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Abstract

This paper studies the M/M/s+M queue, i.e., the M/M/s queue with customer abandon-

ment, also called the Erlang-A model, having independent and identically distributed customer

abandon times with an exponential distribution (the +M), focusing on the case in which the

arrival rate and the number of servers are large. The goal is to better understand the sensi-

tivity of performance to changes in the model parameters: the arrival rate, the service rate,

the number of servers, and the abandonment rate. Elasticities are used to show the percent-

age change of a performance measure caused by a small percentage change in a parameter.

Elasticities are calculated using an exact numerical algorithm and simple finite-difference ap-

proximations. Insight is gained by applying fluid and diffusion approximations. The analysis

shows that performance is quite sensitive to small percentage changes in the arrival rate or the

service rate, but relatively insensitive to small percentage changes in the abandonment rate.
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1. Introduction

Motivated by telephone call centers and more general customer contact centers, in this

paper we study the multi-server queue with customer abandonments, focusing on the case

in which the arrival rate and the number of servers are large; see Garnett et al. (2002),

Gans et al. (2003) and Borst et al. (2004) for background. In particular, we consider the

relatively elementary M/M/s+M model, also known as the Erlang-A model, having a Poisson

arrival process with arrival rate λ, independent and identically distributed (IID) service times

(independent of the arrival process) with an exponential distribution having mean 1/µ, s

homogeneous servers working in parallel, unlimited waiting room, IID customer abandon times

(independent of the arrival and service processes) with an exponential distribution having

mean ma = 1/θ (the +M) and the first-come first-served service discipline. Abandonment is

recognized as an important feature in call centers, and the IID assumption for the abandon

times is natural for the invisible queues occurring in call centers.

In this paper we study the sensitivity of performance in the Erlang-A model to changes in

the model parameters. In doing so, we were motivated by a statistical approach proposed by

Pierson and Whitt (2005) to approximate the steady-state performance of the more general

M/GI/s + GI model, having general service-time and time-to-abandon distributions. Whitt

(2005a) had previously proposed approximating the M/GI/s+GI model by the purely Marko-

vian M/M/s + M(n) model, having IID exponential service times with the same mean and

general state-dependent abandonment rates. The total abandonment rate when there are k

customers waiting in queue, δk, is approximated by

δk ≈
k∑

j=1

h(j/λ), k ≥ 0 , (1.1)

where h(x) ≡ f(x)/(1 − F (x)) is the hazard function associated with the time-to-abandon

cumulative distribution function (cdf) F , having probability density function f . Alternatively,

one could use more complicated exact abandonment rates in the M/M/s + GI model deter-

mined by Brandt and Brandt (2002). (The general approach of a state-dependent Markovian

approximation was proposed by Brandt and Brandt (1999, 2002), but the specific approach to

the M/GI/s + GI model in Whitt (2005a) is different.)

Given that the M/M/s+M(n) model can provide a good approximation to the M/GI/s+

GI model, it is natural to consider directly using the M/M/s + M(n) model, without making

direct reference to the exact time-to-abandon distribution. Pierson and Whitt (2005) investi-
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gate how such a direct M/M/s+M(n) model fit can work by simulating various M/GI/s+GI

models, directly estimating state-dependent abandonment rates from the simulation output,

and then using the M/M/s+M(n) algorithm in Whitt (2005a) with these estimated abandon-

ment rates. With ample data (long simulation runs), the exact state-dependent abandonment

rates estimated in that way were found to be close to the approximation in (1.1), which pro-

vides additional support for the approximation in (1.1). The approximate performance was

also close to the performance of the original M/GI/s + GI model. The statistical procedure

also performed quite well with only limited data.

The effectiveness of the statistical procedure with limited data clearly depends in part upon

the sensitivity of performance in the M/M/s + M(n) model to inaccuracies, or small changes,

in the abandonment rates. That led to the present study: We wanted to see if performance in

the M/M/s+M(n) model is indeed relatively insensitive to small changes in the abandonment

rates. In this paper we address that question for the M/M/s+M special case. Our results here

show that indeed the performance is remarkably insensitive to changes in the abandonment

rate.

The first issue is how to evaluate the sensitivity. The natural direct approach is to cal-

culate derivatives of performance measures with respect to the parameters, but it is difficult

to interpret the derivatives. To aid interpretation, we follow the long tradition in economics

and look at elasticities. Paralleling the price elasticity of demand, we look at elasticities such

as the arrival-rate elasticity of the abandonment probability. The elasticity is the derivative

of the performance measures (regarded as a function of the model parameter) multiplied by

the parameter, divided by the performance measure itself. For example, if f(λ) is the aban-

donment probability P (Ab) as a function of the arrival rate λ, having derivative f ′, then the

arrival-rate elasticity of the abandonment probability is

E(f, λ) ≡ λf ′

f
≡ λf ′(λ)

f(λ)
; (1.2)

it shows the percentage change in the abandonment probability resulting from a small percent-

age change in the arrival rate. Very crudely, the sensitivity may be judged as large or small

depending on whether the elasticity is greater than or less than 1.

The second issue is how to calculate the derivatives. The natural direct approach is to

differentiate formulas for the performance measures, but we do not do that. When convenient

formulas are available, it is natural to directly differentiate them, but the method is limited

to those performance measures for which tractable formulas are available. Instead, we use
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the exact numerical algorithm for the M/M/s + M model in Whitt (2005a) and simple finite-

difference approximations; i.e., we approximate the derivative by

f ′(λ) ≈ f(λ + h)− f(λ)
h

(1.3)

for small positive h. We verify accuracy by performing the calculation for different intervals

h, e.g., h = 10−j for j = 3, 4, 5. In this paper we show that the numerical algorithm is indeed

effective for calculating the derivatives and the associated elasticities.

It is significant that the numerical algorithm has wider scope than we exploit here. First,

it applies directly to more general M/GI/s+GI models as an approximation. In that setting,

it can be used to investigate sensitivity of performance to other parameters. For example,

the same methods can be used to study sensitivity to variability. That can be accomplished

in a variety of ways. One way is to work with two-parameter families of service-time or

time-to-abandon distributions, such as gamma or lognormal, and differentiate with respect to

the squared coefficient of variation (CSQ, variance divided by the square of the mean) of the

distribution. It is convenient to work with CSQ’s because they measure variability independent

of scale (the mean).

We also show that useful insight can be gained from heavy-traffic diffusion and fluid ap-

proximations. Especially useful are the diffusion approximations arising in the Quality-and-

Efficiency-Driven (QED) many-server heavy-traffic limiting regime developed by Garnett et

al. (2002). Those approximations are easy to work with and remarkably accurate. Moreover,

the QED approximations tell an interesting story: The arrival-rate and service-rate elasticities

of the diffusion approximations for the standard performance measures are all of order O(
√

s)

as s → ∞, while the abandonment-rate elasticities of the diffusion approximations for the

same performance measures are all of order O(1). Analysis of the elasticities of the diffusion

approximations shows that performance in the M/M/s + M model for large s (in the QED

regime) is remarkably sensitive to changes in the arrival rate or the service rate, but remarkably

insensitive to changes in the abandonment rate.

We also investigate elasticities associated with deterministic fluid limits in the Efficiency-

Driven (ED) many-server heavy-traffic limiting regime, drawing upon Whitt (2004, 2005b).

In contrast to the QED regime, in the ED regime all the elasticities are of order O(1) as

s →∞. However the abandonment-rate elasticities approach 1, whereas the others approach a

limit that explodes as the traffic intensity approaches 1, the critical value for stability without

abandonment. So we see another view of the same phenomenon in the ED regime.
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The different degrees of sensitivity have implications for our concern about the underlying

model in applications. When the sensitivity of performance to a parameter is high, we should

worry more about uncertainty about that model parameter, because the consequences from

errors in specifying that parameter will be greater. Since the sensitivity to the arrival rate in

the M/M/s + M model is relatively large, we should be concerned about uncertainty about

the arrival rate. That suggests that it may be wise to directly address uncertainty about the

arrival rate in the analysis, as has been done in Whitt (2005c).

There is a substantial body of related literature: The sensitivity issue is closely related to

the issue of model continuity or stability; the object there is to conclude that performance is

a continuous function of a model parameter or a model distribution; e.g., see Whitt (1980),

Chapter 5 of Kalashnikov and Rachev (1990), Rachev (1991) and the many references therein.

Sensitivity goes beyond continuity to focus on derivatives. The sensitivity issue for Erlang

models (A, B and C) is also related to the convexity issue for these models; see Harel (1990),

Harel and Zipkin (1987), Jagers and van Doorn (1991) and references therein. Earlier papers

that focus on many-server heavy-traffic scaling are Erlang (1924), Jagerman (1974) and Halfin

and Whitt (1981). Sensitivity of performance in the G/G/1/C model was studied via deriva-

tives of the Brownian heavy-traffic approximation in Section 9 of Berger and Whitt (1992).

Sensitivity of performance to the service-time distribution beyond its mean in the Mt/GI/s/0

loss model with time-varying arrival rate was studied by Davis et al. (1995). For more on

the Erlang-A model and generalizations, see Brandt and Brandt (1999, 2002), Garnett et al.

(2002), Mandelbaum and Zeltyn (2004), Whitt (2004, 2005a,b,c) and references therein.

Here is how the rest of this paper is organized: In Section 2 we start by applying the QED

diffusion approximation in Garnett et al. (2002) to investigate the sensitivity. In Section 3

we apply the alternative ED fluid approximation from Whitt (2004, 2005b) to gain further

insights. In Section 4 we conduct numerical experiments, applying the algorithm in Whitt

(2005a) to calculate the elasticities in a range of cases. There we demonstrate that the scal-

ing discussed in previous sections indeed provides valuable insight. In Section 5 we conduct

subsequent experiments to study the sensitivity of state-dependent abandonments to the total-

abandonment-rate function for large queue lengths. We show that performance tends to be

quite insensitive to such changes as well.
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2. Insights from the QED Many-Server Heavy-Traffic Limit

In this section we apply a diffusion approximation to investigate the sensitivity of the

Erlang-A model to the model parameters: the arrival rate λ, the service rate µ, the number

of servers s and the individual customer abandonment rate θ. Specifically, we apply the

diffusion approximation obtained by Garnett et al. (2002) via the many-server heavy-traffic

limit in the QED limiting regime, which is also known as the Halfin-Whitt limiting regime,

because corresponding results for the Erlang-C model (without abandonments) were previously

obtained by Halfin and Whitt (1981).

In the QED limiting regime, the arrival rate, λ, and the number of servers, s, are allowed to

increase toward infinity, with the mean service time 1/µ held fixed, so that the traffic intensity

ρ ≡ λ/sµ approaches 1 and

(1− ρ)
√

s → β for −∞ < β < ∞ . (2.1)

From a practical perspective, this means that λ and s both should be large and that λ should

not be too different from s. In particular, the difference (λ/µ)− s should be of order O(
√

s).

The limiting constant β in (2.1) is an indicator of the quality of service (QOS), capturing the

impact of all parameters. The QOS improves as β increases.

As is usually the case with stochastic-process limits (e.g., see Section 5.5 of Whitt (2002)),

the scaling leading to the stochastic-process limit is the most important part, assuming that

the conditions of the limiting regime indeed prevail. From the scaling alone we will see that

the elasticities of all the standard performance measures with respect to λ, µ and s (regarding

s as a continuous variable) are all of order O(
√

s) as s → ∞, whereas the elasticities with

respect to the abandonment rate θ are all of order O(1). The practical implication is that the

performance in the QED regime is substantially less sensitive to small percentage changes in

θ than to small percentage changes in the other parameters.

The importance of the QED many-server limiting regime specified by (2.1) is highlighted

by the fact that the probability of delay approaches a limit strictly between 0 and 1 as s →∞
if and only if the limit in (2.1) holds; see Theorem 4 of Garnett et al. (2002). Let W denote

the steady-state waiting time (with dependence on the parameters suppressed in the notation).

If (2.1) holds, then

P (W > 0) → w(−β,
√

µ/θ) , (2.2)
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where

w(x, y) ≡
[
1 +

h(−xy)
yh(x)

]−1

, (2.3)

and h is the standard-normal hazard function, defined by

h(x) ≡ φ(x)
Φc(x)

≡ φ(x)
Φ(−x)

, (2.4)

with φ being the probability density function (pdf), Φ the associated cumulative distributiuon

function (cdf) and Φc ≡ 1 − Φ the associated complementary cdf (ccdf) of a standard (mean

0 and variance 1) normal random variable.

The QED approximation for the probability of delay is obtained by replacing the limits in

(2.1) and (2.2) by equality; i.e.,

P (W > 0) ≈ w(−β,
√

µ/θ) where β = (1− ρ)
√

s ; (2.5)

see Section 5.2 of Garnett et al. (2002). From a practical perspective, (2.5) provides a valuable

simplification, because the two parameters λ and s have been replaced by the single parameter

β.

From Section 5.2 of Garnett et al. (2002), we also obtain the following approximation for

the conditional abandonment probability:

P (Ab|W > 0) ≈ h(β
√

µ/θ + 1/
√

sµ/θ)− h(β
√

µ/θ)
h(β

√
µ/θ + 1/

√
sµ/θ)

, (2.6)

where h is again the standard-normal hazard function in (2.4). Note that the parameters µ

and θ appear in (2.5) and (2.6) only via
√

µ/θ.

We now simplify the approximation in (2.6). For that purpose, it is convenient to define

a family of functions associated with the normal ccdf Φc. For a real-valued function of a real

variable, f , let f ′ denote its derivative. Then let

h0 ≡ Φc,

h ≡ h1 ≡ −h′0
h0

=
φ

Φc
,

hk ≡ h′k−1

hk−1
for k ≥ 2 . (2.7)

We apply a one-term Taylor-series expansion to obtain the following asymptotically equiv-

alent (as s →∞) version of (2.6):

P (Ab|W > 0) ≈ h2(β
√

µ/θ)√
sµ/θ

, (2.8)
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where h2 is defined in (2.7). In particular, the two approximations approach a common limit

as s →∞ after multiplying by
√

s.

The family of functions in (2.7) is also convenient to express the elasticities. For exam-

ple, combining (2.7) and (2.8), we obtain an expression for the arrival-rate elasticity of the

conditional probability of abandonment given that a customer is delayed, namely,

E(P (Ab|W > 0), λ) ≈ λh3(β
√

µ/θ)
∂β

∂λ
= −h3(β

√
µ/θ)

λ

µ
√

s
. (2.9)

Given results for P (W > 0) and P (Ab|W > 0), we obtain results for related quantities

through the exact relations

P (Ab) = P (W > 0)P (Ab|W > 0),

EW = maP (Ab),

EQ = λEW . (2.10)

The following elementary proposition about elasticities explains the consequences of the

relations in (2.10). It also shows that it does not matter whether we work with the given

parameters or their reciprocals; e.g., we could work with either the abandonment rate θ or the

mean time to abandon, ma ≡ 1/θ. Let (f ◦ g)(x) ≡ f(g(x)) denote function composition.

Proposition 1. (basic elasticity properties)

Let f and g be positive differentiable functions of a real variable x and let c be a real number.

(a) E(cf, x) = E(f, x) and E(xcf, x) = E(f, x)− c.

(b) If f(x) = cx, then E(f, x) = 1.

(c) E(fg, x) = E(f, x) + E(g, x).

(d) E(f ◦ g, x) = E(f, g)E(g, x).

(e) If g(x) = f(1/x), then E(g, x) = −E(f, x).

(f) E(1/f, x) = −E(f, x).

We now investigate how the diffusion approximations for the elasticities behave as s →∞
in the QED regime specified by (2.1). For that purpose, the key function in (2.5) is not w,

but β: The key is the way β depends on the parameters λ and s, with the understanding

that λ/s → µ as s → ∞. The performance measures are functions of β, but since β is not

necessarily positive we cannot always apply Proposition 1 (d). Instead, we apply

E(f ◦ β, η) = E(f, β)ηβ′η , (2.11)
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where η is the parameter of interest.

For a differentiable real-valued function of two real variables, g ≡ g(β, γ), let the partial

derivative with respect to β, ∂g/∂β, be denoted by g′β. Note that

β′λ = − 1
µ
√

s
, β′µ =

λ

µ2
√

s
,

β′s =
1

2
√

s
+

λ

2
√

µs3/2
(2.12)

and

λβ′λ = −µβ′µ = − λ

µ
√

s
,

sβ′s =
√

s

2
+

λ

2
√

µ
√

s
and θβ′θ = 0 . (2.13)

We say that two real-valued functions of a real variable, f and g, are asymptotically equiv-

alent (at +∞), and write f ∼ g as x →∞, if f(x)/g(x) → 1 as x →∞. As a consequence of

(2.13), in the QED limiting regime specified by (2.1) we have

λβ′λ = −µβ′µ ∼ −
√

s

µ
as s →∞,

sβ′s ∼ (1 + (1/
√

µ))
2

√
s as s →∞ . (2.14)

The asymptotic relations for the function β in (2.14) explain the asymptotic form of the

elasticities of the performance measures with respect to the parameters λ, µ and s. When we

let µ = 1, all three are asymptotically equivalent except for the sign.

To be more concrete, we give additional details. We state results for an arbitrary function

with certain properties. The assumed properties cover the diffusion approximations of all the

performance measures above: P (W > 0) in (2.5), P (Ab|W > 0) in (2.8), P (Ab) in (2.10), EW

in (2.10) and EQ in (2.10). Below we regard s as a real variable, not restricted to integer

values. We now state a general proposition, whose proof follows from elementary calculus, and

will thus be omitted.

Proposition 2. (general form of elasticities in the QED limiting regime)

Consider differentiable real-valued functions of several real variables:

f ≡ f(β, γ) > 0,

g ≡ f/sp for p ≥ 0,

β ≡ β(λ, s, µ) ≡
(

1− λ

sµ

)√
s,

γ ≡ γ(θ, µ) , (2.15)
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where it is understood that the function f depends on the variables λ and s only through β,

while the function γ does not depend on them at all. Then the elasticities take the form

E(g, λ) = C1
λ√
s
∼ C1

√
s as s →∞,

E(g, µ) = −C1
λ√
s

+ C2 ∼ −C1

√
s as s →∞,

E(g, s) = C3

√
s + C4

λ√
s
− p ∼ (C3 + C4)

√
s as s →∞,

E(g, θ) = C5 , (2.16)

where Ci are functions of µ and θ, but not λ or s. In particular,

C1 =
g′β
g

β′λ
√

s = − g′β
µg

, C2 =
g′γ
g

µγ′µ,

C3 =
g′β
2g

, C4 =
g′β
2µg

, C5 =
g′γ
g

(θγ′θ) . (2.17)

If µ = 1, then C3 + C4 = −C1, and

E(g, λ) ∼ −E(g, µ) ∼ −E(g, s) ∼ C1

√
s as s →∞ . (2.18)

Corollary 2.1. (consequences for performance measures)

Assume that the QED many-server heavy-traffic scaling in (2.1) holds with µ = 1. Let g

denote the diffusion approximation for one of the performance measures P (W > 0), P (Ab|W >

0), P (Ab), EW or EQ, combining (2.5), (2.8) and (2.10). Then

E(g, λ) = −E(g, λ−1) ∼ −E(g, µ) = E(g, µ−1) ∼ −E(g, s) = O(
√

s) as s →∞ , (2.19)

while

E(g, θ) = −E(g, θ−1) = O(1) as s →∞ . (2.20)

Corollary 2.1 substantiates the claim made earlier: When the number of servers gets large

in the Erlang-A model, operating in the QED regime, the performance measures tend to be

highly sensitive to changes in the arrival rate, the service rate or the number of servers, but

relatively insensitive to changes in the abandonment rate, as measured by elasticities.

The right pictures should tell the story. However, plotting is a bit subtle. For example, it

is difficult to see the effect of changing arrival rate by simply plotting the performance as a

function of the arrival rate. That is so, because by using the arrival rate as the independent

variable, we automatically fix the scale. If we instead plot the performance as a function of

the traffic intensity, then the independent variable corresponds to percentage change in arrival
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Figure 1: The diffusion approximation for the delay probability, P (W > 0), in (2.5) as a
function of the traffic intensity ρ for three different numbers of servers: s = 10, s = 100 and
s = 1000. The other parameters are fixed at θ = µ = 1. Changes in ρ correspond to percentage
changes in the arrival rate.
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rate. To illustrate, we plot the diffusion approximation for the delay probability, P (W > 0),

in (2.5) as a function of the traffic intensity in Figure 1.

Figure 1 shows the growing sensitivity to the arrival rate that we have previously described

in other ways. For example, the slope at ρ = 1.00, where P (W > 0) ≈ 0.50 in all three cases,

is 0.125, 0.400 and 1.25, respectively, when s = 10, s = 100 and s = 1000. The sensitivity can

be understood from the basic QED scaling in (2.1) in the following way: For any given s, the

relevant values of λ are s + O(
√

s). Thus λ is of order s, but changes in the delay probability,

going from 0 to 1, take place over an interval of length O(
√

s). Consequently, the elasticity

should be of order O(
√

s), because the derivative is roughly of order O(1/
√

s), the performance

measure itself is roughly of order O(1) and the parameter λ is of order O(s).

Remark 2.1. Contrast with Scaling in Direct Asymptotics. It is useful to contrast the asymp-

totics of the elasticities with the asymptotics of the performance measures themselves. In the

QED limiting regime, specified by (2.1), the performance measures themselves have limits with

different scaling. In particular, in the QED regime, the following scaled performance measures

converge to finite positive limits:

P (W > 0),
√

sP (Ab),
√

sEW, and
EQ√

s
. (2.21)

The elasticities have meaning independent of this scaling. The elasticities being of order

O(
√

s) implies that the sensitivity of performance to the parameters is growing as s increases,

regardless of the direct scaling of the performance measures: An x% change in the parameter

produces an increasing percentage change in the performance measure as s increases, given the

QED condition (2.1).

Remark 2.2. The Erlang B and C Models. The results in this section also apply to the

Erlang B and C models as special cases. We obtain the Erlang-B model from the Erlang-A

model if we let θ → ∞; we obtain the Erlang-C model from the Erlang-A model if we let

θ → 0, assuming that β > 1 in (2.1). When we let θ → ∞ to approach the Erlang-B model,

the abandonment becomes the blocking, and the delay probability P (W > 0) approaches the

blocking probability P (Bl); i.e., as θ →∞,

P (W > 0) ≈ w(−β,
√

µ/θ) → [1 + (1/h(−β))]−1 ≈ P (Bl) . (2.22)

On the other hand, as θ → 0,

P (W > 0) ≈ w(−β,
√

µ/θ) → [1 + (β/h(−β))]−1 . (2.23)
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In these two cases, the two limits – on s and on θ – can be done in either order, although we

do not verify that here. Direct QED many-server heavy-traffic limits for these two special cases

are established in Erlang (1924), Jagerman (1974), Srikant and Whitt (1996) and Halfin and

Whitt (1981). Then the abandonment rate θ ceases to be a relevant parameter. We deduce,

either directly or by taking limits on θ of quantities here, that the arrival-rate, service-rate

and number-of-server elasticities of the basic performance measures are again of order O(
√

s)

as s →∞, assuming that (2.1) holds (with β > 0 for the Erlang-C model).

Remark 2.3. Iterated Limits. In this section we considered approximations generated from

the heavy-traffic limits. Then we consider the derivatives of those approximations with respect

to the parameters. We thus consider two limits, first, letting s → ∞ with the associated

condition, (2.1), and second, we take the derivative, which is tantamount to letting h → 0 in

the difference approximation in (1.3). It remains to interchange the order of the limits; i.e., it

remains to consider the limits in the order lims→∞ limh→0 instead of the order limh→0 lims→∞.

That is, it remains to establish heavy-traffic limits for the derivatives and elasticities them-

selves. It is intuitively clear that such heavy-traffic limits should be valid in the setting of the

M/M/s + M model, but it remains to provide proofs.

3. Insights from the ED Fluid Limit

In this section we apply the many-server heavy-traffic fluid limit in the ED limiting regime

in order to obtain additional insights into the sensitivity of performance to model parameters.

Here we draw upon Whitt (2004). The key theoretical results for the Erlang-A model follow

from more general limits for state-dependent Markovian queues in Mandelbaum and Pats

(1995). The fluid approximation in Whitt (2005b) makes it possible to perform similar analyses

for the more general G/GI/s + GI model.

In the ED many-server heavy-traffic limiting regime, we again let λ →∞ and s →∞, but

now we let the traffic intensity approach a finite limit greater than 1. Here we will fix the

traffic intensity, letting

ρ =
λ

sµ
> 1 . (3.1)

Because of the abandonments, a proper steady-state distribution exists for all ρ > 1. Now ρ

plays the role of the QOS-parameter β in (2.1). Unlike β, the quality of service gets worse as

ρ increases.

In the ED regime, there is both a fluid limit and a refined diffusion limit. Here we will
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focus on the elementary fluid limit. The ED fluid approximations for the basic performance

measures are

P (W > 0) ≈ 1,

P (Ab) ≈ P (Ab|W > 0) ≈ 1− ρ−1,

EW = P (Ab)/θ ≈ (1− ρ−1)/θ,

EQ = λEW ≈ (λ− sµ)/θ . (3.2)

Paralleling (2.13), from (3.1) we obtain

λρ′λ = −µρ′µ = −sρ′s = ρ . (3.3)

Paralleling Proposition 2 and Corollary 2.1, we have

Proposition 3. (elasticities in the ED limiting regime)

In the ED limiting regime specified by (3.1), the fluid approximations in (3.2) satisfy

E(P (Ab), λ) ∼ −E(P (Ab), µ) ∼ −E(P (Ab), s) → 1
ρ− 1

as s →∞ (3.4)

and E(P (Ab), θ) = 0;

E(EQ,µ) ∼ E(EQ, s) ∼ E(EW,µ) ∼ E(EQ, s) → − 1
ρ− 1

; (3.5)

E(EW, θ) = −E(EW, 1/θ) = E(EQ, θ) = −E(EQ, 1/θ) → −1 ; (3.6)

and

E(EQ, λ) = 1 + E(EW,λ) → 1 +
1

ρ− 1
=

ρ

ρ− 1
. (3.7)

From Proposition 3, we see that again the sensitivity of performance is much greater for

the parameters λ, µ and s than for θ. However, the QED and ED stories are quite different: In

the QED regime, the arrival-rate, service-rate and number-of-server elasticities are all of order

O(
√

s) as s → ∞, whereas in the ED regime they are all of order O(1) as s → ∞. That is

not hard to understand, because the two regimes are quite different: In the QED regime, the

traffic intensity ρ is much closer to the critical value ρ = 1. From Proposition 3, we also see

that the arrival-rate, service-rate and number-of-server elasticities are greatest when ρ is close

to the critical value ρ = 1; the elasticities decrease as ρ increases above that critical value.

Remark 3.1. Contrast with the Standard Single-Server Queue. It is well known that the

many-server queue is quite different from the standard single-server queue. One way to see
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the difference is to look at the elasticities. Hence we now briefly discuss the standard M/M/1

queue. Sensitivity of the general single-server queue, G/G/1/C, to the key parameters was

studied previously via the Brownian heavy-traffic approximation in Section 9 of Berger and

Whitt (1992).

In the M/M/1 queue, the formulas for the basic performance measures are

P (W > 0) = ρ, EQ = λEW =
ρ2

1− ρ
. (3.8)

Since λρ′λ = −µρ′µ = ρ, we have

E(EQ, λ) = −E(EQ,µ) = −E(EW,µ) =
ρ

1− ρ
∼ 1

1− ρ
(3.9)

and

E(EW,λ) = E(EQ, λ) +
1
λ

=
ρ

1− ρ
+

1
λ
∼ 1

1− ρ
(3.10)

as ρ → 1. From (3.9) and (3.10), we see that the exact M/M/1 elasticities behave much like

the fluid approximations for the elasticities in the M/M/s + M model with ρ > 1. However,

here we have ρ < 1 instead of ρ > 1. In both cases, the absolute values of the arrival-rate and

service-rate elasticities are of the form 1/|1− ρ|.

4. Numerical Calculations

In this section we show that it is also possible to calculate the exact values of the derivatives

and the elasticities for the Erlang-A model by exploiting the exact numerical algorithm in Whitt

(2005a). That algorithm was primarily intended to serve as an approximation for the more

general M/GI/s/r+GI model, but it also is yields an exact calculation for the M/M/s/r+M

special case. (Here we let the finite waiting room r be sufficiently large that the blocking is

negligible.) We start with a base case, in which λ = s = 100 and θ = µ = 1, and then consider

several variations of that base case, aiming to substantiate the main conclusions of Sections 2

and 3, and show the impact of key parameters, such as s and θ. Throughout all these numerical

experiments we fix the service rate at µ = 1 (which is without loss of generality, because we

are free to choose the measuring units for time).

We calculate the derivatives by using the elementary method of finite differences, as in-

dicated in (1.3). Given that the function f is indeed differentiable, the finite-difference ap-

proximation is asymptotically correct as h → 0. Given that we can calculate f(λ) with high

accuracy, we should have no difficulty calculating the derivative. We can verify accuracy by

performing successive calculations with different intervals h.
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elasticities scaled second derivatives
h P (W > 0) P (Ab) EW SD(W ) P (W > 0) P (Ab) EW SD(W )

10−1 0.2255 -0.2378 0.7384 0.5538 -0.1982 0.2091 -0.2248 -0.2483
10−2 0.2355 -0.2483 0.7492 0.5660 -0.2319 0.2445 -0.2472 -0.2802
10−3 0.2365 -0.2494 0.7503 0.5673 -0.2358 0.2487 -0.2497 -0.2838
10−4 0.2366 -0.2496 0.7504 0.5674 -0.2362 0.2491 -0.2500 -0.2842
10−5 0.2366 -0.2496 0.7504 0.5674 -0.2362 0.2493 -0.2500 -0.2842
10−6 0.2366 -0.2496 0.7504 0.5674 -0.2349 0.2646 -0.2496 -0.2859

Table 1: The impact of the interval h upon estimates of the mean-time-to-abandon elasticities,
E(f, ma = 1/θ), and associated scaled second derivatives, S(f, ma), of several performance
measures in the base case with λ = s = 100 and θ = µ = 1.

We also approximate the second derivative by

f ′′(λ) ≈ f(λ + h)− 2f(λ)− f(λ− h)
h2

, (4.1)

again for small positive h. With standard double precision, the second-derivative calculations

will necessarily be less accurate. However, it is easy to determine the accuracy after performing

the calculations by just repeating the calculation for several values of h.

Given the estimates of the derivatives, we scale to calculate the associated elasticities, as

indicated in (1.2). We also calculate scaled second derivatives. We divide the second derivative

by the performance measure itself and multiply by the square of the parameter. That coincides

with the product of the arrival-rate elasticities of f and f ′; i.e., the scaled second-derivative

with respect to the arrival rate is

S(f, λ) ≡ λ2f ′′λ
f

=
(

λf ′′λ
f ′λ

)(
λf ′λ
f

)
= E(f ′, λ)E(f, λ) . (4.2)

If, instead, we want the arrival-rate elasticity of f ′, then it can easily be obtained as the ratio

E(f ′, λ) = S(f, λ)/E(f, λ).

We illustrate how the calculations perform by displaying the impact of the interval h upon

the elasticities and scaled second derivatives for one case in Table 1. Specifically, in Table 1

we consider derivatives with respect to the mean time to abandon, ma = 1/θ, and thus display

the mean-time-to-abandon elasticities and associated scaled second derivatives. (Recall that

E(f, ma) = −E(f, θ).) We consider the standard deviation of the steady-state waiting time,

SD(W ), as well as P (W > 0), P (Ab) and EW in the base case with λ = s = 100 and

θ = µ = 1.

From Table 1, we see that we obtain three-digit precision for all the elasticities using

h = 10−3 and at least four-digit precision using any value of h ranging from h = 10−4 to
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parameters performance measures
θ λ = s P (W > 0) P (Ab) EN SD(Q) SD(N) SD(W )

10 0.320 0.186 8.33 0.53 2.08 0.041
10.0 100 0.262 0.0605 94.6 1.50 6.8 0.014

1000 0.247 0.0192 982.8 4.58 21.9 0.0045
10 0.542 0.125 10.0 1.96 3.16 0.183

1.0 100 0.513 0.0399 100.0 5.95 10.0 0.058
1000 0.504 0.0126 1000. 18.6 31.6 0.0185

10 0.779 0.0605 15.4 6.4 7.1 0.63
0.1 100 0.766 0.0192 117.2 20.0 22.2 0.198

1000 0.762 0.00605 1055. 62.8 69.9 0.063

Table 2: Several performance measures in the Erlang A model, as a function of the abandon-
ment rate, θ and the number of servers, s, when λ = s and µ = 1.

h = 10−6. For the scaled second derivatives, we also obtain three-digit precision using h = 10−3,

but we do not do much better as h increases, losing precision when h is very small. That should

not be surprising, because there is division by h2 in (4.1), and we have used standard double

precision in matlab. Overall, we regard the simple finite-difference approach as providing ample

precision for engineering purposes.

Our first set of experiments consists of 9 cases, with 3 values of s and 3 values of θ. We

consider s = 10, s = 100 and s = 1000; and we consider θ = 10, θ = 1 and θ = 0.1. Otherwise,

we let λ = s, so that we are in the center of the QED limiting regime in (2.1) with β = 0,

where P (W > 0) → 1/2 as s → ∞. The values of several basic performance measures in

these 9 cases are given in Table 2. As noted in (2.10), the mean waiting time, EW , and the

mean queue length, EQ, are constant multiples of the abandonment probability, P (Ab), so

they are omitted from Table 2. We include the expected steady-state number of customers in

the system (waiting or in service), EN , as well as the standard deviations of the steady-state

queue length, QD(Q), number in system, SD(N), and the waiting time, SD(W ), as well as

previously discussed performance measures.

From the QED many-server heavy-traffic limits, we know how these performance measures

should be scaled by s in order for the scaled performance measures to be nearly independent of

s. We present the corresponding scaled performance measures in Table 3. After scaling by s in

the indicated manner, the performance measures in Table 3 are approximately independent of

s. From Table 3 we see that the scaling by s is the dominant effect, substantiating conclusions

of Garnett et al. (2002). Table 3 also shows the remaining impact of the parameter θ.

Next, in Table 4 we present the abandonment-rate elasticities of the performance measures
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parameters scaled performance measures
θ λ = s P (W > 0)

√
sP (Ab) (EN − s)/

√
s SD(Q)/

√
s SD(N)/

√
s

√
sSD(W )

10 0.320 0.59 -0.53 0.168 0.66 0.13
10.0 100 0.262 0.61 -0.54 0.150 0.68 0.14

1000 0.247 0.61 -0.54 0.145 0.69 0.14
10 0.542 0.40 0.00 0.62 1.00 0.58

1.0 100 0.513 0.40 0.00 0.60 1.00 0.58
1000 0.504 0.40 0.00 0.59 1.00 0.59

10 0.779 0.19 1.71 0.20 2.2 2.0
0.1 100 0.766 0.19 1.72 0.20 2.2 2.0

1000 0.762 0.19 1.74 0.20 2.1 2.0

Table 3: Scaled versions of the performance measures in Table 2.

parameters performance measures
θ λ = s P (W > 0) P (Ab) EQ&EW EN SD(Q) SD(N) SD(W )

10 -0.22 0.103 -0.90 -0.04 -0.57 -0.103 -0.74
10.0 100 -0.33 0.119 -0.88 -0.013 -0.63 -0.089 -0.66

1000 -0.37 0.120 -0.88 -0.004 -0.65 -0.084 -0.66
10 -0.21 0.25 -0.75 -0.125 -0.54 -0.27 -0.58

1.0 100 -0.24 0.25 -0.75 -0.04 -0.56 -0.26 -0.57
1000 -0.23 0.37 -0.64 -0.011 -0.42 -0.18 -0.43

10 -0.108 0.38 -0.62 -0.26 -0.49 -0.42 -0.51
0.1 100 -0.116 0.41 -0.62 -0.11 -0.50 -0.42 -0.50

1000 -0.119 0.38 -0.62 -0.04 -0.50 -0.42 -0.50

Table 4: The abandonment-rate elasticities, E(f, θ), of several performance measures (the f)
in the setting of Table 2.

in Table 2 (without any additional scaling). Consistent with the conclusions in previous sec-

tions, these abandonment-rate elasticities are not large. Indeed, all are less than 1. So that an

x percent change in the abandonment rate produces less than an x percent change in any of

these performance measures.

Consistent with Sections 2 and 3, the abandonment-rate elasticities in Table 4 tend to be

independent of s. The one exception is the mean number in system EN . As indicated in

Table 3, the appropriate scaling for N is (N − s)/
√

s. Since we have not used that scaling

in Table 4, it should not be surprising that we do not see elasticities of EN independent of

s. Otherwise, the abandonment-rate elasticities are both small and largely independent of s.

A similar conclusion holds for the scaled second derivatives, as shown in Table 5. (There the

parameter has been taken to be the mean time to abandon, ma = 1/θ).

The arrival-rate and service-rate elasticities of the same performance measures are shown
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parameters performance measures
ma λ = s P (W > 0) P (Ab) EQ & EW EN SD(Q) SD(N) SD(W )

10 -0.13 0.059 -0.15 -0.016 -0.24 -0.035 -0.30
0.1 100 -0.24 0.086 -0.15 -0.0065 -0.25 -0.032 -0.26

1000 -0.27 0.089 -0.15 -0.0020 -0.26 -0.030 -0.26
10 -0.20 0.24 -0.25 -0.061 -0.27 -0.12 -0.29

1.0 100 -0.24 0.25 -0.25 -0.020 -0.28 -0.10 -0.28
1000 -0.28 0.19 -0.54 -0.006 -0.28 -0.20 -0.28

10 -0.14 0.48 -0.28 -0.13 -0.26 -0.20 -0.27
10.0 100 -0.15 0.48 -0.28 -0.054 -0.26 -0.20 -0.27

1000 -0.15 0.48 -0.28 -0.019 -0.26 -0.20 -0.27

Table 5: The scaled second derivative of several performance measures with respect to the
mean time to abandon, ma = 1/θ, in the Erlang A model, as a function of the mean time to
abandon and number of servers. The scaling is as in (4.2).

parameters performance measures
θ λ = s P (W > 0) P (Ab) EQ SD(Q) EW SD(W )

10 0.73 0.76 1.08 0.54 0.76 0.32
10.0 100 0.77 0.88 0.98 0.48 0.88 0.40

1000 0.80 0.92 0.95 0.46 0.92 0.44
10 0.73 1.04 1.36 0.70 1.04 0.44

1.0 100 0.78 1.19 1.29 0.62 1.19 0.54
1000 0.80 1.23 1.27 0.60 1.23 0.57

10 0.73 2.02 2.34 1.23 2.02 1.01
0.1 100 0.78 2.17 2.27 1.15 2.17 1.09

1000 0.80 2.22 2.25 1.13 2.24 1.11

Table 6: The arrival-rate elasticities, E(f, λ), of several performance measures in the setting of
Table 2. The arrival-rate elasticities have been scaled by dividing by

√
s.

in Tables 6 and 7. These elasticities have been divided by
√

s. From Tables 6 and 7, we

see that the arrival-rate and service-rate elasticities indeed become of order O(1) after the

additional scaling by
√

s. In fact, mostly, the absolute values of the arrival-rate and service-

rate elasticities fall between 0.25
√

s and 2.5
√

s. A rough approximation for any one of these

elasticities is simply
√

s.

Paralleling Table 5, we present the scaled second derivatives of the performance measures

with respect to the service rate in Table 8. The scaled second derivatives have been further

scaled by dividing by s. Thus again, through the second derivatives, we see the strong sensi-

tivity of performance to the service rate as s increases. A similar story holds for the arrival

rate.

The initial experiment had λ = s in all cases. We now want to modify the base case in
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parameters performance measures
θ λ = s P (W > 0) P (Ab) SD(Q) SD(N) SD(W )

10 -0.63 -0.79 -0.37 -0.15 -0.41
10.0 100 -0.74 -0.89 -0.42 -0.22 -0.44

1000 -0.78 -0.92 -0.44 -0.24 -0.45
10 -0.66 -1.14 -0.52 -0.073 -0.60

1.0 100 -0.75 -1.21 -0.56 -0.024 -0.59
1000 -0.78 -1.24 -0.58 -0.008 -0.59

10 -0.70 -2.15 -1.08 -0.79 -1.17
0.1 100 -0.77 -2.21 -1.10 -0.79 -1.13

1000 -0.79 -2.22 -1.11 -0.79 -1.12

Table 7: The service-rate elasticities, E(f, µ), of several performance measures in the setting of
Table 2. (The service-rate elasticities of EQ and EW coincide with the displayed service-rate
elasticity of P (Ab).) The service-rate elasticities have been scaled by dividing by

√
s.

parameters performance measures
ma λ = s P (W > 0) P (Ab) EN SD(Q) SD(N) SD(W )

10 0.25 0.47 -0.011 0.034 -0.106 0.062
0.1 100 0.20 0.45 -0.175 -0.023 -0.019 -0.0052

1000 0.19 0.45 -0.007 -0.042 0.015 -0.036
10 0.11 1.05 0.085 0.025 -0.089 -0.16

1.0 100 0.039 1.01 0.0095 -041 -0.036 0.0013
1000 0.015 1.01 0.001 -0.063 -0.012 -0.05

10 -0.37 4.52 1.66 0.37 0.31 0.79
10.0 100 -0.51 4.46 0.67 0.30 0.32 0.43

1000 -0.56 4.43 0.23 0.29 0.33 0.33

Table 8: The scaled second derivative of several performance measures with respect to the
service rate in the Erlang A model, as a function of the mean time to abandon and number of
servers. There is extra scaling: The scaled second derivatives have been divided by s.
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elasticities scaled second derivatives
perf. meas. λ = 90 λ = 100 λ = 110 λ = 90 λ = 100 λ = 110

P (W > 0) 0.18 0.24 0.17 -0.219 -0.24 -0.23
P (Ab) -0.50 -0.25 -0.08 0.59 0.25 0.10
E[Q] 0.50 0.75 0.92 -0.40 -0.25 -0.05

SD(Q) 0.41 0.56 0.60 -0.35 -0.28 -0.26
E[N ] 0.0083 0.04 0.10 -0.008 -0.02 -0.015

SD[N ] 0.079 0.26 0.42 -0.067 -0.10 -0.12
E[W ] 0.50 0.75 0.92 -0.40 -0.25 -0.05

SD(W ) 0.42 0.57 0.62 -0.35 -0.28 -0.24
P (W ≤ 0.05) -0.034 -0.24 -0.87 0.037 0.228 1.09
P (W ≤ 0.1) -0.022 -0.19 -0.74 0.017 0.110 0.67
P (W ≤ 0.2) -0.004 -0.06 -0.36 -0.002 -0.046 -0.18
P (W ≤ 0.4) -0.000 -0.0005 -0.010 0.000 -0.0026 -0.06

Table 9: The mean-time-to-abandon elasticities, E(f, ma = 1/θ), and scaled second derivatives,
S(f,ma), of steady-state performance measures as a function of the arrival rate. The number
of servers is s = 100 and the abandonment rate is θ = 1.

another way. We now fix the number of servers at s = 100 and the abandonment rate at

θ = 1, and vary the arrival rate. We consider three possible arrival rates: λ = 90, λ = 100 and

λ = 110. These case correspond to β = 1, β = 0 and β = −1 in the QED regime specified by

(2.1). For these examples, we also consider the steady-state waiting-time distribution (for all

customers).

We display elasticities and scaled second derivatives with respect to the mean time to aban-

don (reciprocal of the abandonment rate), the arrival rate and the service rate, respectively, in

Tables 9, 10 and 11. We have not scaled any of these elasticities. As before, the mean-time-to-

abandon elasticities of the performance measures considered previously are of order O(1), in

fact less than 1, while the arrival-rate and service-rate elasticities of these performance mea-

sures are of order O(
√

s) = 10. In Tables 9–11 we also consider the steady-state waiting-time

distribution. The derivative is consistently small for larger arguments, when the probability is

already close to 1.

Finally, we consider a numerical example to evaluate the fluid approximation in Section

3. We fix the traffic intensity at ρ = 1.1 and consider three different values of s: s = 100,

s = 400 and s = 1600, with θ = µ = 1. The performance measures and arrival-rate elasticities

are compared to the fluid approximations in Table 12. We consider the performance measures

discussed in Section 3, namely, P (W > 0), P (Ab) = EW , and EQ/sµ. In these case, with ED

scaling, we see that the fluid approximations in Section 3 do indeed tell the main story. We also
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elasticities scaled second derivatives
perf. meas. λ = 90 λ = 100 λ = 110 λ = 90 λ = 100 λ = 110

P (W > 0) 14.7 7.8 2.96 132. -7.8 -32.6
P (Ab) 18.0 11.9 7.5 243. 76. 8.3
E[Q] 19.0 12.9 8.5 280. 244. 25.1

SD(Q) 10.3 -7.6 2.86 59. -7.1 -19.0
E[N ] 1.00 1.00 1.00 0.0004 0.0002 -0.0023

SD[N ] 0.50 0.50 0.50 -0.23 -0.15 -0.030
E[W ] 18.0 11.9 7.5 243. 76. 10.2

SD(W ) 9.5 5.4 2.4 43.7 13.9 18.7
P (W ≤ 0.05) -1.3 -4.8 -9.9 -17.2 -18.8 55.6
P (W ≤ 0.1) -0.51 -2.6 -6.5 -9.0 -22.4 3.2
P (W ≤ 0.2) -0.048 -0.51 -2.2 -1.2 -8.5 -19.8
P (W ≤ 0.4) -0.0001 -0.0024 -0.04 -0.18 -0.03 -0.84

Table 10: Arrival-rate elasticities and scaled second derivatives as a function of the arrival
rate. The number of servers is s = 100 and the abandonment rate is θ = 1.

elasticities scaled second derivatives
perf. meas. λ = 90 λ = 100 λ = 110 λ = 90 λ = 100 λ = 110

P (W > 0) -14.5 -7.6 -2.79 155. 3.9 -25.5
P (Ab) -18.5 -12.1 -7.6 294. 102. 24.0
E[Q] -18.5 -12.1 -7.6 294. 102. 24.0

SD(Q) -9.9 -7.6 -2.26 67.9 -4.1 -20.6
E[N ] -1.00 -0.90 -0.09 1.7 -0.95 0.30

SD[N ] -0.42 -0.24 -0.08 -1.7 -3.6 -2.29
E[W ] -18.5 -12.1 -7.6 294. 102. 24.0

SD(W ) -10.1 -5.9 -2.8 71.7 0.13 -11.7
P (W ≤ 0.05) 1.3 4.9 9.6 -20.4 -25.8 41.3
P (W ≤ 0.1) 0.55 2.7 6.5 -11.1 -27.7 -4.0
P (W ≤ 0.2) 0.054 0.56 2.3 -1.6 -11.2 -24.5
P (W ≤ 0.4) 0.0001 0.0028 0.05 -0.003 -0.11 -1.4

Table 11: Service-rate elasticities and scaled second derivatives as a function of the arrival
rate. The number of servers is s = 100 and the abandonment rate is θ = 1.
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performance elasticities
perf. meas. s = 100 s = 400 s = 1600 fluid s = 100 s = 400 s = 1600 fluid

P (W > 0) 0.842 0.975 1.0000 1.0000 2.96 1.25 0.0088 0.0000
P (Ab) = EW 0.0992 0.0914 0.0909 0.0909 7.49 9.67 9.9994 10.0000

E[Q]/sµ 0.109 0.101 0.1000 0.1000 8.49 10.67 10.9994 11.0000
SD(Q)/

√
sµ 0.9091 1.025 1.049 0.0000 2.85 1.57 0.5083 0.0000√

sµSD(W ) 0.84 0.98 1.06 – 2.43 2.17 4.48 –

Table 12: Performance measures and arrival-rate elasticities as a function of the number of
servers, s, when the traffic intensity is fixed at ρ = 1.1. The other parameters are θ = µ = 1.
For comparison, the fluid approximation from Section 3 is given too.

consider scaled standard deviations, SD(Q)/
√

sµ and
√

s/µSD(W ). The fluid approximation

for the queue length is deterministic, so the fluid approximation for the standard deviation of

the queue length is simply 0. (That is not true for the waiting time because of the random

delay experienced by abandoning customers.) The observed regular behavior after scaling by
√

s reflects refined diffusion approximations stemming from stochastic-process limits in the ED

regime, as in Whitt (2004). We do not elaborate here.

5. Sensitivity to Abandonment Rates at Large Queue Lengths

In Pierson and Whitt (2005), M/GI/s+GI models are approximated by purely-Markovian

M/M/s+M(n) models, having state-dependent arrival rates, by using the known mean arrival

rate and service rate, and by statistically fitting the total state-dependent arrival rate to

observed abandonment rates. An initial estimate for the total arrival rate when there are

k customers waiting in queue is the observed number of abandonments when there are k

customers waiting in queue, divided by the total time during which there are k customers

waiting in queue. Subsequently, refined estimates for the total-abandonment-rate function can

be obtained by fitting functions of k to the data, e.g., quadratic functions.

In that work, we observed that the performance is relatively insensitive to the state-

dependent total-abandonment rates for large queue sizes, especially for large queue sizes that

rarely occur (and for which the statistical estimates are unreliable). Similar insights are con-

tained in Mandelbaum and Zeltyn (2004). In support of that conclusion, in this section we

investigate the sensitivity to total-abandonment rates at large queue lengths in the M/M/s+M

model.

In the M/M/s+M model the total abandonment rate when there are k customers waiting

in queue is exactly kθ for all k ≥ 0. We investigate the sensitivity to the total abandonment
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rate for large queue lengths by constructing loose lower and lower bounds. (Thus we are

considering big changes in the total-arrival-rate function in a certain part of its domain.) A

lower bound for the steady-state queue-length distribution is obtained by choosing an upper

bound on the total-abandonment-rate function; we consider the associated M/M/s/r + M

model with a finite waiting room of size r. The finite waiting room of size r is equivalent to

having an infinite total abandonment rate when the number in queue exceeds r. An upper

bound for the steady-state queue-length distribution is obtained by choosing a lower bound on

the total-abandonment-rate function; we consider the case in which the total abandonment rate

is held constant at cθ after reaching the level k = c; i.e., the total abandonment rate function

is δk = (k ∧ c)θ. The performance of the M/M/s + M system is bounded between these two

bounding systems. The ordering of performance can be formalized by stochastic-comparison

concepts; e.g., see Whitt (1981), p. 196 of Müller and Stoyan (2002) and references there.

In Tables 13 and 14 below we see how these bounding systems behave as functions of the

waiting-room size r and the cutoff level c. In these tables we let s = 100 and θ = µ = 1. In

Table 13 we let λ = 102, while in Table 14 we let λ = 110. In Tables 13 and 14 we consider

the conditional expected waiting time, given that the customer is eventually served, E[W |S],

or given that the customer eventually abandons, E[W |A]. We also consider the associated

conditional standard deviations.

For the smaller arrival rate, λ = 102 in Table 13, we see that the two bounds are essentially

equal when r = c = 40. For the larger arrival rate, λ = 110 in Table 14, we see that the two

bounds are essentially equal when r = c = 50. The performance is not affected much if the

parameters r and c are much smaller. Thus we see that the performance is indeed primarily

determined by the total-abandonment-rate function only for relatively small queue lengths.
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M/M/100 + M model, with λ = 102 and mA = 1/θ = 1.0
lower bound: reduce wait. spaces upper bound: fixed rate after c

no. wait. spaces, r both cutoff level, c

perf. measure 20 25 30 40 30 25 20 15
P (Loss) 0.0084 0.0032 0.0010 < 10−4

P (W = 0) 0.424 0.413 0.410 0.408 0.408 0.407 0.404 0.393
P (Aban) 0.043 0.047 0.049 0.050 0.050 0.050 0.050 0.049

E[Q] 4.35 4.80 5.00 5.09 5.11 5.16 5.36 6.09
SD(Q) 5.5 6.2 6.5 6.7 6.7 6.8 7.2 8.5

E[N ] 101 102 102 102 102 102 102 103
SD[N ] 9.2 9.7 10.0 10.1 10.1 10.2 10.5 11.6

E[W |S] 0.042 0.047 0.048 0.049 0.049 0.050 0.052 0.060
SD(W |S) 0.056 0.061 0.063 0.065 0.065 0.067 0.071 0.085

E[W |A] 0.057 0.062 0.065 0.067 0.066 0.066 0.063 0.058
SD(W |A) 0.046 0.051 0.054 0.056 0.055 0.054 0.050 0.044

P (W ≤ 0.1|S) 0.830 0.809 0.801 0.799 0.798 0.797 0.791 0.768
P (W ≤ 0.1|A) 0.829 0.793 0.776 0.768 0.768 0.771 0.783 0.825
P (W ≤ 0.2|S) 0.987 0.975 0.968 0.965 0.964 0.962 0.954 0.928
P (W ≤ 0.2|A) 0.993 0.983 0.976 0.971 0.972 0.976 0.986 0.996

Table 13: Lower and upper bounds on the exact steady-state performance in the M/M/100+M
model when the arrival rate is λ = 102 and the mean time to abandon is mA = 1/α = 1. The
lower bounds reduce the number of waiting spaces, r, while the upper bounds make the total
abandonment rate constant after a cutoff level, c.
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M/M/100 + M model, with λ = 110 and mA = 1/θ = 1.0
lower bound: reduce wait. spaces upper bound: fixed rate after c

no. wait. spaces, r both cutoff level, c

perf. measure 25 30 40 50 40 30 25 20
P (Loss) 0.0144 0.0065 0.00078 < 10−4

P (W = 0) 0.171 0.163 0.159 0.158 0.158 0.157 0.154 0.144
P (Aban) 0.085 0.093 0.098 0.099 0.099 0.099 0.099 0.098

E[Q] 9.4 10.2 10.8 10.9 10.9 11.1 11.7 13.6
SD(Q) 7.5 8.2 8.9 9.1 9.1 9.3 10.3 12.8

E[N ] 108 109 110 110 110 110 111 113
SD[N ] 9.1 9.7 10.1 10.5 10.5 10.8 11.6 13.9

E[W |S] 0.088 0.095 0.100 0.101 0.101 0.103 0.109 0.129
SD(W |S) 0.073 0.079 0.084 0.085 0.086 0.090 0.099 0.126

E[W |A] 0.073 0.079 0.084 0.085 0.085 0.084 0.081 0.076
SD(W |A) 0.056 0.063 0.066 0.068 0.067 0.065 0.062 0.056

P (W ≤ 0.1|S) 0.584 0.557 0.542 0.541 0.541 0.537 0.527 0.492
P (W ≤ 0.1|A) 0.719 0.684 0.660 0.656 0.656 0.659 0.665 0.689
P (W ≤ 0.2|S) 0.920 0.887 0.865 0.862 0.862 0.857 0.839 0.781
P (W ≤ 0.2|A) 0.971 0.953 0.934 0.930 0.931 0.937 0.950 0.974

Table 14: Lower and upper bounds on the exact steady-state performance in the M/M/100+M
model when the arrival rate is λ = 110 and the mean time to abandon is mA = 1/α = 1. The
lower bounds reduce the number of waiting spaces, r, while the upper bounds make the total
abandonment rate constant after a cutoff level, c.
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