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To provide useful practical insight into the performance of service-oriented (non-revenue-generating) call
centers, which often provide low-to-moderate quality of service, this paper investigates the efficiency-driven

(ED), many-server heavy-traffic limiting regime for queues with abandonments. Attention is focused on the
M/M/s/r +M model, having a Poisson arrival process, exponential service times, s servers, r extra waiting
spaces, exponential abandon times (the final +M), and the first-come–first-served service discipline. Both the
number of servers and the arrival rate are allowed to increase, while the individual service and abandonment
rates are held fixed. The key is how the two limits are related: In the now common quality-and-efficiency-driven
(QED) or Halfin-Whitt limiting regime, the probability of initially being delayed approaches a limit strictly
between 0 and 1, while the probability of eventually being served (not abandoning) approaches 1. In contrast,
in the ED limiting regime, the probability of eventually being served approaches a limit strictly between 0
and 1, while the probability of initially being delayed approaches 1. To obtain the ED regime, it suffices to let
the arrival rate and the number of servers increase with the traffic intensity � held fixed with � > 1 (so that
the arrival rate exceeds the maximum possible service rate). The ED regime can be realistic because with the
abandonments, the delays need not be extraordinarily large. When the ED appropriations are appropriate, they
are appealing because they are remarkably simple.
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1. Introduction
Recently, there has been great interest in multi-
server queues with a large number of servers, moti-
vated by applications to telephone call centers (see
Mandelbaum 2001, Gans et al. 2003). For the basic
Erlang-C model, i.e., for theM/M/s/�model (having
a Poisson arrival process, independent and identically
distributed (IID) exponential service times, s servers,
unlimited waiting space, and the first-come–first-
served service discipline) and generalizations with
more general arrival and service processes, useful
insight can be gained by considering many-server
heavy-traffic limits in which the number s of servers
increases along with the arrival rate � (with the indi-
vidual service rate � held fixed) so that the traffic
intensity �≡ �/s� increases too, with

	1−�

√
s→ � as s→�� (1.1)

where 0 < � < � (see Halfin and Whitt 1981;
Puhalskii and Reiman 2000; Jelenkovic et al. 2004;
Whitt 2005a, b). In this so-called Halfin-Whitt lim-
iting regime or Quality and Efficiency-Driven (QED)
limiting regime, the steady-state probability of delay

approaches a limit strictly between 0 and 1. In con-
trast, if we only increase �, keeping s fixed, then
the steady-state probability of delay approaches 1 as
� ↑ 1; if instead we only increase s, keeping � fixed
with � < 1, then the steady-state probability of delay
approaches 0.
Garnett et al. (2002) showed that the same QED

limiting regime is also useful for multiserver queues
with customer abandonment, specifically for the asso-
ciated Erlang-A model, i.e., for the purely Markovian
M/M/s/�+M model with exponential abandonment
times (the final+M) (also see Whitt 2005b for a gener-
alization to G/M/s/�+M). Then, because the aban-
donment ensures stability, the limit � in (1.1) can be
negative as well as positive. Again, in this QED lim-
iting regime, the steady-state probability of initially
being delayed approaches a limit strictly between 0
and 1. However, the probability of abandonment is
asymptotically negligible; specifically, the steady-state
probability of abandonment is asymptotically of order
1/
√
s as s→�.

Our purpose here is to point out that, in the
presence of significant customer abandonment, the
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QED limiting regime is not the only many-server
heavy-traffic limiting regime worth considering to
generate approximations that are useful in practice.
Here we focus attention on the alternative Efficiency-
Driven (ED) limiting regime, in which the probability
of abandonment approaches a limit strictly between 0
and 1, while the probability of initially being delayed
approaches 1. As shown by Garnett et al. (2002) for
the M/M/s +M model, such a limit occurs when �
approaches a limit strictly greater than 1 as � → �
and s → �. More simply, it suffices to keep � fixed
with �> 1 as �→� and s→�.
In practice, of course, we are usually interested in a

single queueing system with specified parameters, not
a sequence of queueing systems. To apply one of these
heavy-traffic limits, we think of our given system as
one term (term s) in a sequence of systems indexed
by s, where s →� (e.g., see pp. 58 and 158 of Whitt
2002 or Equations (2.21) and (3.4) here). Thus, if there
are two different limits that might be considered, it is
not evident a priori which of these limits should be
more useful. Then, the resulting approximations can
be judged by their effectiveness, i.e., by their accuracy
and ease of use.
It is our experience that in typical scenarios with a

large number of servers (e.g., s = 100) and only mod-
erate abandonment that the QED approximations are
usually more accurate than the ED approximations.
However, when the quality of service is somewhat
low, the ED approximations become appropriate. The
ED approximations become appropriate when queue
length and waiting times are relatively large, e.g.,
in environments such as the Internal Revenue Ser-
vice help lines. The ED approximations may be rele-
vant when absenteeism is a problem; then agent work
scheduling may be aiming to be in the QED regime,
but end up in the ED regime unintentionally. The
great appeal of the ED approximations, when they are
appropriate, is their simplicity; they often can be used
for quick back-of-the-envelope calculations.
The ED approximations require having � > 1, so

we may not expect them to be very useful. How-
ever, data from service-oriented call centers show
that the arrival rate often exceeds the maximum pos-
sible service rate over measurement intervals, even
when target performance levels occurring in service-
level agreements (SLAs) are being met. In addition,
computational results from computer simulations and
numerical algorithms substantiate that performance
targets often can be met when the arrival rate
exceeds the maximum possible service rate. Specif-
ically, in Whitt (2005c), we developed a numerical
algorithm for calculating approximations for all the
standard performance measures in the M/GI/s/r+GI
model with large s, in which the service times and
abandon times come from independent sequences

of IID random variables with general distributions.
While studying how the approximations perform
compared to simulations, we saw that it is often rea-
sonable to have the arrival rate exceed the maximum
possible service rate when there are many servers and
significant abandonment.
An initial example has 100 agents (servers) han-

dling calls with mean holding (service) time and
mean abandon time both equal to five minutes. The
SLA may stipulate that at most 5% of the customers
should abandon and that 80% of the calls that eventu-
ally are served should be answered within 30 seconds.
The M/M/s+M model indicates that the 100 agents
can handle an arrival rate of 20.4 calls per minute,
yielding a traffic intensity of � = 1�02 > 1. With that
arrival rate, the SLA is just met: 5% of the arrivals
abandon and 80% of the answered calls are answered
within 30 seconds. Some call centers provide even
lower quality of service; then we may encounter even
higher traffic intensities.
That initial example illustrates that, with substan-

tial abandonments, we may well have �> 1 when the
SLA is met. However, even though � = 1�02 > 1, the
QED approximations perform well, being far supe-
rior to the ED approximations. For example, the QED
approximation for the 0.05 abandonment probability
is 0.051, whereas the ED approximation is 0.02. In this
case, we will show that the ED approximations pro-
vide only a rough indication of performance. Never-
theless, the ED approximations may be useful.
The ED approximations become more appropriate

with a further degradation of service. For example,
suppose that the arrival rate increases by 8% from 20.4
calls per minute to 22.0 calls per minute, increasing
the traffic intensity from �= 1�02 to �= 1�10. Now, as
shown by Tables 1 and 2 in §5, the ED approxima-
tions are quite good. For example, the exact abandon-
ment probability is 0.10, while the ED approximation
is 0.09; the exact mean queue length is 10.9, while the
ED approximation is 10.0. Moreover, further refined
ED approximations have less than 1% error.
Without a finite waiting room or customer aban-

donment, steady-state distributions do not exist when
� > 1. Then � > 1 is simply an overloaded regime,
because the queue length explodes as time evolves.
Then the overloaded regime is interesting primarily
to describe transient behavior.
Without a finite waiting room or customer aban-

donment, it is possible to define an underloaded
ED limiting regime, in which � is less than 1 but
extremely close to 1. Indeed, that is the conventional
heavy-traffic limiting regime with a single server.
However, with a large number of servers, � has to be
so close to 1 that the system becomes unstable in the
sense that a very small increase in the traffic intensity
pushes the system into the overloaded regime.
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But the ED many-server heavy-traffic limiting re-
gime becomes viable with customer abandonment.
Even a small amount of abandonment can keep the
system stable when the arrival rate exceeds the max-
imum possible service rate. Even though the steady-
state probability of initially being delayed approaches
1 in the ED limit, this alternative ED heavy-traffic
limit can be realistic because the delays experienced
need not be extraordinarily large. We believe that the
ED regime does describe the operation of many exist-
ing call centers remarkably well, especially when a
great emphasis is placed on efficiency. An emphasis
on efficiency is more common among call centers that
are service oriented instead of revenue generating.
Even though in this paper we focus on a regime

supporting low-to-moderate quality of service, we
do not advocate providing low-to-moderate quality
of service in call centers. Indeed, as suggested in
Whitt (1999), it may be possible to provide spectacu-
lar quality of service without requiring a commitment
of excessive resources with good planning and good
execution. However, to improve the quality of ser-
vice, it is important to understand the performance of
existing call centers. We contend that the ED limiting
regime can be helpful to understand the performance
of existing call centers providing low-to-moderate
quality of service.
In this paper, we establish limits in the ED heavy-

traffic regime and develop approximations based on
those limits. We only consider Markovian birth-and-
death models. For the Markovian models considered
here, the limits are not difficult to obtain; indeed,
we establish them by the same argument used in
the seminal heavy-traffic paper on multiserver queues
by Iglehart (1965), drawing on Stone (1963). The
stochastic-process limits here also can be viewed as
consequences of more general results for state-
dependent Markovian queues in Mandelbaum and
Pats (1995; see Theorems 4.1 and 4.2 and §5.3 there),
but the relatively complicated full framework of
Mandelbaum and Pats (1995) is not needed to treat
the special case considered here.
The main contribution here, we believe, is commu-

nicating that this ED many-server heavy-traffic lim-
iting regime can indeed yield useful approximations.
When this ED regime is appropriate, the heavy-traffic
limit is very helpful because it generates remarkably
simple approximations (e.g., see (3.1)–(3.5)). In par-
ticular, the ED approximations are simple even in
comparison to the QED approximations. The ED
approximations can be useful even if they are less
accurate than the QED approximations. Indeed,
because there already are effective exact numerical
algorithms to calculate all desired performance mea-
sures in the M/M/s/r+M model, as in Whitt (2005c),

only truly simple approximations can provide signif-
icant value added.
The rest of this paper is organized as follows. We

begin in §2 by establishing the stochastic-process limit
for the number in system in the M/M/s/r+M model
in the ED regime. We also establish a deterministic
fluid limit and a limit for the steady-state distribu-
tions in the ED regime. In §3, we develop heuristic
approximations for steady-state performance mea-
sures based on the limits.
Interestingly, the approximation for the steady-state

queue length in the ED regime (see (3.4) and (3.6))
depends on the number of servers, s, and the individ-
ual abandonment rate, �, only through the ratio s/�.
It is thus natural to wonder if we can obtain a related
limit as � → 0 and, indeed, such a limit was estab-
lished by Ward and Glynn (2003) (assuming fixed s;
see Part 4 of Theorem 1 and Remark 5 there). In §4,
we show that the same ED limit holds more generally
when � is held fixed with �> 1 and s/�→�, because
either the individual abandonment rate � becomes
small or the number s of servers becomes large or
both. The main approximation developed by Ward
and Glynn (2003) for fixed s stems from a double limit
in which �→ 1 and �→ 0, so that

	1−�
/
√
�→ �� (1.2)

in the spirit of (1.1), which defines the QED limiting
regime. When �→ 0, we also emphasize the value of
the alternative ED regime in which � is fixed with
�> 1.
In §5, we compare the ED approximations to exact

numerical solutions for the M/M/s/r + M model,
which we obtain using the algorithm in Whitt (2005c).
(That algorithm producing approximate performance
measures for theM/GI/s/r+GI model produces exact
numerical results for the M/M/s/r +M special case.)
We show that the performance of the ED approxi-
mations ranges from poor to spectacular. We provide
ways to judge when the ED approximations will be
effective.
The paper ends in §6 with our conclusions. We con-

clude this introduction by mentioning two companion
papers: In Whitt (2005a), we develop deterministic
fluid approximations for the general G/GI/s/r + GI
model in the ED many-server heavy-traffic regime.
Unlike here, the emphasis there is on trying to
account for the impact on performance of a nonex-
ponential service-time distribution and a nonexpo-
nential abandon-time distribution. In Whitt (2005e),
we extend the ED many-server heavy-traffic limits
here to M	n
/M	n
/s/r + M	n
 models with state-
dependent rates. Our motivation there is to gain addi-
tional insight into the performance of the M/M/s/r+
M	n
 approximation of the M/GI/s/r + GI model
developed in Whitt (2005c).
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For additional discussion about customer aban-
donment in queues, see Brandt and Brandt (1999,
2002), Zohar et al. (2002), Ward and Glynn (2003),
Mandelbaum and Zeltyn (2004), and the references
therein.

2. Limits for the Erlang-A Model in
the ED Regime

In this section, we establish ED many-server heavy-
traffic limits for theM/M/s+M model, also known as
the Erlang-A model. We actually treat theM/M/s/r+
M model, allowing finite waiting room r as well as
infinite waiting room (r ≤�). When r <�, we require
that r be sufficiently large that it is not a factor, e.g.,
see (2.2) below. Arrivals finding all servers busy and
all waiting spaces full are blocked and lost, with-
out affecting future arrivals. Entering customers are
served in order of arrival by the first available server,
but waiting customers may elect to abandon before
they start service. Customers do not abandon after
they start service.
We choose measuring units for time so that the indi-

vidual mean service time is 1/� = 1. The model is
thus characterized by four parameters: (1) the arrival
rate, �, (2) the number of servers, s, (3) the number of
extra waiting spaces, r , and (4) the individual aban-
donment rate, �. The assumption of exponential aban-
donment rates is equivalent to the customers having
IID times to abandon before beginning service, with
a common exponential distribution having mean 1/�.
We consider a sequence of these M/M/s/r + M

models indexed by s. Let �s , rs , and �s be the remain-
ing parameters, as a function of s. We increase �s

and rs with s, but we leave the individual service rate
�= 1 and the individual abandonment rate �s = �
fixed, independent of s. We let the traffic intensity �
remain fixed. (It suffices to let �s → �> 1.) In particu-
lar, we assume that

�s = �s where �> 1 (2.1)

and
rs = �s where � > q� (2.2)

with

q ≡ �− 1
�

(2.3)

for all s. Condition (2.1) determines the ED regime.
Condition (2.2) ensures that, asymptotically, no cus-
tomers are blocked, as we will show below.
Let Ns	t
 be the number of customers in the system

at time t when there are s servers. The ED regime is
relatively tractable because, in the ED regime, Ns	t

tends to concentrate about a fixed value; i.e., for
large s, we will show that

Ns	t
≈ 	1+ q
s (2.4)

for q defined in (2.3). Heuristically, we obtain q in
(2.3) by finding the point, say xs, where the input rate
equals the output rate. Clearly, that can occur only
with all servers busy (x > 1). Before scaling by divid-
ing by s, we have the equation

�s = s+�	xs− s
� (2.5)

after dividing by s and letting s →�, we obtain the
equation

�= 1+�x� (2.6)

The solution to these equations is x= q for q in (2.3).
The diffusion approximation is a refinement of the

deterministic approximation in (2.4) and (2.3). To
establish convergence to a diffusion process, we form
the normalized stochastic process

Ns	t
≡
Ns	t
− s	1+ q
√

s
� t ≥ 0 (2.7)

for q in (2.3). (Throughout this paper, we use bold-
face to denote normalized processes and their limits.)
Let the initial state Ns	0
 be specified independently,
so that the stochastic process �Ns	t
� t ≥ 0� is Markov.
To establish a stochastic-process limit for the pro-
cesses Ns , let D ≡ D	�0��
��
 denote the space of
all right-continuous real-valued functions on the pos-
itive half line �0��
 with left limits everywhere in
	0��
, endowed with the usual Skorohod J1 topol-
ogy (see Billingsley 1999 or Whitt 2002). Let⇒ denote
convergence in distribution (weak convergence), both
for sequences of stochastic processes in D or for
sequences of random variables in �. Let Nor	m��2

denote a random variable that is normally distributed
with mean m and variance �2.

Theorem 2.1 (Stochastic-Process Limit for the
Erlang-A Model in the ED Regime). Consider the
sequence of M/M/s/r + M models specified above,
satisfying (2.1)–(2.3). If Ns	0
⇒N	0
 as s→�, then

Ns ⇒N in D as s→�� (2.8)

where Ns is the scaled process in (2.7) and N is an
Ornstein-Uhlenbeck (OU) diffusion process with infinites-
imal mean 	state-dependent drift)

m	x
=−�x (2.9)

and infinitesimal variance

�2	x
= 2�� (2.10)

which has steady-state distribution

N	�

d=Nor	0��/�
� (2.11)
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Proof. Because Ns is a birth-and-death process and
the limiting OU diffusion process has no boundaries,
we can apply the weak convergence theory in Stone
(1963), just as Iglehart (1965) did in his seminal paper.
Given Stone (1963), with the scaling in (2.7), it suf-
fices to show that the infinitesimal mean and vari-
ances converge to the infinitesimal mean and variance
of the limit process.
Because Ns	t
 is nonnegative integer valued, the

possible values of Ns	t
 are �k− s	1+ q
!/
√
s for k≥ 0.

Hence, for arbitrary real number x, we consider a
sequence �xs� s ≥ 1�, where xs is an allowed value of
Ns	t
 for each s and xs → x as s→�. For example, for
all sufficiently large s, we can construct an allowed
value by letting

xs ≡
�s	1+ q
+ x

√
s�− s	1+ q
√
s

�

where �t� is the floor function, i.e., the greatest integer
less than or equal to t. When x < 0, we need s to be
sufficiently large to guarantee that �s	1+q
+x

√
s� ≥ 0.

For any real number x and sequence of allowed val-
ues �xs� s ≥ 1�, the infinitesimal means are

ms	xs
 ≡ lim
h→0

E�	Ns	t+h
−Ns	t

/h �Ns	t
= xs!

= lim
h→0

E

[
Ns	t+h
−Ns	t


h
√
s

∣∣∣∣
Ns	t
= s+ 		�− 1
/�
s+ xs

√
s

]

= �s− s−�			�− 1
/�
s+ xs
√
s
√

s

→ −�x≡m	x
 as s→��

and the infinitesimal variances are

�2
s 	xs
 ≡ lim

h→0
E�	Ns	t+h
−Ns	t



2/h �Ns	t
= xs!

= lim
h→0

E

[
	Ns	t+h
−Ns	t



2

hs

∣∣∣∣
Ns	t
= s+ 		�− 1
/�
s+ xs

√
s

]

= �s+ s+�			�− 1
/�
s+ xs
√
s


s

→ 2�≡ �2	x
 as s→��

It is well known that the OU diffusion has a nor-
mal steady-state distribution with variance equal to
the infinitesimal variance divided by twice the state-
dependent drift rate (e.g., see p. 218 of Karlin and
Taylor 1981). �

The stochastic-process limit in Theorem 2.1 is often
called a functional central limit theorem (FCLT) (e.g., see

Whitt 2002). A simple consequence of the FCLT is a
functional weak law of large numbers (FWLLN), which
formalizes the heuristic discussion in (2.4)–(2.6). It
is obtained simply by dividing by

√
s before letting

s→� in the setting of Theorem 2.1. To state the
FWLLN, let

N̂s	t
≡
Ns	t


s
� t ≥ 0� (2.12)

Corollary 2.1 (FWLLN for the Erlang-A Model
in the ED Regime). Under the conditions of Theorem 2.1,

N̂s ⇒ N̂ in D as s→�� (2.13)

where

N̂	t
= 	1+ q
� t ≥ 0 (2.14)

for q in (2.3).

Proof. When we divide the scaled process in (2.7)
by

√
s and let s →�, we obtain convergence in proba-

bility to the zero function by an application of a version
of the continuous mapping theorem—Theorem 3.4.4
inWhitt (2002)—implying the result. �

It is also possible to establish a more general deter-
ministic fluid approximation by just changing the ini-
tial conditions in Corollary 2.1. When we scale by
dividing by s throughout, we obtain an ordinary dif-
ferential equation (ODE) for the limit, which is useful
for describing the transient behavior of the Erlang-A
model. For a real number x, let 	x
+ ≡max �x�0� and
	x
− ≡min �x�0�.

Theorem 2.2 (ED Fluid Limit for the Erlang-A
Model). Consider the sequence of M/M/s/r+M models
specified above, satisfying (2.1)–(2.3), and let N̂s	t
 be the
scaled number in system in (2.12). If N̂s	0
 ⇒ n	0
 as
s→�, where n	0
 is a real number (deterministic), then

N̂s ⇒ n in D as s→�� (2.15)

where n is a degenerate diffusion process with continuous
piecewise-linear infinitesimal mean (state-dependent drift)

m	x
= 	�− 1
−�	x− 1
+ + 	x− 1
− (2.16)

and infinitesimal variance �2	x
= 0; i.e., n is the ODE

ṅ	t
 ≡ dn
dt

	t


= 	�− 1
−�	n	t
− 1
+ + 	n	t
− 1
− (2.17)

with initial value n	0
.

Proof. We first extend the process Ns to the entire
real line by letting the birth rate be �s and the death
rate be 0 for negative integers, and by letting the
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birth rate be 0 and the death rate be s+��s for pos-
itive integers greater than �s. With that construction
the scaled process N̂s will never visit states outside
the interval �0��!, but at the same time will have no
boundaries. The proof now is essentially the same
as for Theorem 2.1. Now we need to calculate the
infinitesimal means and variances when we scale by
dividing by s instead of

√
s. Now we let xs be a pos-

sible value of N̂s	t
 for each s, such that xs → x as
s→�. Now the limit for the infinitesimal means is

ms	xs
 ≡ lim
h→0

E
[
	N̂s	t+h
− N̂s	t

/h � N̂s	t
= xs

]
= lim

h→0
E

[
	Ns	t+h
−Ns	t



hs

∣∣∣Ns	t
= sxs

]

=
{
�− 1−�	xs − 1
� xs ≥ 1�
�− xs xs ≤ 1�

=
{
�− 1−�	xs − 1
� xs ≥ 1�
�− 1+ 	1− xs
� xs ≤ 1�

→ �− 1−�	x− 1
+ + 	x− 1
−�
The limit for the infinitesimal variances is

�2
s 	xs
 ≡ lim

h→0
E
[
	N̂s	t+h
− N̂s	t



2/h � N̂s	t
= xs
]

= lim
h→0

E

[
	Ns	t+h
−Ns	t



2

hs2

∣∣∣Ns	t
= sxs

]

=




�+ 1+�	xs − 1

s

� xs ≥ 1�
�+ xs

s
xs ≤ 1�

→ 0≡ �2	x
 as s→��

It is well known that the degenerate OU diffu-
sion (with 0 infinitesimal variance) is the ODE in
(2.17). �

Remark 2.1 (Steady-State of the Fluid Limit).
It is easy to see that the deterministic fluid limit func-
tion in Theorem 2.2, n	t
, converges monotonically as
t→� to its steady-state limit n	�
= q ≡ 	�− 1
/�.
For customary applications, we are primarily inter-

ested in approximations for the steady-state per-
formance measures in the M/M/s/r + M model.
Such approximations can be generated heuristically
from Theorem 2.1, but limits for the steady-state
performance measures do not follow directly from
Theorem 2.1. They do with additional arguments,
however. They can also be established directly,
starting from the steady-state distributions in the
M/M/s/r +M model. Here we apply Theorem 2.1.
Here are the performance measures we consider:

Ns	�
, the steady-state number of customers in the
system; Qs	�
, the steady-state number of customers
waiting in queue; Ws	�
, the steady-state waiting
time (before beginning service or abandoning) of a

typical customer (which has the same distribution
as the virtual waiting time of an arrival at an arbi-
trary time, because of the Poisson arrival process);
and Ps	ab
, the steady-state abandonment probabil-
ity. Let Ss denote the event that a customer eventu-
ally is served; necessarily P	Ss = 0
 = 1− P	Ss = 1
 =
Ps	ab
. Let 	Ws	�
 � Ss
 denote a random variable
with the conditional distribution of the waiting time
given that the customer eventually will be served,
i.e., P		Ws	�
 � Ss
 ≤ x
 ≡ P	Ws	�
 ≤ x � Ss
. For the
Erlang-A model, it is well known that these steady-
state quantities are well defined.

Theorem 2.3 (EDHeavy-Traffic Limit for Steady-
State Quantities in the Erlang-A Model). Con-
sider the sequence of M/M/s/r + M models specified
above, satisfying (2.1)–(2.3). Then, as s→�,

Ns	�
≡ Ns	�
− s	1+ q
√
s

⇒N	�

d=Nor

(
0�

�

�

)
�

(2.18)

N̂s	�
≡ Ns	�


s
⇒ N̂	�
= 1+ q� (2.19)

P	Ns	�
≤ s
→ 0� (2.20)

Qs	�
≡ �Ns	�
− s!+ − sq√
s

⇒Q	�

d=Nor

(
0�

�

�

)
�

(2.21)

Q̂s	�
≡ Qs	�


s
⇒ Q̂	�
= q ≡ �− 1

�
� (2.22)

Ps	ab
⇒ P	ab
≡ �− 1
�

� (2.23)

	Ws	�
 � Ss
⇒w� (2.24)

Ws	�
⇒W� (2.25)

where w is the deterministic quantity

w≡ 1
�
loge	�
=− 1

�
loge	1− P	ab

 > 0� (2.26)

and W is the random variable with

P	W > x
= e−�x� 0≤ x≤w� and P	W >w
= 0
(2.27)

for w in (2.26), which has expected value

E�W!= P	ab


�
= q

�
� (2.28)

Proof. For the first limit in (2.18), most of the
work has been done by Theorem 2.1. To make use
of Theorem 2.1, we can follow the argument in the
proof of Theorem 4 in Halfin and Whitt (1981). We
can deduce that the sequence of normalized steady-
state random variables �Ns	�
� s ≥ 1� is tight by
constructing upper and lower bounding processes
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that have proper limits as s → � (see Halfin and
Whitt 1981 for details). The tightness implies relative
compactness by Prohorov’s Theorem, Theorem 11.6.1
of Whitt (2002), thus every subsequence has a con-
vergent sub-subsequence. We show convergence by
showing that all convergent subsequences must have
the same limit. Consider any convergent subse-
quence. That convergent subsequence can serve as
the sequence of initial distributions in the conditions
of Theorem 2.1. But because these particular initial
distributions are stationary distributions, the limiting
distribution must be a stationary distribution for the
limiting OU diffusion process. The OU diffusion pro-
cess has a unique stationary distribution, however.
Thus, all convergent subsequences must have that
normal stationary distribution as their limiting distri-
bution. With that additional argument, Theorem 2.1
implies (2.18). The next limit (2.19) follows by divid-
ing by

√
s and letting s→�, just as in Corollary 2.1.

Then (2.20) is an immediate consequence. The lim-
its for the scaled queue-length processes in (2.21) and
(2.22) follow from (2.18) by continuous mapping theo-
rems. To establish (2.23), note that in steady state, the
servers are all busy asymptotically, by (2.20). Hence,
after dividing by s, the service rate is asymptoti-
cally 1. Because the arrival rate is asymptotically �
after dividing by s, the total abandonment rate after
dividing by s necessarily is asymptotically �− 1 and
Ps	ab
→ P	ab
≡ 	�− 1
/�.
We now turn to the waiting-time results. The wait-

ing time for a customer that eventually will be served
	Ws	�
 � Ss
 is the first passage time to the zero state,
starting with Qs	�
 customers, if we turn off the
arrival process directly after that arrival. With the
arrival process turned off, s−1Qs	t
⇒ q	t
 by the law
of large numbers, where the limit q	t
 satisfies the
ODE

q̇	t
≡ dq

dt
=−1−�q	t
 (2.29)

with initial condition q	0
 = q. Asymptotically as
s→�, at time t, the scaled queue-length process is
being depleted by service completions at rate 1 and by
abandonments at rate �q	t
. Arguing more carefully,
for any - > 0, the scaled number of departures in the
interval 	t� t + -
, given Qs	t
, where s−1Qs	t
⇒ q	t
,
is asymptotically 	1+ �q	t

-+ o	-
 as s →�. Hence
we indeed have (2.29). Next, it is easy to see that the
unique solution to the ODE in (2.29) is

q	t
=
(
q+ 1

�

)
e−�t − 1

�
� t ≥ 0� (2.30)

Thus, the waiting time of a customer that will even-
tually be served approaches the value w such that
q	w
= 0. Solving q	w
= 0, we get

w=− 1
�
loge

(
1

1+�q

)
= 1

�
loge	�
 (2.31)

as given in (2.26). Given that served customers wait
exactly w in the limit as s → �, we immediately
obtain (2.25) and (2.27). �

We observe that (2.28) is consistent with two exact
relations for the M/M/s +M model. First, by Little’s
Law or L= �W , we have

E�Qs	�
!= �sE�Ws	�
!� (2.32)

even without the M/M/s +M assumptions, e.g., see
Whitt (1991). Second, for the M/M/s+M model, we
can express the total abandonment rate in two ways,
yielding

�sPs	ab
= �E�Qs	�
! (2.33)

or

Ps	ab
=
�

�s

E�Qs	�
!= �

s�
E�Qs	�
!� (2.34)

Combining (2.32) and (2.33), we obtain

Ps	ab
= �E�Ws	�
!� (2.35)

Thus, when we know any one of the three perfor-
mance measures Ps	ab
, E�Qs	�
!, or E�Ws	�
!, we
know all three. Formula (2.28) shows that the rela-
tions remain valid in the limit.

3. ED Approximations
The main ED approximations for the M/M/s/r +M
model are the three simple approximations that fol-
low directly from (2.22)–(2.26):

Ps	ab
≈ P	ab
≡ 	�− 1

�

�

E�Qs	�
!≈ qs ≡ 	�− 1
s
�

�

E�Ws	�
 � Ss!≈w≡ 1
�
loge	�
�

(3.1)

It is important to recognize, however, that only the
first simple approximation for the abandonment prob-
ability Ps	ab
 is generally valid beyond the Markovian
M/M/s/r + M model, as can be seen from Whitt
(2005d). In particular, the approximations for the mean
steady-state queue length and waiting time depend
critically on the exponential distribution assumptions.
These M/M/s/r +M ED approximations can be very
useful more generally, however, as rough approxima-
tions and to test whether an M/M/s/r +M model is
appropriate.
We choose to focus on the conditional waiting time

given that the arrival is eventually served, 	Ws	�
 �
Ss
, but we also have results for the unconditional
waiting timeWs	�
, from which we can obtain results
for the conditional waiting time given that the arrival
eventually abandons, 	Ws	�
 � Sc

s 
, where Sc
s is the
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complement of the event Ss . Theorem 2.3 implies that
	Ws	�
 � Sc

s 
 ≤ 	Ws	�
 � Ss
 in the limit as s → �, so
constraints on the distribution of 	Ws	�
 � Ss
 will tend
to be somewhat more stringent than constraints on
the distribution of Ws	�
, but these will differ rela-
tively little when the abandonment probability is not
great.
Combining the first approximation in (3.1) with the

exact relation in (2.33), we obtain the approximation

E�Ws!=
Ps	ab


�
≈ P	ab


�
= 	�− 1


��
� (3.2)

We also obtain essentially the same approximation for
E�Ws	�
 � Ss!, based on an approximation for w,

E�Ws	�
 � Ss! ≈ w=− 1
�
loge	1− P	ab



≈ P	ab


�
= 	�− 1


��
� (3.3)

For approximation (3.3), we use the approximation
log	1− x
 ≈ −x for small x, which is asymptotically
correct (the ratio approaches 1) as x ↓ 0.
From (2.21), we also obtain a normal approximation

for the entire steady-state queue-length distribution,
in particular,

Qs	�
≈Nor
(
	�− 1
s

�
�
�s

�

)
� (3.4)

A consequence is an approximation for the variance

Var	Qs	�

≈ �s

�
� (3.5)

An immediate practical insight to glean from the
approximations for the steady-state queue length in
(3.1), (3.4), and (3.5) is that the coefficient of variation
(standard deviation divided by the mean) approaches
0 as s →� for all parameters � > 1 and � > 0. Thus
the crude deterministic analysis begins to tell more
and more of the story as s increases. For example, the
4 × 5 = 20 cases in Table 1 in §5 have queue-length
coefficients of variation ranging from 0.33 to 2.25.
(And these values would be smaller if we looked at
the conditional queue length given that it is positive.)
We next discuss refined heuristic approximations

that do not follow directly from Theorem 2.3. An obvi-
ous simple refinement to (3.4) is

Qs	�
≈Nor
(
	�− 1
s

�
�
�s

�

)+
� (3.6)

where x+ ≡ max�0�x�. Let 1 and 2 be the cumula-
tive distribution function (cdf) and probability density

function (pdf) of a standard normal random variable,
respectively, i.e.,

1	y
 ≡ P	Nor	0�1
≤ x
≡
∫ y

−�
2	x
dx�

where 2	x
= 1√
24

e−x2/2� (3.7)

Let 1c be the associated complementary cdf (ccdf),
defined by 1c	x
≡ 1−1	x
, and let h be the associ-
ated hazard function

h	x
≡ 2	x


1c	x

� (3.8)

To simplify expressions, we use the following
notation:

q ≡ �− 1
�

� v≡ �

�
� and

6 ≡ 6	s� q�v
≡ −qs√
vs

� (3.9)

We then obtain the associated approximations

P	Qs	�
>0
≈P	Nor	qs�vs
>0
=1c	6
� (3.10)

E�Qs	�
 �Qs	�
>0!

≈E�Nor	qs�vs
 �Nor	qs�vs
>0!
=qs+√

vsh	6
� (3.11)

and

E�Qs	�
2 �Qs	�
 > 0!

≈ E�Nor	qs�vs
2 �Nor	qs�vs
 > 0!

= 	qs
2+ vs+ 2q√vsh	6
+ vs6h	6
 (3.12)

for q, v, and 6 in (3.9). The conditional normal
moments in (3.11) and (3.12) are standard (e.g., see
Proposition 18.3 of Browne and Whitt 1995). Clearly,
we can combine the last three formulas to obtain
approximations for the mean E�Qs	�
! and variance
Var�Qs	�
!.
Because the three performance measures Ps	ab
,

E�Qs	�
!, and E�Ws	�
! are all related by the exact
relations in (2.32)–(2.34), we can use a refined approx-
imation for any one to obtain refined approximations
for all three. Thus, we obtain the refined approxima-
tion for the abandonment probability

Ps	ab
≈ P	ab

E�Qs	�
!

	�− 1
s/�� (3.13)

Of course, approximations for E�Qs	�
! translate im-
mediately into approximations for E�Ws	�
! by virtue
of Little’s Law, (2.32).
We now consider refined approximations for

P	Ws	�
 ≤ x � Ss
, the cdf of the conditional steady-
state waiting time until beginning service, given that
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the customer is served. Because the waiting time
tends to be the sum of a relatively large number
of service times, we apply an approximation based
on the law of large numbers together with the fluid
approximation in (2.26), saying that

P	Ws	�
 ≤ x � Ss�Qs	�
= qs
≈ 1

if − 1
�
loge

(
1

1+�q

)
≤ x (3.14)

and 0 otherwise. However,

− 1
�
loge

(
1

1+�q

)
≤ x

if and only if q ≤ 1
�
	e�x − 1
� (3.15)

Thus, we obtain the approximation

P	Ws	�
≤ x � Ss
 ≈ P

(
Qs	�
≤ s

�
	e�x − 1


)

≈ P

(
Nor	sq� sv
≤ s

�
	e�x − 1


)

= 1

(
�s/�	e�x − 1
− sq!√

sv

)
(3.16)

for v in (3.9).

4. Slow Abandonments in the ED
Regime: The Limit as s/�→�

From Equations (3.4) and (3.6), we see that the nor-
mal approximations for the steady-state queue length
Qs	�
 depend on the parameters s and � only
through the ratio s/�. Thus, it is natural to consider
limits in which we let � → 0 instead of s → � and,
indeed, that has already been done by Ward and
Glynn (2003). However, they did not emphasize the
ED regime, where � is fixed with � > 1. Instead, they
emphasize the limiting regime in (1.2).
We go further for the ED limiting regime here by

establishing limits as s/�→�, allowing either s→�
or �→ 0 or both. For the special case in which only
� → 0, we recover Part 4 of Theorem 1 in Ward
and Glynn (2003); for the special case in which only
s→�, we recover Theorem 2.1.
We start by defining scaled processes, indexed by

both s and �,

Ys��	t
≡
√
�

s

[
Ns��	t/�
−s− 	�−1
s

�

]
for t≥0� (4.1)

We now state the result, omitting the proof because it
is just like the proof of Theorem 2.1.

Theorem 4.1 (The ED Limit as s/�→�
. Consider
the M/M/s/r +M models defined in §2, satisfying (2.1)
and (2.3). If Ys��	0
⇒Y	0
 in � as s/�→�, where Ys��

is the scaled process in (4.1), then

Ys�� ⇒Y in D as s/�→�� (4.2)

where Y is an OU diffusion process with infinitesimal
mean m	x
=−x and infinitesimal variance �2	x
= 2�.

From Theorem 4.1, we obtain the same approxima-
tion for the steady-state queue length Qs	�
 as before,
i.e., as in (3.4) and (3.6).
The fact that the ratio s/� plays such a critical role

invites an explanation. We would like to identify the
fundamental role it plays, in the spirit of the traffic
intensity, � = �/s�. In fact, the role of the ratio s/�
is brought out by the limits. Indeed, we see the role
of s/� from the first heuristic approximation devel-
oped in (2.4)–(2.6), based on finding the point where
the input rate matches the output rate. That informal
reasoning tends to make sense if either s is large or
� is small or both. We also see that, in first order, the
queue length should be proportional to s/�.
The important role of the ratio s/� is further

brought out by the stochastic-process limits in
Theorems 2.1 and 4.1. Even from the basic limit in
Theorem 2.1, we can see the role of s and �. First,
the role of s is clear from the scaling in (2.7). We see
that the mean and variance of Ns	t
 should both be
approximately proportional to s. Next, the role of � is
first seen by its contribution to q in (2.3) and the way
it affects the centering term in (2.7). We then see that
the state-dependent drift of the limiting OU diffusion
process is proportional to �, which implies that the
variance of the steady-state distribution is inversely
proportional to �. Combining those insights, we see
that both the mean and variance of the steady-state
queue length should be approximately proportional
to s/�. The proof of Theorem 4.1 shows that it suffices
to let s/�→�.
We can also provide a more informal direct argu-

ment. If we consider a waiting customer, that customer
tends to abandon at rate � and tends to move toward
service at rate s�= s. Thus s/� is the ratio of two rates:
the rate a customer moves toward entering service,
and the rate the customer tends to abandon. When the
ratio s/� is large, the tendency to abandon is less, so
that the queue size is likely to be larger. In other words,
the key ratio s/� can be thought of as the tendency to
be served instead of abandon. For given proportion of
abandonment, estimated by �− 1, a higher ratio s/�
causes larger queues, in particular, a larger value of sq,
pushing us more into the ED regime.

5. Numerical Comparisons
In this section, we evaluate the ED approximations
in §3, based on the limits in §§2 and 4, by compar-
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Table 1 A Comparison of Approximations with Exact Numerical Values for Several Performance Measures in the M/M/s+M Model

Performance measures as a function of s with s/� fixed

Approximations Exact with s servers

Perf. meas. Simple Refined 1 10 100 1,000 10,000

s/�= 1�000 and �− 1= 0�10
Ps	ab� 0�0909 0�0909 0�0910 0�0910 0�0909 0�0909 0�0909
E�Qs	��� 100�0 100�0 100�1 100�1 100�0 100�0 100�0
SD	Qs	��� 33�17 33�1 33�0 33�0 33�1 33�1 33�1
sE�Ws	�� � Ss� 95�31 — 94�92 94�90 94�85 94�82 94�81

s/�= 1�000 and �− 1= 0�02
Ps	ab� 0�0196 0�0247 0�0329 0�0318 0�0291 0�0246 0�0210
E�Qs	��� 20�0 25�2 33�6 32�4 29�7 25�1 21�4
SD	Qs	��� 31�9 24�9 23�5 23�9 24�5 25�0 24�7
sE�Ws	�� � Ss� 19�79 — 33�2 32�0 29�2 24�6 20�9

s/�= 100 and �− 1= 0�10
Ps	ab� 0�0909 0�0995 0�1148 0�1087 0�0992 0�0927 0�0911
E�Qs	��� 10�0 10�95 12�6 12�0 10�9 10�2 10�0
SD	Qs	��� 10�5 8�99 8�6 8�8 9�1 9�2 9�2
sE�Ws	�� � Ss� 9�53 — 11�9 11�1 10�1 9�4 9�2

s/�= 100 and �− 1= 0�02
Ps	ab� 0�0196 0�0499 0�0792 0�0686 0�0499 0�0316 0�0223
E�Qs	��� 2�00 5�10 8�08 7�00 5�09 3�23 2�28
SD	Qs	��� 10�1 6�57 6�83 6�93 6�68 5�85 5�14
sE�Ws	�� � Ss� 1�98 — 8�03 6�88 4�90 3�00 2�13

ing them to exact numerical results for the Erlang-A
model, using the algorithm described in Whitt (2005c).
We vary s with both the ratio s/� and the limiting
abandonment rate 	�s − s
/s = � − 1 held fixed. We
consider two values for the ratio s/�, 1,000 and 100;
we consider two values for the scaled total aban-
donment rate � − 1, 0.10 and 0.02. The two cases
with s/� = 100 are the two cases discussed in the
introduction.
We consider four different performance measures:

the probability of abandonment, Ps	ab
; the mean
steady-state queue length, E�Qs	�
!; the standard
deviation of the steady-state queue length, SD	Qs	�

;
and the conditional mean steady-state waiting time
given that the customer eventually will be served,
E�Ws	�
 � Ss!. It should be noted that the first two,
Ps	ab
 and E�Qs	�
!, are connected by the exact rela-
tion (2.34) so that they have the same relative error. It
is interesting to see the actual values, however.
In Table 1 we display two different approximations:

first, the simple approximation, and, second, a refined
approximation. The simple approximations are given
in (3.1) and (3.5). The refined approximation for the
mean queue length is obtained by combining (3.10)
and (3.11). The refined approximation for the standard
deviation of the queue length is obtained by combin-
ing (3.10)–(3.12). The refined approximation for the
probability of abandonment, Ps	ab
, is obtained from
(3.13), using the refined approximation for the mean
queue length.

From Table 1 we see that, as expected, the quality
of the results improve as the ratio s/� increases and
as the scaled total abandonment rate �− 1 increases.
Consistent with intuition, that evidently is a general
property. We have found that a good way to estimate,
in advance, the overall quality of the ED approxima-
tions is to look at the product of these quantities s/�
and �− 1, which is just the approximate steady-state
queue length, i.e.,

E�Qs	�
!≈ sq = 	�− 1
s
�

= 	�− 1
× s

�
� (5.1)

In the four cases here, sq is 100, 20, 10, and 2. Accord-
ingly, the approximations are accurate when s/� =
1�000, � − 1 = 0�10, and sq = 100, but the approx-
imations are crude when s/� = 100, � − 1 = 0�02,
and sq = 2. Importantly, the approximations appear
useful in the middle two cases in which sq = 20 and
sq = 10.
Very roughly, the percentage errors in the approx-

imations can be estimated by the reciprocal of sq, i.e.,
the percentage errors should be of order 1/sq. For
example, the approximation errors should be about
10% when sq = 10.
Except possibly in the last case with s/�= 100 and

�− 1= 0�02, Table 1 shows that the four performance
measures do not vary greatly with s, over a very wide
range, when s/� and �− 1 are held fixed. The mean
steady-state queue length is approximately propor-
tional to s/�, but independent of s for fixed s/�. On
the other hand, by Little’s Law, the mean steady-state
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waiting time is approximately inversely proportional
to s for fixed s/�.
Except in the best case with s/� = 1�000 and

� − 1 = 0�10, the refinements are much better than
the simple approximations. Nevertheless, we feel the
simple approximations are especially useful for mak-
ing quick rough estimates. The difference between
the refined approximation and the simple approxima-
tion gives a good idea of the accuracy of the simple
approximation.
The weakest approximation in Table 1 is clearly

the simple approximation for the mean conditional
waiting time, E�Ws	�
 � Ss!. The results suggest that
it would be better to just focus on the uncondi-
tional expected waiting time, E�Ws	�
!, and use Lit-
tle’s Law with the approximations for the mean queue
length. Then we obtain the same accuracy as the mean
queue length. In summary, we regard the numerical
results in Table 1 as strong evidence that the approx-
imations can be very useful.
To evaluate call center performance, there is great

interest in service level. It is standard to require that
y% of all calls be answered within x seconds for val-
ues such as y = 80% and x = 30 seconds. Thus, we
are especially interested in having an approximation

Table 2 A Comparison of the Normal Approximation for the Conditional Waiting-Time cdf Given That a Customer Is Served, P 	Ws	��≤ x � Ss�, with
Exact Numerical Values in the M/M/s+M Model

P 	Ws	��≤ �P 	ab�/� � Ss� as a function of s and �

Number of servers s

Case � 1 10 100 1,000 Approx. 10,000 100,000

s/�= 1�000 and �− 1= 0�10
0.00 0�00011 0�00033 0�00082 0�00105 0�0020 0�00115 0�00116
0.75 0�199 0�200 0�200 0�200 0�199 0�200 0�200
1.00 0�452 0�453 0�453 0�453 0�445 0�453 0�453
1.25 0�725 0�725 0�725 0�725 0�725 0�725 0�725
1.50 0�905 0�905 0�905 0�905 0�907 0�905 0�905
s/�= 1�000 and �− 1= 0�02
0.0 0�014 0�046 0�128 0�261 0�265 0�370 0�406
0.5 0�166 0�194 0�265 0�380 0�376 0�474 0�504
1.0 0�331 0�354 0�411 0�503 0�497 0�578 0�603
2.0 0�643 0�643 0�686 0�735 0�732 0�775 0�788
4.0 0�957 0�959 0�962 0�968 0�972 0�973 0�974
s/�= 100 and �− 1= 0�10
0.0 0�026 0�078 0�158 0�182 0�212 0�227 0�228
0.5 0�205 0�253 0�325 0�313 0�373 0�385 0�387
1.0 0�417 0�451 0�504 0�482 0�540 0�549 0�550
2.0 0�788 0�800 0�820 0�817 0�833 0�836 0�836
4.0 0�995 0�995 0�996 0�998 0�996 0�996 0�996
s/�= 100 and �− 1= 0�02
0.0 0�061 0�186 0�422 0�422 0�625 0�735 0�763
0.5 0�132 0�257 0�470 0�460 0�671 0�770 0�794
1.0 0�199 0�313 0�511 0�499 0�696 0�787 0�810
2.0 0�329 0�425 0�590 0�578 0�745 0�822 0�841
4.0 0�563 0�626 0�733 0�727 0�834 0�884 0�897

Note. The arguments x considered are x = �P 	ab�/� as a function of � and s for fixed ratio s/� and fixed �− 1.

for the conditional cdf P	Ws	�
 ≤ x � Ss
 for appro-
priate values of x. In our numerical examples, the
mean waiting times vary from one example to the
next, so natural values of x change from one example
to the next. Thus, we will standardize by expressing
our service-level cut-off as a constant 9 multiple of the
mean waiting time. Because the mean waiting time
can be roughly approximated by (3.2), it is natural to
look at arguments of the form x = 9P	ab
/� for vari-
ous values of 9, centered around 1. We thus examine
how the approximation for P	Ws	�
≤ x � Ss
 in (3.16)
performs in Table 2 for arguments x = 9P	ab
/� for
various values of 9.
Here, we vary both s and 9, keeping the quantities

s/� and �− 1 fixed. We consider the same four cases
of s/� and �− 1 as in Table 1. We make comparisons
with exact results for all powers of 10 ranging from
s = 1 to s = 100�000.
The approximation for the waiting-time cdf in

Table 2 is not as accurate as the approximations in
Table 1. The approximations are pretty good for higher
values of 9, e.g., for 9 ≥ 1, but not for very small
values, especially when the argument is very small,
e.g., when 9 = 0. It is significant that the conditional
waiting-time cdf approximation does work well for
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Table 3 The Probability of Initially Being Delayed, 1− P 	W = 0� Ss�,
in Each of the Cases Considered Previously

Case

�− 1 s/� sq s P 	Ss� 1− P 	W = 0� Ss�

0.10 1�000 100 1 0.9090 0�99990
10 0.9090 0�9997
100 0.9091 0�9998

1�000 0.9091 0�9990
10�000 0.9091 0�9989

0.02 1�000 20 1 0.9671 0�9865
10 0.9682 0�9554
100 0.9709 0�8757

1�000 0.9754 0�7454
10�000 0.9790 0�6378

0.10 100 10 1 0.8852 0�9744
10 0.8903 0�9306
100 0.9008 0�8577

1�000 0.9073 0�8077
10�000 0.9089 0�7937

0.02 100 2 1 0.9208 0�9438
10 0.9314 0�8268
100 0.9501 0�5991

1�000 0.9684 0�3947
10�000 0.9777 0�2814

the higher arguments needed to determine staffing to
meet SLAs.
When considering whether to use QED or ED

approximations, it is instructive to look at the aban-
donment probability and the probability of initially
being delayed. In the QED (ED) regime, the first
should be relatively small (large), while the second
should be relatively large (small). We expect the ED
approximations to be reasonably accurate when the
probability of initially being delayed is greater than
or equal to 0.80. To illustrate, we plot the probabil-
ity of not being served immediately, 1− P	W = 0�Ss
,
for the cases considered previously in Table 3. For the
two examples in the introduction, this probability of
initially being delayed is 0.5991 and 0.8577, respec-
tively. We would thus expect the ED approximation
to be very crude in the first case, but relatively good
in the second case, as we observed.

6. Conclusions
In this paper, we established ED many-server heavy-
traffic limits for Markovian queues with customer
abandonments, specifically for the M/M/s/r + M
model. Many-server limiting regimes involve a
sequence of queueing systems indexed by the num-
ber of servers, s, in which both s and the arrival rate
�s are allowed to increase without bound, while the
exponential service-time and abandon-time distribu-
tions are held fixed. Within the context of the many-
server heavy-traffic limiting regimes for queues with
abandonments, the ED regime can be characterized

in two equivalent ways: (1) assume in addition that
the probability of abandonment, Ps	ab
, converges to
a limit strictly between 0 and 1, or (2) assume in addi-
tion that the traffic intensity, �s , approaches a limit �
with �> 1.
We also developed direct and refined approxi-

mations based on the ED many-server heavy-traffic
limits. We conclude that the ED many-server heavy-
traffic approximations can be very useful to describe
the performance of many-server queues with substan-
tial abandonments. The first approximations for key
performance measures in the M/M/s/r + M model
(Erlang-A model) in (3.1)–(3.5), obtained directly
from the limits, are remarkably simple. The heuris-
tic refinements in (3.6)–(3.16) are also not too com-
plicated. Tables 1 and 2 show that the approx-
imations are quite accurate when the probability
of initially being delayed is not too small, e.g.,
when 1 − P	W = 0�Ss
 ≥ 0�80 or the approximate
mean queue length sq ≡ 	� − 1
s/� is not too
small, e.g., when sq ≥ 10. In extreme cases, as when
1 − P	W = 0�Ss
 ≥ 0�99 or when sq ≥ 100, the
ED approximations will be extremely accurate, and
clearly better than the QED approximations. How-
ever, for less extreme cases when �> 1, we can expect
the QED approximations to perform better than the
ED approximations. For such cases, the great appeal
of the ED approximations is not their accuracy but
their simplicity. They permit back-of-the-envelope cal-
culations. They can greatly help understand the per-
formance of call centers providing low-to-moderate
quality of service. To estimate the quality of the ED
approximations in advance, we suggest looking at
sq = 	�− 1
s/�.
Both the theory (Theorem 4.1) and the numer-

ical comparisons (Table 1) show that key param-
eters, determining both (i) the performance of the
M/M/s/r +M model in the ED regime, and (ii) the
accuracy of the ED approximations, are the ratio s/�
and the scaled abandonment rate 	�s − s
/s = �− 1.
Indeed, in §4, we show that the ED many-server
heavy-traffic limit holds when s/� → �, which can
occur if either � ↓ 0 or s ↑� or both.
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