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 EMBEDDED RENEWAL PROCESSES IN THE GI/GIs QUEUE

 WARD WHITT, Yale University

 Abstract

 The stable GI/G/s queue (p < 1) is sometimes studied using the "fact" that
 epochs just prior to an arrival when all servers are idle constitute an embedded
 persistent renewal process. This is true for the GI/G/1 queue, but a simple
 GI/G/2 example is given here with all interarrival time and service time
 moments finite and p < 1 in which, not only does the system fail to be empty
 ever with some positive probability, but it is never empty. Sufficient conditions
 are then given to rule out such examples. Implications of embedded persistent
 renewal processes in the GI/G/1 and GI/G/s queues are discussed. For example,
 functional limit theorems for time-average or cumulative processes associated
 with a large class of GI/GIs queues in light traffic are implied.

 QUEUE; SERVICE SYSTEM; CONGESTION THEORY; GI/GIs QUEUE; MULTI-SERVER
 QUEUE; BUSY PERIODS; EMBEDDED RENEWAL PROCESS; RENEWAL PROCESS;
 BUSY; CYCLE FUNCTIONAL LIMIT THEOREMS FOR QUEUES; LIMIT THEOREMS FOR
 QUEUES; BUSY CYCLES AS RECURRENT EVENTS FOR QUEUES

 1. Introduction: The standard single-server queue

 In this paper we investigate embedded renewal processes in the GI/IGs queue.
 Our original aim was to show how functional limit theorems for the GII G/1 queue

 in light traffic recently proved by Iglehart (1971a) could be extended to the GI /G Is

 queue. Iglehart's (1971a) GI/G /1 argaumnt does indeed apply with only minor
 modification to a large class of GI/GIs queues (Theorem 2.3), but it does not apply

 to all GI/GIs queues (Example 2.2). No doubt, this difficulty with the GI/G/s
 queue has been discovered before, but we believe it is worth additional attention.
 We first review embedded renewal process approaches to the GI/G/1 queue and
 then turn to the GI /G /s queue with s > 1.

 Consider the standard single-server queueing system in which customers are
 served in order of their arrival without defections, but at first make no distribution

 or independence assumptions. The basic data for this system is a sequence of

 ordered pairs of non-negative random variables ((un,vn), n > 0} defined on some
 underlying probability space (9,2,P), where for n ? 1 the variable un represents
 the interarrival time between the nth and (n + 1)th customers and the variable v,

 represents the service time of the nth customer. The variable uo denotes the time

 Received in revised form 6 October 1971. Research partially supported by National Science
 Foundation Grant GK-27866.
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 Embedded renewal processes in the GI/GIs queue 651

 until the first customer arrives (after t = 0) and the variable vo denotes the initial
 workload facing the server, which we interpret as the result of a Oth customer

 arriving at time t = 0. It is customary to define the sequence {W,, n > 0} of suc-
 cessive waiting times recursively by

 (1.1) W~+1 = [Wn + X,]+, n > 0,
 where for any real number x , [x]-+ = max {x, 0} , X = Vn - Un, and Wo = 0, cf.
 Feller ((1966), p. 193) or Lindley (1952). From (1.1), it can then be shown (by
 induction, for example) that

 Wn = max{Sn - Sk}, n > 0,
 05k<n

 (1.2)
 = Sn - min Sk, n > 0,

 Ok <n

 where Sk = Xo + ?'" + Xk-_ and So = 0. (Note that (1.1) is a definition and (1.2)
 is a theorem.)

 The relationship in (1.2) is the vehicle for obtaining results about {Wn, n _ 0}. The sequence of waiting times is related to something which has been studied
 extensively--a sequence of partial sums. If Xn is i.i.d., which is implied by the sys-

 tem being GI /G/1, then S, - Sk ~ Sn-k (where ~ means equality in distribution)
 so that

 (1.3) P(Wx x} = P{Mn x}, n > 0,
 where Mn = max {(So, --,S,}. Moreover, then {Sn} is a random walk, so the theory
 of random walks as contained for example in Spitzer(1964),Chung((1968), Chap-
 ter 8) and Feller ((1966),Chapter 12) can be applied with considerable force. In
 fact, Lindley's (1952) early investigation of the GI/G/1 queue proceeded somewhat

 along these lines. If p = Ev/Eu < 1 (if Xn has finite expectation with EXn < 0),

 then W, equals 0 infinitely often and W, W, where > means weak convergence

 or convergence in law and W~- M is a finite random variable where M
 = supkoMk has been studied extensively, cf. Chung ((1968), Section 8.5). A com-
 prehensive account exposing this structure in the GI/G /1 queue has been given by
 Kingman (1966), where more of the history can be found.

 Now we would like to apply these results to various continuous-time processes

 associated with the GIIG /1 queue such as the queue length process {Q(t), t _ 0}. For example, it is intuitively obvious that the epochs in continuous time corres-
 ponding to the events {W, = 0} constitute embedded renewal processes in all the
 continuous-time processes. However, this is not always demonstrated properly; a
 careful treatment has just been provided by Iglehart ((1971a), Section 2). The idea
 is to exploit the theory of optional random variables as discussed in Chung(1968).
 With the independence associated with the GI/G/1 queue, the basic data can be
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 652 WARD WHITT

 represented as a sequence of independent pairs of independent non-negative ran-

 dom variables {(u,,v,), n _ 0}. If we understand successive busy cycles in discrete time to be the successive numbers of customers arriving between epochs just prior
 to an arrival when the server is idle, then these discrete-time busy cycles can be

 represented as optional random variables relative to the sequence {un,v,). (These
 are the variables ok in Iglehart (1971a).) This special kind of optional random
 variable is called a ladder variable by Blackwell (1953) and Feller ((1968), Chapter
 12)). IfEX, < 0 (p < 1), then these optional variables are almost surely finite with
 finite expectation. The remaining processes can all be defined in terms of the basic
 data. Theorem 8.2.3 of Chung (1968) applied to an i.i.d. sequence of random
 vectors in R2 then implies that the busy cycles in continuous time are independent

 and identically distributed. The kth busy cycle (in continuous time!) can be ob-
 tained as a function of Vk in Theorem 8.2.3 of Chung (1968). For more details, see

 Iglehart (1971a). Although the result is what we would expect, the con-
 struction is extremely important for cleaning up the theory of the GI/G/1
 queue.

 The upshot of the discussion above is that the successive busy cycles of the
 GI/G/1 queue in discrete and continuous time form persistent renewal processes

 when p < 1. Consequently, we have a very powerful tool to analyze the GIIG/1
 queue. The embedded renewal process is the key to finding limiting distributions
 of the continuous-time processes, cf. Feller ((1968), p. 319 and (1966),p. 365) and
 Takics (1963); it is the key to proving time-average limit theorems, cf. Iglehart
 (1971a); and it is the key to obtaining extreme value theorems, cf. Iglehart (1971b).
 The great power of embedded renewal processes was probably first realized by
 Smith ((1955),(1958)). Recent extensions appear in Brown and Ross (1970) and
 Miller (1971). Applications to the alternating-priority queue have been made by
 Stidham (1971). The time average limits of Iglehart (1971a) may be thought of as
 limits for cumulative processes, cf. Smith (1955). It is easy to see that functional
 strong laws are in fact equivalent to ordinary strong laws, so much of Section 3 of
 Iglehart (1971a) follows directly from the individual ergodic theorem, cf. Kiefer
 and Wolfowitz (1956). Various moments must be finite for these time-average limit

 theorems. For this purpose, Wald's equation, Theorem 5 of Kiefer and Wolfowitz
 (1956), Theorems 8.4.3 and 8.4.4 of Chung (1968), and Theorem 3 of Heyde (1964)
 can be used, cf. Iglehart (1971a).

 We remark that the independence assumptions can be relaxed for much of the
 above. Instead of independence, the basic data can be assumed to be stationary
 satisfying various mixing conditions. The individual ergodic theorem then implies

 that ({W,= 0} happens infinitely often with probability one. The busy cycles remain

 optional random variables, but the basic sequence {u,,v,} is no longer i.i.d. so that
 Theorem 8.2.3 of Chung (1968) does not apply. For treatments of stability, limit-
 ing distributions, time-average limits, and extreme value theorems in this setting,
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 Embedded renewal processes in the GI/G/s queue 653

 see Loynes (1962a,b) and Whitt (1971). Work by Serfozo (1971) on semi-station-
 ary processes also appears to be relevant to this approach.

 2. Multi-server queues

 Multi-server queues such as the GI/GIs queue have shown a remarkable resistance

 to analysis, cf. Kingman ((1966), Section 12). (The recent thesis ofDe Smit (1971) is
 devoted to the GI/G Is queue and has many references.) One successful approach

 has been through a vector-valued waiting time process {W,, n ? 0} introduced by
 Kiefer and Wolfowitz ((1955), (1956)). Assuming that customers are served by the
 first available server, with a specified mechanism to break ties, the vector W,

 = (Wn,'... , W,) is obtained by assigning all customers in the system at the nth
 arrival epoch to the servers who will eventually serve them. Then look at the result-
 ing workload in service time facing each server and rearrange then so that W~1

 is the workload facing the server with the lightest load, W,2 is the workload facing
 the server with the second lightest load, and so forth. Consequently, WI represents

 the actual waiting time of the nth customer (until he reaches the server). Formally,

 we define ( W,, n ? 0} recursively in terms of the same basic data ({(u,,v), n > 0}
 in (1.1) by setting Wo = (0, ..., 0) and

 (2.1) W,,+, = I[F( W, + V,)- U,]+,

 where V,=(v,0,.. .,0), U,= (u9,,,, u,,), [X] = (x7, ..., x+) with x+ = max ({0, x} for arbitrary X = (xj, - - -, x,) E Rs, and F: Rs -+ R" rearranges the components of

 X = (x,, --- , x) in ascending order. Note that the sequence { W,1, n > 0} of actual
 waiting times is not Markov in the GIIG Is queue, but the sequence { W,, n > 0}
 defined in (2.1) is. In fact, in the GI/G/s queue the sequence { W,, n ? 0} is a
 random walk in R" which is restricted by impenetrable barriers to the set of(x1, ...,
 x,) E Rs such that 0 < x, 5 ... < x,.

 Loynes (1962a) has obtained stability results for the s-server queue as well as

 the single-server queue. If the basic sequence {(unvn), n > 0} in (1.1) is only assumed
 to be strictly stationary and ergodic, if p = Ev/sEu < 1, and if the queue is initially

 empty, then W. converges in distribution monotonically to a finite limit W, which

 when used as the initial distribution makes the process stationary. If the queue is

 not initially empty, then no limiting distribution need exist (under the condition
 ofstationarity). This intriguing possibility is illustrated by the following example.

 Example 2.1. (Loynes (1962a), p. 516) Let s = 2 and u, = 1 for all n. Let the
 probability space contain two points, each having probability 4, at one of which

 v2n = 3 and v2n,, =2 and at the other v2n =2 and v2,, = . Note that p

 = Ev/sEu = - <1. Then W2, = (0,a) and W2,+1 = (a - 1,?) at the former
 point and those interchanged for the latter form a stationary sequence satisfying
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 654 WARD WHrIT

 (2.1) for any a, 1 _ a ? ?. However, if W, = (0,a) where 1 < a _ , then the sequence oscillates (is property substable).

 It is well known that the arrival epochs after the system has been completely
 empty are regeneration points for the GI/G /s queue as well as the GI /G /1 queue.
 At these time points all the processes probabilistically restart themselves. Con-
 sequently, if it is possible to show that the system will be empty infinitely often

 with probability one, then much of the theory for the GI/G/1 queue would carry

 over to the GI/GIs queue. Some authors (Finch (1959), p. 330; Jacobs (1971), p.
 103, not Ross (1970), p. 777) apparently believe this to be true when p < 1 and
 attribute it to Kiefer and Wolfowitz ((1955),(1956)).However, the complexity of the
 argument in Section 6 of Kiefer and Wolfowitz (1955) indicates that they were well
 aware that the simpler approach was not available to them. Unfortunately, a
 stable multi-server queue does not necessarily have the propitious property of
 returning to the idle state infinitely often. Example 2.1 illustrates this, as does the
 following example.

 Example 2.2. Consider a GI/G/2 queue in which

 (2.2) vn - 2un < 0 < vn - un
 with probability one. If WO = (0, x), where 0 ? xo< u with probability one then
 Wn+1 = (0, v - un) for all n > 0.

 In Example 2.2 note that any xo > 0 will not do. If xo = 2vo, then W2= (0, 0).

 Note that bounded interarrival times and service times for which p=-Ev/2Eu < 1
 can be used to get (2.2) so that the counterexample could prevail even if moments

 of all orders exist. However, it is easy to get sufficient conditions to rule out
 such pathologies.

 Theorem 2.1. If p < s-' in the GI/Gi/s queue, then

 P{W, = (0,...,O0) infinitely often} = 1

 Proof. First observe in (2.1) that if V' > Vn for all n, then W' > W, for all n.

 Let V,'= (vn,..,v,). Then { W~', n > 0} is just the s-fold copy of a single-server
 queue with interarrival times u, and v,. Then apply the result in Section 1. Such
 order-preserving properties are discussed at length in Jacobs (1971). They are also

 used by Kiefer and Wolfowitz (1955).

 Theorem 2.2. Ifp = Ev /sEu < 1 and P{u, - v, > 0} > 0 in the GI /G s queue,
 then

 P{W. = (0, ...,0) infinitely often} = 1.

 Proof. We apply the ingenious device of Kiefer and Wolfowitz (1955).We domi-
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 Embedded renewal processes in the GI/G/s queue 655

 nate the sequence { W,, n ? 0} by a lattice process and then apply available the-
 orems for denumerable-state discrete-time Markov chains. Following Section 6 of

 [12], we let u = c[u,,/c] and v' = c[v,/c] + c, where c is chosen sufficiently
 small that p' = Ev'/sEu' < 1 and P{u' - v' > 0) > 0. Kiefer and Wolfowitz (1955)
 have shown that such discrete-time Markov chains have only one ergodic set which

 is positive recurrent(persistent non-null)and aperoidic. Since P{u' - v '> 0} > 0,
 it is possible to move to the left in each coordinate in any step. Consequently, for

 any (xl, ...,x,), there exists a k > 0 such that

 P{W,,+k = (0,...,0)1 W = (x1,..-,x")} > 0.

 This means that (0, .., 0) will be visited infinitely often with probability one, so
 (0,...,O0) is not transient. Since the ergodic set is positive recurrent,the expected

 time between visits to (0, .-, 0) is finite for { W,}. Finally W:, < W,'.
 Under the assumptions of Theorem 2.2, optional random variables which are

 finite with probability one can be defined relative to {u,,v,,}. In this case

 (2.3) a = min{k 1 : Wk = (0,..,0)},
 with a' = - co if the minimum is never attained. It is necessary to observe that
 (al = m} is contained in the augmented a-field generated by the first m pairs in

 the sequence {u,,v,,} for any m > 1, cf. Iglehart ((1971a), Section 2). Then The-
 orem 8.2.3 of Chung (1968) can be applied and the busy cycles in continuous time
 can be defined. Just as in Iglehart (1971a), these are

 (2.4) k = Uf-1+k+1 ... + U9k,

 where fik = ' + "'" + ak, k = k-1 O z, and z is the shift.
 Once this set up has been established, associated results such as functional limit

 theorems can be obtained, although there appears to be no easy way to represent
 the constants explicitly. For example, consider the queue length process {Q(t),
 t 0}. We give a somewhat imprecise statement of the available results, providing
 additional details in the proof. We state the ordinary limit theorems in R' which

 can be obtained from the functional versions by projections, cf. Iglehart
 (1971a).

 Theorem 2.3. Let p = Ev/sEu < 1 and P ({u, - v, > 0} > 0 in the GI/G/s
 queue. If appropriate moments are finite, then:

 (a) there exists a finite random variable Q such that

 limP{Q(t) ? x} = P{Q < x}
 t -* oO
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 656 WARD WHITT

 for all continuity points of the limit;

 (b) limEQ(t) = EQ;
 t-+ o

 (c) limrt J Q(s)ds = EQ a.e.;

 (d) limP { j'Q(s)ds - tEQ = (2r)"-i ff -y2dy;
 Q(s)ds - tEQ

 (e) lim sup ( t = c a.e. t+O0 (2t log log t)*

 Proof. (a) We need to exclude periodicity, which we can do by assuming that
 the interarrival times are non-lattice. No moments being finite are necessary other

 than the time to return to (0, .**, 0), which we obtain from the proof of Theorem
 2.2. We apply p. 365 of Feller (1966), cf. Example (a) of p. 366. Actually, the
 assumption that the interarrival times be non-lattice is not quite sufficient, but it is

 if we assume {Q(t), t > 0} has sample paths in D = D[0, oo) with probability one,
 where D is the space of right -continuous real- valued functions on [0, oo) with left
 limits everywhere, cf. Miller ((1971), p. 21). Paths being in D is of course always
 necessary for the functional limit theorems.

 (b) Theorem 2 of Kiefer and Wolfowitz (1956) implies that

 EWn < EW < oo if Evn2< oo,

 where Wn is the waiting time of the nth customer (Wn= W,n) and W is the statio- nary waiting time. However,
 00

 EW = E(W Qn = k} P (Qn= k} k=O

 00

 > 1 (kEv/s)P{Qn=k}
 k=O

 = (Ev/s)EQn

 > (Ev/s)(EQ(t) - 1),

 where Q, is the number of customers in the system at the epoch of the nth arrival
 and t is some point between the nth and (n + 1)th arrival. As a consequence, if

 EvZ < co, then
 sup EQ(t) ? (s/Ev)EW + 1 < co,
 t>O

 so that (Q(t), t ? 0} is uniformly integrable, which with (a) implies (b).
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 Embedded renewal processes in the GI/G/s queue 657

 (c) The existence of the limit is an easy consequence of adding up a random
 number of independent chunks, cf. Iglehart (1971a). This argument shows that
 the limit equals the expected value of the integral of the queue length process over
 one cycle divided by the expected length of one cycle. That this coincides with
 EQ can be deduced from (b). For an argument not using (b), see Section 2 of
 Brown and Ross (1970).

 (d) Again Iglehart's (1971a) argument can be used. The translation term can be
 deduced from (c). The constant c is not known even for the GI/G/1 queue, cf.
 Iglehart ((1971a),Theorem 4.1). However, it can be estimated easily from indepen-
 dent observations of successive busy cycles. In Iglehart's (1971a) notation, c is the
 second moment of

 (y(2) - kEQ) = (y2 -- k EYk2 /Eck),
 where Y(2)is the integral of the queue length process over the kth cycle.

 (e) Follow Section 5 of Iglehart (1971a). Similarly for lim inf,1 .
 From the point of view of applications, it is not so bad that the constants EQ

 and c in Theorem 2.3 cannot be expressed simply in terms of the interarrival time
 and service time random variables and their moments. The constants EQ and c can

 be estimated from successive observations from the sequence of i.i.d. busy cycles,

 that is, as functions Vk in Theorem 8.2.3 of Chung (1968) or Lemma 2.1 of Iglehart

 (1971). This seems to be a good point to apply computational methods and data
 analysis. If the object is estimation, then Theorem 2.3 establishes consistency
 and asymptotic normality.
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