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This paper extends the fundamental queueing relations L = AW and H = AG that relate customer averages (the customer-
average waiting time W or cost G) to associated time averages (the time-average quecue length L or cost H) given an
arrival process with arrival rate A. These relations can be established by focusing on a two-dimensional cumulative input
process that has the two one-dimensional cumulative input processes of interest as marginals. Relations between the
marginal averages are established for cumulative input processes that may not be representable as integrals or sums. The
general framework includes the continuous versions of L = AW and H = AG due to T. Rolski and S. Stidham as well as
the standard version of H = AG, and can be extended to higher dimensions. Inequalities are also established when some
of the conditions for equality do not hold. Moreover, central limit theorem versions of H = AG are established, extending

our recent results for L = AW,

he fundamental queueing formula L = AW

(Little’s law) states that the time-average queue
length (number in the system) L is equal to the product
of the arrival rate A and the customer-average waiting
time (time spent in the system) W. This formula is
valid in great generality, as was shown by Little (1961),
Stidham (1974) and others. Stidham (1972), Brumelle
(1971, 1972), Maxwell (1970), and Heyman and
Stidham (1980) showed that similar relations
exist between more general customer-averages and
time-averages, which is represented by the formula
H = \G. Rolski and Stidham (1983) also established
continuous analogs of I. = A\W and H = \G for input-
output models with general, nondecreasing cumula-
tive input, such as occur in reservoirs and other storage
systems.

The purpose of this paper is to present a more
general version of H = AG, which includes the contin-
uous version of Rolski and Stidham as well as the
standard version of Heyman and Stidham as special
cases. We are motivated to consider further abstrac-
tion by examples not covered by any of the previous
versions and by the desire to better understand what
is essential. To see what we have in mind, consider
the following example: Salmon migrate up river,
jumping through a salmon ladder. The river narrows,
creating a queue. The amount of food consumed by
each fish while in the salmon ladder is modeled as a
stochastic process with nondecreasing sample paths.

(This single fish consumption process may be quite
complicated, depending upon the current position and
past consumption of all fish.) We wish to relate the
average amount of food consumed per fish in the
ladder among the first # fish (throughout all time) to
the average amount of food consumed per time in the
ladder by time ¢ (by all fish). For further motivation,
see Sections 1.4-1.7.

The analysis of L = AW and H = AG leads to the
consideration of two-dimensional cumulative input
processes (on the positive quadrant of the plane). In
all previous versions of L = AW and H = AG, the
cumulative processes considered involve integrals of
nonnegative functions. A key idea here is to consider
general, nondecreasing cumulative processes, which
need not be absolutely continuous with respect to
Lebesgue or counting measures (expressible as an
integral or a sum). This new representation is sym-
metric in the arguments, showing that applications
need not be limited to time and a customer index.
Essentially, there is just a two-dimensional cumulative
input process which, loosely speaking, has its region
of primary increase along some ray. We develop a
version of H = AG in this genecral framework in Section
2. It leads to an easily proved statement, with condi-
tions that in turn are verified easily in the previous
settings.

Even for the standard version of L = AW, we obtain
some useful new results. All previous versions show
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Extensions of the Queueing Relations L = \W and H=\G [ 635

that the existence of limits for A and W imply the
existence of a limit for L. We show how to go the
other way (from X and L to W), with appropriate
conditions. This reverse implication is also established
in Theorem 2 of Glynn and Whitt (1986), but the
proof here is different and adds additional insight. We
also establish inequalities in situations where equality
does not hold.

We follow Stidham (1974, 1982); Heyman and
Stidham; Rolski and Stidham; and Glynn and Whitt
(1986) by exploiting sample path methods. Our analy-
sis in the first four sections is deterministic, so that in
the usual stochastic model context, the functions here
correspond to sample paths of stochastic processes,
and the results hold with probability one; e.g., see
p. 988 of Heyman and Stidham.

In the usual stochastic settings, the limits for the
averages considered here correspond to strong laws of
large numbers. In Glynn and Whitt (1986), we estab-
lished corresponding relations among other classical
limit theorems for I = AW, such as central limit
theorems, weak laws of large numbers and laws of
the iterated logarithm. The central limit theorems
are particularly useful for statistical estimation of
queueing parameters; see Glynn and Whitt (1989).
Similar results hold for H = AG, as will be shown here
in Section §.

The rest of this paper is organized as follows. We
introduce the general framework and show how it
incorporates interesting special cases in Section 1. We
establish the main theorem in Section 2. We treat the
special case in which one variable is discrete and
introduce new conditions that are verified more read-
ily in applications in Section 3; i.e., we show that these
new conditions imply the conditions in Section 2. In
Section 4, we treat several special cases of Section 3,
including the standard versions of L = AW in Stidham
(1974) and H = AG in Heyman and Stidham. In
Section 4, we also treat the continuous analog covering
the recent results of Rolski and Stidham. Finally, in
Section 5 we present central limit theorem versions of
H = \G, which extend Theorems 3 and 4 of Glynn
and Whitt (1986).

1. A GENERAL FRAMEWORK FOR H = \G

We begin with a cumulative input function F(s, 1),
which is defined to be a real-valued function on
[0, ) X [0, ) that is nondecreasing in both s and ¢,
and has finite limits £(s, ) as £ — oo and F(o, ) as
s — o, Typically, F(s, ) is a cumulative distribution
function associated with a positive measure on

[0, ) X [0, ®), ie., F(s, t) is the measure of the
rectangle [0, s] X [0, ], so that

F(sa, o) — F(so, 1) — F(s1, &) + F(s,, 1) = 0

forall 0 < s, < s5-and 0 < {, < ¢,, but we do not
assume that F has this property. For example, in
the classical L = AW setting we let F (s, ¢) represent the
total time spent in the system in the time interval
[0, £] by the first [s] arriving customers, where [s] is
the greatest integer less than or equal to s; see (5) and
(7). In applications, F(s, t) is one sample path of a
bivariate cumulative input stochastic process associ-
ated with a random measure.

Let G(s) and H(¢) represent the associated marginal
averages, defined by

G(s) = s 'F(s, ®) and H()=1"F(o, ). (1)

Our object is to relate the limit of G(s) as s — « to
the limit of H(t) as 1 — o. However, we cannot do so
without further assumptions. Loosely speaking, the
essential idea is that the cumulative input function
F (s, t) should have its primary region of increase about
a line s = Az in the positive quadrant where A > 0. A
simple example illustrating this imprecise notion is a
cumulative input function F(s, ¢) satisfying F(s, o) =
F(s, 1) for t = A ~'s + x for some fixed positive x and
all positive s, and F(w, 1) = F(s, t) for s = xt + Ax for
this same x and all positive 7. (Think of a positive
measure on [0, ®) X [0, «) with support on the set
{(s, 1): Mt — x) < s = Mt + x)}.) For this example,
it is easy to see that G(s) — G as s — o if and only if
H(t) — H as t — o, in which case H = \G, for
example

G(s) = sT'F(s, ®) = s7'F(s, A7's + x)

A

sTF(s + 2Ax, X's + x)

ST F(o, A 's + x)
="'+ xsT D H(O\ s + x)

and similarly in the other direction.
To treat more interesting examples, we assume that
G(s) and H(1) are related approximately by

_SH(T'(s))

G(S,
G(s) ~ o 1G(S:(1)

and H() = 5.0)

(2)
with 7,(s) being a nonnegative, nondecreasing, right-
continuous real-valued function on [0, «) such that
T:(s) < oo for all s and T,(s) — o as s — o0, and S, (¢)
being the right-continuous inverse of T'(s), defined
by

S =infls = 0: T\(s)>1t}, t=0. 3)
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The functions 7',(s) and S,(¢) in (2) and (3) are time-
change functions relating the growth of F(s, 1) in the
two variables s and 7. When F(s, ) is one sample path
of a cumulative input stochastic process, 7\(s) and
S\(7) are single sample paths of associated random
time-change stochastic processes. The idea is that
s7'T(s) — A™", H(t) — H and G(s) — G, where
H = XG. Our goal is to show that some of these limits
imply others and, when they hold, we indeed have the
relation H = AG. In Section 2, we give more precise
expressions for (2) (see (14) and (15) there) and prove
a theorem. We consider some examples next.

1.1. One Discrete Variable

In the usual setting, we start with a sequence of
nonnegative, nondecreasing real-valued functions
{IF@):t=0]:k=1,2,...}on [0, ®») and a non-
decreasing sequence of numbers {7,: k& = 0} with
To = 0and 7, < o for all kK and 7, — . We are
interested in the limiting behavior of

G(n) =n""' 2 Fi(®) and

H()=1t" i F(0). (4)

We fit this into the general framework above by letting

[
Fs, /)= Y Fu(t) and T.(s)=T., s=0 (5)
A=1

where [s] is the greatest integer less than or equal to
s. The inverse process S,(f) defined in (3) is thus
N(t) + 1, where

Nt)y=maxltkz=z 0. T, <1}, t=0. (6)

1.2. L=)\W

For the standard version of L = AW in Stidham (1974)
and Section 2 of Glynn and Whitt (1986), let T, be
the arrival epoch and D, the departure epoch of the
nth customer for # = 1, so that the waiting time (time
spent in the system) is W, = D, — T,. (T, = 0 without
there being a Oth customer.) We assume that 7, < D,,,
0=T7T,<sT,<T,,  <owforall wand T, — o as
n — . To obtain a special case of Section 1.1, set

F/\(l) = J(: I[/,\J)A](s) ds, 1= 0 (7)

where 7 ,(¢) is the indicator function of set A, defined
by I,(t)=1ift € A and I,(t) = 0 otherwise

Figure 1 shows a natural picture associated with
L = X\W. The customer number appears on the hori-
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Figure 1. Cumulative processes associated with Q(r)
and W,.

zontal axis and time appears on the vertical axis. A
unit density f(s, ¢) is defined over a subset of the
positiveorthantbyassigningthe value 1 toeachrectangle
[k — 1, k] x [T,, D,] for kK = 1. This represents
customer k being in the system from 7, until D;. The
cumulative process F (s, t) is the integral of this density
over [0, s] X [0, ¢]. Also depicted in Figure 1 are the
two marginal cumulative processes, the sum of the
first six waiting times, Y.{_, W), and the integral of
the queue length process (number in the system) from
01to £, [ Q(s) ds. From this picture, it is easy to see
that the two marginal cumulative processes count
essentially the same thing for large s and ¢, so that we
should be able to relate the marginal averages.

1.3. H= )G

To obtain the version of H = AG in Heyman and
Stidham, let f,(¢) be a cost rate associated with the
kth customer at time f. Assume that f,(¢) is nonne-
gative and integrable. This becomes a special case of
Section 1.1 by letting

F.@ = f fi(syds, t=0. %)

Then G(n) = n~' ¥j-, Fi(») is the average cost
associated with the first » customers and H(¢) =
7' ¥, F(¢) is the average cost incurred over the
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interval [0, 7]. As a special case, we might have cost
rates in the L = AW setting of Section 1.2. We might
start with the (integrable) cost rate c¢,(¢) associated
with the kth customer 7 time units after his arrival,
when he is in the system. Paralleling (7), we have

L) = clt = Tl pot), t=0. 9)

1.4. Nonintegral Formulation: Lump Costs Plus
Cost Rate

In the setting of Section 1.3, suppose that a lump cost
C. is incurred at the instant (if it occurs) that the
waiting time of the kth customer exceeds x. (For
x = 0, this represents a lump cost per customer upon
arrival.) If

Fi( = f fits) ds

+ C/\I[\ w)(m\)I[IA+\ oc](l)a [ = 0 (10)

where 1,(¢) is the indicator function of A as before,
then G, = n™' X7_| Fi(=) is the average cost for the
first n customers and H(t) = ™' 7. Fi(@t) is the
average cost incurred in the interval [0, ¢]. This exam-
ple is not covered by any of the previous versions of
H = A\G because F;(¢) in (10) as a function of ¢ is not
absolutely continuous with respect to the Lebesgue
measure, i.e., (10) is not of the form (8).

Remark 1. We should not overemphasize this point
because we can transform (10) into the integral form
(8). To see this, recall that if B is a cdf (cumulative
distribution function) and U is a random variable
uniformly distributed on [0, 1], then B~'(U) has
cdf B where B7'(s) = inf{u = 0: B(u) > s} as in (3).
Hence, if B is any nondecreasing right-continuous
function with B(0) = 0 and fis integrable with respect
to B, then

B(1)

JI;” f(s) dB(s) = S(B7\(s)) ds

[l

by a change of variables. However, the integrand is
quite different when we make this transformation,
and this can significantly complicate subsequent
analysis.

1.5. Other Nonintegral Formulations: General
Cost Processes

In the spirit of (9), there might be a general cumulative
cost function C,(¢) associated with the kth customer

¢t time units after arrival at 7, when the customer
is in the system. In the original stochastic setting,
{[C(8): t = 0]: k= 1} might be a sequence (indexed
by k) of independent and identically distributed sto-
chastic processes with nondecreasing sample paths.
(Of course, we do not require these stochastic assump-
tions.) This is fit into the setting of Section 1.1 by
setting

E@)=C(@ — T, na0), 1=0. (1

Example 1. Customers enter a store at time {7} and
leave at times {D,}. The cumulative amount pur-
chased by customer k is modeled by a stochastic
process {C,(1): t = 0} where ¢ represents the time after
entering the store. The amount purchased by the kth
customer by time ¢ is then F,(¢) in (11). (D, and
{C.(1): t = 0} might be highly dependent.) The average
amount purchased per customer throughout all time
by the first n customers 1s G(n); the average amount
purchased per time by all customers up to time f is
H(1).

Example 2. Shipments of a perishable commodity
(e.g., blood) enter a storage facility at times {7.}.
The total amount lost from shipment £ by ¢ time
units after arrival is modeled as a stochastic process
{C.(t): t = 0}. The amount lost from shipment & by
time ¢ is then F,(¢) in (11), where D, represents a time
after all of shipment k perishes. The average amount
eventually lost per shipment among the first » ship-
ments is G(x); the average amount lost per time in all
shipments by time ¢ is H(t).

1.6. Continuous Analogs

A continuous analog of Section 1.1 is obtained by
starting with a continuous family of nonnegative,
nondecreasing real-valued functions {[F.(z): t = O]
u = 0} and a nondecreasing right-continuous function
{7°(s): s = 0} with T',(s) < e for all sand 7',(s) — »
as s — o. We are interested in the limiting behavior
of

G(s) = s f F, () du

and (12)

H(i)y=1t"' f F.(t) du.

O
For (12) to be well defined we assume that F,(7) is
integrable in u for each z. We fit this in the general
framework by letting F(s, 1) = [o F(t) dufor s = 0
and 7 = 0. We obtain the special cases considered by
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Rolski and Stidham when F,(¢) is an integral

F,@) = J“‘ f(u, v) dv (13)

where f(u, v) is a nonnegative integrable function on
[0, ) X [0, ).

1.7. Stochastic Integrals

Let {S,(¢): t = 0} be a stochastic process with nonde-
creasing sample paths; let {B(s, ¢): s= 0,120} bea
stochastic process with sample paths that are nonde-
creasing in ¢ for each s; and let F(s, ¢) be the stochastic
integral

F(s,t) = f B(u, t — u)S(du)

which we assume is well defined.

Example 3. Water contaminated with radioactive ele-
ments pours into a river. Let S, (¢) represent the total
amount of water that pours into the river by time ¢,
and let B(s, t — 5)S,(ds) represent the amount of
radioactivity emitted by time ¢ by water that arrives
in the interval [s, s + ds). Then F(s, ) is the stochastic
integral, F(s, o) is the total radioactivity that will be
emitted by water that arrives by time s, and F(o, ) =
F(1, ) is the total radioactivity emitted by time ¢.

To further develop the example, suppose that
B(s, t — 5) = c(s)b(t — s) where b(t) — b()as t — .
(We probably cannot assume that B(s, t — §) =
a(l — e 7} because, typically, there will be many
different radioactive elements in the water, each with
different decay rates.) If we let S\(du) = c(u)S\(du),
then F(s, 1) = [y b(t — u)S\(du), F(s, ©) = b()S,(s)
and F(w, 1) = [5 bt — w)S,(du). If s7'S\'s) — A as
s — o, then G(s) = s 'F(s, ©) — Ab(®) as § — o,
The results in this paper could be applied to establish
convergence of H(t) =t 'F(, t).

1.8. Multivariate Extensions

The general framework can be generalized to more
than two dimensions. Here is the idea: Consider the
nondecreasing function F(¢,, ..., t;) defined on
[0, )*, the k-fold product of [0, =) with itself. Let
F@) = F(@t, ..., ;) with ¢, = o for all j # i
Under appropriate conditions, the limit G, of G,(¢)) =
t7'F(t) as t, — oo for one i determines the limit for
all i and G, = («,/a,)G,. The idea is that F(¢,, ..., t,)
has its primary region of increase along some ray. For
example, the domain could be made five-dimensional
by adding three spatial variables. (Imagine a queue
inside a spaceship heading toward outer space in a

straight line at constant velocity, and ask for the
average number in queue per distance along a partic-
ular spatial coordinate, over all customers, all time
and all values of the other spatial coordinates.) The
symmetry in our general framework makes this exten-
sion apparent. It is not difficult to extend Sections 2
and 5 to this setting.

2. THE MAIN THEOREM

Recall the general framework for H = AG introduced
at the beginning of Section 1 with the cumulative
input function F(s, ¢) and the time-change function
T,(s). We actually consider two nonnegative, non-
decreasing, right-continuous real-valued functions on
[0, ), T,(s) and T>(s), with inverses S;(¢) and S:(¢)
defined by (3). We could, of course, have T,(s) =
T>(s) for all s, so that there really is only one function,
but we usually do not. We will make assumptions
equivalent to requiring that 7',(s)/7>(s) —» 1 as 5 —
o, (In the standard L = AW framework, T(s) = T},
where T is the arrival epoch of the kth customer and
we could have T»(s) = T}, + U, where U, is the
maximum waiting time among the first k customers;
see (19) and Section 4.1.)

We use the following familiar elementary lemma
relating the limits of the averages (the strong laws of
large numbers in the stochastic setting) for T'(s) and
S(t), e.g., see Theorem 2(a) of Glynn and Whitt
(1986).

Lemmal. :7'S;(1) » A\, 0< A<, ast— » if and
onlyif s7'T,(s) > A LO0< A ' <o, a5 85— oo,

We use the following elementary composition prop-
erty. Let /() be the left limit of f(s) as s approaches
t from below.

Lemma 2. Forallt =0, T,(S,(t))y =t = T,(S,()-).

To establish our result, we use two approximation
conditions:

lim s '[F(s, T,(s—)) — F(o, T\(s—))] =0 (14)
and
lim s7'[F(s, ®) — F(s, T2(s))] = 0. (15)

e

We rely heavily on (14) and (15) for our results.
Roughly speaking, together they imply that

G(s) — H(T\(s—)) = o(s) as s> x (16)
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provided that T.(s) = T,(s—) because G(s) = F(s, «)
and H(T,(s—)) = F(oo, T\(s—)).

Our main result gives inequalities for /im infs (lim)
and lim sups (lim) as well as statements closer to the
previous versions of H = AG.

Theorem 1. (a) If s7'T\(s) = A7, 0 < A7 < o, and
(14) holds, then
lim G[S,(1)] < lim A" H(t)

1o

and

Iim G(s) < Iim G[S,(1)] < Tim \"'H(2).
by If s7'To(s) = A, 0 < A" < oo, and (15) holds,

then

lim H(¢) < lim AG[S:()] < lim \G(s)

1ot (s

and

lim H(t) < Tim AG[S:(1)].

[t

(¢) If the conditions of both (a) and (b) hold, then
lim H(t) = lim AG(s) and lim H(t) = lim AG(s).

o [ Sy

(d) Under the conditions of (a), if either H(t) — H
ast— o or G(s) — G as s — o, then
lim H(t) = lim \G(s).

(e) Under the conditions of (b), if either H(t) - H
ast— o or G(s) > G as s — o, then
lim H(z) < lim AG(s).

(f) If the conditions of both (a) and (b) hold, then
H(t)—>» Hast— > ifand only if G(s) - G as s — o,
in which case H = \G.

Proof. We need to provide details for only (a) and (b).
(a) Apply Lemma 1 to get ¢7'S,(1) — A. Since
t=T,[S(t) —] by Lemma 2

H() _ F(S @), Ti(S:(1)-)
Sty ~ Si(t)

+ F(S,(), T\ (S,(1)—) — F(o, T(S1(1)-)
Si(@)

= G(S51(1)

so that under (14)

lim H(s) = lim AG(S,(¢))

1—

and

Iim H(@z) = lim AG(S,(2)).

Since S,[7(s)] = s by Lemma 2
G(S\[Ty(s)D) = G(s)(s/S\ [T:(s)D.

By Lemma 2, s7'S\[7(s)] — 1 as s — . Hence,
lim, ... G(S,(2)) = lim, ... G(s).

(b) Apply Lemma 1 to get ¢ 'S>(t) — A ast — oo,
Since t < T,[S-(¢)] by Lemma 2

tH{t)  F(S:y(1), ») + F(S:(1), £) — F(5:(1), »)

Sa(t) S-(t)

F(S:(1), T=[S5:(2)] — F(5:(2), =)
Sx(1)

< G(S:(0) +

so that by (15)
lim H(t) < lim AG(S-(1))

and

im H(t) < lim AG(S:(2)).

Since S8-(7-(s-)) < s by Lemma 2, G(S-[{7>(s—)]) <
G(s)(s/S-[T-(s—)]). By Lemma 1, s7'S:[T2(s—)] — 1
as s — o, Hence, lim,..... G(S:(f)) < lim, _... G(s).

Remark 2. Parts a and b of Theorem 1 are important
as separate statements because sometimes only one of
(14) and (15) holds; see Example | of Glynn and
Whitt (1986).

Remark 3. The standard versions of / = AG in the
literature establish the limit for H(¢) given the limit
for G'(s). Our Theorem 1 goes both ways. In fact, to a
large extent, the formulation in this section is sym-
metric in the two variables s and . We thus can
replace conditions (14) and (15) with

Lim ¢ 7'[F(S (1), t) — F(Si(t=), ©)] =0

[—oc
and

lim ¢ 7'[F(, t) — F(S-(2), )] = 0
and obtain corresponding results. However, note that
(14) and (15) are not symmetric.

Remark 4. Theorem 1 remains valid with weaker
conditions than (14) and (15). As easily seen from
the proof, it suffices to have, for each ¢ > 0,
functions 7',(s) and 7-(s), such that s'7,(s) — A~',
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0<A'!'<oo, and

lim s~ [F(e, Ty(s=) = F(s, Ti(s-)] < e (147
and
lim s~'[F(s, ©) — F(s, T2(s5))] < e. (15")

Equivalently, we can work with sequences {[7,.(s):
s = 0): n= 1}, eg., (15) is equivalent to a sequence
{T-,(s)} such that

lim Tim s7'[F(s, ) — F(s, T-.(s))] = 0. (157)

N—o v

This extension of (15), but not (14), is used in Section
4.5 to cover conditions III and III’ of Rolski and
Stidham for the continuous versions of L = AW and
H=2\G.

3. RESULTS WITH ONE DISCRETE VARIABLE

In the setting of Section 1.1, we use the following
assumptions.

i n! i F(T,)—>0 asn-— o, (17

A=

(1) There exists a nonnegative finite sequence
{S,: k = 0} such that

% —0 and n' Y [Fi(e)— F(T,+ S)]—0
A=l

"

as n— o, (18)

Remark 5. Condition ii in (18) is a slight generaliza-
tion of the assumption (i and ii) on p. 985 of Heyman
and Stidham.

We define 7T-(s) in terms of 7, + S, by 7>(s) =
Ty + Uy, s = 0, where

U, =max{S;: 1 < k< n}. (19)
Thus S-(¢) = M(t) + 1, where
M@ =maxtk=0: T, + U, <t}, t=0. (20)

The next two theorems show that Theorem 1 applies
here. We simply relate conditions (17) and (18) to (14)
and (15).

Theorem 2. In the setting of Section 1.1, (17) is equiv-
alent to (14).

Proof. Forn<s<n+ 1,

o

n_] 2 F/(T,,)

A=n+1

= n"[ PIEAVHEID) F/\(Tu)}
A=1 h=1

= ([sD7'[F (e, Ti(s=)) — F(s, Tu(s—)]

while, for s = n, since T',(s—) is left-continuous

n7] Z F/\(]-'nfl)

h=n

= n_][/g F(T,-,)— g FA(Ywufl):I

= 57'[F(e, T\(s—)) — F(s, T\(s—))].
Hence, (17) and (14) are equivalent.

We need the following lemma for relating (18) to

(15).

Lemma 3. If S,/T, — 0, then U,/T, — 0 for U,
in (19).

Proof. For arbitrary ¢ > 0, let n(e) be such that
S, /T, < e for n > n(e). Then, for n > n(e)

U,/T, = Uy/T, + max{S,/T,: n(e) < k < nj}
< U,o/T, + max{Si/T;: n(e) < k < n}
< U,/T,+e—>e¢ ashn— o

Since ¢ was arbitrary, the proof is complete.

Theorem 3. In the setting of Section 1.1, (18) implies
(15) with lim,_... s7'T>(s) = lim, .. n~'T, whenever
the latter limit exists.

Proof. Using U, in (15), we haveforan < s<n+1

n! Z:] [Fi(0) — Fi(T,. + Su)]
=n"' 3 [Fu=) = F(T + U]

=n' X [Fu(®) — F(T, + U)]
A=1

= 5 '[F(s, @) — F(s, T-(s))]

with T-(n) = T, + U,. By Lemma 3, U,/T, — 0 as
n—s 0, so that s ' T»(s) has the same limiting behavior
ass—wasn 'T,as n— o,
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The next result is an immediate consequence of
Theorems 1 through 3.

Theorem 4. Consider the setting of Section 1.1 with
one discrete variable.

(a) Suppose that n='T, — X', 0 < A" < o, and
Gn)—Gasn— o,
() 1£(17) holds, then Tim, ... H(t) >
(if) If(18) holds, then lim,_... H(1) =
(iii) If (17) and (18) both hold, then hm,am H@)
= H = G.
(b) Suppose that t'N(t) — A\, 0 < X < oo, and
H(t)—> Hast— oo,
() 11(17) holds, then Tim,._ ... G(n) < \
(i) If(18) holds, then lim,_... G(n) = X
(iti) 11 (17) and (18) both hold, then

lim G(n) = G =A"H.

13—

4. SPECIAL CASES

In this section, we discuss the special cases in Sections
1.2-1.5.

41. L=\W

In the setting of Section 1.2, G(n) = n™' T{_, F(®)
is the customer-average waiting time and H(t) =
t~' Y7, Fi(1) is the time-average queue length (num-
ber in the system). This gives us a special case of
Section 3 with L and W playing the roles of H and G,

respectively.

To establish conditions for L = AW, for (18) let
S, = W,, n= 1. Note that
F(T)=0 forallk=n n
and

F (o) — F(T, + S) =0 forallk (22)

so that (17) always holds and (18) holds if and only if
W,/T, — 0. When n='T,, — A7, 0 < A7 < oo, (18)
reduces to n~' W, —s 0. Just as in Theorem 2 of Glynn
and Whitt (1986), if n™' ¥/ Wy — Was n — o, we
automatically get n~' W, — 0; otherwise it needs to be
assumed; see Example | of Glynn and Whitt (1986).
Here we obtain a new result from Theorem 4b (ii).
We summiarize all implications starting from the lim-
its for the time averages ¢S, () and H(¢) to A and L.
Let Q(¢) be the queue length (number in the system)
at time ¢, defined by Q(t) = Y- Ii1,.0,().

Theorem 5. (a) In the L = MW framework of Section
1.2, if the time-averages t 7' S, (t) and H(t) converge to

Nand L as t — o where 0 < A\ < o, then

hmn'z W, = \"'L.

H—oe

(b) If, in addition, there exists an increasing se-
quence (t.: k = 1} with t, — o such that Q(t,) = 0 for
all k, then

"

llmn‘Z W,=\"L.

NS

©) Ifn~'W, — 0 as n — o« in addition to the other
assumptions of (a), then

"

hmn'ZW,-—}\'L

Proof. Part a follows directly from Theorem 4b (ii).
Part b follows from Corollary 1.1 of Glynn and Whitt
(1986). Given the time-average limit for A and Lemma
1, the assumption in ¢ is just what is needed to have
both (17) and (18), so that we can apply Theorem 4b
(i11).

Remark 6. Theorem 5 is illustrated by Example 1 of
Glynn and Whitt (1986). The conditions of Theorem
5a and b hold, but not c¢. There

fim n™! E W,

t—>

—2>1—11mn'2 W,=x"H

H—sos h=1

as can be shown directly.

4.2. H=)\G

Consider the setting of Section 1.3. Usually, f,(¢) =0
for ¢ & [T, D.]. Then we set S, = W,, as in Section
4.1. Otherwise, conditions (17) and (18) can be applied
directly. For example, they are implied by assump-
tions i and ii on p. 985 of Heyman and Stidham. In
contrast to Theorem | of Heyman and Stidham, we
do not require that G < @ or [§ fi(t) dt < oo

4.3. A Nonintegral Formulation

Consider the new examples in Sections 1.4 and 1.5.
As in Sections 4.1 and 4.2, if f,(t) =0 for ¢t & [T, D]
as in (9), then we can set S, = W,, so that condi-
tions (17) and (18) are satisfied for Fi(r) in (10) if
W,/T, — 0 as n — o, Similarly, (17) and (18) are
satisfied for F,(¢t) in (11) if W,/T, — 0 as n — «,
Otherwise apply conditions (17) and (18) directly.
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4.4 Continuous Analogs

Now consider the setting of Section 1.6. Paralleling
Section 3, we use two assumptions:

G s f F(T\(s))du—0 ass— o (23)

and

(i1) there exists a nondecreasing right-continuous func-
tion 7-(s) such that

T2(s)/T,(s) — 1

and
(24)

Si'f\ [F.(®) = F(T>:(u))] du—0 ass— oo,

The results of Section 3 and the examples in Sec-
tion 4 easily carry over to this setting. In particular,
the analog of Theorem 4 is immediate.

With the additional integral representation (13),
condition (23) holds by the assumption that f(, v) =
0 for v < T'(u). As in Sections 4.1 and 4.2, the second
part of (24) holds by assuming that f(u, v) = O for
v > T>(u), but satisfying (24) can be nontrivial. We
first discuss the standard elementary case and then a
generalization.

In the L = AW setting in Section 2 of Rolski and
Stidham

f(u’ v) = I|I|(n) I,(an(u)](U) (25)

where w(u) is the waiting time at the u-arrival epoch
T,(u), which we assume is right-continuous. Then,
paralleling Section 3, the second, nondecreasing right-
continuous function 7>(s) can be defined by

T.(s)=T,(s)+ sup w(u). (26)
[SEF7ES

The function T7-(s) corresponds to the sequence

{T,, + U,: n =0} in Section 3.

As in Sections 4.1 and 4.2, conditions (23) and (24)
reduce to the requirement that 7-(s)/7;(s) — 1 as
s — oo for T~(u) such that F, () — F,(T>(1)) = 0 for
all u. Instead of the rather complex condition (III)
on p. 212 of Rolski and Stidham, we simply use
lim, .. s7'w(s) = 0. We summarize our results for
the continuous L = AW case in the following theorem.

Theorem 6. In the continuous I. = N\W setting, i.e.,
under (13) and (25), assume that s7'T\(s) — A\ and
s"'w(s) > 0ass— . Thenlim,_.. Gn)=G=W
if and only if lim,_... H(t) = H = L, in which case
L= \W.

Proof. The conditions imply, first, that
57! sUPo< <, W(H) —

and, second, that 7>(s)/7(s) — 1 as s — o with T>(s)
defined by (26). Hence, both conditions (23) and (24)
hold. Then apply the analog of Theorem 4a (iii) and
b (iii).

Remark 7. Unlike the discrete case in Section 4.1, the
convergence 1~ [y w(u) du — was{— o with w< oo
does not imply that ¢~ 'w(t) — 0 as t — o0; see Example
2 of Rolski and Stidham.

Remark 8. Theorem 6 does not cover the rather path-
ological Example 1 of Rolski and Stidham in which
T\ (sy = s and w(s) = nlyzn_yy0m,-11(8), but it is easy to
verify (23) and (24) directly using 75(s) = T1(s) = s,
s 2 0. The condition ¢ 'w(z) — 0 in Theorem 6 seems
more natural than III in Rolski and Stidham. More
generally, note that condition (24), extended as indi-
cated in Remark 4, actually coincides with condition
HI in Rolski and Stidham in the special case of (26).
To see this, observe that

F.(T>(u)))

15(21)
= 1[/,(1/).I,(u)*u(ui](v) dv

= min{w(u), [T-(u) — T, ()]}
< min{w(u), d(u)}

where d(u) = supoe, <, {[T>(v) — T;(v)]*}. It is easy to
see that d(u) is nondecreasing and u~'d(u) — 0 be-
cause T>(u)/T)(u) — 1. As indicated by Rolski and
Stidham, their more general condition III has appeal
because it is satisfied w.p.1 whenever {w(t)). t = 0} is
the sample path of a nonnegative ergodic stationary
stochastic process with finite mean.

5. CENTRAL LIMIT THEOREM VERSIONS
OF H=)\G

Glynn and Whitt (1986) show that in the L = AW
framework, relations exist between other classical
limit theorems for the averages besides the standard
strong laws of large numbers. This is also true for the
more general framework here, as we illustrate with the
central limit theorem (CLT). Our CLT version of
H = A\G is a generalization of Theorem 3 of Glynn
and Whitt (1986). Since the methods are similar, we
will not state analogs of the other theorems there and
we will omit much of the proof here. These extensions
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are important for identifying efficient statistical esti-
mators, as shown in Glynn and Whitt (1989).

We actually establish a relation among functional
central limit theorems (FCLTs). As in Section 3 of
Glynn and Whitt (1986), we consider random ele-
ments of the function space D = D[0, ), the space of
all real-valued right-continuous functions on [0, %)
with left limits, endowed with the usual Skorohod (/)
topology; see Whitt (1980). Let C = C[0, =) be the
subset of continuous functions. Let = denote weak
convergence.

In this section, we abandon the purely deterministic
treatment employed so far. We now regard {F(s, 7):
s = 0, t = 0} as a stochastic process with a two-
dimensional time parameter; e.g., Straf (1972). How-
ever, as in Whitt, and Glynn and Whitt (1986), the
proof here also can be done deterministically by
sample-path methods.

We define the following random elements of D.

G,.(t)=n"""?[G(nt) — gnt]

H, (1) =n"""[H(nt) — hnt]

Ti(t)=n""{T,(nt) — X\ "'nt] (27)
Si(t) =n"""[S,(nt) — Ant]

0:)=0 and e(t)=t, t=0

where A, /1 and g are positive real numbers. We assume
that G,(¢) and H,(¢) are legitimate random elements
of D. Let R} and R; be remainder processes in D,
based on (14) and (15), that is
R,(#)=lim sup n 'R, (ns)

— 0 0=+

Ri(t)=|F(», T)(t=) — Ft, T\(t-) | (28)
Ry(t) = | F(t, ), — F(£, T-(1)) |
fort=0.

Remark 9. The supremum is included in R}, above
to ensure that R/, is an element of D. Otherwise, it
entails no extra conditions, because if X, = X in D
with P(X € C) = 1, then f(X,,) = f(X) by the contin-
uous mapping theorem where f/: D — D is the map-
ping f(x)(t) = sUpy«.,<.+ x(s) for x € D.

Theorem 7. Suppose that h = \g and R, = 0 for i =
1,2 Then (G, T,, T))= (G, T, T) withP(TEC) =
t and only if (H,, S), S}) = (H, S, S) with
P(S € C) = 1, in which case

(Gl's Tlln 'r;:,, H,,’ S]l” Sr:l)

= (G, T, T,H,S,S)in D° (29)

where
S(1) = —AT(\) = AYT(2)
H(t) = G(\) — KT(OV) (30)

2 NAG() - HT()), 12 0.

Proof. The idea is to apply the continuous mapping
theorem and related arguments, as for Theorem 3 of
Glynn and Whitt (1986). Paralleling Lemma 1 here,
T, = T with (T € C) if and only if S;, = S with
P(S € C), in which case (T}, S;) = (T, S); where S
and T are related as in (30); see Theorem 7.3 plus
the corollary to Lemma 7.6 of Whitt. Let ¥, =
() = n~'S,(nt), t = 0. Suppose that (G, T, T;)
= (G, T, T). Then

(G,, T), T;,S.,S;, ¥, ¥)

=(G, T, T,S,S, re, Xe) inD’,
Following the proof of Theorem 1, we obtain
G(S\(nt)) — R(Si(nt))

< H(nt) < G(S2(mt)) + Ro(Sx(nt)) (31)

for all £ = 0. Hence, as in the proof of Theorem 3 of
Glynn and Whitt (1986), H, has the same weak con-
vergence limit as the random function

(GS),(1) =n""[G(S,(nt)) — \gnt], (=0
which is G, modified by a random time transforma-
tion, with a limit as described in (30).

A similar argument applies the other way, starting

with convergence of (H,,, S}, S;). From the proof of
Theorem 1

(7' So[To(s—)DUH(T2(5—)) — Ra(S2[T2(s-)])
< (57" Sa[To(s=)NG (ST (s)D)
< G() < (57 SITSDGS [T (5))
<@T'STEODHT() + RS [T (32)

We complete the proof by substituting #¢ for s in (32)
and reasoning as with (31), once again exploiting
random time transformations. Since

SUPp<i<: {1 0T'SIT, ()] — £} =0
SUPo<,</s {1 (E)'S[T,(mt)] — 1|} => 0 too.

Remark 10. More processes can be put in the final
joint limit (30), as in Theorems 3 and 4 of Glynn and
Whitt (1986). More description of the limit process is
also given there; it is usually multivariate Brownian
motion, which has multivariate normal marginal dis-
tributions. (The component Brownian motions are
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typically dependent; i.e., the covariance matrix typi-
cally has nonzero off-diagonal elements.)

As in Sections 4.1 and 4.2 here, in some settings the
remainder terms drop out automatically, e.g., R, = 4.
In the standard H = AG setting of Section 1.3, suppose
that { £, (¢): £ = 0} is a nonnegative integrable stochastic
process for each k, with

L@®)=0, t&[T,T.+ 5] (33)

where 7; is the random arrival epoch of the kth
customer and

S./T,—0 wp.l ask-—oo. (34)

Let the random functions be as in (27) with 7T',(s) =
Ty, s = 0. The following result is an elementary
consequence of Theorem 7.

Theorem 8. Suppose that h = Mg in the standard
H = \G framework of Section 1.3 satisfying (33) and
(34). Then (G,, T)) = (G, T) with P(T € C) if and
only if (H,, S,) = (H, S) with P(S € C), in which
case the joint convergence (29) holds with the limit
processes related by (30).

Remark 11. If (33) holds with S; < W, then (G,, T)
= (G, T) implies (34) and thus also (H,, S,) =
(H, S).

Remark 12. An application of the CLT version of
H = )G to determine the asymptotic efficiency of
statistical estimators of queueing parameters is illus-
trated in Section 11 of Glynn and Whitt (1989).
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