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THE EQUIVALENCE OF FUNCTIONAL CENTRAL LIMIT THEOREMS
FOR COUNTING PROCESSES AND ASSOCIATED PARTIAL
SUMS

By DONALD L. IGLEHART' AND WARD WHITT?
Stanford University and Yale University

1. Introduction. Let {u,, n = 1} be a sequence of nonnegative random variables,
not necessarily independent or identically distributed, with an associated counting
process or point process {N(¢), t = 0}, defined by

(1.1) N(t) =max {k:u,+ - +u, < t}, uy <t
=0, Uy >t

We shall show that functional central limit theorems (invariance principles) for
N(¢) are equivalent to corresponding statements for the sequence of partial sums
of the u,’s. This equivalence exists because the counting process and the partial
sum process are essentially inverses of each other.

Let {X,,n =1} be the usual sequence of random functions in D =
D[0, r], 0 < r < o0, induced by the sequence of partial sums; that is, let

(1.2) X,(t) = (o?n)™* Y13 (u;—p), 0t

where p and ¢® are positive constants. Let {N,,n > 1} be the corresponding
sequence of random functions induced in D by N(¢):

(1.3) N, (1) = (¢®p>n) " *[N(nt)—nt/u], 0<t<r.

Finally, let W be the Wiener measure on D. It is easy to show that weak convergence
of {X,} or {N,} to any limit in DI[0, r] for some r, 0 < r < o, implies weak con-
vergence in DI[0, r] for any r, 0 < r < oo. This in turn implies weak convergence
in D[0, o), cf. [6], [7], and [10]. (We use = to denote weak convergence of proba-
bility measures. When stochastic processes or ordinary random variables appear
in such an expression, we mean the measures induced by these functions.) Billingsley
has shown that if X, = W, then N, = W, cf. Theorem 17.3 of [1]. We shall prove
the converse: if N, = W, then X, = W. Naturally this converse is not very useful
for showing that X, = W when the conditions implying that N, = W also directly
imply that X, = W, which is the case when {u,} is i.i.d., cf. [1] Theorem 16.1. For
nontrivial applications of this converse to queueing problems, see Section 8 of [3]
and Lemma 1(iii) of [8]. The application to queues in [8] is of some general interest
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EQUIVALENCE OF FUNCTIONAL CENTRAL LIMIT THEOREMS 1373

because it involves a functional central limit theorem for the partial sum process
associated with superposition of several renewal counting processes.

We shall actually prove the necessary and sufficient conditions for weak con-
vergence described above in a more general setting. We shall consider a double
sequence of nonnegative random variables and allow the limit measure to be any
measure on D which concentrates on C = C[0, r] with probability one. This greater
generality is motivated in part by applications in queueing theory. In particular,
the extension of Theorem 17.3 of [1] to double sequences and Theorem 3.1 of
Prohorov [5] are used heavily in [4]. For applications where the limit is not W,
see Theorem 8.4 of [3] and Section 3.3 of [4]. Our result also applies to sequences
of random variables which are not nonnegative if instead of the sequence of partial
sums {S,, n = 1}, where S, = u+---+u,, we consider the associated sequence of
maxima {M,, n = 1}, where M, = max {S,, 1 £ k £ n}. Since we have no i.i.d.
assumptions, {M,} can be regarded as a sequence of partial sums in its own right.
The associated counting process is then a first passage time process. Our equivalence
theorem is applied this way in [12] to obtain functional central limit theorems in
k-dimensional renewal theory. Finally, we remark that our result here concerns
the case in which (1.2) and (1.3) have a positive translation term. The case of no
translation term is treated in [11].

2. The results. Let {u,/; i, j = 1} be a double sequence of nonnegative random
variables with no independence or common distribution assumptions. For each
J = 1, form the counting process {N/(¢), t = 0}, defined by

2.1) NY(1) = max {k:u, + - +u/ <1}, ud <
=0, ud >t

Now construct the (single) sequences of random functions {X,} and {¥,} in
DJ0, 00):

(22) X,(1) = (1/e,) X (u ~b,), 120,
and
(2.3) N(1) = (baJe) IN'(a,b,) a1, 120,

where {a,}, {b,}, and {c,} are sequences of positive constants. For the proofs in
this paper we shall let b, = 1. To see that we can do this without loss of generality,
consider the transformation: u;* = u;"/b,, ¢,/ = ¢,/b,, b,’ = 1, and a,’ = a,. Note
that with double sequences of random variables weak convergence of {X,} or {N,}
in D[O, r] for some r, 0 < r < o0, does not necessarily imply weak convergence in
D0, s] for any s > r, but it is to be expected. Again weak convergence in D[0, c0)
holds if there is weak convergence in D[0, r]forallr,0 < r < co.

THEOREM 1. Let r and s be arbitrary positive finite constants; let c,/b, - + o0,
and a,b,/c, - + o0; and let Y € D[0, r+s] with P{Y € C[0, r+s]} = 1. If either
X,= Yor N,= — YinD|0, r+s), then

(X,,N,)=(Y,=Y) in D[0,r]xD[O,r].
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1374 DONALD L. IGLEHART AND WARD WHITT

CorOLLARY 1. Let a,b,/c, > + o, c¢,/b,—> + o, and Y e D[0, o0) with
P{Y e C[0, )} = 1. Then X, = Y in D[0, o0) if and only if N, = — Y in D0, o).

COROLLARY 2. Let X, and N, be generated by a single sequence of random variables
{u,}; let r be an arbitrary positive constant; c,/b, = o, a,b,/c, = 0, and Y € D|0, r]
with P{Y € C[0, r)} = 1. If either X, = Y or N, = — Y in D|0, r], then for any s,
0<s < o0,

(X,,N,)=(Y,—Y) in D[0,s]xD[O0,s].

If we have a single sequence {u,} and if Y = W, a, = n, b, = u,and ¢, = on*, then
the result mentioned in the introduction is obtained from Theorem 1. To see this,
note that

(u/on*)[N(unt)—nt] = (o*u~>m) [ N(mt)— mt/u]
if m = np.

The central idea in Billingsley’s proof of Theorem 17.3 of [1] is a random time
change; [1] page 144. It is convenient for us to use a slight variation of Billingsley’s
argument. Let D consist of those functions @ that are right-continuous and non-
decreasing and satisfy 0 < ®(¢) < s for all £, 0 < ¢ < r. Such functions represent
transformations of the time interval [0, r] into [0, s]. The space D; is a closed subset
of D0, r] and a complete separable metric space with Billingsley’s version of the
Skorohod metric on D, cf. Chapter 3 of [1]. Let d represent this metric and p the
supremum metric on D and D.

Let {Z,} be any sequence of random functions in D[0, s] and let {®,} be any
sequence of random functions in D, with Z, and @, defined on a common domain
for each n. Assume that the prospective limits Z and ® are also defined on a

common domain. Billingsley’s argument ([1] page 145 and Theorem 4.4) still
applies to give

LeEMMA 1. Let r and s be positive, finite constants. If Z, = Z in DJ0, s] with
P{Z e C[0, s]} = 1,and®, = ® in D,where @ is a constant function in C[0, r] n D,,
then

(Z,,Z,°®,)=>(Z,Z-®) in D[0,s]xD[O,r],
where Z,o®, =Z(D,(1),0=t=<r, and Z-® =Z(P1),0=t<r.

We shall also use Lemma 1 to prove Theorem 1. In order to prove the converse
of ([1] Theorem 17.3) and the corresponding part of Theorem 1, we shall prove

LEMMA 2. Let r and s be positive, finite constants. Let Z,, € D|0, s], ®,€ D,, and ®
be a strictly increasing constant function in C n D, with ®(0) = 0 and ®(r) = r.
IfZ,o®,=Zo®inD|0, r],d®,, ®) = 0, and {Z,} is C-tight in D|0, s], then

(Z,,Z,°®,)=(Z,Z-®) in D[0,s]xD[0,r].

C-tightness is discussed at the beginning of Section 3. For applications of Lemma 2
other than the proof of Theorem 1, see Section 7 of [3] and Section 5 of [9].
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EQUIVALENCE OF FUNCTIONAL CENTRAL LIMIT THEOREMS 1375

The connection between Theorem 1 and Lemmas 1 and 2 is made apparent by
defining the sequence of random functions {Y,} in D[O0, r] (with b, = 1):

(2.4) Y,(1) = (1/c,) Y N2 (u,"—1). 0<t<r.
Notice that
(25) Yn(t) § [ant - N”(ant)]/cn é Yn(t)+ (I/Cn)u;:/"(anl)‘*' 1

from which we shall deduce that p(Y,, —N,) = 0. From the relationship above, it
is clear that the material here is closely related to functional central limit theorems
for random sums, cf. [1] Section 17, [2] Section 2, and [9] Section 2. Also, using the
random time change ®, mapping [0, r] onto [0, r +s], where

N"(a,t)
an

we shall show that p(Y,, X, o ®,) = 0 and p(®,, [) = 0, where [(¢) = 1,0 = t = 1.
Hence, p(—N,, X, o ®,) = 0 and Theorem 1 follows. We now fill in the details.

(2.6) @,(t) =

A(r+s), 0=s1=,

3. The proofs. We first prove two technical lemmas. Since C-tightness is much
easier to apply than D-tightness, cf. [1] page 55 and page 125, we would like a
condition giving C-tightness based on weak convergence in D. In a sense, we want
a converse to Theorem 15.5 of [1]. The property of C-tightness in C or D is
expressed in terms of the modulus of centinuity w(d): D — R, defined for any
x € D[O, r] by
(31) Wx(é) = SUpogs,zgr,|s—z| <é IX(t)—X(S)l.

LEmMMA 3. Let Z, € D,Z e D,and P{Z e C} = 1. If Z, = Z, then {Z,} is C-tight:
for all positive ¢ and n, there exists a 6(0 < 6 < 1) and an integer n, such that
P{w,, () > & < nforn z n,.

PrOOF. Theorem 5.1 of [1] implies that w, (6) = w(6) for each J, but w,(d) = 0
aso | 0.

Let J: D —» R be the maximum jump functional, defined for any x € D[0, r] by
(3.2) J(x) = supo <, {|x(1)~ x(t=)|}.
Forxe C,J(x) = 0.

LeMMA 4. The function J is measurable and continuous almost everywhere with
respect to any measure concentrating on C with probability one.

Proor. The modulus of continuity w(d): D — R is measurable because
W(0) = SUPo <5 <r -1 <5 |x(t)—x(s)[

= SUpo Sst2r,|s—t| 4,50 € Quir} IX(t)— X(S)l,

where Q is the set of rational numbers. Obviously, w.(5) = J(x) for all § > 0 and
w,(0) decreases as 6 decreases. Applying Lemma 1 of [1] page 110, we have
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1376 DONALD L. IGLEHART AND WARD WHITT

lim; |, o w,(8) = J(x). If we choose a sequence {J,} with d, | 0, then J is the limit of
a sequence of measurable functions, and is thus measurable.
To show continuity, suppose d(x,, x) — 0. For x € C, p(x,, x) — 0, and

[(xa) = I ()] = J(x,)
< SUPo<r<r [x,,(t)—x(t)| +SUPo<r<r [x,,(t—)—x(t—-)l
< 20(x,, x)—0.

PRrOOF OF LEMMA 2. If X is a weak limit of some weakly convergent subsequence
{Z,} of {Z,}, then Z,. o ®,. = X o ®. Hence, X o ® ~ Z o ®. Now choose finitely
many time points ¢,, ---, ¢, in [0, s]. For each ¢;, there is a unique u; in [0, r] such
that ®(u;) = ¢;. Since all the projections are measurable, cf. [1] page 121,
[X(tl)a B X(tk)] = [Xo (D(ul)’ e, Xo q)(uk)] ~ [Z ° (I)(ul)5 Z Oq)(uk)] = [Z(tl)a
-+, Z(t,)]. Hence, X ~ Z.

PROOF OF THEOREM 1. In one direction, the assertion is a consequence of Lemmas
5, 6, and 7 to come and Lemma 1. In the other direction, the assertion is a con-
sequence of Lemmas 8, 9, 10, and 11 to come and Lemma 2. Throughout the
following discussion assume P{YeC}=1; b,=1, ¢,— ©, a,/c, > © as
n— o0; O,) = [Na,t)/a,] A (r+s), 0 <t Zr; and r and s are positive finite
constants.

LemMmaA 5. If X, = Yin D[O, r+s], then ®, = I in D,.
PrOOF. Since X, = Yand a,/c, - o0, Theorems 4.4 and 5.1 of [1] imply that
SUPo<r<r+s |(1/an) ZP’:";] (u"— 1)| =0,
where [-] is the integer part function. We now apply the basic relationship:

N™t) = mifand only if Y /-, u" < t. We have infy ., , {(1/a,)[N"(a,t)—a,t]} = —¢
if and only if N*(a,t) = a,(t—¢),0 £ t < r, which holds if and only if

N"(a,t) = [a,(t—¢)], e<t<r, or
Ylant=aly" < a,t, e<t<r, or
ZEa:ngt—a)](uin_ 1) = (ant_ [an(t—g)])’ est=r,

which holds if
SUPo <r <, {(1/ay) Zgi"i](”i"_ 1} <e,

but we have just shown that the probability of this event approaches one as n — co.
A similar argument shows that for all positive ¢

lim,, ., P{supo <<, {(1/a,)[N"(a,t) —a,t]} < e} =1.
LEMMA 6. If X, = Y in D[O, r+s), then p(—N,, Y,) = 0in D[O, r].
Proor. By the triangle inequality, u,"/c, < |u/"—1|/c,+1/c,; by Lemma 4,

J(X,) = 0; by assumption, ¢, - co0; and by the proof of Lemma 5, N"(a,r)/a, = r.
Hence,

P(_Nn’ Yn) =SUPo<tr |(1/cn)unN”(ant)+1 | =0.
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EQUIVALENCE OF FUNCTIONAL CENTRAL LIMIT THEOREMS 1377

LEMMA 7. If X, = Y in DIO, r+s), then p(X, - ®,, —N,) = 0 in DO, r].

Proor. By Lemma 6, it suffices to show that p(X, o ®,, Y,) =0 in D[0, r].
If ®,(r) < r+s, then Y, = X, o ®,. Since ®,= I, P{®,(r) < r+s} - L.

The proof of the first part of Theorem 1 is finished by applying Lemma 1 and
Theorems 4.1 and 5.1 of [1]. We now turn to the second part of Theorem 1.

LeMMA 8. If N, = — Y in D[O0, r), then ®, = I in D,.

PRrROOF. Recall that

p(q)nal) é SuPogtgr |N"(ant)/an_t|a

but since N, = — Y and a,/c, » o0, Theorems 4.4 and 5.1 of [I1] imply that
SUpo<;<- |N"(a,t)/a,—t| = 0. Hence, ®, = I.

LEMMA 9. If N, = — Yin D[O, r+35), then p(—N,, Y,) = 0in D[0, r].

PrOOF. If U, = supg <<, {(1/¢,)Uyn(a,+1}> then we need to show that U, = 0.
Since P{— Y e C} = 1, we have C-tightness for {N,} by virtue of Lemma 3. We
shall show that this C-tightness would be violated if we did not have U, = 0. For
eachn = 1, there are time points ¢, € [0, r]and ¢, = ¢, such that |t2—t1] = ¢, U,/a,
and N"(a,t,—)—N"(a,t,;) = 0. For § < s; the statements above imply that

Wy (6) 2 Uy A (a,/6,)0
where a,/c, — oo. Hence, U, = 0, and the proof is complete.
LemMma 10. If' N, = — Y in D[O, r +s), then p(X,, - ®,, —N,) = 0in D[0, r].
PRrROOF. Apply the argument of Lemma 7.
LeMMA 11. If N, = — Yin D[O, r+s), then { X,,} is C-tight in D|0, r].

PRroOF. Since N, = — Y where P{— Y € C} = 1, the sequence {N,} is C-tight
in D[0, r+s] by virtue of Lemma 3. In other words, for all ¢ and > 0, there exists
20,0 < 6 < I,and an n, such that P(4, u B,) < nfor n = n,, where
A, = {N"(a,t,)— N"(a,t,) > [a,(t,—t,)+ec,], forsomet,and t,,0 < t,,t, < r+s,
|t;—1,| < o} and
B, = {N"(a,t,)—N"(a,t,) < [a,(t,—t,)—ec,]+1, for some ¢, and ¢,, 0 < t,, 1, <
r+s, |t,—t,| < 8}.

Now an argument similar to that used in Lemma 5 shows that if N"(a,[r+s]) = a,r,

then {wy (6) > 2¢} = A, U B, for sufficiently large n, where the modulus of
continuity is used in D[O0, r]. In any case, for sufficiently large n

P{wy,(0) = 2¢} < P(A, U B,)+ P{N"(a,[r+s]) < a,r}.

Since N*(a,[r+s])/a, = r+s, the second term converges to zero as well as the first
and we have the desired C-tightness for { X,,} in D[0, r].
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