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Abstract

We consider a series of n single-server queues, each with unlimited waiting space and the

first-in first-out service discipline. Initially, the system is empty; then k customers are placed in

the first queue. The service times of all the customers at all the queues are i.i.d. with a general

distribution. We are interested in the time D(k, n) required for all k customers to complete

service from all n queues. In particular, we investigate the limiting behavior of D(k, n) as

n → ∞ and/or k → ∞. There is a duality implying that D(k, n) is distributed the same as

D(n , k) so that results for large n are equivalent to results for large k. A previous heavy-traffic

limit theorem implies that D(k, n) satisfies an invariance principle as n → ∞, converging after

normalization to a functional of k-dimensional Brownian motion. We use the subadditive ergodic

theorem and a strong approximation to describe the limiting behavior of D(k n , n) where

k n → ∞ as n → ∞. The case of k n = xn corresponds to a hydrodynamic limit.
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Key words and phrases. tandem queues, queues in series, queueing networks, departure process,
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1. Introduction and Summary

In this paper we consider a queueing model that could be used to represent the start-up

behavior of a long production line or the transient flow of messages over a long path in a

communication network. In particular, we consider a series of n single-server queues, each with

unlimited waiting space and the first-in first-out service discipline. Initially, the system is empty;

then k customers are placed in the first queue. The service times of all the customers at all the

queues are i.i.d. with a general distribution having mean 1 and finite positive variance σ2 . Let

D(k, n) be the departure time of customer k from queue n. Our object is to describe the

distribution of D(k, n) as n gets large. We may have k constant (independent of n) or

k ≡ k n → ∞ as n → ∞.

Our primary focus is on the early departures from a large number of queues. For example, the

customer index k n associated with n queues might be k, √ n or n. However, there is a duality

discussed in Section 2 that makes our results also applicable to a large number of departures from

relatively few queues. In particular, under our i.i.d. assumption for the service times,

{D(i , j) : 1 ≤ i ≤ k, 1 ≤ j ≤ n} =
d

{D( j , i) : 1 ≤ j ≤ n , 1 ≤ i ≤ k} , (1.1)

where =
d

denotes equality in distribution. In fact, the dual case with k > n seems to have more

applied relevance; many production lines periodically (e.g., daily) produce many items on

relatively small number of machines.

Since D( 1 , n) is just the sum of n service times,

[D( 1 , n) − n]/√ n = = > N( 0 , σ2 ) as n → ∞ , (1.2)

where = = > denotes convergence in distribution or weak convergence, as in Billingsley (1968),

and N(m , σ2 ) denotes a normal random variable with mean m and variance σ2 . The duality

mentioned above and a previous heavy-traffic limit theorem by Iglehart and Whitt (1970) imply
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that

[D(k, n) − n]/√ n = = > σD̂ k ( 1 ) as n → ∞ for each k , (1.3)

where D̂ k ( 1 ) is a functional of k-dimensional standard Brownian motion. It is significant that the

limit (1.3) depends on the service-time distribution only through its first two moments, and then

in only a relatively trivial way; i.e., the mean and variance only appear via elementary scaling.

Hence, the limit D̂ k ( 1 ) in (1.3) has wide applicability. Unfortunately, however, our analysis does

not provide much information about D̂ k ( 1 ). Hence, simulation has been applied by Greenberg,

Schlunk and Whitt (1990) to gain further insight.

To see how D(k, n) behaves when k and n are both large, we consider the limiting behavior

of D̂ k ( 1 ) in (1.3) as k → ∞. We apply the subadditive ergodic theorem as on p. 277 of

Liggett (1985) to show that

D̂ k ( 1 )/√ k = = > α as k → ∞ , (1.4)

α is a constant. In Greenberg et al. (1990) it is conjectured that α = 2.

From (1.3) and (1.4), we see that [D(k, n) − n]/√ nk approaches α in the iterated limit as

first n → ∞ and then k → ∞. We also show that this limit holds when k → ∞ and n → ∞

simultaneously. In particular, we establish a strong approximation result implying that

[D(k n , n) − n]/√ nk n = = > α as n → ∞ (1.5)

when

k n / n 1 − ε → x as n → ∞ , where 0 < x < ∞ , (1.6)

for any ε, 0 < ε < 1.

The essence of (1.6) is that k n → ∞ as n → ∞ but that k n be suitably less than n. In fact, we

establish a different limit when k n = xn, where x is the integer part of x. In particular, if the
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service-time distribution has an exponential tail, then

D(xn , n)/ n → γ(x) w. p. 1 as n → ∞ , (1.7)

where γ(x) is a deterministic function of x (with γ( 1 ) being different from α) that may depend on

the service-time distribution.

This paper was largely motivated by Srinivasan (1989), who applied results of Rost (1981),

Andjel (1982), Andjel and Kipnis (1984), Kipnis (1986), and Benassi and Fouque (1987) about

interacting particle systems (in particular, the zero-range process and the asymmetric simple

exclusion process) to describe the hydrodynamic limit for our model in the special case of

exponential service times (still with mean 1). Roughly speaking, the hydrodynamic limit says

that the average queue length among the first [xt] queues at time t is asymptotically almost surely

(a.s.) equal to ( 2 − √ x )/√ x as t → ∞. Consequently, the average queue length among queues

in the neighborhood of queue [xt] is asymptotically a.s. ( 1 − √ x )/√ x as t → ∞. (Note that the

total number of customers in the first xt queues is ( 2√ x − x) t + o(t); then differentiate with

respect to x. In the unsaturated case with external arrival process having rate λ < 1,

asymptotically a.s. the first ( 1 − λ)2 t queues reach equilibrium at time t as t → ∞, but the rest of

the density profile remains the same.)

It is easy to apply Srinivasan’s hydrodynamic limit in the saturated case (with i.i.d.

exponential service times having mean 1) to deduce that the departure time of customer xn

from queue n is asymptotically a.s. ( 1 + √ x )2 n + o(n); i.e., for exponential service times

γ(x) = ( 1 + √ x )2; see Section 6. Thus the departure times of customers 1 and n from queue n

are a.s. n + o(n) and 4n + o(n), respectively. To put this result in perspective, if customer n

only had to wait at the first queue (as would be the case if all queues after the first had infinitely

many servers), then the departure time for customer n from queue n would be a.s. 2n + o(n).

Hence, the additional delay experienced by customer n in the last n − 1 queues is approximately
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equal to his delay in the first queue plus the sum of his service times.

Our limit in (1.7) extends Srinivasan (1989) by establishing a hydrodynamic limit for general

service-time distributions. As suggested by the discussion above, limits for the average queue

length among the first xt queues at time t as t → ∞ are equivalent to limits for n − 1 D(xn , n)

as n → ∞, so (1.7) yields a hydrodynamic limit in the sense of Srinivasan (1989) for general

service-time distributions. With regard to the interacting particle system literature, our result is

interesting because the associated vector queue-length process depicting the number of customers

at each queue (including the one in service, if any) is not Markov here. We treat this case by

applying the subadditive ergodic theorem. However, we have not yet identified the limit γ(x) in

(1.7) for general service-time distributions.

We also complement Srinivasan (1989) by describing in more detail what happens at the front

of the ‘‘wave’’ of customers passing through the network. Of course, the first customer departs

from queue n at time n with a deviation of order √ n , as indicated in (1.2). The limit in (1.3)

reveals that the first k interdeparture times from queue n after the first departure are each

asymptotically of order √ n as n → ∞. Consequently, by the time customer k has reached queue

n for large n, customer k rarely has to wait.

The model we consider has no external arrival process, but the same model can be interpreted

as starting out empty with an external arrival process. Simply interpret the departure process

from the first queue as the external arrival process. Of course, the assumption that the service

times be all i.i.d. implies that the interarrival-time distribution must then be exactly the same as

each service-time distribution. However, this is not required for the limits (1.3) and (1.5). These

limits remain unchanged if the service-time distributions at an initial finite set of queues are

different. (The stated results cover this generalization.)

The rest of this paper is organized as follows. In Section 2 we review a convenient
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representation for the departure process that facilitates its study. In particular, we exploit the fact

that the departure time of customer k from queue n can be represented as the maximum partial

sum of service times along nondecreasing paths of length k + n − 1 in a k × n lattice of service

times. From this representation, the duality in (1.1) is immediate.

In Section 3 we establish (1.3) and in Section 4 we establish the strong approximation needed

for (1.5). In Section 5 we establish stochastic order relations among the interdeparture times,

which are of interest in their own right, but also help us describe the limit D̂ k ( 1 ) and establish

(1.7). In Section 6 we obtain our hydrodynamic limit, i.e., we establish (1.7). In Section 7 we

establish (1.4) and (1.5).

In Section 8 we consider a modification of the model in which each customer has the same

service time at all queues, as occurs in packet communication networks with variable packet

sizes; see Pinedo and Wolff (1982) and Wolff (1982). We see that quite different asymptotic

behavior occurs in this case. Finally, in Section 9 we make some concluding remarks.

We end this introduction by mentioning some additional references that provide background

or treat somewhat related problems: Chapter 6 of Disney and Kiessler (1987), Kelly (1982, 1984),

Suresh and Whitt (1990) and Vere-Jones (1968).

2. The Basic Recursion for the Departure Epochs

Let V(k, n) be the service time and D(k, n) the departure time for customer k at queue n.

Our starting point is a basic recursion for the departure times,

D(k, n) = max {D(k − 1 ) , n) , D(k, n − 1 ) } + V(k, n) (2.1)

for k ≥ 1 and n ≥ 1, with D(k, 0 ) = 0 for all k and D( 0 , n) = 0 for all n, which can be taken

as the definition. (At this point, we do not assume that the service times are i.i.d.)
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We can easily express D(k, n) more directly in terms of the service times. To do so, let

Π(k, n) be the set of all ‘‘nondecreasing continuous paths’’ of length k + n − 1 from (1,1) to

(k, n) in the set of ordered pairs 3 ≡ { (i , j) : 1 ≤ i ≤ k, 1 ≤ j ≤ n}; i.e., π ∈ Π(k, n) if π is a

subset of 3 of cardinality k + n − 1 containing (1,1) and either (i + 1 , j) or (i , j + 1 ), but not

both, whenever it contains (i , j). Since successive ordered pairs in any such path π increase in

the first component exactly k − 1 times, there are


 k − 1

k + n − 2



paths in Π(k, n).

From (2.1), we easily establish the following by induction.

Proposition 2.1. For all k ≥ 1 and n ≥ 1,

D(k, n) =
1 ≤ l ≤ n

max {D(k − 1 , l) +
j = l
Σ
n

V(k, j) } (2.2)

=
1 ≤ l ≤ k

max {D(l , n − 1 ) +
i = l
Σ
k

V(i , n) } (2.3)

=
π ∈ Π(k, n)

max {
(i, j) ∈ π

Σ V(i , j) } . (2.4)

Evidently Proposition 2.1 is quite well known; e.g., formulas (2.1) and (2.3) appear as (1), (2)

and (16) of Tembe and Wolff (1974). A variant of (2.4) for queues without extra waiting space

appears in Muth (1979). As Muth observes, (2.4) implies that the departure times D(k, n) are

unchanged if we reverse the order of the queues and the order of the service times at each queue.

Let superscripts index different models.

Corollary 1. If V 2 (i , j) = V 1 (k − i , n − j) for 1 ≤ i ≤ k, 1 ≤ j ≤ n, then

D 2 (k, n) = D 1 (k, n).

Formula (2.4) also implies a certain duality, i.e., symmetry in k and n. Let =
d

denote equality

in distribution.

Corollary 2. If {V 1 (i , j) : 1 ≤ i ≤ k, 1 ≤ j ≤ n} =
d

{V 2 ( j , i) : 1 ≤ i ≤ k, 1 ≤ j ≤ n}, then
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{D 1 (i , j) : 1 ≤ i ≤ k, 1 ≤ j ≤ n} =
d

{D 2 ( j , i) : 1 ≤ i ≤ k, 1 ≤ j ≤ n} .

As an immediate consequence of Corollary 2, we obtain the following result in the i.i.d.

setting which is of primary interest to us.

Corollary 3. If V(i , j), 1 ≤ i ≤ k, 1 ≤ j ≤ n, are i.i.d., then (1.1) holds.

Corollaries 2 and 3 can be used to obtain limit theorems as k → ∞ for fixed n from the limit

theorems we establish as n → ∞ for fixed k. Corollaries 2 and 3 also allow us to relate the

interdeparture times of primary interest to us to associated sojourn times. The k th interdeparture

time from queue n is

∆(k, n) = D(k + 1 , n) − D(k, n) (2.5)

with D( 0 , n) = 0, for k ≥ 0 and n ≥ 1. The sojourn time of customer k at queue n is

S(k, n) = D(k, n) − D(k, n − 1 ) . (2.6)

Corollary 4. Under the assumption of Corollary 3,

{∆(i , j) : 0 ≤ i ≤ k − 1 , 1 ≤ j ≤ n} =
d

S( j , i) : 1 ≤ j ≤ n , 1 ≤ i ≤ k } (2.7)

Remark. (2.1) The function mapping {V(i , j) : 1 ≤ i ≤ k, 1 ≤ j ≤ n} into

{D(i , j) : 1 ≤ i ≤ k, 1 ≤ j ≤ n} is obviously nondecreasing and convex, so that stochastic

order relations for service times carry over to departure times; see Stoyan (1983). The function is

also Lipschitz, i.e., for each path π



(i, j) ∈ π

Σ V 1 (i , j) −
(i, j) ∈ π

Σ V 2 (i , j)




≤
(i, j) ∈ π

Σ 
V 1 (i , j) − V 2 (i , j)

and

1 ≤ j ≤ n
1 ≤ i ≤ k

max





D 1 (i , j) − D 2 (i , j)





≤ (k + n − 1 )

1 ≤ j ≤ n
1 ≤ i ≤ k

max



V 1 (i , j) − V 2 (i , j)




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so that there is model stability; see Whitt (1974).

3. The Functional Central Limit Theorem

We now apply (2.2) to show that {D(k, n) } satisfies a functional central limit theorem

(FCLT) as n → ∞ when {V(k, n) } does. (We do not assume that {V(k, n) } is i.i.d. here.) For

this purpose, let D[ 0 , ∞) be the space of right-continuous real-valued functions on the interval

[ 0 , ∞) with limits from the left, endowed with the usual Skorohod (1956) J 1 topology; see Ethier

and Kurtz (1986) or Whitt (1980). Let D[ 0 , ∞) ∞ be the product space endowed with the product

topology.

Let V n and D n be random elements of D[ 0 , ∞) ∞ defined as follows:

V n = (V 1n , V 2n , . . .)

D n = (D 1n , D 2n , . . .)
(3.1)

V kn (t) = n − α 

j = 1
Σ
[nt]

V(k, j) − nt



, t ≥ 0 ,

D kn (t) = n − α (D(k, [nt] ) − nt) , t ≥ 0 ,

for α > 0.

Theorem 3.1. If V n = = > V̂ in D[ 0 , ∞) ∞ as n → ∞ where V̂ has continuous paths w.p.1, then

D n = = > D̂ in D[ 0 , ∞) ∞ as n → ∞, where D̂ = f (V̂) with f : D[ 0 , ∞) ∞ → D[ 0 , ∞) ∞ defined

by

f 1 (x) (t) = x 1 (t)

and

f k (x) (t) =
0 ≤ s ≤ t

sup { f k − 1 (s) + x k (t) − x k (s) } (3.2)

= x k (t) −
0 ≤ s ≤ t

inf {x k (s) − f k − 1 (s) }

for all k ≥ 2 and t ≥ 0.

Proof. First, from (2.2) and (3.1) it is immediate that D 1n = V 1n . Next,
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D kn (t) = n − α (D(k, [nt] − nt)

= n − α 

1 ≤ l ≤ [nt]

max { D(k − 1 , l) +
j = l
Σ
[nt]

V(k, j) } − nt




= n − α 

0 ≤ s ≤ t

sup { D(k − 1 , [ns] ) − ns +
j = [ns]
Σ
[nt]

V(k, j) − n(t − s) }




=
0 ≤ s ≤ t

sup { D k − 1 ,n (s) + V kn (t) − V kn (s) + n − α V(k, [ns] ) } .

However, since V kn = = > V̂ k where V̂ k has continuous paths,

0 ≤ s ≤ t
sup n − α V(k, [ns] ) = = > 0 in D[ 0 , ∞) ;

i.e., the maximum jump functional is continuous. Hence, by the convergence-together theorem

(Theorem 4.1 of Billingsley) and induction, (D 1n , . . . , D kn ) converges if

( f 1 (V n ) , . . . , f k (V n ) ) converges. However, it is easy to see (e.g., by Section 6 of Whitt (1980)

and induction) that ( f 1 , . . . , f k ) : D[ 0 , ∞) ∞ → D[ 0 , ∞) k is continuous for each k. Since we

are using the product topology, that implies that f itself is continuous. Hence, the desired

convergence holds by the continuous mapping theorem (Theorem 5.1 of Billingsley). .

Remark (3.1) By the duality in Corollaries 2-4 to Proposition 2.1, Theorem 3.1 can also be

regarded as a direct consequence of previous heavy-traffic limit theorems for the sojourn times of

the first nt customers at the first k queues; see Iglehart and Whitt (1970), Harrison (1973), and

Reiman (1984). For the sojourn times, the case we consider corresponds to having the traffic

intensity at queue i be ρ i = 1 for all i. As in previous heavy-traffic limit theorems, we could let

the service-time distributions change in the limit.

We can obtain a representation for the limit process D̂ in Theorem 3.1 paralleling the

representation of D(k, n) as the maximal partial sum of the service times over all paths in

Π(k, n) in (2.4). For this purpose let T k (t) be the set of nondecreasing (k + 1 )-tuples

(t 0 , t 1 , . . . , t k ) with t 0 = 0 and t k = t. The following is deduced from (3.2) by induction on k.
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Corollary. The limit process D̂ ≡ {D̂ k : k ≥ 1 } ≡ f (V̂) ≡ { f k (V̂ 1 , . . . , V̂ k ) : k ≥ 1} can be

represented as

D̂ k (t) = sup{
i = 1
Σ
k

[V̂ i (t i ) − V̂ i (t i − 1 ) ] : (t 0 , t 1 , . . . , t k ) ∈ T k (t) } (3.3)

for all k ≥ 1.

The standard case has normalization exponent α = 1/2 in (3.1) and service-time limit process

V̂ being Brownian motion (BM), i.e., a vector of independent one-dimensional BMs. The

resulting limit process ∆̂ for the interdeparture-time process is then an infinite-dimensional

reflected Brownian motion (RBM) on the infinite-dimensional orthant. Such infinite-dimensional

RBMs can be constructed by extending corresponding k-dimensional RBMs on the k-dimensional

orthant; see p. 83 of Neveu (1965). The k-dimensional RBMs in turn coincide with those

considered by Harrison (1978), Harrison and Reiman (1981a,b), Reiman (1984) and Harrison and

Williams (1987a,b).

Let B̂ = (B̂ 1 , B̂ 2 , . . .) be a standard BM on D[ 0 , ∞) ∞ , by which we mean a vector of

independent standard (drift 0, diffusion coefficient 1) BMs. To obtain the standard limiting case,

we assume that the service times are i.i.d. However, in order to cover the case of a general

external arrival process, we exclude finitely many queues in the condition.

Theorem 3.2. If there exists a finite m such that {V(k, n) : k ≥ 1, n ≥ m } is i.i.d. with

E V( 1 , m) = 1 and Var V( 1 , m) = σ2 < ∞, then the condition of Theorem 3.1 holds with

V̂ = σB̂ where B̂ is a standard BM. Then D̂ = σ f (B̂) for f in (3.2). The associated

interdeparture-time limit process ∆̂, defined by ∆̂ k = D̂ k + 1 − D̂ k , k ≥ 1, and ∆̂ 0 = D̂ 1 , can be

represented as
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∆̂ 0 = σB̂ 1 , Ŷ k = σB̂ k + 1 −
i = 0
Σ

k − 1
∆̂ i

∆̂ k (t) = Ŷ k (t) −
0≤s≤t
inf Ŷ k (s) ≡ Ŷ k (t) + Î k (t) , k ≥ 1 . (3.4)

Then [ (∆̂ 1 , . . . , ∆̂ k ), ( Î 1 , . . . , Î k ) ] are the unique pair of k-dimensional processes so that

∆̂ i (t) = Ŷ i (t) + Î i (t), ∆̂ i (t) ≥ 0, Î i (t) is nondecreasing with Î i ( 0 ) = 0 and

∫
0

t
1 {∆̂ i (s) ≠ 0} dÎ i (s) = 0

for 1 ≤ i ≤ k and t ≥ 0. Moreover, for each k, (∆̂ 1 , . . . , ∆̂ k ) is a k-dimensional RBM as in

Harrison and Reiman (1981a,b) generated by a zero-drift BM with covariance matrix Σ having

elements Σ ii = 2σ2 , 1 ≤ i ≤ k, Σ i,i + 1 = Σ i + 1 ,i = − σ2 , 1 ≤ i ≤ k − 1, and Σ i j = 0

otherwise, and reflection matrix R = I − Q, where Q i,i + 1 = 1 for 1 ≤ i ≤ k − 1 and Q i j = 0

otherwise.

Proof. By Theorems 3.2, 4.1 and 16.1 of Billingsley (1968), V n = = > σB̂. By induction,

f (σx) = σ f (x) for f in (3.2). Hence, D̂ = f (σB̂) = σ f (B̂). The representation (3.4) is an easy

consequence of (3.2). The characterization of the pair [ (∆̂ 1 , . . . , ∆̂ k ), ( Î 1 , . . . , Î k ) ] follows

from repeated application of the one-dimensional characterization of the reflection map on p. 19

of Harrison (1985) (sometimes called Skorohod’s lemma (1961)), and induction. The

characterization of (∆̂ 1 , . . . , ∆̂ k ) as an RBM follows by the arguments of Harrison (1978) and

Harrison and Reiman (1981a,b) or directly from those papers, after exploiting the duality in

Corollaries 2-4 of Proposition 2.1. The RBM structure is easy to see in this case of an acyclic

network by writing (3.4) in differential form. Then

d∆̂ 0 = dB̂ 1

d∆̂ k = dB̂ k + 1 −
i = 0
Σ

k − 1
d∆̂ i + dÎ k . (3.5)

By induction, (3.5) can be rewritten as
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d∆̂ 0 = dB̂ 1

d∆̂ 1 = dB̂ 2 − dB̂ 1 + dÎ 1

d∆̂ k = dB̂ k + 1 − dB̂ k − dÎ k − 1 + dÎ k , k ≥ 2 . (3.6)

This is the differential form for the RBM plus ∆ 0; i.e., from (3.6) we obtain Z = X + YR as in

Harrison and Reiman (1981a,b), where Z = (∆̂ 1 , . . . , ∆ k ), X is the BM with components

X i = B̂ i + 1 − B̂ i and Y = ( Î 1 , . . . , Î k ).

Remarks (3.2) Additional characterizations of the departure RBM such as the generator and a

generalized Itô’s formula follow from Harrison and Reiman (1981a,b). Since the BMs B̂ i in the

construction have zero drift, the departure RBM does not have a proper stationary distribution.

(3.3) We do not know much about the joint distribution of (∆̂ 1 ( 1 ) , . . . , ∆̂ k ( 1 ) ), but

simulation results appear in Grember, Schlunk and Whitt (1990). Since ∆̂ 1 = σB̂ 2 − σB̂ 1 ,

∆̂ 1 =
d

√ 2 σ B 1 . Hence, ∆̂ 1 ( 1 ) has a positive normal distribution with E[∆̂ 1 ( 1 ) ] = 2σ/√ π

and E[∆̂ 1 ( 1 )2 ] = 2σ2 . In Section 5 we show that ∆̂ k (t) is stochastically decreasing in k and

stochastically increasing in t.

4. The Strong Approximation

Under the assumptions of Theorem 3.2, we know that the interdeparture times of the k th

customer from the n th queue are asymptotically of order √ n as n → ∞ for any k. We now want

to say what happens if the customer index increases with n. For this purpose, we establish a

strong approximation result, drawing on Komlo ´s, Major and Tusna ́ dy (1975, 1976); see p. 107 of

Cso
..

rgo′ ′ and Re ́ ve ́ sz (1981). Strong approximations have been used previously and/or

concurrently to study queueing models by Cso
..

rgo′ ′, Deheuvels and Horvath (1987), Glynn and

Whitt (1991), Hanqin, Guanghui and Rongxin (1990) and Horvath (1990). These papers obtain

rates of convergence via the strong approximations. We also obtain rates of convergence, but our

motivation is different.
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We show that the error in the diffusion approximation in Theorem 3.2 is O(n (a − 1⁄2 ) log n)

when the largest customer index k is n a . We state the result below in an equivalent unnormalized

form; to obtain the stated bound, divide through by √ n .

Theorem 4.1. If, in addition to the assumption of Theorem 3.2, all service times are independent

and there exist positive constants K and λ such that P(V(k, j) > x) ≤ Ke − λx for all k, j and x,

then there exists a probability space supporting the departure times D(k, j) and the limit process

D̂ = σ f (B̂) such that, for any a > 0,

1 ≤ j ≤ n
1 ≤ k ≤ n a 

max {D(k, j) − j − √ n D̂ k ( j / n)} = O(n a logn) a. s.

Remarks. (4.1) Theorem 4.1 helps establish (1.5) under (1.6). To determine the order of

magnitude of D(k n , n) for k n = xn a  for 0 < a < 1, we have thus reduced the problem to

determining how D̂ k ( 1 ) behaves as k → ∞, which we discuss in Section 7.

(4.2) In Theorem 4.1 we focus on the departure times, but a corresponding result holds for the

interdeparture times ∆(k, n) in (2.5) by applying the triangle inequality. In particular, as an

immediate consequence of Theorem 4.1,

1 ≤ j ≤ n
1 ≤ k ≤ n a 

max {∆(k, j) − √ n [D̂ k + 1 ( j / n) − D̂ k ( j / n) ]} = O(n a logn) a. s. (4.1)

Theorem 4.1 is proved by combining Lemmas 4.4 and 4.5 below. Lemmas 4.1–4.3 below are

used to prove Lemma 4.4.

Lemma 4.1. If {U k : k ≥ 1 } is a sequence of independent random variables and there exist

positive constants K and λ such that P(U k > x) ≤ Ke − λx for all x > 0, then for any a > 0

1 ≤ k ≤ n a 
max { U k } = O( log n) a. s.

Proof. For any x n ,
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P 
1 ≤ k ≤ n a 

max { U k } > x n

 ≤ 1 − ( 1 − Ke − λxn ) n a

.

Hence, for x n = (a + 2 ) log n /λ,

P(A n ) ≡ P(
1 ≤ k ≤ n a 

max { U k } >
λ

a + 2_ ____ log n) ≤ 1 − ( 1 − Kn − (a + 2 ) ) n a

≤ 1 − exp ( log [ ( 1 − Kn − (a + 2 ) ) n a

] )

≤ 1 − exp (n a log [ 1 − Kn − (a + 2 ) ] )

≤ − n a log ( 1 − Kn − (a + 2 ) )

≤ 2Kn − 2 for n sufficiently large

using e − x ≥ 1 − x in the second to last step and log ( 1 − x) = − x −
2
x 2
_ __ −

3
x 3
_ __ − . . . for

0 < x < 1 in the last step. Since
n = 1
Σ
∞

P(A n ) < ∞, P(A n infinitely often ) = 0 by the Borel-

Cantelli lemma. Hence, there are positive random variables X 1 and X 2 such that

1 ≤ k ≤ n a 
max { U k } ≤ X 1 + X 2 log n for all n ≥ 1 a. s.

We now extend a strong approximation result of Komlo ´s, Major and Tusna ́ dy (1975, 1976),

p. 107 of Cso
..

rgo′ ′ and Re ́ ve ́ sz (1981).

Lemma 4.2. Under the assumptions of Theorem 4.1, there is a probability space supporting

independent standard BMs B̂ k and the service times so that

1 ≤ l ≤ n
1 ≤ k < n a 

max









j = 1
Σ
l

V(k, j) − l − σB̂ k (l)










= O( log n) a. s.

Proof. The service times of all customers at all queues after the first m are i.i.d., but we do not

have identical distributions at earlier queues. However, by Lemma 4.1 and the assumption of

Theorem 4.1, without loss of generality it suffices to assume that all the service times are i.i.d.
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To support half this claim, note that σB̂ k (l) is normally distributed with mean 0 and variance

lσ2 , so that these variables satisfy the same tail condition imposed on the service times for

1 ≤ l ≤ m (possibly with different constants K and λ). Hence, it suffices to assume that

{V(k, j) } is i.i.d., with the distribution of V( 1 , m), and we do. By Komlo ´s, Major and Tusna ́ dy

(1975, 1976), for each k there is a probability space containing a BM B̂ k such that

P {
1 ≤ l ≤ n

max 
j = 1
Σ
l

V(k, j) − l − σB̂ k (l) > C log n + x } < Ke − λx

for positive constants C , K and λ depending on the distribution of V( 1 , m). Hence, using a

product space, we can achieve

P(A n ) ≡ P







1 ≤ l ≤ n
1 ≤ k ≤ n a 

max


j = 1
Σ
l

V(k, j) − l − σB̂ k (l)




> C log n + x n







≤ 1 − ( 1 − Ke − λxn ) n a  .

As in Lemma 4.1, choose x n = (a + 2 ) log n /λ to obtain P(A n ) ≤ 2Kn − 2 for n sufficiently

large. By Borel-Cantelli, P(A n infinitely often ) = 0. Hence, there exist random variables X 1

and X 2 such that

1 ≤ l ≤ n
1 ≤ k ≤ n a 

max









j = 1
Σ
l

V(k, j) − l − σB̂ k (l)










≤ X 1 + X 2 log n a. s.

For the next lemma, we specify some quantities associated with a real-valued function defined

on the positive integers, say y. Let

y ↑ (n) =
1 ≤ k ≤ n

max y(k) and  y n = y↑ (n) , n ≥ 1 . (4.2)



- 16 -

The following elementary lemma can be viewed as a special case of Theorem 6.1 of Whitt (1980).

Lemma 4.3. For all n ≥ 1,  y1
↑ − y2

↑ n ≤  y 1 − y 2 n .

Let D ∗ (k, n) be the following function of the limiting BM B̂,

D ∗ ( 1 , n) = σB̂ 1 (n)

D ∗ (k, n) = σB̂ k (n) −
1 ≤ j ≤ n

min {σB̂ k ( j) − D ∗ (k − 1 , j) } (4.3)

=
1 ≤ j ≤ n

max {D ∗ (k − 1 , j) + σB̂ k (n) − σB̂ k ( j) }

for n ≥ 1 and k ≥ 2. Let e denote the identity function, i.e., e(t) = t, t ≥ 0.

Lemma 4.4. Under the assumptions of Theorem 4.1, for any a > 0 there exists a probability

space supporting the departure times D(k, j) and the process D ∗ in (4.3) such that

1 ≤ j ≤ n
1 ≤ k ≤ n a 

max {D(k, j) − j − D ∗ (k, j)} = O(n a log n) a. s.

Proof. Note that (4.3) is not quite the same function of σB̂ k (n) as D(k, n) is of
j = 1
Σ
n

[V(k, j) − j]

in (2.2). The exactly corresponding function is

D ′ ( 1 , n) = σB̂ 1 (n)

D ′ (k, n) =
1 ≤ j ≤ n

max {D(k − 1 , j) + σB̂ k (n) − σB̂ k ( j − 1 ) } . (4.4)

However, by (2.2), (4.1), (4.2), (4.4) and Lemmas 4.1 and 4.3, there are random variables X 1 and

X 2 such that

 D ′ (k, .) − D ∗ (k, .) n ≤  D ′ (k − 1 ,.) − D ∗ (k − 1 ,.) n

+
1 ≤ j ≤ n

max {σB̂ k ( j) − σB̂ k ( j − 1 )}

≤  D ′ (k − 1 ,.) − D ∗ (k − 1 ,.) n + X 1 + X 2 logn (4.5)

≤ k(X 1 + X 2 logn) for k ≤ n a  ,

where we have used the fact that σB̂ k ( j) − σB̂ k ( j − 1 ) are i.i.d. normal random variables in the

second to last step and induction in the last step. In particular, by Lemma 4.1,
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1 ≤ j ≤ n
1 ≤ k ≤ n a 

max {σB̂ k ( j) − σB̂ k ( j − 1 )} = O( logn) a. s.

Hence,

1 ≤ j ≤ n
1 ≤ k ≤ n a 

max {D ′ (k, j) − D ∗ (k, j)} ≤ n a (X 1 + X 2 logn)

and it suffices to do the proof with D ′ in (4.4) instead of D ∗ in (4.3). By an argument just like

(4.5), using Lemma 4.2 now, there exists a probability space supporting the processes D and D ′

and finite random variables X 1 and X 2 such that

 D( 1 , .) − e(.) − D ′ ( 1 , .) n ≤ X 1 + X 2 logn a. s.

and

 D(k, .) − e(.) − D ′ (k, .) n ≤ X 1 + X 2 logn +  D(k − 1 ,.) − e(.) − D ′ (k − 1 ,.) n , a. s.

for 1 ≤ k ≤ n a . Hence,

 D(k, .) − e(.) − D ′ (k, .) n ≤ n a (X 1 + X 2 logn) = O(n a logn) a. s.

for all k ≤ n a .

To prove our next lemma we want a continuous analog of (4.2). For a real-valued function of

a real-variable, say y, let

y ↑ (t) =
0 ≤ s ≤ t

sup y(s) and  y t = y↑ (t) , t ≥ 0 . (4.6)

Paralleling Lemma 4.3,

 y1
↑ − y2

↑ t ≤  y 1 − y 2 t . (4.7)

Lemma 4.5. For any a > 0

1 ≤ j ≤ n
1 ≤ k ≤ n a 

max {D ∗ (k, j) − √ n D̂ k ( j / n)} = O(n a logn) a. s.

Proof. Note that
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{√ n D̂(t / n) : t ≥ 0 } =
d

{D̂(t) : t ≥ 0 }

and

{D ∗ (k, [t] ) : k ≥ 1 , t ≥ 0 } =
d

{D̂ k ( [t] ) : k ≥ 1 , t ≥ 0 } .

Hence, what we want to show is

0 ≤ t ≤ n
1 ≤ k ≤ n a 

sup {D̂ k (t) − D̂ k ( [t] )} = O(n a logn) a. s. (4.8)

By (4.7),

 D̂ k (.) − D̂ k ( [.] ) n ≤  D̂ k − 1 (.) − D̂ k − 1 ( [.] ) n +  σB̂ k (.) − σB̂ k ( [.] ) n . (4.9)

However,

1 ≤ k ≤ n a 
max  σB̂ k (.) − σB̂ k ( [.] ) n ≤ σ

1 ≤ j ≤ n
1 ≤ k ≤ n a 

max {
j < s < j + 1

sup {B̂ k (s) − B̂ k ( j)} } (4.10)

≤ X 1 + X 2 logn a. s.

for finite random variables X 1 and X 2 , by Lemma 4.1. Combining (4.9) and (4.10) gives

(4.8).

5. Stochastic Order for the Interdeparture Times

In this section we establish stochastic comparisons for the interdeparture times ∆(k, n) in

(2.5). We say that a random element X 1 is stochastically less than or equal to another random

element X 2 , and write X 1 ≤ st X 2 , if Eh(X 1 ) ≤ Eh(X 2 ) for all nondecreasing bounded

measurable real-valued functions h; see Kamae, Krengel and O’Brien (1977). We are interested

in the case X i is an array of real-valued random variables. As before, let =
d

denote equality in

distribution.

Theorem 5.1. Suppose that the service times V(k, n) are all mutually independent.

(a) If V(k, n) =
d

V( 1 , n) for all k ≥ 1 and n ≥ 1, then
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{∆(k + 1 , n) : k ≥ 1 , n ≥ 1 } ≤ st {∆(k, n) : k ≥ 1 , n ≥ 1 } ,

so that

V( 1 , n) ≤ st ∆(k + 1 , n) ≤ st ∆(k, n) for k ≥ 1 and n ≥ 1 .

(b) If V(k, n) =
d

V(k, 1 ) for all k ≥ 1 and n ≥ 1, then

{∆(k, n) : k ≥ 1 , n ≥ 1 } ≤ st {∆(k, n + 1 ) : k ≥ 1 , n ≥ 1 } ,

so that

V(k + 1 , 1 ) ≤ st ∆(k, n) ≤ st ∆(k, n + 1 ) for k ≥ 1 and n ≥ 1 .

Proof. We do only part (a) because the proof of (b) is similar. We construct a process

{∆̃(k + 1 , n) : k ≥ 1 , n ≥ 1 } with the same finite-dimensional distributions as

{∆(k + 1 , n) : k ≥ 1 , n ≥ 1 } such that

∆̃(k + 1 , n) ≤ ∆(k, n) a. s. for all k ≥ 1 and n ≥ 1 . (5.1)

For this purpose, we use service times Ṽ(k, n) defined by Ṽ(k + 1 , n) = V(k, n) for all k and n.

By our assumptions, {Ṽ(k, n) : k ≥ 1 , n ≥ 1} is distributed the same as

{V(k, n) : k ≥ 1 , n ≥ 1 }. We define ∆̃(k, n) and D̃(k, n) just like ∆(k, n) and D(k, n) but

using the service times Ṽ(k, n) instead of V(k, n).

By (2.1),

∆(k, n) = max {D(k, n) , D(k + 1 , n − 1 ) } + V(k + 1 , n) − D(k, n)

= [D(k + 1 , n − 1 ) − D(k, n) ] + + V(k + 1 , n) . (5.2)

Hence,

∆̃(k + 1 , n) = [D̃(k + 2 , n − 1 ) − D̃(k + 1 , n) ] + + V(k + 1 , n) . (5.3)

From (5.2) and (5.3), we see that (5.1) holds if
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D̃(k + 2 , n − 1 ) − D̃(k + 1 , n) ≤ D(k + 1 , n − 1 ) − D(k, n) (5.4)

for all k ≥ 1 and n ≥ 1. We establish (5.4) by induction on the sum of the indices (m = k + n in

D(k, n) ). Note that

D̃(k + 2 , n − 1 ) − D̃(k + 1 , n) =

max {D̃(k + 1 , n − 1 ) , D̃(k + 2 , n − 2 ) } + Ṽ(k + 2 , n − 1 )

− max {D̃(k, n) , D̃(k + 1 , n − 1 ) } − Ṽ(k + 1 , n)

= [D̃(k + 2 , n − 2 ) − D̃(k + 1 , n − 1 ) ] + + Ṽ(k + 2 , n − 1 )

− [D̃(k, n) − D̃(k + 1 , n − 1 ) ] + − Ṽ(k + 1 , n)

= [D̃(k + 2 , n − 2 ) − D̃(k + 1 , n − 1 ) ] + + V(k + 1 , n − 1 )

+ [D̃(k + 1 , n − 1 ) − D̃(k, n) ] − − V(k, n)

≤ [D(k + 1 , n − 2 ) − D(k, n − 1 ) ] + + V(k + 1 , n − 1 )

+ [D(k, n − 1 ) − D(k − 1 , n) ] − − V(k, n) ≡ Z

by the induction hypothesis, where

Z = max {D(k + 1 , n − 2 ) , D(k, n − 1 ) } − D(k, n − 1 ) + V(k + 1 , n − 1 )

− max {D(k − 1 , n) , D(k, n − 1 ) } + D(k, n − 1 ) − V(k, n)

= D(k + 1 , n − 1 ) − D(k, n) .

To start the induction, note that, for n = 1 and any k,

D̃(k + 2 , n − 1 ) − D̃(k + 1 , n) = − D̃(k + 1 , 1 )

= − (Ṽ( 1 , 1 ) + . . . + Ṽ(k + 1 , 1 ) ) = − Ṽ( 1 , 1 ) − [V( 1 , 1 ) + . . . + V(k, 1 ) ]

≤ − D(k, 1 ) = D(k + 1 , 0 ) − D(k, 1 ) .

Hence, (5.4) is established and the proof is complete.

Corollary 1. Under the conditions of Theorem 5.1(a), for each n ≥ 1 there exists a proper

stochastic process {∆̃(k, n) : k ≥ 1 } with ∆̃(k, n) ≥ st V( 1 , n) such that

{∆(k + j , n) : k ≥ 1 } = = > {∆̃(k, n) : k ≥ 1 } in R ∞ as j → ∞ .

We can apply Theorem 5.1 to obtain a stochastic comparison for the limit process in
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Theorem 3.1. We actually focus on the associated interdeparture-time limit process

∆̂ k (t) = D̂ k + 1 (t) − D̂ k (t).

Corollary 2. Suppose that the service times V(k, n) are all independent and the FCLT V n = = > V̂

holds as required for Theorem 3.1.

(a) If V(k, n) =
d

V( 1 , n) for all k ≥ 1 and n ≥ 1, then

{∆̂ k + 1 (t) : k ≥ 1 , t ≥ 0} ≤ st {∆̂ k (t) : k ≥ 1 , t ≥ 0}

for all k ≥ 1.

(b) If V(k, n) =
d

V(k, 1 ) for all k ≥ 1 and n ≥ 1, then

{∆̂ k (t) : k ≥ 1 , t ≥ 0} ≤ st {∆̂ k (t + u) : k ≥ 1 , t ≥ 0}

for all u > 0.

Proof. Use the fact that stochastic order is preserved under weak convergence.

6. The Hydrodynamic Limit: The Case k n = O( n )

In this section we describe the behavior of D(k n , n) (and, equivalently, D(n , k n ) ) when k n is

of order n. We first apply the hydrodynamic limit of Rost (1981) as discussed in Section 4.2 of

Srinivasan (1989) to treat the special case of exponential service times.

Theorem 6.1. If all the service times are i.i.d. with an exponential distribution having mean 1,

then

n → ∞
lim n − 1 D(xn , n) = ( 1 + √ x )2 a. s. for any x > 0 .

Proof. By Section 4.2 of Srinivasan (1989), the average queue length among the first xt queues

at time t is asymptotically a.s. ( 2 − √ x )/√ x as t → ∞. Hence, for x > 1, the average queue

length among the first n and x 2 n queues at time x 2 n are asymptotically a.s.

( 2 − x − 1 )/ x − 1 = 2x − 1 and 1, respectively, as n → ∞. Hence asymptotically a.s. there are
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x 2 n + o(n) customers in queues 2 through x 2 n and ( 2x − 1 ) n + o(n) customers in queues 2

through n. Hence, asymptotically a.s. (x 2 − 2x + 1 ) n + o(n) customers have departed from

queue n, and the departure time for customer (x 2 − 2x + 1 ) n from queue n is x 2 n + o(n). Now

do a change of variables, replacing (x − 1 )2 by x.

To treat x < 1, note that n − 1 D(x 2 n , n) =
d

n − 1 D(n , x 2 n). Let n ′ = x 2 n. Then

n − 1 D(n , x 2 n) = (x 2 / n) D(n / x 2  , n) + o( 1 ). From the previous argument,

(x 2 / n) D(n / x 2  , n) → x 2


 x

1_ _ + 1




2

= (x + 1 )2 a. s. as n → ∞ .

For x = 1, consider the average queue lengths among the first n and 4n queues, and reason

similarly.

We now establish the existence of a limit for a general service-time distribution having an

exponential tail. First, recall that under the conditions of Theorem 4.1,

1≤ j≤n
1≤i≤ xn

max { V(i , j) } = O( log n) a. s.

by Lemma 4.1, so that

D(xn , n) ≤ O(n log n) a. s.

However, we will show that D(xn , n) is actually O(n).

For this purpose, we exploit a stochastic comparison involving associated random variables;

see p. 29 of Barlow and Proschan (1975). Recall that a family of random variables are associated

if all pairs of nondecreasing bounded real-valued functions of the random variables have

nonnegative correlation.

Lemma 6.1. If the service times {V(i , j) : 1 ≤ i ≤ k, 1 ≤ j ≤ n} are independent or just

associated, then the partial sums
(i, j) ∈ π

Σ V(i , j) for the 
 k − 1
k + n − 2

 paths π in Π(k, n) are
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associated random variables.

Proof. The partial sums are all nondecreasing functions of the kn service times.

Theorem 6.2. If the service times V(i , j) are all independent, then

D(k, n) ≤ st max {S π : π ∈ Π(k, n) }

where S π , π ∈ Π(k, n), are mutually independent with

S π =
d

(i, j) ∈ π
Σ V(i , j)

for each path π.

Proof. Apply Theorem 3.2, p. 33 of Barlow and Proschan (1975).

We now use this stochastic bound to develop a bound and heuristic estimate for

n → ∞
lim n − 1 D(xn, n) for a general service-time distribution. We call this the path-independence

bound. We also use this bound together with the subadditive ergodic theorem to show that the

limit exists.

Theorem 6.3. If all the service times are i.i.d. with EV( 1 , 1 ) = 1 and there exist positive

constants K and λ such that P(V( 1 , 1 ) > x) ≤ Ke − λ x for all x > 0, then there exists a

deterministic strictly increasing concave function γ(x) with γ(x) ≥ 1, γ(x + y) − γ(x) ≥ y and

γ(x) = xγ(x − 1 ) for all x, y > 0 such that

n → ∞
lim n − 1 D(nx , n) = γ(x) a. s. (6.1)

and

n → ∞
lim En − 1 D(nx , n) − γ(x) = 0 (6.2)

for all x > 0. Moreover,
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γ(x) ≥





x + E( max {V( 1 , 2 ) , V( 2 , 1 ) } ) ≥ 1 + x , 1 ≤ x ,

1 + xE( max {V( 1 , 2 ) , V( 2 , 1 ) }) ≥ 1 + x , 0 < x ≤ 1
(6.3)

and

γ(x) ≤ ( 1 + a ∗ ) ( 1 + x) , (6.4)

where

a ∗ ≡ a ∗ (x) = inf{ a > 0 : ( 1 + x) h(a) > ( 1 + x) log ( 1 + x) − x log x } (6.5)

and

h(a) =
θ

sup {θa − log Ee θ[V( 1 , m) − 1 ] } . (6.6)

Proof. We first establish the upper bound in (6.4). Using Stirling’s formula, p. 52 of

Feller (1968), we see that the number of paths in Π(xn , n) is φ(x, n) = e nψ(x) + o(n) , where

ψ(x) = ( 1 + x) log ( 1 + x) − x log x .

Let π n be a path in Π(xn , n) and let S π n
be the partial sum of all service times on path π n . By

the Crame ́ r (1938)–Chernoff (1952) theorem,

P(S π n
> ( 1 + a) ( 1 + x) n) = e − ( 1 + x) nh(a) + o(n)

where h is defined in (6.6); see Vanderbei and Weiss (1988) or pp. 3,7 of Varadhan (1984).

Using the path-independence bound established in Theorem 6.2, we have

P(D(xn , n) > ( 1 + a) ( 1 + x) n) ≤ 1 − ( 1 − e − n( 1 + x) h(a) + o(n) ) φ(x, n) . (6.7)

The critical case a = a ∗ (x) given by (6.5). If h(a) > h(a ∗ ), then the probability in (7.7)

converges to 0, whereas if h(a) < h(a ∗ ), then the probability converges to 1. In particular, for

any a > a ∗ ,
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n = 1
Σ
∞

P(D(xn , n) > ( 1 + a) ( 1 + x) n) < ∞ ,

so that we can apply Borel-Cantelli to deduce that

n → ∞
lim
_ __

n − 1 D(xn , n) ≤ ( 1 + a) ( 1 + x) a. s.

Hence, we have the claimed upper bound in (6.4).

Now we apply the subadditive ergodic theorem on p. 277 of Liggett (1985) to establish the

existence of the limit. We first consider the limit of n − 1 D(kn, ln) for k and l integer. We let

X 0 , 0 = 0,

− X 0 ,n = D(kn, ln) − V( 1 , 1 )

and − X m ,n be − X 0 ,n − m applied to the shifted service times V ′ (i , j) = V(i + km, j + lm); e.g.,

for k = l = 1, X n − 1 ,n = 0 and − X n − 2 ,n = V(n , n) + max {V(n − 1 , n) , V(n , n − 1 ) }. With

this definition, X is subadditive, i.e., X 0 ,n ≤ X 0 ,m + X m ,n for 0 ≤ m ≤ n. Moreover, X satisfies

the other conditions of the subadditive ergodic theorem; in particular, {X (n − 1 ) k,nk : n ≥ 1 } is a

stationary process for each k, {X m ,m + k : k ≥ 0} =
d

{X m + 1 ,m + k + 1 : k ≥ 0} for each m, and

E(X01
+ ) < ∞. Hence, n − 1 D(kn, ln) has a deterministic limit η(k, l) in the sense of (6.1) and

(6.2) for all integers k and l. When n is a multiple of l,

n
1_ _ D



 l

kn_ __ , n




=
l
1_ _

n
l_ _ D




k

l
n_ _ , l

l
n_ _





→
l
1_ _ η(k, l) as n → ∞ a. s.

More generally,

D


 l

k_ _ ln / l , ln / l




≤ D(kn / l , n) ≤ D


 l

k_ _ l(n / l + 1 ) , l( [n / l] + 1 )




,

where
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n − 1 D


 l

k_ _ ln / l , ln / l




=
n

n / l_ _____
n / l

1_ _____ D(kn / l) , ln / l) →
l
1_ _ η(k, l)

and

n − 1 D


 l

k_ _ l(n / l + 1 ) , l(n / l + 1 )




=
n

n / l + 1_ ________
n / l + 1

1_ ________ D(k(n / l + 1 ) , l(n / l + 1 ) )

→
l
1_ _ η(k, l) as n → ∞ a. s.

Hence, (6.1) holds for all positive rational x. A similar argument applies to (6.2).

To treat irrational x, we apply Theorem 5.1a to deduce that γ(x + y) − γ(x) is decreasing in x

through rational x for each rational y. Hence, γ is nondecreasing and concave restricted to the

rationals. Since γ is nondecreasing overall, γ is nondecreasing and concave, and thus continuous,

overall. Hence, the limits (6.1) and (6.2) extend to irrational x. (Note that n − 1 D(nx , n) is

sandwiched between corresponding averages for rationals that converge. This implies the

existence of convergent subsequences as n → ∞. The continuity of γ on the rationals then

implies that all limits of convergent subsequences converge to a common limit, implying

convergence for the full sequence.)

To see that γ(x + y) − γ(x) ≥ y, so that γ is strictly increasing, use the fact that

D((x + y) n , n) ≥ D(xn , n) +
i = xn + 1

Σ
i = (x + y) n

V(i , n) .

By considering only paths through ( 2k, 2k) for all k, 1 ≤ k ≤ min{ xn , n}, we easily obtain

the lower bound in (6.3). To see that γ(x) ≥ 1 for all x > 0, note that, for all x,

D(xn , n) > D( 1 , n) for all n sufficiently large. Since D(k, n) =
d

D(n , k) for all n and k, we

see that
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γ(x) =
n → ∞
lim n − 1 D(xn , n) =

n → ∞
lim

n
xn_ ____

xn
1_ ____ D(xn , xn / x)

=
n → ∞
lim

n
xn_ ____

xn
1_ ____ D(xn / x , xn) = xγ(x − 1 ) .

To illustrate the path-independence bound, in (6.4)–(6.6) suppose that the service times have

an exponential distribution as in Theorem 6.1. Then

Ee θ[V( 1 , 1 ) − 1 ] = ( 1 − θ) − 1 e − θ and h(a) = a − log ( 1 + a) . (6.8)

From (6.5) and (6.8), we obtain a ∗ by solving

( 1 + x) [a − log ( 1 + a) ] = ( 1 + x) log ( 1 + x) − x log x ,

which for the case x = 1 is

a ∗ − log ( 1 + a ∗ ) = log 2 ,

yielding a ∗ = 1. 68 and
n→ ∞
lim
_ __

n − 1 D(n , n) ≤ 5. 36. From Theorem 6.1 we see that this is indeed

an upper bound, which seems to be not a terrible approximation. Evidently, there is enough

dependence among the paths to reduce this estimate by a factor of 0.746.

Example 6.1. It is possible that the infimum in (6.5) is not attained as an equality. For example,

suppose that V(i , j) is Bernoulli, assuming the values 0 and 2 each with probability 1/2. Then

h(a) = [ ( 1 + a) log ( 1 + a) + ( 1 − a) log ( 1 − a) ]/2, 0 ≤ a < 1, and h(a) = ∞ for a ≥ 1.

For x = 1,
a → 1 −

lim h(a) = log 2, so that a ∗ ( 1 ) = 1, which yields γ( 1 ) ≤ 4. Simulation

suggests that γ( 1 ) = 3. 63; see Greenberg et al. (1990).

7. More Properties of the Limit Process

We established the strong approximation in Section 4 in order to deduce more about the

departure times of customer k n from queue n when k n → ∞ as n → ∞. We now establish a

limit for the components D̂ k ( 1 ) grow as k → ∞ that enables us to conclude that the average of
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the first xn a  interdeparture times from queue n after the first departure is of order n ( 1 − a)/2 for

any x > 0 and any a satisfying 0 < a < 1. The limit is obtained by applying the subadditive

ergodic theorem once more.

Theorem 7.1. Let D̂ = f (B̂). Then there exists a constant α such that

n→ ∞
lim n − 1 D̂ xn (n) = α√ x a. s. (7.1)

so that

n − 1⁄2 D̂ xn ( 1 ) = = > α√ x as n → ∞ (7.2)

for each x > 0.

Proof. As in the proof of Theorem 6.3, we apply the subadditive ergodic theorem on p. 277 of

Liggett (1985). We first establish the limit for n − 1 D̂ j n (kn) for j and k integer. We let

− X 0 ,n = D̂ j n (n) and − X m ,n be − X 0 ,n − m applied to the shifted process

Bi′ (t) = B i + km (t + lm) − B i + km (lm). With this definition, X is subadditive, i.e.,

X 0n ≤ X 0m + X m ,n for 0 ≤ m ≤ n, and X satisfies the other conditions of the subadditive

ergodic theorem, except possibly for the bound. To establish the bound, we consider a related

discrete problem. We consider the kn × ln integer lattice. We associate with the point (i , j) in

this lattice the random variable

W(i , j) =
j − 1≤t < j

sup {B i (t) − B i ( j − 1 )} . (7.3)

It is easy to see that

D̂ j n (kn) ≤
π ∈ Π( j n,kn)

sup {
(i, j) ∈ π

Σ W(i , j) + W( j n ,kn) } . (7.4)

For each path π, the random variables W(i , j) for (i , j) ∈ π are i.i.d. Moreover, for different

paths, the partial sums are associated. Hence, we have a path-independence bound for the right

side of (7.4) paralleling Theorem 6.2. Using the known tail behavior of W(i , j) in (7.3), we have
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the required bound for the subadditive ergodic theorem. Hence, n − 1 D̂ j n (kn) converges a.s. to a

proper limit as n → ∞. Let this proper limit be denoted by γ̂(x). As in the proof of Theorem

6.3, we use this result to deduce that (7.1) holds for each rational x. We then apply Corollary 2 to

Theorem 5 to deduce that γ̂(x + y) − γ̂(x) is decreasing in x through rational x for each rational

y. Hence γ̂ is nondecreasing and concave restricted to the rationals. Since γ̂ is nondecreasing

overall, γ̂ is nondecreasing and concave overall. Hence, (7.1) extends to irrational x. Since

n − 1⁄2 D̂xn( 1 ) =
d

n − 1 D̂ xn (n) for all n, we obtain (7.2) directly from (7.1). From (7.2), we see

that γ̂(x) = α√ x for some constant α.

Remark 7.1. Simulation by Greenberg et al. (1990) suggests that α = 2 in (7.2). Moreover,

simulation strongly suggests that the variance of D̂ n ( 1 ) unnormalized converges to 0 as n → ∞.

We now apply Theorem 7.1 to obtain a limit for the average of the first n a  departure times

for 0 < a < 1. The following shows that this average is asymptotically of order n ( 1 − a)/2 .

Theorem 7.2. Under the assumptions of Theorem 4.1,

n ( 1 + a)/2

D(xn a  , n) − D( 1 , n)_ ____________________ = = > α√ x

for α in Theorem 7.1 and 0 < a < 1.

Proof. Note that

n ( 1 + a)/2

D(xn a  , n) − D( 1 , n)_ ____________________ =


 n ( 1 + a)/2

√ n D̂ xna  ( 1 )_ ___________




+



 n ( 1 + a)/2

D(xn a  , n) − n − √ n D̂ xna  ( 1 )_ ____________________________




−


 n ( 1 + a)/2

D( 1 , n) − n_ ___________




. (7.5)

By (7.2) in Theorem 7.1, the first term on the right in (7.5) converges in probability to α√ x . By

Theorem 4.1, the second term on the right converges in probability to 0. By (1.2), the third term

on the right converges to 0.



- 30 -

8. Common Service Times

We now consider the case in which V(k, n) = V(k, 1 ) w.p.1 for all k and n, with

{V(k, 1 ) : k ≥ 1 } being i.i.d., just as in Section 2 of Pinedo and Wolff (1982). As before, let

EV(k, 1 ) = 1. From Proposition 2.1, we easily obtain the following result, from which we can

establish the limiting behavior as k → ∞ and/or n → ∞.

Theorem 8.1. For each k and n,

D(k, n) = (n − 1 ) M k + S k , (8.1)

where

M k = max {V(i , 1 ) : 1 ≤ i ≤ k} and S k = V( 1 , 1 ) + . . . + V(k, 1 ) . (8.2)

The limiting behavior of D(k, n) as k → ∞ depends on the limiting behavior of M k and S k .

For M k , this is the classical extreme value theory, e.g., see Leadbetter, Lindgren and Rootze ́ n

(1983). From Theorem 8.1 we easily obtain the following.

Corollary 8.1. If Var V( 1 , 1 ) = σ2 , 0 < σ2 < ∞, then

[D(k, n) − k]/√ k = = > N( 0 , σ2 ) as k → ∞ .

Proof. Apply (8.1). By the SLLN, k − 1

i = 1
Σ
k

V(i , 1 )2 → β < ∞ a.s. as k → ∞, so that

k − 1 V(k, 1 )2 → 0 a.s. as k → ∞, which implies that k − 1⁄2 M k → 0 a.s. as k → ∞. The CLT

implies that k − 1⁄2 (S k − k) = = > N( 0 , σ2 ) as k → ∞.

A more interesting case arises if k and n both go to infinity.

Corollary 8.2. Suppose that Var V( 1 , 1 ) = σ2 , 0 < σ2 < ∞ and there exist sequences of

positive constants a k and b k such that [M k − a k ]/ b k = = > M ∗ as k → ∞.

(a) If n k b k /√ k → 1 as k → ∞, then
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[D(k, n k ) − k − a k n k ]/√ k = = > M ∗ + N( 0 , σ2 ) as k → ∞ ,

where M ∗ and N( 0 , σ2 ) are independent.

(b) If n k b k /√ k → 0 as k → ∞, then

[D(k, n k ) − k − a k n k ]/√ k = = > N( 0 , σ2 ) as k → ∞ .

(c) If n k b k /√ k → ∞ as k → ∞, then

[D(k, n k ) − k − a k n k ]/ n k b k = = > M ∗ as k → ∞ .

Proof. As in the proof of Corollary 8.1, first note that b k = o(√ k ) since E[V( 1 , 1 )2 ] < ∞.

Then note that



 b k

M k − a k_ ________ ,
√ k

S k − k_ ______




= = > (M ∗ , N( 0 , σ2 ) ) as k → ∞ , (8.3)

where M ∗ and N( 0 , σ2 ) are independent; see §4.5 of Resnick (1986). To directly establish (8.3),

note that the maximum M k is negligible in the normalized partial sum since b k = o(√ k ). Thus,

we prove (8.3) by showing that S k − M k is asymptotically independent of M k . Let F be the cdf

of V( 1 , 1 ). Given that M k = m k , S k − M k is distributed as the sum of (k − 1 ) i.i.d. variables

with cdf F(x)/ F(m k ). As k increases this conditional cdf approaches the original unconditional

cdf F(x). Thus, we can apply the Lindeberg-Feller central limit theorem for triangular arrays to

conclude that the conditional distribution of [S k − M k − k]/√ k given M k converges in

distribution to N( 0 , σ2 ), independently of the value of M k , and we obtain the desired asymptotic

independence.

From (8.1),

√ k
D(k, n k ) − k − n k a k_ __________________ =

√ k
(n k − 1 ) M k − n k a k + S k − k_ __________________________ ,

so that we obtain (a), (b) and (c) from (8.3) and standard arguments, i.e., Theorems 4.1 and 5.5 of
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Billingsley (1968).

Corollary 8.3. If a k M k = = > m with a k → 0 as k → ∞ then

a xn n
D(xn , n)_ __________ = = > m

for any x > 0.

Proof. From (8.1), note that

a xn n
D(xn , n)_ __________ = a xn n

(n − 1 )_______ M xn + a xn n

S n_ __ ;

then apply the assumed limit for M n and the law of large numbers for S n .

We conclude this section by illustrating Corollaries 8.2 and 8.3 with the exponential case.

Corollary 8.4. If V(i , 1 ) is exponential for all i, then

[D(k, n k ) − k] √ k = = > N(m , 1 ) as k → ∞

provided that k − 1⁄2 n k log k → m as k → ∞ and

D(xn , n)/ n log (xn) = = > 1 as n → ∞ .

Proof. By Example 1.7.2, p. 20, of Leadbetter et al. (1983), M k / logk = = > 1 as k → ∞.

Note that D(n , n) is of order n log n here as opposed to of order n in § 6.

9. Concluding Remarks

There are several stones left unturned. First, it would be nice to identify the hydrodynamic

limit γ(x) in (6.1) for non-exponential service-time distributions and determine how this limit

depends on the service-time distribution. We conjecture that the limit depends on the service-

time distribution beyond its first two moments. (This is confirmed by simulation.) It would also

be nice to establish a refined distributional limit, i.e., a weak convergence limit for

n − β (D(xn , n) − γ(x) n) as n → ∞ for some β > 0.
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Second, it would be useful to know more about the limit process f (B̂) in § 3. In Remark 3.3

we noted that ∆̂ 1 = D̂ 2 − D̂ 1 is a reflecting BM, so that E[∆̂ 1 ( 1 ) ] = 2σ/√ π . Moreover, by

Theorem 5.2, ∆̂ k ( 1 ) is stochastically decreasing as k increases. However, it would be nice to

know the joint distribution, or at least the means, of (∆̂ 1 ( 1 ) , . . . , ∆̂ k ( 1 ) ). Moreover, it would be

nice to know the constant α in (7.1) and (7.2). (Simulation suggests that α = 2.)

Finally, an old open problem involves the limiting behavior of the stationary departure

process from n queues as n → ∞. Here we assume that the service times V(i , j) are i.i.d. for

i ≥ 1 and j ≥ 2 while the service times V(i , 1 ) are i.i.d. (or just stationary and ergodic) with

E V( 1 , 1 ) > E V( 1 , 2 ), so that the departure process from the first queue corresponds to an

external arrival process with mean interarrival time greater than the subsequent mean service

times. For the case in which V( 1 , 2 ) is exponentially distributed, but V( 1 , 1 ) is not, it is widely

believed that the stationary departure process from queue n is asymptotically Poisson as n → ∞.

A corresponding result for infinite-server queues was established by Vere-Jones (1968).

Acknowledgment. We thank Raj Srinivasan for helping motivate this paper and Bill Massey,

Marty Reiman, Scott Shenker and Alan Weiss for helping to improve it.
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We first show, under appropriate conditions, that the departure process from the n th queue

obeys an invariance principle or functional central limit theorem (FCLT). The FCLT supports

approximating the beginning of the departure process, after appropriate normalization, by an

infinite-dimensional reflected Brownian motion (RBM) on the infinite-dimensional orthant

[ 0 , ∞) ∞ . This infinite-dimensional RBM is the natural extension of finite-dimensional RBMs

considered by Harrison (1978), Harrison and Reiman (1981a,b), Reiman (1984) and Harrison and

Williams (1987a,b).

We are primarily interested in the special case in which the service times of all the customers

at all the queues are i.i.d. Then the invariance principle implies that the approximation depends

on the service-time distribution only through its mean and variance. Moreover, the mean and

variance play a relatively trivial role. In particular, the mean service time only determines the

deterministic rate customers flow through the queues; without loss of generality, we can let the

mean service time be one. The service-time variance only appears (via its square root) as a

constant multiplicative factor in front of the multivariate RBM associated with service-time

variance 1. Hence, just as with the familiar one-dimensional Brownian motion (BM)

approximation for partial sums of i.i.d. real-valued random variables, there is essentially only one

fundamental limit process for this system for all service-time distributions. We call this limit
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process the departure RBM.

The model we consider has no external arrival process, but the same model can be interpreted

as starting out empty with an external arrival process. Simply interpret the departure process

from the first queue as the external arrival process. Of course, the assumption that the service

times be all i.i.d. implies that the interarrival-time distribution must then be exactly the same as

each service-time distribution. However, this is not required. The limiting behavior remains

unchanged if the service-time distributions at an initial finite set of queues are different. (The

stated results cover this generalization.)


