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This paper focuses on simple exponential approximations tor tail probabihities of the steady-state waiting ime 1n infinite-capacity
multiserver queues based on small-tail asymptotics. For the GI/GI/s model, we develop a heavy-traffic asymptotic expansion in
powers of one minus the traffic intensity for the waiting-ime asymptotic decay rate. We propose a two-term approximation for
the asymptotic decay rate based on the first three moments of the interarnval-time and service-ime distributions. We also
suggest approximating the asymptotic constant by the product of the mean and the asymptotic decay rate. We evaluate the
exponential approximations based on the exact asymptotic parameters and their approximations by making comparisons with
exact results obtained numerically for the BMAP/GI/1 queue, which has a batch Markovian arrival process, and the G//Gl/s
queue. Numerical examples show that the exponential approximations are remarkubly accurate, especially for higher percentiles,

such as the 90th percentile and beyond.

In queueing applications we are often interested in tail
probabilities of the steady-state waiting time (before
beginning service). Our main purpose in this paper is to
support and elaborate on the idea that these tail probabil-
ities often have approximately an exponential form with
parameters that can be determined. Abate, Choudhury
and Whitt (1994a, b) discuss corresponding exponential
approximations for the sojourn time (response time, i.e.,
waiting time plus service time) and the workload (virtual
waiting time), and geometric approximations for the
queue lengths (at arbitrary times, departure epochs, and
arrival epochs).

Suppose that W is the steady-state waiting time. We
are suggesting the simple exponential approximation

P(W >x) = qe ™ (1)

for suitably large x, where the decay rate n and the
constant « are fixed positive real numbers independent
of x. It is important to note that we do not suggest that
(1) should hold for all x, but only for suitably large x.

If we are interested in the (100p)th percentile (or
quantile, e.g., for p = 0.95), then we want w/, such that
P(W > w,) =1 — p. Corresponding to (1), we suggest
the approximation

w, zlog(l fp)%. (2)

For applications, it is important to note that the relative
error in an approximation for a high percentile is typi-
cally substantially less than the relative error for the cor-
responding tail probability itsclf. (We claborate on this
point in Section 9.)

Moreover, the percentile (2) often does not depend
greatly on the constant «, so that we can often use a
relatively crude approximation for «; sometimes we
can even set @ = 1 in (2). To see this, first note that
log(a/(1 — p)) = log « — log(1 — p) and, second, note
that log & may be relatively small compared to —log(l -
p). This simplification in (2) obviously becomes more
appropriate as p and « approach 1. Having the approxi-
mation not depend critically on « is helpful because an
appropriate constant « is often much more difficult to
determine than an appropriate decay rate 7. (It is impor-
tant to note, however, that an appropriate constant « in
(1) is not always sufficiently close to 1; this difficulty
occurs in models with superposition arrival processes;
see Choudhury, Lucantoni and Whitt (1993a).)

The remarkable quality of exponential approximations
for waiting-time tail probabilities in the GI/GI/s queue is
pointed out with abundant numerical evidence in section
1.9 and Chapter 4 of Tijms (1986) and in Seelen, Tijms
and van Hoorn (1985). Indeed, values of the parameters
7 and « in (1) are given in all the tables there (for queues
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with infinite capacity). There the parameters 7 and « are
defined precisely via the limit

lim eP(W > x) = «.

X%

(3)

We also regard the small-tail asymptotics in (3) as the
primary justification for (1) and (2). Given (3), we regard
n as the asymptotic decay rate and « as the asymproric
constant.

There is now a substantial literature that establishes
small-tail exponential asymptotics as in (3) for steady-
state queueing distributions. An important early refer-
ence for the GI/GI/1 queue is Smith (1953). Based on
early work on related risk models, the approximation
based on (3) is sometimes called the Cramér-Lundberg
approximation; see p. 131 of Seal (1969), section 12.5 of
Feller (1971), section 12.5 of Asmussen (1987), section 6
of Asmussen (1989), Asmussen and Rolski (1991), and
the references cited there. (Our work also has applica-
tions to risk theory.) For other contributions to small-tail
asymptotics, see section 22 of Borovkov (1976), Neuts
(1981, 1986), Neuts and Takahashi (1981), van Ommeren
(1988, 1989), Elwalid, Mitra and Stern (1991), Asmussen
and Perry (1992), Baiocchi (1992), Elwalid and Mitra
(1993, 1995), Chang (1994), and Glynn and Whitt (1994).
For nonexponential asymptotics with long tails (involv-
ing long-tail service times), see Abate, Choudhury and
Whitt (1994b) and Willekens and Teugels (1992); for non-
exponential asymptotics with subexponential tails (in-
volving strong dependence between interarrival times
and service times), see Jacquet (1992).

In this paper, we do not prove any limits like (3); here
we are concerned with the applied relevance of (3). In
Abate, Choudhury and Whitt (1994a) we contribute to
the exponential asymptotic theory by establishing small-
tail exponential asymptotics for steady-state distributions
in models of the M/G/1 paradigm in Neuts (1989) and the
BMAP/GI/1 queue, with batch Markovian arrival pro-
cess, as in Lucantoni (1991).

Here we consider the standard GI/GI/s queue with
unlimited waiting room, the first-come, first-served ser-
vice discipline and i.i.d. (independent and identically dis-
tributed) service times that are independent of a renewal
arrival process. (We also discuss models with nonre-
newal arrival processes.) For the GI/GI/s model, let Ulp
be a generic interarrival time with mean 1/sp and let " be
a generic service time with mean 1, each with general
distributions. Thus, the traffic intensity is p. To have
proper steady-state distributions, we assume that p < 1.
To have (3), the key condition is for there to be a root x
of the transform equation

Ee*Ee ~*Ul = 1. (4)
When a root to (4) exists, it turns out to be unique and,
under additional regularity conditions (e.g., see Theorem
2), (3) holds with the root being the asymptotic decay

rate n. From (4), it follows that n = 7(s) depends on the
numbers of servers in a very simple way, in particular,

(5)

For s > 1, this conclusion has been established for
phase-type service distributions by Takahashi (1981) and
Neuts and Takahashi (1981); the case of general service-
time distributions remains a conjecture. Equations simi-
lar to (4) hold when the independence among the
interarrival times or among the service times is relaxed;
e.g., see Neuts (1986), Asmussen (1989), Whitt (1993),
Abate, Choudhury, Whitt (1994a), and Glynn and Whitt
(1994). In many cases, expressions for the asymptotic
constant « in (3) can be found, but « is substantially
more complicated than 7.

In this paper, we primarily do two things: First, we
demonstrate through numerical examples that the expo-
nential approximation (1) provided by the small-tail
asymptotics in (3) is indeed remarkably good. Second,
we show how to obtain convenient approximations for
the asymptotic parameters n and « in (3) that still yield
good exponential approximations.

For our numerical examples, we draw on GI/Gl/s
tables, such as Seelen, Tijms and van Hoorn, and we
compute exact tail probabilities for the BMAP/GI/1
queue, exploiting algorithms in Choudhury, Lucantoni and
Whitt (1995¢), which are based on Lucantoni (1991)
and Abate and Whitt (1992). We compute the exact as-
ymptotic parameters 7 and « from transforms by apply-
ing the algorithm in Choudhury and Lucantoni (1995).

Our approximations for the asymptotic parameters 7
and « are based on two simple ideas. First, to approxi-
mate n we do a Taylor series expansion of the exponen-
tials in (4) about x = 0, which (after some analysis)
produces an asymptotic expansion for 5 in powers of 1 —
p, where p is the traffic intensity. Extensions of this idea
to more general models are contained in Choudhury and
Whitt (1994) and Abate and Whitt (1994). It is known that
the second term in the heavy-traffic expansion for the
steady-state mean EW in the GI/GI/1 model is relatively
complicated; see Siegmund (1979), section 12.6 of
Asmussen (1987), Whitt (1989), and Knessl (1990). It is
significant that the asymptotic decay rate 7 in the GI/
Gl/s model admits a full asymptotic expansion directly
in terms of the lower moments.

Having found the asymptotic decay rate 7 or a suitable
approximation, we obtain an approximation for the as-
ymptotic constant « by acting as if (1) were true
and considering the mean. This yields the simple
approximation

a=nEW. (6)

We also provide theoretical support for (6) by proving
that

n{s) =sn(l).

a=nEW+0(1~p)?
in the GI/GI/1 queue.

(7)

as p - 1
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Here is how the rest of this paper is organized. In
Section 1 we review two familiar theoretical reference
points supporting (1), namely, the GI/M/s queue and
heavy-traffic limit theorems. These support (1), but our
intent is to go beyond what they suggest. In Section 2 we
discuss numerical examples, which dramatically support
the power of the small-tail asymptotics in (3) and the
approximation for n and a.

In Section 3 we review the small-tail asymptotics for
the steady-state waiting time in the GI/GI/1 queue. We
try to explain why the waiting-time distribution should
have an exponential tail and why its asymptotic decay
rate takes the form it does. In Section 3 we also show
that the small-tail asymptotics in (3) does not always
hold, even in an M/GI/1 queue in which the service time
has a finite moment generating function in a neighbor-
hood of the origin. Moreover, when the pure-exponential
asymptotics does not prevail, the actual asymptotics pro-
duces a remarkably poor approximation.

In Section 4 we develop a heavy-traffic expansion for
the asymptotic decay rate 7 in (3) in the GI/GI/s model
as a function of 1 — p. In Section 5 we develop simple
two-moment approximations for the asymptotic decay
rate, by using two-moment approximations for third mo-
ments, as in Whitt (1983) and Tijms (1986).

In Section 6 we develop the approximation (6) for the
asymptotic constant « in (3). Our starting point is an
exact analysis for the M/G/1 queue, where we find that
(7) holds. We then show that (7) is also valid for all
GI/GI/1 queues.

In Section 7 we show that for any GI/GI/s queue there
exists a threshold traffic intensity p* below which the
asymptotics (3) is not valid, and above which it is. (Usu-
ally p* = 0, but not always.) In Section 8 we establish
several stochastic comparisons that provide additional
insight, and are useful for considering the sojourn time
and workload in Part il. In Section 9 we discuss the
relative errors associated with approximations (1) and
(2). Finally, in Section 10 we draw some conclusions.

1. TWO THEORETICAL REFERENCE POINTS

In this section we briefly review two familiar reference
points supporting (1). First, (1) is well known to be exact
for the GI/M/s queue with @« = P(W > 0) and =
s(1 - o), where ais the unique root in the interval (0, 1)
of

Ee—s(l—u')U/p =0, (8)

and U/p is a generic interarrival time with mean 1/sp, so
that the traffic intensity is p; e.g., see Chapter 6 of
Kleinrock (1975). Note that this is consistent with (5).
Fors = 1, P(W > 0) = o; fors > 1, P(W > 0) can be
calculated numerically. As a consequence of this GI/M/s
result, we anticipate that the exponential approximations
in (1) and (2) will perform well when a G/GI/s model is
suitably close to a GI/M/s model.
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Second, the exponential approximation is also strongly
supported by heavy-traffic limit theorems. For the
G/Gl/s model, which has i.i.d. service times indepen-
dent of a general stationary arrival process, this involves
a family of models indexed by p where p — 1. We as-
sume that we are given an arrival counting process 4 =
{A(¢):t = 0} with arrival rate 1; i.e., A(£)/t —> 1 ast —
%. We then introduce model p by scaling time in the
arrival process by ps; i.e., in model p the service times
are unchanged and the arrival counting process is defined
by A ,(t) = A(pst). (We scale by ps to make the arrival
rate ps; since EV = 1, the overall service rate is s.)

To obtain a valid heavy-traffic limit theorem as p — 1,
we assume that v, = E[V?] < =, where V' is a generic
service time, so that the service times obey a functional
central limit theorem (FCLT), and that the unscaled ar-
rival process satisfies an FCLT, i.e.,

(nc3) "[A(nt) — ne]=>B(t) as n— >, (9)

where = denotes convergence in distribution (in the
function space D[0, »)) and B = {B(¢):¢t = 0} is stan-
dard (drift 0 and variance 1) Brownian motion. In the
case of a renewal arrival process, the parameter c? in (9)
is just the interarrival-time squared coefficient of varia-
tion (SCV, variance divided by the square of the mean),
which we denote by c¢2, but more generally, ¢ also re-
flects the dependence among the interarrival times. In
great generality, ¢ is the asymptotic variance constant,
1.e.,

Var A(t)

=lim (10)

hNNY

C

As a consequence, as p — 1, the waiting times suitably
normalized converge to reflected Brownian motion with
a negative drift, which has an exponential steady-state
distribution. We thus obtain (1) as a heavy-traffic approx-
imation with a = 1 and

_ 2 -p)

, 11
¢l +cl (1

where ¢ is the SCV of the service-time distribution; see
Whitt (1989, 1992) and the references cited there.
Fleming (1992) has observed that (1) with (11), some-
times with a heuristic refinement, performs remarkably
well for percentiles in a class of M/G/1 queues. It turns
out that (11) is the first term in the asymptotic expansion
of 1 in powers of (1 — p); see Section 4 and Choudhury
and Whitt.

Both the GI/M/s and heavy-traffic reference points are
consistent with the idea that (1) might be good for all x.
Then the obvious parameters are

a=PW=>0) and n~!=E[W|W>0]. (12)

A nice treatment of full exponential approximations was
carried out by Fredericks (1982). Simple approximations
based on (1), (11), and (12) are also discussed in Whitt
(1992). However, the approximations based on (1), (11),

Copyright © 2001 All Rights Reserved
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and (12} are relatively crude. By exploiting (3) and fur-
ther asymptotic analysis, we obtain significant improve-
ments over (1), (11), and (12).

2. NUMERICAL G/GIl1 EXAMPLES

In this section, we present examples to show that the
simple exponential approximation provided by the small-
tail asymptotics in (3) is often a remarkably good approx-
imation, even when the service-time distribution is not
phase-type and not nearly exponential, and even when
the interarrival times are not independent. Moreover, the
approximation based on (3) is significantly better than
cruder ““pure-exponential”> approximations based on (11)
or (12). Finally, simple approximations of the parameters
a and 7 in (3), (6), and Section 4 perform well when the
traffic intensity is not too small.

As indicated in the Introduction, we obtain the exact
values of the tail probabilities from BMAP/GI/1 algo-
rithms in Choudhury, Lucantoni and Whitt (1995c),
which are based on Lucantoni and Abate and Whitt
(1992). (An alternative numerical approach to GI/G/1
is in Abate, Choudhury and Whitt (1993).) We calcu-
lated the asymptotic parameters « and 7 in (3) using
the moment-based numerical inversion algorithm of
Choudhury and Lucantoni. In each case, we also tested
for the exponential form (1) by looking for linearity in log
P(W > x). We estimated « and 7 at each x by perform-
ing a linear regression based on the numerical values of
log P(W > x) at points x = j§ for 0 < j < k, for
appropriate k and 6 (e.g., kK = 5 and & = 2). Convergence
of the estimated parameters &(x) and #(x) as x in-
creases demonstrates (3).

The examples to be discussed are only a few of the
examples considered. It is significant that the exact val-
ues are readily available with our algorithm. On the stan-
dard shared-computer-system environment in the AT&T
Bell Laboratories Mathematical Sciences Research Cen-
ter, the algorithm (when the number of MAP phases is 2)
required less than 5 seconds to treat 9 values of the traffic
intensity and 40 values of x. (For example, with k = 5,
this means 9 X 40 x 5 = 7,200 Laplace transform inver-
sions.) The algorithm also can calculate related steady-
state distributions, such as sojourn-time and workload
distributions as well as waiting-time distributions. (We
discuss these performance measures in Part I1.)

Example 1. We first consider an H5/T, /1 queue, which
has a hyperexponential interarrival-time distribution and
a gamma service-time distribution with mean 1 and shape
parameter 1/2. In particular, the I',, service-time distri-
bution has density

12, —a/2

glx)y=QQmx) e M, x 20,

and first three moments 1.0, 3.0, and 15.0. The Laplace
transform of this density is

x

g(s) = f e Mg(x)dx = 1/V1 + 2s,
0

which is not rational. (Thus, the distribution is not phase-
type.)

In Section 9.2 of Abate and Whitt (1992) it was shown
that the small-tail asymptotic approximation (3) performs
remarkably well for the M/T /1 queue. Now we
consider what happens with a non-Poisson arrival pro-
cess. The H% arrival process used here is a renewal
process with interarrival times having a two-phase hyper-
exponential distribution with balanced means; i.e., the
interarrival-time density is of the form

flxy=pi e +psrre ™ x 20,

where p\/A, = p./A;. As for the SCV, we used ¢2 =
2.0. In particular, when the arrival rate (traffic intensity)
pis 0.7, the overall mean is 10/7, and the parameters are
pi = 0.7885, A, = 1.1039, and A, = 0.2958.

Table I compares the approximation for the tail proba-
bilities based on (3) with exact values for the H,/T,,»/1
queue when p = 0.7. Also included in the table are the
linear-regression estimates &(x) and #(x) for each x,
based on parameters § = 2 and k = 2. The rapid con-
vergence of &(x) and #(x) as x increases is evident.
The quality of the approximation for P(W > x) is also
excellent for x suitably large. Indeed, there clearly is ex-
cellent accuracy by the 80th percentile, and there is spec-
tacular accuracy when P(W > x) = 107%.

Table Il compares approximations for the asymptotic
parameters a and 1/9 in (3). The approximations in (6)
and Theorem 4 are denoted a,,, and 1/7,,,. The approxi-
mations for 1/ based on (11) and (12) are 1/794; and
E[W|W > 0], respectively. The new approximations do
dramatically better. For example, at p = 0.7 the percent
relative errors of 1/7,,, /947, and E(W|W > 0] as
approximations of 1/7 are, respectively, 0.3%, 4.2%, and

Table 1
A Comparison of the Exponential Approximation for
the Waiting-Time Tail Probabilities With Exact
Values: The H%/T,»/1 Queue With p = 0.7 and

c; = ¢! = 2.0 in Example 1

Time Exact  Approximation &{x) 1/9(x)

1.5 0.5855 0.5803 0.747 6.15

3.0 0.4607 0.4591 0.740 6.32

4.5 0.3638 0.3632 0.737 6.37

6.0 0.2876 0.2874 0.7354 6.390

7.5 0.22745 0.22738 0.7346 6.398

9.0 0.17993 0.17990 0.7341 6.401

10.5 0.14234 0.14233 0.73380 6.4024
12.0  0.11261 0.11261 0.73365 6.4031
13.5 0.08909 0.08909 0.73356 6.4035
15.0  0.07049 0.07049 0.73348 6.40386
18.0 0.04412 0.04412 0.733450 6.403925
36.0 0.00265 0.00265 0.73346147  6.40389005
48.0  0.000408 0.000408 0.73346152  6.40388999
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Table 11
A Comparison of Approximations for the Parameters « and 1/7 in (3) With Estimated
Exact Values for the H5/T';,»/1 Queue in Example 1

p a Ayp P(W > 0) I/n 1/n,, VUngyr E[WiW > 0]
0.9 0.9156 0.9112 0.925 19.743 19.751 20.00 19.55
0.8 0.8269 0.8200 0.846 9.739 9.755 10.00 9.54
0.7 0.7335 0.7262 0.762 6.404 6.425 6.67 6.20
0.6 0.6346 0.6300 0.673 4.738 4.762 5.00 4.52
0.5 0.5299 0.531 0.578 3.744 3.76 4.00 3.51
0.4 0.4193 0.429 0.477 3.089 3.10 3.33 2.84
0.3 0.3033 0.326 0.368 2.633 2.63 2.86 2.36
0.2 0.1844 0.220 0.253 2.312 2.27 2.50 1.99

3.1%. Typically, there is an order of magnitude improve-
ment in going from 1/ny7 or E[W|W > 0] 10 1/7,,.

Example 2. It can be argued that the I';,, service-time
density in Example 1 is reasonably close to an exponen-
tial service-time density. To make a more challenging
comparison, we change the service-time distribution to a
two-point distribution (and keep the H% arrival process
unchanged). In particular, this D, service-time distribu-
tion assumes the values 11.0 and 0.8 with the probabili-
ties 0.019607843 and 0.980392157, respectively. This
service-time distribution was chosen to be not phase-
type and not nearly exponential. This distribution has
mean 1.0 and SCV c} = 2.0, just as for I}, in Example
1. This service-time distribution is an extremal distribu-
tion among all probability distributions on the interval
{0, 11] with first two moments 1 and 3; see p. 120 of
Whitt (1984a); e.g., it has the largest third moment
among all these distributions.

Table III, the analog of Table I for Example 1, com-
pares approximations for the tail probabilities based on
(3) with exact values for the H5/D,/1 queue when p =
0.7. Since the arrival process and traffic intensity are the
same as for Example 1, Tables I and III are directly
comparable.

Table III shows that the accuracy of the exponential
approximation is still spectacular for large x and excel-
lent for moderately large x, but it does not become good
quite as quickly as in Table I. Moreover, we see that the
estimated parameters &(x) and 1/%(x) converge much
more slowly as x increases for the H%/D,/1 queue than
they do for the H5/T';,5/1 queue in Table 1.

Paralleling Table II, Table IV compares approxima-
tions for the asymptotic parameters « and 1/ in (3). The
quality of all the approximations is not as good in Table
IV as it is in Table II, but the conclusions drawn about
Example 1 are still valid for this D, service-time distribu-
tion. Indeed, the advantage of the new approximations
a,, and 1/7,, over the others is even stronger here.
Since the first two moments of the D, service-time distri-
bution are the same as for the I'),, service-time distribu-
tion in Example 1, the approximation 1/747 is the same
in Tables 1T and IV. These tables show that a refinement

of the heavy-traffic approximation (11)
significantly.

can help

Example 3. To show that the quality of the exponential
approximations does not depend critically on having a
renewal arrival process, we change the arrival process in
Example 2 to a nonrenewal Markov modulated Poisson
process (MMPP). We let the MMPP have a two-state
underlying continuous-time Markov chain. We let the
mean holding time be 10.0 in each state. In one state
the arrival rate is 1.1 and in the other it is 0.3. Thus, the
overall arrival rate is p = 0.7, but the instantaneous
arrival rate exceeds the long-run service rate 1 in one of
the two states. To give a quick idea about this arrival
process, the steady-state means EW in these M/D,/1,
H5/D,/1 and MMPP,/D,/1 models with p = 0.7 are, re-
spectively, 3.50, 4.58, and 5.83.

The quality of the exponential approximation for this
MMPP,/D,/1 queue is essentially the same as for

Table 111
A Comparison of the Exponential Approximation for
the Waiting Time Probabilities With Exact Values
for The H5/D,/1 Queue With p = 0.7 and ¢ =
c2 = 2.0 in Example 2

Time Exact Approximation a(x) 1/9(x)
3.0 0.3582 0.4267 0.517 11.99
6.0 0.2740 0.2836 0.448 12.19
9.0 0.2045 0.1885 0.614 8.18

12.0 0.1223 0.1253 1.053 5.59
15.0 0.08034 0.0833 0.993 8.27
18.0 0.05625 0.05534 0.536 7.98

21.0 0.03731 0.03678 0.834 6.76

24.0 0.02410 0.02445 0.649 7.29

27.0 0.01623 0.01625 0.548 7.67

30.0 0.01088 0.01080 0.666 7.29

36.0 0.004758 0.004771 0.604 7.43

42.0 0.002110 0.002108 0.670 7.291

48.0 0.0009313 0.0009311 0.627 7.370

51.0 0.0006193 0.0006193 0.647 7.336

54.0 0.0004113 0.0004113 0.648 7.334

57.0 0.0002733 0.0002733 0.637 7.352

60.0 0.0001818 0.0001817 0.641 7.346
o 0.6420 7.344
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Table IV
A Comparison of Approximations for the Parameters a and 1/7 in (3) With Estimated
Exact Values for the H5/D,/1 Queue in Example 2

P 24 aap P(W > 0) 1/77 1/nap I/TIHT E[W|W > 0]
0.9 0.8651 0.868 0.936 20.722 20.74 20.00 19.14
0.8 0.7450 0.743 0.863 10.709 10.77 10.00 9.16
0.7 0.6420 0.625 0.782 7.344 7.46 6.67 5.85
0.6 0.5548 0.514 0.692 5.627 5.84 5.00 4.23
0.5 0.4805 0.410 0.593 4.558 4.87 4.00 3.28
0.4 0.4158 0.314 0.487 3.801 4.14 333 2.66

H5/D,/1 queue in Example 2. Table V displays the exact
values and the approximations. The approximation
would be more than adequate for most engineering appli-
cations for the 90th percentile and beyond.

This paper does not consider approximations for n for
nonrenewal arrival processes. (This is done in
Choudhury and Whitt.) Thus, we present no analog of
Tables II and IV for the MMPP,/D,/1 model. The per-
formance of the approximations 1/7,,, and E[W|W > 0]
are about the same as for the H5/D,/1 model in Table
Iv.

Example 4. We now consider a GI/GI/s queue with s >
1. From the tables in Seelen, Tijms and van Hoorn, it is
easy to verify that, first, the exponential approximation
based on (3) is remarkably accurate for GI/GI/s queues
for suitably large x and, second, that the approximations
Naps Xp and 1,,EW,, are good as well. The approxima-
tions for percentiles based on (2) are especially good; see
Seelen and Tijms (1985) for related work. As s increases,
a(s) often decreases, so that the approximation for « in
the percentile approximation (2) often becomes more im-
portant as s increases.

Table V
A Comparison of the Exponential Approximation for
the Waiting-Time Tail Probabilities With Exact
Values for the MMPP,/D,/1 Queue With p = 0.7
in Example 3 (the asymptotic parameters are
7! = 8.9608 and o = 0.6574)

Percent

t Exact Approximation Error

3.0 0.4206 0.4704 11.9

6.0 0.3239 0.3365 3.9

9.0 0.2554 0.2408 -5.7
12.0 0.1737 0.1722 -0.9
15.0 0.1195 0.1232 3.1
18.0 0.08836 0.08819 -0.2
21.0 0.06414 0.06310 -1.8
24.0 0.04491 0.04515 0.5
27.0 0.03209 0.03230 0.7
30.0 0.02320 0.02311 -0.4
36.0 0.01180 0.01183 0.2
42.0 0.006065 0.006057 -0.1
48.0 0.003098 0.003101 0.1
54.0 0.001588 0.001587 0.0
60.0 0.000812 0.000813 0.0

To illustrate, Table VI displays approximations and
exact values from Seelen, Tijms and van Hoorn of the
90th percentile of the conditional waiting-time distribu-
tion given that a customer is delayed, i.e.,

wao = inf{x:P(W > x)/P(W > 0) < 0.10},

for several values of s in the H5/E,/s model with ¢2 =
2.0 and p = 0.8. Since we focus on the conditional wait-
ing time, as Seelen, Tijms and van Hoorn do, a(s) actu-
ally increases with s. To highlight the regularity, we
display s(weq(s)) in each case in Table VI; s(w,(s)) is a
nearly constant function of s.

For these examples, n(s)/s = 0.17983, consistent
with (5). The one-term and two-term heavy-traffic ap-
proximations for n(s)/s are ny(s)/s = 0.1600 and
Nap(s)/s = 0.17493. The relative errors for 1,7 and 7,
are 11% and 2.7%. Approximation (2) using n and «
agrees with the exact values in the precision given in the
tables. (The relative error are less than 1%.) Using
the approximation « = 1 produces swqy(s) = 12.8 for all
s, which is not too bad. Approximation (2) with «,, and
T4p has less than the 2.7% relative error of 7,, because
the errors in «,, and 7,, cancel each other to some
extent.

In this case, we have used the exact conditional means
E(W|W > 0). Thus, it appears that our ability to esti-
mate overall percentiles primarily depends on our ability
to estimate the mean and the probability of delay, which
have been studied, e.g., see Whitt (1992, 1993).

3. SMALL-TAIL ASYMPTOTICS FOR THE WAITING
TIME IN THE G/G/l1 QUEUE

In this section, we review the small-tail asymptotics for
the steady-state waiting time W in the GI/GI/1 queue.
We assume that p < 1, so that the model is stable. For
the waiting-time distribution to have the exponential tail
in (3), it is necessary for the service-time moment gener-
ating function Ee”” to be finite for some positive y (see
Proposition 1 and Theorem 8), and we assume that this is
the case.

The first question is: Why should we expect that the
waiting-time distribution tail should be approximately ex-
ponential? A partial explanation comes directly from
the ladder variable representation of the random walk
{S,:n = 0} with S, = 0 and steps distributed as

copyront e 200 T A Rights Reserved



ABATE, CHOUDHURY AND WHITT / 891

Table VI
A Comparison of Approximations for s Times the 90th Percentile of the Conditional Waiting Time Given
That a Customer is Delayed With Exact Values in the H5/E,/s Queue With ¢; = 2.0 and p = 0.8 for
Several Values of s in Example 4 (the asymptotic decay rates are n(s) = 0.17983 s; the exact values
are from Seelen, Tijms and van Hoorn)

Asymptotic Constant for
Delayed Customers

s X 90th Percentile of Waiting Time (Delayed Customers)

Servers @ nEW Approximation (2)
K P(W > 0) P(W > 0) Exact Approximation (2) with 7, and a,,
1 1.019 1.018 12.9 12.91 13.2
2 1.029 1.026 13.0 12.96 13.3
4 1.042 1.037 13.0 13.04 13.3
10 1.075 1.057 13.2 13.21 13.4
20 1.119 1.079 13.4 13.43 13.6
40 1.197 1.106 13.8 13.80 13.7

X =V - p—-1— U, as discussed in Chapter 12 of
Feller (1971) and Chapter 7 of Asmussen (1987). Let 7,
and S, be generic (strict) ascending ladder epochs and
heights respectively, i.e.,

7, =inf{n 2 1:§5, > 0}

with S_, defined on {r, < «}. Let {Z;:n = 0} be an
i.i.d. sequence distributed as the conditional ladder
height given that the ladder epoch is finite, i.e.,

P(Z; <sx)=P(S,; sx|r, <o) (13)

Let M = max{S,:n = 0}. Then the fundamental ladder
variable representation for W is

d N
wW=M= Z{, (14)
k=1

where ¢ denotes equality in distribution, M = 0 when
N 0, N is independent of {Z;/:k = 1} and N is
geometrically distributed, i.e., P(N = k) = (1 = p)p*,
k = 0, where p = P(7, < ). (Itis easy to see that (13)
is equivalent to (1.5) on p. 183 of Asmussen 1987.) From
(13), we easily obtain an expression for the mean,
namely,

+

EW = E(N)E(Z*) =%
_P(T+ <®)E[S, |7, < °°]_E[S7+; T, < 0]
- P(r, =) ~ P(ry =)

(15)

The difficulty with (13) and (14) is that in general it is
hard to say much about the distribution of (7., S,.)-
However, (13) strongly supports (3) when N is large,
because a large geometric sum of i.i.d. random variables
is approximately exponentially distributed; see p. 1 of
Feller and p. 132 of Keilson (1979).

Hence, we expect an exponential approximation for W
to be good when p is suitably close to 1. However, in
general p need not be especially close to 1. The small-tail
asymptotics when p is not close to 1 involves large-
deviation concepts. To partially understand the small-tail

asymptotics, suppose that Z + is constant in (13), say z,
then

P(W >x)=P(N > lX/ZJ) =pLx/zJ ~ e*llogp)z_

However, a proper understanding seems to require the
exponential-change-of-measure arguments; see pp. 406
and 411 of Feller and Chapter 12 of Asmussen (1987).

Next, suppose that we believe that the distribution of
W has an asymptotically exponential tail as in (3). The
second question is: What should the asymptotic decay
rate n be? An explanation comes from a direct applica-
tion of the Lindley equation

wwex), (16)

where (x)* = max{x, 0}.
Proposition 1. In the stable GI/GI/1 model, a necessary
condition for (3) to hold for finite positive « and 7 is to
have (4) hold with root 7.

Proof. Apply the Lindley equation (16) to obtain

é(x) = e"*P(W > x)
- f AP 5 x — e
-_dj’(X <u) +e™P(X > x)
- J'xfx(u)dp,(u) +e™P(X > x), (17)
where _

Fe@) = 1_a q(w)e™ P(W >x — u)

with 1, being the indicator function of the set A and
du(u) = e™dP(X < u). Given (3), the left side of (17)
and f.(u) approach a as x — « and f,(u) is uniformly
bounded in x. Hence, by Fatou’s lemma,

LS

«| dnw<pim [ anw <.
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so that u (R) < .

Since [Z, du(u) = Ee™ = 1, E[e™; X 2 x] = 0 as
x — o, but E[e™; X > x] = e™P(X > x), so that
e™P(X > x) — 0 as x — «. Finally, by the bounded
convergence theorem,

< x

f ﬂ(u)du(u)—mf du(u) asx— o,

Hence, u(R) = Ee™ = 1.

Remark 1. Note that (17) is similar to the renewal equa-
tion, but the integral is over (—c, x] instead of [0, x].
When we work with the ladder height and use the expo-
nential change of measure, (17) is indeed replaced with
the renewal equation. From (4), we obtain pEe"?” = 1
t00.

Here is the basic GI/GI/1 small-tail asymptotic result;
see p. 269 of Asmussen (1987) and p. 123 of Borovkov.
We include an inequality showing that the asymptotic
formula (3) is conservative for all x. Related upper and
lower bounds appear in Ross (1974). However, it is im-
portant to note that the bound (18) below need not hold
for more general models; see Choudhury, Lucantoni and
Whitt (1995a).

Theorem 1. If (4) holds in the stable GI/GI/1 queue,
then

PW>x)<se ™™ forall x. (18)

If, in addition, the distribution of X is nonlattice and
Ee'"" 9% < o for some € > 0 (or just EXe™ < x),
then (3) holds, where

_ plTy =)

. 19
WEZ ) (19)

Since, in general, we do not know much about Z*,
from (19) we see that the asymptotic constant « is not
readily available. Fortunately, the asymptotic decay rate
7 is not difficult to obtain from (4), because the function
$(x) = log Ee** is convex with ¢(0) = 0 and ¢'(0) < 0.
(This guarantees that there is at most one solution.)
Moreover, we typically expect such a root to exist. For
example, it is easy to see that a root always exists when
the service-time distribution has a rational Laplace trans-
form. (The limit (3) in this case is due to Smith.) How-
ever, even with the M/G/1 model, for general service-
time distributions with finite moment generating
functions, (4) need not have a solution, so that (3) need
not be valid.

Borovkov described the asymptotic behavior of
P(W > x) as x — « when (4) does not hoid. By Theo-
rem 12, p. 132, of Borovkov, under considerable gener-
ality in this exceptional case

PW>x)~a'P(V, >x) asx—» (20)

FaVa ¥l

for some constant o', where V., has the service-time,
stationary-excess (or equilibrium residual lifetime) distri-
bution, i.e.,

x

PV, >x)=E]T/f P(V > y) dy. (21)

Note that the service-time, stationary-excess distribution
inherits the asymptotic behavior of the service-time dis-
tribution, i.e., if

PV >x)~¢(x) asx—», (22)

then

(EVIP(Ve >x) ~ . (x) = f Y(y)dy asx—w;
X (23)

see p. 17 of Erdélyi (1956). Hence, if ¢/(x) = ax”e ™ for
some a, p, and 7 then .(x) = (a/n)xPe”™ for the
same a, p, and 7; see (6.5.3) and (6.5.32) of Abramowitz
and Stegun (1972).

Example 5. We now exhibit a service-time distribution
with a finite moment generating function for which (4)
does not always have a solution in the M/G/1 model. The
service-time density is

ala+1)

12
) e*{l!/’z(aw"l)(l _ e—(1+2¢1)1/20(u+1))
2’

g(r) = (

(24)
and its cdf is

t

G(t) = f g(x) dx =2(a + NDW(a + D)t/a)
0

= 2a®(vat/(a + 1)) — 1 — 2ig(¢),

where @ is the cdf of the standard (mean 0, variance 1)

normal distribution. It has first three moments m, = 1,
RCERVE d
= a Ta+1 M
3 a+1)°
m3=3( a ,—( 1)) (25)
(a +1)- a-

and Laplace transform

gs)y=v(a + 1)a + 1+ 2as) — Va(a + 2(a + 1)s).
(26)

This distribution is obtained from transform pair 29.3.36
in Abramowitz and Stegun. From (26), we see that g(—s)
is real and finite (a finite moment generating function) for
all s < s* = a/2(a + 1). Note that s* is the radius of
convergence of the moment generating function g{—s)
and that —s* is the right-most singularity of the Laplace
transform g(s).

In the case of an M/G/1 queue with arrival rate (traffic
intensity) p, (4) becomes

Y H— ~ AL ] <l
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8(=s) 5 1. (27)
Putting s = s* in (27), we obtain the critical value for p
to be

L _1+V1i+2a

4a + 1) (28)

For p = p*, (27) has a root, but for p < p*, (27) has no
root. From (28) we see that p*(a) decreases from 1/2to 0
as a increases. When no root exists to (27), we can apply
Theorem 12, p. 132, of Borovkov to obtain the asymp-
totic behavior. For the M/G/1 special case considered
here, it is perhaps easier to apply Lemma 2 on p. 133 of
Borovkov, noting that there U{x) is the complementary
cdf of V, in (21), p = p and b = 1/p*. (To obtain this
expression for b, note that (27) can be written as
&.(—s) = 1/p, where g,.(s) is the Laplace-Stieltjes trans-
form of V,, so that g.(—s*) = 1/p*.) Consequently,
when p < p*(a),

p(l—p)
(1-(p/p™)*
__pU-p) (a(a + 1))“2
(1= (plp*N*\ 271’

_ (2(11 +1)

a

PW>t)~ PV, >t) ast—x

2
) e‘ut/’Z(zH—l) as f — . (29)

Note that the exponential decay rate in (29) is s*,
which is independent of p. The fact that it is independent
of p suggests that the quality of the approximation might
not be so good. Also note that the asymptotic constant in
(29) explodes as p 1 p*. On the other hand, as p | p*,
the asymptotic constant goes to 0, as can be seen from
(42) and (26). Thus, the asymptotic approximations tend
to be useless for this example in the neighborhood of p*.

To consider a specific case let, a = 0.25. Fora =
0.25, p* = 0.445. In this case, the first three service-
time moments are 1, 6.20, and 93.72. We consider two
arrival rates: p = 0.70 and p = 0.30. When p = 0.70, (4)
and (3) hold; when p = 0.30, (29) applies and we have

P(W>x)~%/,12—oe“”x as x — ®, (30)

Table VII compares the asymptotic approximations in
(30) for p = 0.3 and in (3) with @ = 0.4865 and 7! =
13.1199 for p = 0.7 with exact values computed from
Choudhury, Lucantoni and Whitt (1995). For p = 0.3
the nonexponential asymptotics is revealed through the
steady change in the estimates #7!(x); these estimates
are 3.35, 5.23, 7.57, 8.35, and 8.96 at x = 1, 4, 20, 40,
and 80, respectively. These estimates are gradually head-
ing to the limit 10.0 in (30).

Consistent with previous experience, e.g., Table I1I in
Abate and Whitt (1987) and Section 4 of Abate and Whitt
(1988), we see that the quality of the approximations
based on the exact asymptotics is remarkably poor when
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Table VII
A Comparison of Asymptotic Approximations With
Exact Solutions for Example 5 where for p = 0.7,
the Exponential Asymptotics (3) Applies With a =
0.4865 and n~! = 13.1199, and for p = 0.3, the
Nonexponential Asymptotics (30) Applies

p=03 p=07

Nonexponential

Asymptotics Exponential
t Exact (30) Exact  Asymptotics
1.0 0.2027 39.9 0.5894 0.451
2.0 0.1559 12.9 0.5218 0.418
4.0 0.1024 3.7 0.42468 0.359
8.0 0.05146 0.875 0.29601 0.2644
12.0 0.02808 0.319 0.21157 0.1949
16.0 0.01597 0.1400 0.152903 0.1437
20.0 0.00932 0.0667 0.111183 0.1059
40.0 0.000777 0.00319 0.0234668  0.02307
60.0 0.0000745 0.000235 0.0050598  0.005023
80.0 0.00000777 0.0000206 0.0010975  0.001094

p = 0.30, when the asymptotic form is not a pure expo-
nential. Methods for obtaining much better approxima-
tions for distributions that do not have pure-exponential
asymptotics were developed in Abate and Whitt (1987,
1988).

The poor quality of asymptotic approximation (30) can
be explained, at least in part, because the next term in
the asymptotic expansion is ax e~ """, by virtue of
Heaviside’s theorem, p. 254 of Doetsch (1974), whereas
the next term when (3) holds is typically e~ ™ for f >
1. In Abate and Whitt (1988) we found that even the first
three terms of an asymptotic expansion related to (30)
was not a very good approximation.

When p = 0.7, the quality of the approximations is not
exceptional (e.g., compared with Table I), but it is quite
good. Evidently, the quality of the approximation for
times of interest is much better when the pure exponen-
tial limit (3) is valid than when it is not. The approximate
asymptotic parameters when p = 0.7 are na_pl = 12.72
and a,, = nEW = 0.5687, while the exact asymptotic
parameters computed via Choudhury and Lucantoni are
7' = 13.1199 and a = 0.4865.

Remark 2. The service-time density (24) with the as-
ymptotic behavior of ax™ "¢ ™™ as x — * may seem a
curiosity, but it routinely arises in priority queues; (see
paper in preparation). The waiting times of lower priority
customers are related to ordinary M/G/1 waiting times
with the busy periods of higher priority customers play-
ing the role of the service-time, stationary-excess vari-
able V., and these busy-period distributions often have
the ax ~*%e~™ asymptotic form. As a curiosity, we point
out that the convolution of the service-time distribution
in Example 5, which has transform g(s)z, coincides with
the distribution of the busy period in an M/M/1 queue
with A = 1/8a(a + 1) and o = A + 1/2, see p. 215 of
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Kleinrock. As a partial check, note that £(s)? has mean
2, while the busy period has mean 1/(x — A) = 2.

Remark 3. From (27), we see that for the M/G/1 queue
(4) will fail to have a root for some p if and only if g(s)
has a singularity on the negative real line and g(—s*) <
«, where —s* is the right-most singularity. This can
only occur when the right-most singularity of ¢ is a
branch-point singularity, but it does not happen for
all branch-point singularities. The right-most singularity
—s* of & in Example 1 is a branch-point singularity, but
&(=s*) = =, so that (4) has a root for all p in that case.
(In Example 5, g(—s*) = V1 + 2a.) If the right-most
singularity —s* is a pole (possibly with multiplicity) or an
essential singularity, then g(—s*) = «, so that (4) al-
ways has a root for all p. It is possible for the right-most
singularity of the service-time transform to be an essen-
tial singularity. For example, this occurs with the density

g(t) =2e¢ ¥ D1(2V2r), £ 2 0,

where [, is the modified Bessel function, which has
transform

and tail behavior

e«(|+¢§7)3

Va2
see p. 374, 29.2.14, and 29.3.81 of Abramowitz and
Stegun. The right-most singularity of g is —2. Since
&(—s*) = », as would be the case for any essential singu-
larity, (4) has a root for all p and the right-most singularity
of the associated waiting-time transform in this case is a
simple pole for all p.

St — oo

glt) ~

4. HEAVY-TRAFFIC ASYMPTOTIC EXPANSION
FOR THE DECAY RATE

In this section, we develop a heavy-traffic asymptotic
expansion for the asymptotic decay rate 7 in (3) and (4).
In fact, this idea was already proposed by Smith, p. 461,
but he considers only one term, as on p. 233 of Neuts
(1986) and in Proposition 6.1 of Asmussen (1987). (Inter-
estingly, Smith’s argument does achieve much of the
later heavy-traffic result due to Kingman 1962.) Our
asymptotic expansion is also in the spirit of heavy-traffic
refinements in Siegmund (1979, 1985) and Section 12.6
of Asmussen (1987), but they start with the exact value of
1, which indeed is easy to compute, and develop refine-
ments for the asymptotic constant « as n — 0. Instead,
we focus on 7 itself. Our approximation here is 7,, in
Section 2.

Our asymptotic expansion is in the spirit of asymptotic
expansions for the mean EW, as discussed in Section 2
of Whitt (1989) and Knessl (1990). The first terms agree,
i.e., the limits of (1 — p)EW(p) and (1 — p)/n(p) as p — 1
both coincide with the standard heavy-traffic limit (¢? +

¢;)/2, but the next term in the expansion of EW is known
to be complicated, essentially requiring the solution of a
difficult Wiener—Hopf problem. We will show that the
decay rate is better behaved.

Our result is a representation of n as an asymptotic
expansion in powers of 1 — p. For this purpose, it is
convenient to consider a family of models indexed by the
traffic intensity p. Let V' be a generic service time and
U/p be a generic interarrival time in the model with traf-
fic intensity p. Thus, U and V' are both fixed random
variables with mean 1. Let u; and v, denote the kth
moment of U and V, respectively. Thus, u, = v, = 1,
¢c2=u,— landc?=v, — 1. (Note that the SCVs of U
and U/p are the same. Note that u; is the third moment
of U, not U/p.)

We assume that the transforms Ee*" and Ee *Y'* ad-
mit expansions in powers of s, i.e.,

~

s, stvy

Eer:1+sv1+T‘+ g

SZ(CS2 + 1) 53\/3 .

=145+ 3 5 +0(s% ass—0
(31)

and
Ee*SU/p=1_£+S2(C3+ 1)_s3u3

p 2p2 6pz

+ O(s% ass—0. (32)

The expansion (31) holds provided that Ee*" < = for s >
0, while the expansion (32) holds provided that relevant
moments of U are finite. (By Taylor’s theorem, u; < %
yields o(s?), while u, < = yields O(s*).) We will only
keep terms up to the third moment, but it is easy to go
further; see Choudhury and Whitt. (Note that our con-
vention of letting the interarrival time be U/p prevents
1 — p terms from being hidden in the interarrival-time
moments.)

Theorem 2. If Ee*Y < x for s > 0 and Ee ™Y admits
the four-term expansion in (32), then

20 =)
—C‘%+C3 (1-(1-p)n

+0((1-p)?) asp—1, (33)
where

*

_ vy = 3ci(ei +2)) = (Qus = 3ci(ci +2)
e+ ) )

Proof. Using (31) and (32), we can express (4) as
5 (Cg + l) 7’]3\/3

(1 +7+7 5+ 5

s (ca+ 1 }
. 1_l+n-“_7_)_"“3+0(n4) =1
2p° 6p°

+0(n4))

or
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L+ (1 1)+ 2(cf+l 1+c3+1)
K p K 2 P 2p°

6 2p 2p°

41 2+1
+,n3(v3_(cs )+(C )__61’4_}?)_'_0(774):1
p’

or, after subtracting 1 from both sides and dividing by
n/p,

p(ci+1) (ca+ 1))
17( > -1+ 3

Jpva (ci+ 1) (ci+ 1) uz)
o ( 6§ 2 20 6

+0(n’)=1-p. (35)

Expanding the p terms on the left in (35) in powers of
(1 — p), we get

¢l + cf) (cg —cf)
n( > + 7 7 (1 —p)

vy cl-ci us
+n- ?-F 5 —F+O(l—p)

+0(nY)=1-p. (36)

Substituting the entire left side of (36) in for (1 — p)
wherever it appears, we get

2 2 2 2 2 2
c5+c;) Z(V*_;_Iii (c;—c;)( c: +c;))
”( I A i S Sy A S

+0(nY)=1-p. (37)

Note that (37) is in the form to use the inverse function
theorem as with reversion of power series to express
n as a partial power series in (1 — p); see 3.6.25 of
Abramowitz and Stegun. (This argument was already
used by Halfin (1985) to analyze GI/M/1.) This amounts

to matching the leading coefficients in n = 27,
b (1 = p)* and (1 — p) = ¥7_, a,n", whichyields b, =
Va,, b, = —a-/aj, and by = (2a3 — a,a;)/aj. We

apply this with the first two terms in (37) to obtain (33)
and (34).

We call n* in (34) the (asymptotic decay-rate) asymp-
totic correction factor. We summarize some of its
properties next. These translate immediately into corre-
sponding properties for n. Let n*(U, V') denote n* in
(34) as a function of the interarrival time U and service
time V (actually their distributions).

Proposition 2. The asymptotic correction constant n* in
(34) has the following properties:

a. n*(V, U) = =n"(U, V);

b. n*(U, V) = 0 when U = V or just when u, = v, and
Uz = Vi,

c. n* is linearly increasing in v, and linearly decreasing
in us (with the first two moments held fixed).
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Remark 4. Property b is consistent with considerable
experience that simple approximations for GI/GI/1 sys-
tems tend to perform better when the interarrival and
service times have similar distributions. This seems to be
related to the necessary and sufficient conditions for
quasireversibility of a Brownian node in Harrison and
Williams (1992).

5. TWO-MOMENT APPROXIMATIONS FOR THE
DECAY RATE

In many cases the third moments of interarrival times
and service times are not readily available. Thus, as in
Section 5.1 of Whitt (1983) and Chapter 4 of Tijms (1986),
it is natural to use two-moment approximations for third
moments. First, if the distribution is gamma (I', which
includes Erlang (E,) with ¢? = 1/k as a special case, but
covers all values of ¢?), then

vy=Q2ci+ )i+ 1) (38)

(assuming that v, = 1). Second, if the distribution is
hyperexponential with balanced means (H%), then

vy = 3cc? + 1). (39)

(In the terminology of (16) of Whitt (1984b), a gamma
distribution with ¢# > 1 corresponds approximately to
(has the same first three moments as) an H, distribution
with weighting factor r = 0.2 instead of 0.5, which
means a higher third moment (r = (p,/A)/((p\/A)) +

(ps/A5)) for Ay < A,). In fact, the corresponding r de-
pends on ci., but this rough correspondence applies for a
broad range.)

Table VIII displays the values of the asymptotic cor-
rection factor n* in (34) in the four cases in which the
interarrival and service times are I' and H5. When both
distributions are the same type, the sign of n* is the

Table VIII
Two-Moment Approximations for the GI/GI/1
Decay-Rate Asymptotic Correction Factor n* in
(34) Based on Gamma (I') and Hyperexponential
(H%) Distributions

Interarrival-Time Service-Time

Distribution Distribution n*
i i
F r Ci— (.';"
3(c; +¢5)
Y 3ei—ci-2
r HZ(C:B 1) B )
3eq + )
h o i+ 2 =3¢,
HYc; 2 1) r —_—
3(cg +¢3)
f 2 2 _“_—(.5 <
Hic? 21 H5(c? =z 1 2 2
Yl = ) HEREY 7 cd)
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signofc; —cZand 0 < n* < 1. Whene} < 1and 0 <
n* <1,
n*(I', Hy) <0< n*(H,, I). (40)

To illustrate, the asymptotic expansion for 7 in
Theorem 2 with the two-moment approximation to the
asymptotic correction factor n* in (34), as given in Table
I1, provides a quick qualitative explanation of the numer-
ical results in Tables 4.1 and 4.8 on pages 274 and 305 of
Tijms. When we add our approximation for the asymp-
totic constant « in (3), our approximations provide good
quantitative estimates as well.

6. APPROXIMATIONS FOR THE ASYMPTOTIC
CONSTANT

In this section, we investigate approximations for the
asymptotic constant « in (3). We assume that the condi-
tions of Theorem 1 hold. We start with the exact solution
for the M/G/1 queue. For any nonnegative random vari-
able X, let X(s) = Ee™**. Then for the M/G/1 queue

x

We(s) = f P(W > t)e ™" dt = 1= Ws)
[{]

s
_p =Ves) _p (s=1+Ws)
S (1=pVu(s)) s (s—p+pWs))’
so that —» in (3) is the negative root of s — p + pl/(s) =

0 closest to the origin. Then we can apply the final-value
theorem to get o; i.e.,

-1-p)
L+ pV'(=n)
€.g., see p. 346 of Kleinrock or p. 254 of Doetsch. To
provide a quick check on (42), note that F(s) = (1 +
s)~" for the M/M/1 queue; then V'(—n) = —(1 — 7)~2
and n = 1 — p, so that a = p, as it should.

We now provide a case for approximating the asymp-
totic constant a by nEW; this is a,, in Section 2. If
P(W > x) = ae™™ for all x (as in GI/M/1), then this is
exact. We first show that in the M/G/1 queue the error
is O((1 = p)?) as p — 1. At the same time, we develop a
more refined explicit approximation for « for M/GI/1 in
terms of the first four moments of the service-time
distribution.

a= lim (s + )W) = (42)
S—=>—n

Theorem 3. In the M/G/1 queue, if Ee*" < = for some
s > 0, then

X = i— = p)e- 1)+ (1= p)

1+28(6-1) - D+ 01 —p)* asp—1

(43)
and
@ _ 1
P+ =p)E-D+(1=p)°2(L ~EH+0((1-p)?)’
(44)
where

2% and =22 45)
= an — N

3v3 33 (
so that (7) holds.
Proof. Given that Ee*" < =, (31) is valid and
. vis? s’ .
V'(s)=—1+vis — 5 + 6 + O(s®) ass—0,

(46)

The rest of the proof is just like that for Theorem 2,
exploiting (42).

We write nEW/p and «/p in (43) and (44) because we
are thinking of n~! = E(W|W > 0) and a = P(W > 0)
as in (12). Note that nEW/p is also consistent with (33).
Note that for the M/M/1 queue & = { = 1 in (45), so that
both the one-term and two-term approximations for
nEW and « are exact.

We now show that (7) also holds in GI/GI/1 queues.
We apply Siegmund’s (1979) corrected heavy-traffic ap-
proximations, as given in Asmussen (1987).

Theorem 4. In the GI/GI/1 queue, if the conditions of
Theorem 1, (31) and (32) hold, then (7) holds.

Proof. By Theorem 7.7 of Asmussen (1987),
nEW=1-8n+0(n% asn—0,

and thus as p — 1 for the designated constant 8. By
Theorem 7.2 of Asmussen (1987), for the same g,

a=e " +o(n?)
=1-7B+0(n%)

and thus as p — 1.

asnn—0

as n — 0,

Based on Theorems 3 and 4, we suggest nEW as an
approximation for « more generally. This, in turn, leads
to the associated approximation 17,,EW,,, where 7,,
is the approximation developed for 7 in (33) and EW,, is
an approximation for EW. Many approximations for EW
already have been developed; e.g., see Tijms (1986) and
Whitt (1993). As a specific new simple approximation for
the GI/G1/1 queue (with service time having mean 1), we
propose

- o [citel 22 )
EWap 1= ) ( 2 (1 p)g(cus Css HB) > (47)
where
s s 2u3/3 + (¢ + el -1 ,
gled, e uy) =22 (c G ) ci.  (48)

2Acq+cd)
The heuristic correction (48) is based on an exact analy-
sis of the K,/G1/1 queue, p. 329 of Cohen (1982). For the
GI/M/1 case, (48) agrees with the heavy-traffic expan-
sion for the mean in the GI/M/1 queue, as worked out by
Halfin; see (38) of Whitt (1989). For M/G/1, g = 0 as
well.

£ = Lok S00nd Nl ™ y D ]
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In the spirit of Section 5, we give simplified two-
moment approximations for (48). For HY interarrival-
time distributions, we have
glcd, ¢, by =glca, €3, 3cglci + 1)

(ca— (1 -cd)

49
20ci+cd) (49)
For gamma interarrival-time distributions, we have
glc2, i, y)=glci, ¢, (ci + D(2ci + 1))
1=l
S0 el e ). (50)

These approximations in (48)-(50) have reasonably good
accuracy; a few comparisons with exact values are given
in Table IX. They are especially appealing for providing
insight into the impact of the parameters (c.g., in contrast
to the more complicated approximations by Kraemer and
Langenbach-Belz used in Whitt 1983.)

We conclude this section by briefly discussing a rather
complicated approximation for the asymptotic constant «
given in (4.110) on p. 304 of Tijms. This approximation,
which we denote by «,, can be approximately repre-
sented as

a,z(zﬁzf%riq)(%)n(kﬂGlﬂ)

H
zp(1—[§—1—ccz+ 2}(1—;;)). (51)

a s

For the H5/H5/1 queue, (52) coincides with 7,,EW,,
when either ¢2 = 1 or ¢Z = 1. However, in general ¢,
seems not to be as good as a,, = nEW or n,,EW,,. To

illustrate, Table X compares the approximations for the
E./D/1 queue.

Table IX
A Comparison of the Approximation for the Mean
EW in (47) With Exact Values in GI/GI/1 Queues

c2=3 ¢c2=05¢:=20¢, =15
p Method c2=10 ¢ .

0.5 Exact 1.08 1.35 1.45 1.51

Approximate  1.33 1.40 1.50 1.52

0.8 Exact  5.61 5.83 5.97 6.01

Approximate  5.73 5.84 6.00 6.03
Table X

A Comparison of Approximations for the Asymptotic
Constant « in the E,/D/1 Queue

[43
P Exact a,, = nEW NapEWap o,
0.9 0.89 0.89 0.87 0.84
0.7 0.69 0.70 0.63 0.56
0.5 0.51 0.45 0.41 0.33
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7. A THRESHOLD FOR SMALL-TAIL
ASYMPTOTICS

We have seen in Example 5 that the small-tail asymptot-
ics in (3) need not always be valid, even in an M/GI/1
queue where the service-time distribution has a finite mo-
ment generating function in a neighborhood of the origin.
However, in Example 5 there exists a threshold traffic
intensity p* (as a function of the parameter a) such that
(3) is valid for all p > p*, and not for p < p*. In Remark
3 we noted that this threshold phenomenon holds for all
M/GI/1 queues. We now show that this threshold phe-
nomenon holds in all GI/GI/s queues. Similar results will
hold for more general models based on analogs of (4).
Recall that, by Proposition 1 and Theorem 1, (4) is nec-
essary and sufficient for (3) for the GI/GI/1 queue when
X has a nonlattice distribution.

Theorem 5. In the G1/Gl/s queue, if Ee*" < » for some
s > 0, then there exists p* with 0 < p* < 1 such that,
forall p > p* there exists a root n(p) to (4) and, for all
p < p* there does not exist a root n{p) to (4). For p* >
0, there exists a root n(p™).

Proof. For simplicity, let there be one server. Since
EV = EU = 1 and Ee*V < =, y(x) = Ee*V ™V exists
for 0 < x< x*. Hence we can apply Taylor’s theorem to
conclude that

SJEWV -U)?
Eex(V*U): 1 + x- ( 2 )

so that Ee*V" %) > 1 for all suitably small x. Choose a
strictly positive x* such that Ee*” < » and Ee*"' "% >
1 for all x with 0 < x < x™. Since Ee*""~Y/?) is strictly
increasing in p, approaching 0 as p — 0, there is a p and
an n(p) such that n(p) = x and Ee*'"'~Y"?) = 1 for any x
with 0 < x < x*. Letting n{p) be defined by
Een® =Vl = 1 we see that 7(p) is strictly decreasing
in p. Finally, suppose that Ee"?"~¥#) = 1 for p, <
p < p>. Then there must exist n(p) with n(p,) > n(p) >
n(p>) such that Ee"” =" = 1 because Ee*V ") is

continuous in x where it is finite and Ee?*WV='»
EententV=Up) — 1 = Eentp)(V=Ulp) o penlpn(V'=Ulp)

+o0(x?) asx—0,

8. STOCHASTIC COMPARISONS

In this section, we show that the waiting-time asymptotic
decay rate n decreases when the interarrival times and
service times become more variable. The notion of
“more variable’” is made precise by convex stochastic
order; see Stoyan (1983).

We say that one random element X is less variable in
the convex stochastic order than another random ele-
ment X, and we write X| € X,, if Ef(X,) < Ef(X,) for
all convex real-valued functions f for which the expecta-
tions are well defined. We apply this notion for random
elements of R and R*, i.e., when X, is a real-valued
random variable and when X, is a sequence of real-
valued random variables. We use the R™ setting when the
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interarrival times or service times are not independent. It
is important to note that EX, = EX, if X, <_ X, for
real-valued random variables (because f(x) = x and
f(x) = —x are both convex).

Our first result is for the GI/G1/s queue. To appreciate
this positive result for the decay rate, note that the
steady-state waiting-time distributions are notr necessar-
ily stochastically ordered under these conditions, i.e., we
do not necessarily have F{(x) < F4(x) for all x where
F{ =1 - F, is the complementary cdf of the steady-
state waiting time in model /; see Whitt (1984c).

Theorem 6. Let U, and V, be generic interarrival-time
and service-time random variables in two GI/Gl/s
queueing models indexed by i. Suppose that there are
positive constants v, such that Ee™ " Ee~"Y"? = 1 for
eachi. If U, s . Uyand V| <. V,, then n, 2 1,.

Proof. The convex stochastic order implies that Ee*""

Ee*" and Ee ™Y < Ee ™Y for all x, so that ¢,(x)
Ee*lVis) =Wl g EexIVs=Wanl = ¢,(x) for all x
Since log ¢, is convex with ¢,(0) = 1 and ¢/(0) < 0,
$1(m2) S da(nz) = 1 = (M) < ¢dy(my) and 1, = 7,.

We now obtain a corresponding result for general
G/G/1 models without the independence assumptions.

Theorem 7. Let {(U,,, V},): —% < n < «»} be a station-
ary sequence of interarrival times and service times in
two G/G/1 queueing models indexed by i. If there exist
positive constants a, and 7, such that

lim e "*Ff(x) = a, (52)
X—x

for each i and {(U,, V}):i—-= < n < «} <,
{(US, Vi)i—» < n <}, thenm, 2 myand if n, = n,,
then a; < a,.

Proof. It is well known that we can express the steady-
state waiting time W, of model i as

k
W, =sup{0, O(V’.j—U’_,):kZO}, (53)

I
which implies that W is a convex function of {(U],
V)i = < j < «o}; e.g., see Chapter 1 of Borovkov.
Hence, by the assumed convex stochastic order,
Ee™™ < Ee*" for all x. By (52), Ee*"" < w for all x <
7, and Ee*"" = « for all x > 7,. Hence n, = n,. By the
final-value theorem for Laplace transforms, e.g., p. 346

of Kleinrock or p. 254 of Doetsch,

. . 1 — Ee*W:

a, =lim e™Ffx)= lim (x+1n,) g,
xX—x xX——-7 X

so that, if 9, = 7,, then a; £ a,.

Corollary. Among G/G/1 models satisfying the conditions
of Theorem 7, the decay rate m of the steady-state wailt-
ing time is maximized (a) among stationary interarrival-
time sequences with given stationary service-time

sequence, and (b) among stationary service-time se-
quences with given stationary interarrival-time sequence
by the deterministic sequence, i.e.,

MpiGn 2 Noien and - Mgipn 2 Meen -

We now apply the Corollary to Theorem 7 to show
that the decay rate of the steady-state waiting time in any
G/GI/1 model is strictly less than the decay rate of the
service-time distribution. Since the service-time distribu-
tion need not have a pure exponential tail, we first need
to define its decay rate. For an arbitrary random variable
X, let its decay rate be defined as

7(X) = sup{y < »:Ee"¥ < o}, (54)

If PV < y) = 1 for some y, then n(V) = «, but in
many cases (e.g., when the service-time distribution is
phase-type) n(V) < oo,

Theorem 8. Consider a stable G/GI/1 model satisfying
(52) for all p > p* for some p* with steady-state waiting-
time decay rate m(p). Assume that the associated
D/G1/1 model with the same service times and arrival
rate also satisfies (52) for all p > p* with a steady-state
waiting-time decay rate np(p). Then n(p) < np(p) <
(V) for all p > p*, where 7(V) is the service-time
decay rate in (54).

Proof. By Theorem 7, n(p) < np(p) for all p = p*. By
Proposition 1, we must have Ee"WVEe "4 = 1
where d is the constant interarrival time in the D/GI/1
model, which implies that Ee™*" = 9™ < x and
(V) = mp(p) for all p > p*. Since np(p) is strictly
decreasing in p, R(V) > np(p) for all p > p*.

9. RELATIVE ERRORS

We now examine the relative errors in the exponential
approximations (1) and (2). We first explain why the rel-
ative error of the exponential approximation for high per-
centiles in (2) is usually substantially less than the
relative error for the exponential approximation for
the tail probability itself in (1). Suppose that the relative
error of the exponential approximation in (1) is € for
some suitably small € and highp, e.g.,p = 0.90 orp =
0.99. This means that

PW>w,) —ae™ ™
P(W>wp)

= €.

RE(P(W > w,)) =

Consequently, we have
PW>w,)=ae ™" + P(W>w,)e
ae ™r(l —¢e)7!

ae " (1 +e+ 0(e?)) ase—0.

il

il

and
log P(W>w,)=log a — nw, + log(l + ¢)
=log (1 - p).
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Hence, we obtain the following approximations for the
relative error of the percentile w,:

w, — log(a/(1 = p))/n _ log(1 + €)

Wy nw,

RE(w))

€ €
nw, logla/(l —p))

(35)

From (55), note that log(a/(1 — p)) = =, asp T 1, so
that RE(w,)/RE(P(W > w,)) — 0 as p 1T 1. For a
rough indication of the advantage in typical cases, note
that log(a/(1 — p)) = 2.3k when @ = land I — p =
1074,

We now turn to the relative error for the tail probabil-

ities themselves. In typical cases,
P(W>x)~ae"’"‘+de""" as x — », (56)

where # > 7; see Theorem 11 (C,) on p. 129 of
Borovkov. Then
PW>w,) - ae M

P(W>w,)

RE(P(W > w))) =

qe e
ae MM+ de T
1
L+ (&fa)etmmmr

-] (57)

a « ((Rm) =1 "
b+ (a)(l - p)

From (57), we see how RE(P(W > w,)) depends on the
three parameters (&/a), (a/(1 = p)) and (7/n) = 1.

U

10. CONCLUSIONS

In this paper, we have developed simple exponential ap-
proximations for the steady-state waiting distribution of
the form (1) and (2) based on the small-tail asymptotics in
(3) and approximations for the asymptotic parameters 7
and «. We are most impressed by the empirical evidence
that the exponential form (1) is appropriate in regions of
practical interest (the 80th or 90th percentile and be-
yond). Even though steady-state waiting-time distribu-
tions often have relatively complicated mathematical
expressions, these distributions usually appear to be es-
sentially exponential in the region of primary interest
(not too near the origin). For example, as a consequence,
we would start looking at data on a steady-state queueing
distribution by plotting the logarithm and looking for
linearity.

The simple exponential approximations obviously are
helpful when we cannot calculate the exact values, but
we are also interested in approximations when the model
can be solved numerically (which is more and more the
case). First, it often occurs that the G/G1/s model is only
partially specified; e.g., a distribution may only be partly
specified by its first two moments. Then we want approx-
imations based on this partial information. For example,
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the parametric-decomposition approximation method for
non-Markovian open queueing networks in Whitt (1983)
and the references cited therein treats the queues as in-
dependent GI/GI/s queues with interarrival-time distri-
butions partially specified by the first two moments.
Since the arrival process to each queue typically is not
actually a renewal process, there typically is no full
interarrival-time distribution to discover. Similar reason-
ing applies with BMAP arrival processes partially char-
acterized by a few parameters.

Even if the model is fully specified and the exact solu-
tion is available, an approximation can provide a conve-
nient simple representation of the exact result. In
subsequent applications, it is often much more conve-
nient to work with the exponential form (1) based on two
parameters than an algorithm for computing P(W > x)
for any x. However, in some cases we may need some-
thing better than the simple exponential approximation
considered here, but still much simpler than the full solu-
tion; for this purpose, refined approximations such as
the three-exponential approximations in Choudhury,
Lucantoni and Whitt (1995) are useful.

As in Whitt (1992), we contend that the most impor-
tant reason for simple approximations is to develop
insight. Armed with simple approximations, we are
better able to think about how the system behaves. We
illustrated this feature in Section 5 when we compare
waiting-time tail probabilities in G,/G,/1 and G./G,/1
models (e.g., M/E,/1 versus E/M/1) with a common
traffic intensity p. The approximation formulas quickly
reveal the dominant effect, as is borne out in numerical
examples.

The simple exponential approximation (1) is even
important when it is not a good approximation, be-
cause it provides a useful frame of reference to help us
interpret numerical results. Anticipating that (1) usu-
ally holds, we are prepared to notice and appreciate
departures from (1). We illustrated this feature in
Section 3 when we presented an M/GI/1 example
(where the service-time distribution sas a finite mo-
ment generating function) for which (3) is not valid, so
(1) is not good. Moreover, in this case the exact as-
ymptotic formula is a remarkably poor approximation
until very large times. Two other cases in which (1) is
not good are the waiting times of low-priority custom-
ers in M/GI/1 priority queues with sufficiently small
traffic intensities, and the waiting times in queues hav-
ing an arrival process consisting of a superposition of a
large number of independent non-Poisson processes,
see Choudhury, Lucantoni and Whitt (1995). These dif-
ficult problems require different methods.
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