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 The Annals of Mathemtiatical Statistics
 1971, Vol. 42, No. 4, 1372-1378

 THE EQUIVALENCE OF FUNCTIONAL CENTRAL LIMIT THEOREMS

 FOR COUNTING PROCESSES AND ASSOCIATED PARTIAL

 SUMS

 BY DONALD L. IGLEHART' AND WARD WHITT2

 Stanford University and Yale University

 1. Introduction. Let {Un, n > 1} be a sequence of nonnegative random variables,
 not necessarily independent or identically distributed, with an associated counting
 process or point process {N(t), t _ O}, defined by

 (1.1) N(t) =max{k:uI+ k+uk_ t}, ut1?t

 =0, ul > t.

 We shall show that functional central limit theorems (invariance principles) for
 N(t) are equivalent to corresponding statements for the sequence of partial sums
 of the u 's. This equivalence exists because the counting process and the partial
 sum process are essentially inverses of each other.

 Let {Xn, n > 1} be the usual sequence of random functions in D
 D[O, r], 0 < r < oo, induced by the sequence of partial sums; that is, let

 (1.2) Xn(t) = (o2n)- TZ t1 (u_-u) 0 ? t ? r,

 where ,u and .2 are positive constants. Let {Nn, n > 1} be the corresponding
 sequence of random functions induced in D by N(t):

 (1.3) Nn(t) = ( '2,J3n)-2[N(nt)-nt/1], 0< t ?r.
 Finally, let W be the Wiener measure on D. It is easy to show that weak convergence
 of {XnJ or {N,j to any limit in D[O, r] for some r, 0 < r < oo, implies weak con-
 vergence in D[O, r] for any r, 0 < r < oo. This in turn implies weak convergence
 in D[O, oo), cf. [6], [7], and [10]. (We use = to denote weak convergence of proba-
 bility measures. When stochastic processes or ordinary random variables appear
 in such an expression, we mean the measures induced by these functions.) Billingsley

 has shown that if Xn => W, then Nn = W, cf. Theorem 17.3 of [1]. We shall prove
 the converse: if Nn - W, then Xn =- W. Naturally this converse is not very useful

 for showing that Xn1 =- W when the conditions implying that Nn => W also directly
 imply that Xn =- W, which is the case when {unl is i.i.d., cf. [1] Theorem 16.1. For
 nontrivial applications of this converse to queueing problems, see Section 8 of [3]
 and Lemma 1 (iii) of [8]. The applicatio,i to queues in [8] is of some general interest
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 EQUIVALENCE OF FUNCTIONAL CENTRAL LIMIT THEOREMS 1373

 because it involves a functional central limit theorem for the partial sum process

 associated with superposition of several renewal counting processes.

 We shall actually prove the necessary and sufficient conditions for weak con-

 vergence described above in a more general setting. We shall consider a double

 sequence of nonnegative random variables and allow the limit measure to be any

 measure on D which concentrates on C _ C[O, r] with probability one. This greater

 generality is motivated in part by applications in queueing theory. In particular,

 the extension of Theorem 17.3 of [1] to double sequences and Theorem 3.1 of

 Prohorov [5] are used heavily in [4]. For applications where the limit is not W,

 see Theorem 8.4 of [3] and Section 3.3 of [4]. Our result also applies to sequences

 of random variables which are not nonnegative if instead of the sequence of partial

 sums {Sn, n > 1}, where Sn = u1 + * * + un, we consider the associated sequence of
 maxima {Mn, n > 1}, where Mn = max {Sk, 1 ? k < n}. Since we have no i.i.d.
 assumptions, {Mn} can be regarded as a sequence of partial sums in its own right.
 The associated counting process is then a first passage time process. Our equivalence

 theorem is applied this way in [12] to obtain functional central limit theorems in

 k-dimensional renewal theory. Finally, we remark that our result here concerns

 the case in which (1.2) and (1.3) have a positive translation term. The case of no

 translation term is treated in [11].

 2. The results. Let {uj; i, j 1 I} be a double sequence of nonnegative random
 variables with no independence or common distribution assumptions. For each

 > _ 1, form the counting process {Nj(t), t O}, defined by

 (2.1) Nj(t)=max{k:ul+...+Uk' t},ul

 =0, II,i>t.

 Now construct the (single) sequences of random functions {Xn} and {Nn} in
 D[O, oo):

 (2.2) Xn(t) = ( a/cn) Z[tntl (U in- b) t > O
 and

 (2.3) Nn(t) = (bn/cn)[N'1(anbnt) - ant] t > O,

 where {a,1}, {bn} and {cn} are sequences of positive constants. For the proofs in
 this paper we shall let b =1. To see that we can do this without loss of generality,

 consider the transformation: uii" = Uinlbn5 cn' = cn/bn, bn' = 1, and an' = an. Note
 that with double sequences of random variables weak convergence of {X1} or {Nn}
 in D[O, r] for some r, 0 < r < oo, does not necessarily imply weak convergence in
 D[O, s] for any s > r, but it is to be expected. Again weak convergence in D[O, oo)
 holds if there is weak convergence in D[O, r] for all r, 0 < r < oo.

 THEOREM 1. Let r and s be arbitrary positive finite constants; let cn/bn -+ + X?,
 and anbn/c,n -- + oo; and let Ye D[0, r+s] with P{ Ye C[0, r+s]} = 1. If either
 Xn=: Y or Nn= -Y in D[O, r+s], then

 (Xw,Nn)= (Y,-Y) in D[0,r]xD[0,r].
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 1374 DONALD L. IGLEHART AND WARD WHITT

 COROLLARY 1. Let anbn/cn -- + oo, cn/bn - + oo, and Ye D[0, so) with
 P{ Y E C[O, oo)} = 1. Then Xn => Y in D[O, so) if and only if Nn -Y in D[O, so).

 COROLLARY 2. Let Xn and Nn be generated by a single sequence of random variables

 {unl; let r be an arbitrary positive constant; cn/bn -+ oo, anbn/cn -+ o, and Y E D[O, r]
 with P{ Y E C[O, r)} = 1. If either Xn = Y or Nn - -Y in D[O, r], then for any s,
 o < s < 00,

 (Xn, N) =n) (Y, - Y) in D[O, s] x D[O, s].

 If we have a single sequence {un} and if Y = W, an = n, bn = ,u, and cn = ant, then
 the result mentioned in the introduction is obtained from Theorem 1. To see this,
 note that

 (plan')[N(ynt) - nt] ( t2u '3m)-'[N(mt)-mt/p]
 if m = n/i.

 The central idea in Billingsley's proof of Theorem 17.3 of [1] is a random time

 change; [1] page 144. It is convenient for us to use a slight variation of Billingsley's

 argument. Let D, consist of those functions 1D that are right-continuous and non-
 decreasing and satisfy 0 < 4>(t) < s for all t, 0 < t < r. Such functions represent

 transformations of the time interval [0, r] into [0, s]. The space D, is a closed subset
 of D[O, r] and a complete separable metric space with Billingsley's version of the
 Skorohod metric on D, cf. Chapter 3 of [1]. Let d represent this metric and p the

 supremum metric on D and D,
 Let {Zn} be any sequence of random functions in D[O, s] and let {On} be any

 sequence of random functions in Ds, with Zn and IDn defined on a common domain
 for each n. Assume that the prospective limits Z and D are also defined on a

 common domain. Billingsley's argument ([1] page 145 and Theorem 4.4) still

 applies to give

 LEMMA 1. Let r and s be positive, finite constants. If Zn => Z in D[O, s] with
 P{Z E C[O, s]} = 1, and On => 'D in D, where 'D is a constant function in C[O, r] n Ds,
 then

 (Z, Zn ?ODn)=>(Z,Zo D) in D[O,s] xD[O,r],

 where Zn ? =n Z J(O , (t))0 <_ t ? r, and Zo @-DZ((D(t)), 0 < t < r.

 We shall also use Lemma 1 to prove Theorem 1. In order to prove the converse
 of ([1] Theorem 17.3) and the corresponding part of Theorem 1, we shall prove

 LEMMA 2. Let r and s be positive, finite constants. Let Zn E D[0, sI, ODn E Ds, and D
 be a strictly increasing constant function in C n) Ds with D?(0) = 0 and @(r) = r.
 If Zn ? On =- Z o 'D in D[O, r], d(DnS, (D) =- 0, and {Zn} is C-tight in D[O, s], then

 (Zn5 Zn ? Dn) >(Z5Z oD) in D[0,s] xD[O,r].

 C-tightness is discussed at the beginning of Section 3. For applications of Lemma 2
 other than the proof of Theorem 1, see Section 7 of [3] and Section 5 of [9].
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 EQUIVALENCE OF FUNCTIONAL CENTRAL LIMIT THEOREMS 1375

 The connection between Theorem 1 and Lemmas 1 and 2 is made apparent by

 defining the sequence of random functions { YJ in D[O, r] (with bn = 1):

 (2.4) Yna(t) = (l/lcn(ant)(U i- 1). 0 ? t ? r.

 Notice that

 (2.5) Yn(t) < [ant -N n(ant)]/Cn ? Yn(t) + (I!Cn)UN"N(a,t) + 1

 from which we shall deduce that p( Yn, - Nn) = 0. From the relationship above, it
 is clear that the material here is closely related to functional central limit theorems
 for random sums, cf. [1] Section 17, [2] Section 2, and [9] Section 2. Also, using the
 random time change /On mapping [0, r] onto [0, r + s], where

 (2.6) (t)= an ( )O_t_i>Nn(ant)
 (2-6) Dn(t) = ~ A (r +s), 0?1< I

 we shall show that p( Yn, Xn ? (Dn) = 0 and p(FDn, I) = 0, where I(t) = t, 0 < t ? 1.
 Hence, p(-Nn, Xn ? (Dn) = 0 and Theorem 1 follows. We now fill in the details.

 3. The proofs. We first prove two technical lemmas. Since C-tightness is much
 easier to apply than D-tightness, cf. [1] page 55 and page 125, we would like a
 condition giving C-tightness based on weak convergence in D. In a sense, we want
 a converse to Theorem 15.5 of [1]. The property of C-tightness in C or D is

 expressed in terms of the modulus of continuity w(3): D -+ R, defined for any
 x E D[0, r] by

 (3.1) wX(6) = SUP0_s,t<r, s-tJ <_ Ix(t)-x(s)I.
 LEMMA 3. Let Zn E D, Z E D, and P{Z E C} = 1. If Z)t =- Z, then {Zn} is C-tight:

 for all positive e and 'i, there exists a 6(0 < 6 < 1) and an integer nO such that
 P{wzJ(6) > 4l < jforn _ nO.

 PROOF. Theorem 5.1 of [1] implies that wz (6) =- wz(6) for each 6, but wz(6) = 0
 as 6 I 0.

 Let J: D -+ R be the maximum jump functional, defined for any x E D[0, r] by

 (3.2) J(x) = Supo<tr {Ix(t)-x(t-)I}.

 For x c C, J(x) = O.

 LEMMA 4. The function J is measurable and continuous almost everywhere with
 respect to any measure concentrating on C with probability one.

 PROOF. The modulus of continuity w(6): D -+ R is measurable because

 WX(6) = SUP0< s,t<r, s-tI < |X(t)-X(S)|

 = Supo<s,t<r,,s-t, _6,s,t E Qu{r} Ix(t)- X(S)J,

 where Q is the set of rational numbers. Obviously, wx(6) ? J(x) for all 6 > 0 and
 wx(6) decreases as 8 decreases. Applying Lemma 1 of [1] page 110, we have
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 1376 DONALD L. IGLEHART AND WARD WHITT

 lim, O 0 wJb) = J(x). If we choose a sequence {n} with bn I 0, then J is the limit of
 a sequence of measurable functions, and is thus measurable.

 To show continuity, suppose d(xn, x) -* 0. For x E C, p(xn, x) -* 0, and

 |J(x,)-J(x)|= J(xn)

 _SUPO <t <r |IXn(t) -X(t I + SUPO _ t < r I X,(t )X(t-|

 < 2p(xn, x) - 0.

 PROOF OF LEMMA 2. If X is a weak limit of some weakly convergent subsequence

 {Zn,} of {Zn}, then Zn, ? tD => X o (D. Hence, Xo ( ( Z o (D. Now choose finitely
 many time points t1, - , tk in [0, s]. For each ti, there is a unique u, in [0, r] such
 that (D(ui) = ti. Since all the projections are measurable, cf. [1] page 121,
 [X(t1), .., X(tk)] = [X (D (U1), *--, X ? ((Uk)] [Z ? D(u1), *., Z D(Uk)] = [Z(t1),

 *, Z(tk)]. Hence, X - Z.

 PROOF OF THEOREM 1. In one direction, the assertion is a consequence of Lemmas
 5, 6, and 7 to come and Lemma 1. In the other direction, the assertion is a con-
 sequence of Lemmas 8, 9, 10, and 11 to come and Lemma 2. Throughout the

 following discussion assume P{ Y e C} = 1; bn = 1, cn o+ o, an/Cn ? oo as
 n - oo; (Dn(t) = [N"(ant)/an] A (r+s), 0 < t < r; and r and s are positive finite
 constants.

 LEMMA 5. If Xn = Yin D[0, r + s], then $Dn => I in D,.

 PROOF. Since Xn = Yand an/Cn - oo, Theorems 4.4 and 5.1 of [1] imply that

 SUpo<t<r+s |(1I an) t n _(U in1) =) I,

 where [.] is the integer part function. We now apply the basic relationship:
 Nn(t) > m if and only if D= 1 =.n < t. We have inf0 <t <r {(1!an)[N.(ant) - ant]} ?
 if and only if Nn(ant) > an(t - ?) 0 < t < r, which holds if and only if

 Nn(ant) ? [an(t-6)], e _ t < r, or

 EZan (t -)]n < ant, e < t < r, or
 Ei=1 (u 1) _ (nt [an(t - 0]), e < t < r,

 which holds if

 SUpo<t<r-E{(1/an)ZI[n=](u -1)} < ?

 but we have just shown that the probability of this event approaches one as n -o co.
 A similar argument shows that for all positive e

 limn,oo P{SUPO< t<r {(lIan)[Nn(ant)-ant]} < E} =1.

 LEMMA 6. If Xn => Yin D[0, r+s], then p(-Nn, Yn) O Oin D[0, r].

 PROOF. By the triangle inequality, Uin/Cn < Ui nl/Cn + I/Cn; by Lemma 4,
 J(Xn) =- 0; by assumption, Cn oo; and by the proof of Lemma 5, Nn(anr)/an => r.
 Hence,

 p(-Nn, Y) = SUPO<t<r |(1/Cn)U nn(ant)+lI =O .
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 EQUIVALENCE OF FUNCTIONAL CENTRAL LIMIT THEOREMS 1377

 LEMMA 7. If Xn => Yin D[0, r+s], then p(Xn ? Dn, -N ) => 0 in D[O, r].

 PROOF. By Lemma 6, it suffices to show that p(Xn ? Dn Y) O= 0 in D[O, r].
 If qDn(r) < r+s, then Yn = Xn ? (D. Since 'Dn=> I, P{JDn(r) < r+s} -+ 1.

 The proof of the first part of Theorem 1 is finished by applying Lemma 1 and
 Theorems 4.1 and 5.1 of [1]. We now turn to the second part of Theorem 1.

 LEMMA 8. If Nn = - Yin D[0, r], then Dn I in D,

 PROOF. Recall that

 P(ID I) _ sup0 < t < r Nn(a t)/an -t I

 but since Nn = - Y and an/cn - oo, Theorems 4.4 and 5.1 of [1] imply that
 SUPO<t<r I N'(ant)/an-t t - 0. Hence, on =- I.

 LEMMA 9. IfNn => - Yin D[0, r+s], then p-Nn, Y) => 0 in D[0, r].

 PROOF. If U,, = supUnt?r {(l/Cf) 4n(a1t)+l}, then we need to show that Un => 0.
 Since P{- Ye C} = 1, we have C-tightness for {Nn} by virtue of Lemma 3. We
 shall show that this C-tightness would be violated if we did not have Un - 0. For
 each n ? 1, there are time points t 1 E [0, r] and t2 > t1 such that |t2 - t1 =c, Unla,
 and Nn(ant2 -)-N(ant1) = 0. For 6 < s; the statements above imply that

 WN(6) > Un A (an/cn)

 where an/cn oo. Hence, Un => 0, and the proof is complete.

 LEMMA 10. If N,, = - Yin D[0, r+s], then p(Xn ? n -Nj) = 0 in D[0, r].

 PROOF. Apply the argument of Lemma 7.

 LEMMA 11. If Nn = - Yin D[0, r+s], then {Xn} is C-tight in D[0, r].

 PROOF. Since Nn = - Y where P{ - Y E C} = 1, the sequence {Nn} is C-tight
 in D[0, r + s] by virtue of Lemma 3. In other words, for all e and q > 0, there exists
 a 6, 0 < 6 < 1, and an no such that P(An u Bn) < q for n > no, where
 An = {Nn(ant2)-Nn(ant1) > [an(t2-t1)+cnj, for some t1 and t2, 0 ? t1, t2 < r+s,
 1t2-t1 < 6} and
 Bn = {Nn(ant2)-Nn(ant1) < [an(t2-t1)-cCn]+1, for some t1 and t2, 0 < t1, t2 ?
 r +s, | t2 -tl I < }1-

 Now an argument similar to that used in Lemma 5 shows that if N"(an[r+s]) > anr,
 then {WXn(b) > 2?} c An u Bn for sufficiently large n, where the modulus of
 continuity is used in D[0, r]. In any case, for sufficiently large n

 P{WXn(b) ? 2e} < P(An u Bn) + P{Nn(an[r+s]) ? an}'}.

 Since N"(an[r+s])/an = r+s, the second term converges to zero as well as the first
 and we have the desired C-tightness for {Xn} in D[0, r].
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