate the value of information. We
can consider how prediction is improved when we condition on, first, only the
level and, second, on both level and age. The reference case is the steady-state
mean

M =
n
∑

i=1

mi and mi =
∑

bijp
i
j , (5.1)



where pij is the steady-state probability, i.e., omitting the superscript i,

pj =
πijm(G

i
j)

∑

k π
i
km(G

i
k)
, (5.2)

with π the steady-state vector of the Markov chain P (π = πP ) and m(Gj)
the mean of Gj for Gj in (2.8). With the steady-state mean, there is no con-
ditioning. Section 2 gives the formula for conditioning on both level and age.
Now we give the formulas conditioning only on the level; i.e., we condition on
the level, assuming that we are in steady-state. Again we omit the superscript
i. Then the age in level j has the stationary-excess cdf

Gje(t) =
1

m(Gj)

∫ t

0
Gcj(u)du , t ≥ 0 . (5.3)

Let Pjk(t) be the probability of being in level k at time t conditional on

being in level j in steady state at time 0. Let P̂jk(s) be its Laplace transform.
Let mj(t) be the conditional steady-state mean given level j at time 0 and let
m̂j(s) be its Laplace transform: Clearly

mj(t) =
J
∑

k=1

Pjk(t)bk and m̂j(s) =
∑J
k=1 P̂jk(s)bk . (5.4)

Hence, it suffices to calculate P̂jk(s).

Theorem 5.1 Assume that the level-holding-time cdf depends only on the
originating level, i.e., Fjk(t) = Gj(t). The steady-state transition probabilities
conditional on the level for a single SMP source have the matrix of Laplace
transforms

P̂ (s) = D̂e(s) + ĝe(s)P̂ (s|0) , (5.5)

where P̂ (s|0) is the matrix in (2.15), ĝe(s) is the matrix with elements

ĝejk(s) = Pjkĝje(s) = Pjk
(1− ĝj(s))
sm(Gj)

, (5.6)

D̂e(s) is the diagonal matrix with diagonal elements

D̂ejj(s) ≡
1− ĝje(s)
s

=
sm(Gj)− 1 + ĝj(s)

s2m(Gj)
, (5.7)

ĝj(s) is the level-j holding-time LST and ĝje(s) is the LST of its stationary-
excess cdf in (5.3).



Proof. Modify the proof of Theorem 2.1, inserting PjlGje(t) for Hjl(t|x) and
Gcje(t) for G

c
j(t|x).

Example 5.1. Consider the on-off source in Example 2.1. Paralleling (2.19),
it suffices to calculate only P12(t). Its Laplace transform is

P̂12(s) =
ĝ1e(s)(1− ĝ2(s))
s(1− ĝ1(s)ĝ2(s))

. (5.8)

For a given time of interest, the importance of knowing the level increases
as the level holding times increase. For large holding times, steady state
will be approached relatively slowly, so that transient descriptions are more
useful. The importance of knowing the holding-time age as well as the level
is greater when the holding-time distribution is far from exponential. By the
lack of memory property of the exponential distribution, the age provides no
information when the holding-time distribution is exponential. Given that
we know the level but not the age, we act as if the age has the holding-time
stationary-excess distribution. Then the remaining holding-time cdf is the
average of the conditional holding-time cdf given an age x with respect to the
stationary-excess distribution:

∫

∞

0

(

Gj(t + x)

Gcj(x)

)

dGje(x) =
∫

∞

0

Gj(t + x)dx

m(Gj)
= Gje(t) . (5.9)

Hence, knowing the age is more important when the conditional cdf G(t|x)
varies significantly with x. If we know only the level, then we get an appro-
priate average.
Example 5.2. To show the value of knowing the age, consider an on-off source
with holding-time ccdf’s

Gc1(t) = 0.01e−0.01t + 0.1e−0.1t + .89e−t

Gc2(t) = e−t , t ≥ 0 .
Let the bandwidths be b1 = 100 and b2 = 0. Since m(G1) = 2.89 and m(G2) =
1.00, the steady-state mean is

EB(∞) = 100m(G1)

m(G1) +m(G2)
= 74.29 .

Let the initial level be 1. Since G1 has an exponential component with
mean 100, we anticipate the time to reach steady state to be between 100 and
1000. In Figure 2 we plot the conditional mean m1(t|x) for x = 0.5, 5.0 and
50.0, computed by numerical transform inversion. Figure 2 shows that the age
plays a very important role.



Figure 2: The conditional mean aggregate demand as a function of the age of
the holding time in level 1 for Example 5.2

6. Control

The source model makes it possible to investigate several different kinds of
controls. As in Sections 4 and 9 of [12], we can consider admitting new sources
or removing existing sources. We can also consider changing the levels of ex-
isting sources. For example, on-off sources in the on state might be turned off.
We also can consider rate controls corresponding to changing the bandwidths
assigned to the levels. With each of these controls, we can calculate the re-
sulting conditional mean aggregate bandwidth to evaluate the performance of
the control.
To illustrate, suppose that we wish to consider which of n candidate sources

to serve over the time interval [0, T ]. Suppose that source i earns a fixed
revenue Ri plus a revenue rate ri per unit of bandwidth per time. Also suppose
that we want to keep the demand (total input rate) below a capacity c at all
times. Then we can solve the following integer program. Let yi be the decision
variable, with yi = 1 if source i is served and yi = 0 if not. The integer program
can be formulated as:

max
n
∑

i=1

yi(Ri + ri

∫ T

0
miji(t|xi)dt) (6.1)

subject to
n
∑

i=1

yim
i
ji
(tk|xi) ≤ c , 0 ≤ k ≤ K , (6.2)

for a set of time points 0 = t0 < t1 < . . . < tK = T . In (6.1) and (6.2) the
level ji and age xi of source i are included because these are presumed to be
known.
Our approach here also provides an approach to admission control when

some sources book ahead; see Greenberg, Srikant and Whitt [19], Greenberg
and Wischik [20] and references therein. If we stipulate that book-ahead (BA)
customers specify their bandwidth requirements, then future capacity can be
adjusted for BA calls. In particular, the future capacity can be regarded as
a function C(t), t ≥ 0. We can then use the conditional mean to describe



the demand associated with previously admitted instantaneous-request (IR)
sources. We can then admit a new IR source if, after it has been admitted, the
conditional mean remains below C(t) for all t. Upon admission, each source
is represented by our source model with appropriate parameters. Unlike [19],
but like [20], the approach here allows us to treat heterogeneous IR sources.

7. Conclusions

We proposed a general source traffic model composed of a semi-Markov
level process and a zero-mean piecewise-stationary within-level variation pro-
cess. We approximated the aggregate demand from many sources by the con-
ditional aggregate mean given level values and ages. We justified this de-
terministic fluid approximation by applying the law of large numbers. It is
significant that the within-level variation process plays no role in this approx-
imation. We showed that the conditional mean can be effectively computed
using numerical transform inversion (Sections 2 and 4). When level holding
times are relatively long compared to the times of interest, we can further
approximate the conditional mean by looking at only one or two transitions,
which produces even more elementary approximations (Section 3). We showed
that the conditional standard deviation can be computed to evaluate the ac-
curacy of the conditional-mean approximation. We showed how the model
can be exploited to study the value of information (Section 5), and control
(Section 6).
Even though our approach is to focus on offered load, unaltered by loss

and delay associated with finite capacity, we can apply the conditional mean
approximation in Section 2 to develop an approximation to describe loss and
delay from a finite-capacity system, just as described in Section 5 of [12]. The
idea is to approximate the bandwidth stochastic process by the deterministic
conditional-mean process E(B(t)|I(0)), t ≥ 0, and then describe the loss and
delay associated with exceeding the capacity C. If there is no buffer, then the
amount of loss associated with the rare event of hitting a level above C would
be estimated by the integral of E(B(t)|I(0)) − C over the region before and
after t = 0 over which it is positive.
In the introduction we briefly discussed ways in which the source traffic

model might be fit to data. Experiments with fitting are natural next steps.
We believe that the source traffic model has the potential for realistically
representing traffic, but clearly care is needed in the fitting. On the other
hand, we hope that the performance predictions will be reasonably robust to



the fitting.
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