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Motivated by models of tenant assignment in public housing, we study approximating deterministic fluid

models for overloaded queueing systems having multiple customer classes (classes of tenants) and multiple

service pools (housing authorities), each with many servers (housing units). Customer abandonment acts to

keep the system stable, yielding a proper steady-state description. Motivated by fairness considerations, we

assume that customers are selected for service by newly available servers on a first-come first-served (FCFS)

basis from all classes the corresponding service pools are allowed to serve. In this context, it is challenging

to determine stationary routing flow rates between customer classes and service pools. Given those routing

flow rates, each single fluid queue can be analyzed separately using previously established methods. Our

ability to determine the routing flow rates depends on the structure of the network routing graph. We obtain

the desired routing flow rates in three cases: when the routing graph is (i) a tree (sparsely connected),

(ii) complete bipartite (fully connected), and (iii) an appropriate combination of the previous two cases.

Other cases remain unsolved. In the last two solved cases, the routing flow rates are actually not uniquely

determined by the fluid model, but become so once we make stochastic assumptions about the queueing

models that the fluid model approximates.
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1. Introduction

In this paper we investigate deterministic fluid approximations for overloaded queueing systems

having multiple customer classes and multiple service pools, each with many servers. Each customer

class has a fixed subset of service pools where it can be served. Customer abandonment acts to

keep the system stable, yielding a proper steady-state description (e.g., queue lengths and waiting

times). We consider the case in which customers are selected for service by newly available servers
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Figure 1 Possible network models: The first three pictures depict W , X, and X + 1 models, while the last

picture depicts a more complicated model that we are unable to analyze.

on a first-come first-served (FCFS) basis from all classes the corresponding service pools are allowed

to serve.

We have in mind (overloaded) queueing systems as depicted in Figure 1. Customers from class i

arrive at rate λi and abandon from queue at rate θi. In the long run, class i customers are served

by service pool j at rate ri,j. Customers complete service from pool j at rate µj. The natural direct

queueing model consistent with that description has independent Poisson arrival processes, i.i.d.

exponential times to abandon, and multiple pools of servers, each with i.i.d. exponential service

times. However, here we focus on an approximating deterministic fluid model, where we regard all

flows as being deterministic. In the queueing model, there are sj servers at service pool j, each

serving customers at rate ηj . Since the system is overloaded, these servers are busy almost all the

time, so that the overall service rate at pool j in the fluid model is µj = sjηj . We are interested in

the steady-state behavior, where the fluid flow rates are constant.

Motivation. This problem was suggested to us by Ed Kaplan, who had previously introduced

both network queueing models and associated fluid models to study tenant assignment policies in

public housing Kaplan (1984, 1985, 1986, 1988) and Caldentey and Kaplan (2002). New housing

applicants (prospective tenants) are the customers, while different housing authorities form the

service pools, with the individual housing units playing the role of servers. Applicants fall into one

of several different classes characterized by the housing authorities to which the applicant is eligible

to apply. Unfortunately, these systems are often overloaded. Of course, that points to a need for

additional public housing, but the supply may inevitably lag behind demand. With the prevailing

overloaded systems, it may be helpful to have good models that make it possible to analyze the
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consequence of alternative policies. We might be able to investigate how much tenant abandonment

probabilities and waiting times can be reduced by different actions. Indeed, the results of this paper

can be applied for that purpose. For other recent analysis of public housing, see Johnson (2001,

2003) and references cited there.

Kaplan (personal communication) also suggested another application: the adoption of children.

The customers are prospective parents seeking to adopt children, while the service pools are differ-

ent adoption programs, with service rates determined by the arrival rates of children to be placed

for adoption. The possible routing is determined by parental preferences (country of origin, gender,

age, etc.) and parental participation in more than one waiting list (agency program, private lawyer,

etc.). In addition, potential parents may renege for many reasons.

Routing Flow Rates. As soon as we introduce a multi-class multi-server-pool fluid model

of the kind above, we discover, as Kaplan did, that the routing flow rates ri,j are critical. We

might directly specify these routing flow rates as part of the system design, but it is natural to ask

what the routing flow rates would be for various scheduling rules. In particular, it is natural to

consider the FCFS scheduling rule from fairness considerations. Ed Kaplan specifically asked how

the routing flow rates could be determined with FCFS scheduling.

Given any feasible set of routing rates yielding an overloaded fluid model (with all queues posi-

tive), we can analyze the queues for each customer class separately, using the methods for analyzing

a single overloaded fluid queue with abandonment in Whitt (2006a). A network fluid model was

analyzed this way in Whitt (2006b), but there the routing flow rates were exogenously specified, as

part of the model construction. Here, in contrast, we want the routing flow rates to arise endoge-

nously as a consequence of applying the FCFS assignment rule.

A Hierarchy of Complexity. We are able to determine the desired routing flow rates as well

as the equilibrium behavior for a large subclass of the FCFS fluid models, but not for all possible

fluid models. We identify a hierarchy of complexity among these systems based on the structure

of the routing graph of the system. The easiest models to analyze are sparsely connected models,

those with tree routing graphs, such as the W model, appearing first in Figure 1 above. (We follow
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the notation for routing topologies in service networks given in Garnett and Mandelbaum (2000).)

Next in line are the fully connected models, those with complete bipartite routing graphs, such as

the X model, shown second in Figure 1 above. Then, there are hybrid connected models, models

that consist of a fully connected component with one or more sparsely connected components

attached. The so-called X + 1 model belongs to this class. Finally, there are models that do not

fall into any of these three categories. We are not yet able to analyze those models. One example

from each of the four cases appears in Figure 1.

Our analysis can be summed up as follows. In the sparsely connected case, if global FCFS is

possible, flow rates can be obtained using equations (5)-(8). In the fully connected case, they can

be determined by using equation (16). In the hybrid case the same equations can be used, but in

a stepwise manner, first treating the sparsely connected components separately, and then treating

the remaining fully connected component as above, but with appropriate new parameters.

Associated Fluid Limits. We use the fluid-model description to generate approximations

for the corresponding queueing system. To make a clear connection between the queueing system

and the fluid model, it is helpful to think of the fluid model as the limit of the queueing model

as the arrival rate and the number of servers at each service pool increase. Indeed, we conjecture

that such a many-server heavy-traffic limit exists and is described by our fluid model, and hope to

prove this in future work. Examples of such single-queue fluid limits in this overloaded regime are

contained in Whitt (2004, 2006a). Although we do not establish such a limit here, we are able to

answer practical questions concerning the corresponding queueing system, assuming that the limit

does hold. The fluid model can also be considered as a direct model or a direct approximation of

the queueing model, without considering the limit, but the limit is helpful.

The Importance of Associated Stochastic Queueing Models. In fact, we discover what

we believe is an important new phenomenon associated with fluid models, for which the limit plays

an essential role. We show that the convergence of a sequence of queueing systems to the fluid

model limit is itself important for determining unique routing flow rates ri,j in the fluid model. In

other words, if we assume that the fluid model is a limit of appropriate queueing systems, satisfying
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general stochastic assumptions (to be specified), then we can identify unique routing flow rates ri,j

in the fluid model. However, if we do not make that assumption, then the rates are not uniquely

determined. This phenomenon occurs for fully connected models and hybrid models having a fully

connected component.

Call-Center Models. The class of models we are considering is also relevant to the design

and management of telephone call centers and related customer contact centers; see Gans et al.

(2003). In the call-center literature such systems are said to have skill-based routing. In models with

skill-based routing, the routing policy used is crucial to the analysis of the model. Well-managed

call centers are usually not overloaded, but are more likely to be when the call center is service-

oriented as opposed to revenue-generating. We may also be interested in overloaded call centers

in order to understand how they perform under exceptional circumstances, such as unanticipated

high load or in the face of some system failures. Thus, overloaded models often prove to be useful

in the call-center context as well.

A related paper in the call-center context, with references to many other recent related papers,

is Gurvich and Whitt (2006). That paper establishes many-server heavy-traffic limits for the same

type of queueing model, except routing is performed using a fixed-queue ratio (FQR) rule instead

of FCFS. There it is observed that the same methods apply equally well to an analogous fixed-

waiting-ratio (FWR) rule, which reduces to FCFS as a special case. The motivation for the FQR

and FWR routing policies is to perform service-level differentiation among the customer classes.

That work differs from the present study in several respects: It focuses on the quality-and-efficiency-

driven (QED) many-server heavy-traffic limiting regime, as in Halfin and Whitt (1981), rather

than the efficiency-driven (ED) or overloaded many-server heavy-traffic limiting regime. It also

restricts attention to Markovian models, while we also consider non-Markovian models. As in Whitt

(2006a), the steady-state performance measures in this paper depend on general time-to-abandon

cumulative distribution functions beyond their means.

Organization. We begin in §2 by introducing the queueing model we are approximating and
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defining the classes of routing graphs we are able to analyze. Then, in §3 we introduce the cor-

responding fluid model. The fluid model is intended to arise as a limit of appropriately scaled

queueing models as the arrival rates and number of servers increase. In this section we conjecture

the existence and form of this limit. In §4 we go on to discuss stationary dynamics of the fluid

model. It is here that we specify the important routing flow rates that must be determined and

present a system of equations that they obey. Transient dynamics for our model are discussed in

the electronic companion to this paper. In §§5-8 we discuss the fluid and queueing models in more

detail for the special classes of routing graphs. In §5 we focus on the sparsely connected case. In

§6 we focus on the fully connected case. In §7 we give an example to show that we must take into

account the stochastic structure of the converging queueing models in order to compute the routing

flow rates in the fully connected case. In §8 we show that it is easy to extend the analysis of the

fully connected case to analyze the hybrid case. In §9 we show that our approximations for the

routing flow rates are effective by making comparisons with simulations. Finally, in §10 we draw

conclusions and discuss future work. Additional supporting material appears in an e-companion.

2. The Queueing Model

In our model there are sets C ≡ {1, . . . , n} of customer classes and S ≡ {1, . . . ,m} of service pools

(≡ here denotes equality by definition). We assume that there is a queue with unlimited capacity

for each customer class. Arriving customers who cannot enter service immediately go to the end

of the queue for their class, to be served thereafter in order of arrival. Throughout the paper we

use the first-come first-served (FCFS) routing policy.

Definition 1. We say that customers are routed according to the first-come first-served

(FCFS) routing policy if, when a server becomes free and there are customers waiting from

more than one customer class eligible for service by that server, the customer who entered the

system first from the eligible classes is assigned to the freed server.

The definition leaves unspecified the way customers are assigned upon arrival to servers if there

are idle servers in more than one eligible service pool. We are assuming that case will occur

infrequently, and eventually not at all in the approximating fluid model.
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Stochastic Model Elements. Figure 1 suggests a Markovian queueing model, but we actually

consider more general queueing models. We define arrival processes Ai ≡ {Ai(t), t ≥ 0} with rates

λi for each class i; i.e., Ai is a stochastic point process such that

Ai(t)

t
→ λi as t→∞ w.p. 1. (1)

We let λ≡ {λi, i∈ C}.

Each class-i customer may elect to abandon from the queue prior to starting service. We assume

that these abandonment decisions for different customers are mutually independent, and indepen-

dent of the arrival processes and service times. A class-i customer will abandon within time t of

entering the system with probability Fi(t), if the customer has not entered service by that time.

We assume that Fi is a continuous cumulative distribution function (cdf), strictly increasing on its

support, with Fi(0) = 0, mean 1/θi, and probability density function (pdf) fi. Let F ≡{Fi, i∈ C}.

We let the service-time cdf depend only on the service pool. We assume that the service times are

mutually independent random variables independent of the arrival processes and the abandonment

decisions. Let pool j have sj servers, each with continuous service-time cdf Gj having mean 1/ηj

and pdf gj. Let G≡ {Gj, j ∈ S}, η ≡ {ηj, j ∈ S} and s≡{sj , j ∈ S}. The maximum possible total

service rate for pool j is µj ≡ sjηj , for all j ∈ S.

The Routing Graphs. We assume that each class-i customer can be served by any server in a

subset S(i)⊆S of the service pools. Let C(j) denote the set of customer classes that can be served

by service pool j; i.e., C(j) ≡ {i ∈ C : j ∈ S(i)}, for all j ∈ S. We characterize the allowed routing

between customer classes and service pools by a routing graph. The nodes of the routing graph

{1, . . . , n− 1, n,n + 1, . . . , n + m} correspond to the customer classes in C and the service pools in

S. There is an arc (i, n+ j) in the graph if class i can be served by service pool j. Thus the set of

arcs in the routing graph is a subset of {1,2, . . . , n}×{n+1, n+2, . . . , n+m}. The routing graph

is bipartite because all arcs connect customer classes to service pools.

We now characterize the classes of models we will be analyzing. We start by assuming that

the bipartite graph is connected; i.e., it is not possible to decompose the bipartite graph into two
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Figure 2 Candidate routing graphs: The first two rows contains sparsely connected routing graphs; the third

row contains fully connected routing graphs; and the fourth row contains other routing graphs.

unconnected components. If we could do so, then we would analyze each component separately.

The first class of routing graphs we consider are acyclic connected bipartite graphs or trees. In

these models, there are precisely n+m−1 arcs connecting the n customer classes to the m service

pools, without it being possible to decompose the system into two separate subsystems.

Definition 2. We say the model is sparsely connected if its routing graph is a tree.

The prototype of a sparsely connected model is the W model (see Figure 1).

The second class has routing graphs that are complete bipartite. In these models, each customer

class can be served by any service pool.

Definition 3. We say a model is fully connected if its routing graph is complete.

The prototype of a fully connected model is the X model.

We will also deal with models that are combinations of the sparsely and fully connected cases.

Definition 4. We say a model is a hybrid if its routing graph can be decomposed into one

complete graph component and one or more tree component, such that the tree components are

disjoint and each of them shares exactly one node with the complete component.

The X + 1 model in Figure 1 is a hybrid model. Figure 2 shows a broader range of routing

graphs. The routing graphs in the first row correspond to sparsely connected models, the I, V , Λ,
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N , W and M models, respectively. The second row contains more complicated sparsely connected

models. The third row contains two fully connected models, one being the X model and the other

being a 4× 3 fully connected model. The final row contains examples of three routing graphs that

do not belong to the first two classes mentioned above. The first of these is the double-I model,

which is disconnected. The second is the X + 1 model, which is a hybrid model because it can

be decomposed into an X model and an I model. We will discuss this model in more detail in

§8. Finally, there is an example of a connected 5 × 5 model that does not belong to any of the

three classes defined. Naturally we would like to treat models with such routing graphs, but we are

currently unable to do so.

3. The Fluid Model

We are interested in analyzing deterministic fluid models corresponding to these queueing models.

In this section we discuss how these fluid models can arise as limits of sequences of appropriately

scaled queueing models. We also define the notion of global FCFS for fluid models.

3.1. Fluid Limit

The fluid model is intended to arise as the limit of a sequence of queueing models indexed by r,

where in model r we have arrival processes for each i∈ C defined by Ar
i (t)≡Ai(rt), t≥ 0, and each

pool j ∈ S has rsj servers. We regard r as a positive integer and let r →∞. The service times and

abandonment times are left unchanged, independent of r.

Our first conjecture is a stochastic-process limit, as in Billingsley (1999), Chen and Yao (2001),

and Whitt (2002). To express it, let ⇒ denote convergence in distribution, let D ≡D([0,∞),R) be

the function space of all right-continuous real-valued functions on the interval [0,∞) with limits

from the left everywhere in (0,∞), endowed with the usual Skorohod (J1) topology; and let e

be the identity function in D; i.e., e(t) ≡ t, t ≥ 0. Let D2 ≡ D([0,∞)2,R) be the associated two-

parameter function space (see Whitt (2006a)). We will also consider product spaces, which are

always understood to be endowed with the product topology; e.g., Dn ≡D([0,∞),R)n.

We start by applying (1) to obtain a corresponding stochastic-process limit. The ordinary strong

law of large numbers (SLLN) in (1) is actually equivalent to the stronger functional strong law
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of large numbers (FSLLN); e.g., see Theorem 5.10 of Chen and Yao (2001) and Theorem 5.3.2

of Whitt (2002) and the cited material in the Internet supplement to that book. We will state

our conjecture in the weaker form ⇒ (even though we think the stronger FSLLN actually does

hold). We remark that convergence in distribution ⇒ to a deterministic limit is equivalent to

convergence in probability. We also remark that there is no equivalence between the weak LLN

(WLLN) and its functional counterpart, the FWLLN. We obtain the desired FWLLN through

the implications: SLLN ⇛ FSLLN ⇛ FWLLN. Hence, starting from (1), we deduce that a scaled

version of A≡ {Ai, i∈ C} satisfies the FWLLN

Ār ≡
Ar(·)

r
≡

A(r·)

r
⇒ λe(·) in Dn as r →∞. (2)

We describe the system content in model r using the following stochastic processes:

• Br ≡ {Br
i,j , i ∈ C, j ∈ J }, where Br

i,j(t, y) is the number of class i customers in service in pool

j at time t that have been in service for time less than or equal to y.

• Qr ≡ {Qr
i , i ∈ C}, where Qr

i (t, y) is the number of class i customers in queue at time t that

have been in queue for time less than or equal to y.

Then, form the scaled processes B̄r ≡{B̄r(t, y), t≥ 0, y ≥ 0} and Q̄r ≡ {Q̄r(t, y), t≥ 0, y ≥ 0} by

B̄r(t, y)≡
Br(t, y)

r
and Q̄r(t, y)≡

Qr(t, y)

r
, for t≥ 0, y ≥ 0, and r ≥ 0.

Also, to further describe the dynamics of the system, we will need to keep track of how customers

our routed and virtual waiting times at the queues. For model r, let

• Rr ≡ {Rr
i,j , i ∈ C, j ∈ S}, where Rr

i,j(t) is the number of class i customers routed to pool j by

time t.

• W r ≡{W r
i , i∈ C}, where W r

i (t) is the virtual waiting time of a class i customer at time t.

Then, just as for Br and Qr, form the scaled processes R̄r ≡{R̄r(t), t≥ 0} by

R̄r(t)≡
Rr(t)

r
, t≥ 0, r ≥ 0.

We do not have to scale the virtual waiting times W r since our fluid scaling does not involve time

scaling of the content stochastic process.
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A discussion of the transient dynamics of the limiting fluid model is given in the e-companion.

Here we will only be interested in stationary dynamics of the model. We assume that the limiting

models are initially empty. However, we believe this assumption can be generalized to appropriate

convergence of the initial conditions.

Conjecture 1 (Fluid Limit). Consider an initially empty queueing model of the type

described in §2 and construct a sequence of fluid-scaled versions of this model indexed by positive

integers r as indicated above. Then

(

B̄r, Q̄r, R̄r,W r
)

⇒ (B,Q,R,W ) (3)

in Dnm+n
2 ×Dnm+n as r →∞, where B and Q are continuous deterministic functions of (t, y) and

R and W are continuous deterministic functions in t, consistent with the description given in §1

of the e-companion.

The deterministic functions B(t, y), Q(t, y), R(t), and W (t) serve as fluid approximations for the

scaled stochastic processes B̄r(t, y), Q̄r(t, y), R̄r(t) and the non-scaled process W r(t) so that

Br(t, y)≈ rB(t, y), Qr(t, y)≈ rQ(t, y), Rr(t)≈ rR(t), W r(t)≈W (t), (4)

for t≥ 0, y ≥ 0, and r large.

3.2. Global FCFS

When going from the queueing model to the fluid model, we would expect that the FCFS routing

policy of the limiting queueing models would imply some notion of FCFS for the fluid model. In

fact, in the fluid model we can hope to achieve a stronger notion of FCFS scheduling: global FCFS.

In the queueing model, global FCFS means that all customers enter service in order of arrival. For

queueing models in which servers do not sit idle when there is a waiting customer they can serve,

global FCFS is only possible for fully connected models. However, we can hope to achieve global

FCFS in fluid models with more general structure. Global FCFS holds in the fluid model if when

one atom of fluid arrives to the system before a second atom of fluid, it starts service before the

second atom of fluid. Formally, we have
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Definition 5. We say that global FCFS holds in the fluid model if, for all 0 < t1 < t2 and for

all i, j ∈ C, we have

t1 +Wi(t1) < t2 +Wj(t2).

A key (intuitive) observation for our analysis is that this global FCFS condition for the fluid

model is actually equivalent to the wait times Wi(t) not depending on i.

Lemma 1. For the fluid model described above, with its evolution described by continuous func-

tions, the specified global FCFS condition is equivalent to the existence of a function W : [0,∞)→R

such that Wi(t) = W (t) for all i∈ C and t≥ 0.

Proof. The implication of global FCFS from the existence of a single waiting-time function is

immediate from the FCFS property of each individual queue. Assuming that global FCFS holds,

we will show that unequal waiting times leads to a contradiction. Thus, suppose Wi(t) > Wj(t)+ ǫ

for some i, j ∈ C, t≥ 0, and ǫ > 0. By the definition of Wi(t), class i fluid that enters the system at

time t, enters service at time t+Wi(t). By the continuity of Wj, we must have

lim
δ↓0

Wj(t+ δ) + δ = Wj(t),

so that for 0 < η < ǫ there exists δ small enough so that Wj(t + δ) + δ −Wj(t) < η < ǫ. Therefore,

class j customers entering the system at time t + δ, after a class i customer entering at time t,

enters service at time

t+ δ +Wj(t+ δ) < t+Wj(t) + η < t+Wj(t) + ǫ < t+Wi(t),

contradicting the FCFS assumption. Therefore, we must have Wi(t) = Wj(t) for all i 6= j. �

We will want to find stationary routing rates yielding global FCFS. However, it is not guaranteed

that we can achieve global FCFS, even when FCFS scheduling is used. When global FCFS cannot

be achieved, the waiting times of different classes cannot all be identical. We believe for that

to happen in a connected model, one or more flows must be zero, which effectively changes the

network. In particular, it implies that some arcs can be removed, so that the network actually
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can be decomposed into two or more subnetworks, with global FCFS prevailing in each. In this

paper, we do not fully analyze what happens when global FCFS fails to occur, because we do

not determine which arcs need to be removed, but we provide insight. Our analysis helps identify

appropriate decompositions.

4. Stationary Dynamics of the Overloaded Fluid Model

We now describe the stationary behavior of the fluid model. Except for the routing flow rates, the

story is the same as in Whitt (2006a), so we are primarily interested in the routing flow rates. We

assume our fluid models are overloaded in stationarity.

Definition 6. A fluid model is said to be overloaded in stationarity if in stationarity all

queues are non-empty, which in turn implies that all the service pools are working at full capacity.

This overloaded property can be determined from the stationary equations of the FCFS fluid

model, to be developed below. A necessary condition for this property is
∑n

i=1 λi >
∑m

j=1 µj.

We now define quantities of interest for the stationary fluid model. Let Bi,j(y) be the amount of

class i fluid in service pool j that has been in service for time less than or equal to y, and Qi(y)

the amount of class i fluid in queue that has been in queue for time less than or equal to y. We

assume that the functions Bi,j(y) and Qi(y) have densities bi,j and qi, so that

Bi,j(y) =

∫ y

0

bi,j(u)du and Qi(y) =

∫ y

0

qi(u)du, for all i∈ C, j ∈ S, and y ≥ 0.

Also, let Bi,j ≡ Bi,j(∞) be the total amount of class i fluid in pool j and let Qi ≡ Qi(∞) be the

total amount of class i fluid in queue, for i∈ C, j ∈ S. Furthermore, define the following quantities:

αi ≡ the rate at which class i fluid abandons the queue,

νi ≡ the total rate at which class i fluid enters service,

ri,j ≡ the rate at which class i fluid enters service at pool j (routing flow rates),

σi,j ≡ the rate at which class i fluid is served by pool j,

pi,j ≡ the proportion of class i fluid served by pool j,

w ≡ the common waiting time for the system,
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for all i∈ C, j ∈ S. So far, we do not know if these quantities exist. It turns out that if we assume

ri,j exists for i ∈ C, j ∈ S, and we assume the conjectures of Whitt (2006a) concerning the single-

customer-class single-service-pool case, then we can analyze each individual queue and service pool

in our model separately using Theorem 3.1 of Whitt (2006a), implying existence of the rest of the

quantities defined above.

Conjecture 2. The quantities ri,j ≡ limt→∞ Ri,j(t)/t exist as proper limits for all i∈ C, j ∈ S.

From now on, we assume Conjectures 1 and 2 here as well as Conjectures 2.1 and 2.2

of Whitt (2006a).

Lemma 2. If the fluid model is overloaded in stationarity then all rates defined above exist.

Furthermore, the flud model has a unique steady-state where each individual queue i ∈ C and each

individual service pool j ∈ S satisfies the relations of Theorem 3.1(b) of Whitt (2006a) with ρ there

set to λi/νi.

Proof. By the existence of the quantities ri,j, i ∈ C, j ∈ S, νi =
∑

j∈C(i) ri,j must exist for each

i ∈ C. For each individual queue i ∈ C, our fluid limit Qi in (3) is constructed exactly like the

fluid limit of the queueing process in Whitt (2006a), except for each individual queue, customers

enter the queue at rate rλi and leave the queue at the rate rνi. By the overloaded in stationarity

assumption, each queue is overloaded so that ρ = λi/νi > 1 and the relations of Theorem 3.1(b) of

Whitt (2006a) involving the queueing process hold with ρ = λi/νi. Similarly, each Bi,j, i∈ C, j ∈ S,

in (3) can be analyzed separately. �

Using this lemma, we can now characterize our stationary performance measures in terms of

the rates ri,j, i ∈ C, j ∈ S, and the common waiting time w. As in Whitt (2006a), not all the

model elements from the original queueing model remain relevant in the fluid model. For stationary

behavior of the fluid processes (except for bi,j(x), which is not crucial), the relevant model elements

are (λ,µ,F ). In particular, the arrival processes A only appear in the fluid model via the rates

λ, and the service-time cdf’s G and the quantities s only appear via µj = sjηj, j ∈ S, but the
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time-to-abandon cdf’s Fi beyond their means 1/θi remain relevant. For a cdf Fi, let F c
i ≡ 1−F be

the associated complementary cdf.

Theorem 1. Given a fluid model described by (λ,G,F, s), it is overloaded in stationarity and

global FCFS holds if and only if for i ∈ C, j ∈ S, there exist numbers r
′

i,j ≥ 0, ν
′

i > 0, and w
′

> 0

satisfying the following three sets of equations: First, we have the n global FCFS equations

λiF
c
i (w

′

) = ν
′

i for all i∈ C. (5)

Second, we have the single flow-conservation equation

n
∑

i=1

ν
′

i =
m

∑

j=1

µj. (6)

Third, we have the n+m flow-rate equations

∑

i∈C(j)

r
′

i,j = µj for all j ∈ S (7)

∑

j∈S(i)

r
′

i,j = ν
′

i for all i∈ C. (8)

These equations will always uniquely determine positive values w
′

and ν
′

i , i ∈ C. Also, there will

always exist r
′

i,j, i ∈ C, j ∈ S, satisfying the equations but they will not necessarily be uniquely

determined and non-negative. If a solution exists for which these quantities are in fact non-negative,

then νi = ν
′

i , w = w
′

for each i∈ C, and

αi = λi − νi, (9)

σi,j = ri,j, pi,j =
ri,j

∑

k∈S(i) ri,k

, (10)

bi,j(x) =
ri,j

sj

Gc
j(x), x≥ 0, (11)

qi(x) =

{

λiF
c
i (x), 0≤ x≤w,

0, x > w,
(12)

Bi,j =
ri,j

µj

, (13)

Qi =

∫ ∞

0

qi(x)dx = λi

∫ w

0

F c
i (x)dx, (14)

for all i∈ C and j ∈ S. If, in addition, the quantities r
′

i,j, i∈ C, j ∈ S are uniquely determined, then

we also have ri,j = r
′

i,j, i∈ C, j ∈ S.
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Proof. Assume that the fluid model is overloaded in stationarity and admits global FCFS. Then

the equations are satisfied by the quantities r
′

i,j = ri,j, ν
′

i = νi, and w = wi, the common wait time

at all the queues, which exists by Lemma 1: equation (5) holds by Lemma 2 and (3.9) of Whitt

(2006a), (6) holds simply by conservation of flow, and (7)-(8) hold by local balance of flow at each

queue and each service pool.

Conversely, suppose the equations have a solution r
′

i,j ≥ 0, ν
′

i > 0, w > 0, for i∈ C, j ∈ S. Then it

is possible to route fluid from the queues to the service pools in such a way that wait times at all

queues will be w. This implies that the fluid model admits global FCFS. Furthermore, combining

(5) with (3.9) of Whitt (2006a), for each i∈ C we will have ν
′

i = νi.

We now argue that when the flow equations have a solution, w and ν
′

i are uniquely determined.

We can combine equations (5) and (6) to obtain the single waiting-time equation

n
∑

i=1

λiF
c
i (w) =

m
∑

j=1

µj. (15)

Consider the left side of this equation as a function of w. Notice that this function is continuous

and strictly decreasing when it is positive since we assumed that all the abandonment cdf’s Fi are

continuous and strictly increasing on their support. When w = 0, by the overloaded in stationarity

assumption, we have
∑n

i=1 λi >
∑m

j=1 µj. Also, as w →∞, the left side approaches zero. Therefore,

by the intermediate value theorem, there must exists some w > 0 such that the equation holds.

If a solution to (5)-(8) exists for which r
′

i,j ≥ 0, i ∈ C, j ∈ S, then by Lemma 2 we must have

(9)-(14) for the true ri,j given by Conjecture 2. The r
′

i,j do not appear in these equations unless

they are uniquely determined by the flow-rate equations. �

The focus of the rest of the paper is to compute the flow rates ri,j , i ∈ C, j ∈ S, and thus,

determine stationary dynamics of the fluid model. We are able to do this in the three cases:

1. The model is sparsely connected.

2. The model is fully connected with non-lattice service-time distributions with no mass at zero.

3. The model is hybrid connected with non-lattice service-time distributions with no mass at

zero.
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In the next section, we show that our system of stationary fluid equations has a unique solution

in the sparsely connected case (but not necessarily nonnegative!). In §6 and 7 we show that in

other cases we must make further assumptions on the stochastic elements of the queueing model to

determine stationary behavior of the corresponding fluid model. The flow rates ri,j are not uniquely

determined by the fluid model alone.

5. The Sparsely Connected Case

We now show that we can uniquely determine the stationary dynamics of the fluid model when

the model is sparsely connected.

Theorem 2 (sparsely connected models). For sparsely connected fluid models that are

overloaded in stationarity, the system of stationary fluid equations in (5)-(8) has a unique solution

for w, ν
′

i and r
′

i,j with w > 0 and ν
′

i > 0 for all i ∈ C. If, in addition, r
′

i,j ≥ 0 for all i ∈ C, j ∈ S,

then the corresponding fluid model has a unique stationary solution satisfying global FCFS, so that

wi = w, νi = ν
′

i , and ri,j = r
′

i,j for i∈ C, j ∈ S.

Proof. As indicated in the proof of Theorem 1, for models that are overloaded in stationarity,

we can first use (15) to uniquely solve for w. We are then left with the linear system (7)-(8). In the

sparsely connected case, the routing graph is a tree, so that as in Proposition A.2 of Atar (2005)

we can solve for the flow rates uniquely as follows. Since the routing graph is a tree, it contains at

least one leaf. If the leaf is a customer class i ∈ C and its adjacent edge is (i, j), then let ri,j = νi.

If the leaf is a service pool j ∈ S and its adjacent edge is (j, i), then let ri,j = µj. Then strip off

the leaf and its incident edge and recurse. Finally, the last claim follows from the last sentence of

Theorem 1. �

It may happen that one or more of the unique routing rates r
′

i,j is negative. In that case, by

Theorem 1 we can conclude that it is not possible to achieve a solution that is overloaded in

stationarity and exhibits global FCFS. We do not carefully analyze the case when negative flows

occur. It is our experience that when there is a single negative flow, then we can describe the

network behavior by replacing this flow by 0, which is equivalent to removing the arc from the



Talreja and Whitt: Fluid Models for Overloaded Multi-Class Many-Server Queueing Systems with FCFS Routing

18 Article submitted to Management Science; manuscript no. MS-00251-2007

routing graph. If the model is sparsely connected, this action always produces two separate sparsely

connected models, which then can be analyzed in precisely the same way.

When there are multiple negative flows, the situation is more complicated. We have found exam-

ples where more than one of these should be set equal to 0, but also examples where only one

should be set equal to 0. We do not yet have a systematic way to determine which case prevails and,

thus, what actually happens in the network. Right now, we would rely on simulation to confirm

that we have the correct reduced network with global FCFS in each separate sparsely connected

component. It is our experience that, in all cases, the actual behavior can be captured by such

reductions; it only remains to determine which reduction is the correct one.

The negative flow rates also tell us that, if we want to achieve global FCFS, then we need to

redesign the network. One approach is to eliminate one or more arcs, by fiat as a redesign decision,

by setting routing flow rates equal to 0, giving us two separate sparsely connected components.

Then, we may possibly achieve global FCFS in each component, but way may need to make further

reductions. Indeed, by this recursive network reduction, we will necessarily arrive at a collection

of sparsely connected subnetworks, each of which exhibits global FCFS, provided that all the

subnetworks are overloaded. The analysis above provides guidance for the network redesign.

6. The Fully Connected Case

In the fully connected case, customers in each class can be served by servers in any pool. In this

case, after solving (15), our system of stationary flow rate equations (7)-(8) has nm+1 unknowns

and n + m equations. When either n = 1 or m = 1, the model is sparsely connected, so we can

apply the method of the previous section. When n > 1 and m > 1, we have nm + 1 > n + m, so

the analysis in the previous section will not go through; we have extra degrees of freedom. To

resolve the additional degrees of freedom, we exploit stochastic properties of the queueing model in

addition to the fluid model. In fact, we will show in the next section that we must look at stochastic

elements of the queueing model.

Assuming that the fluid model is indeed overloaded in stationarity, all queue lengths are strictly

positive, so that all service pools are processing at maximum rate. Therefore, for large r and t,
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after time t all service pools in models with index greater than r are almost always busy (but never

all busy with probability 1). We will carry out an analysis of the queueing model based on the

assumption that all servers are in fact always busy. This significantly simplifies analysis.

Even though we scale the queueing models indexed by r in order to relate them to the limiting

fluid model, we will want to look at the departure processes of the queueing model in the time scale

of individual departures. That means we must dilate time by a factor of r. (For previous asymptotic

analysis with such time dilation, see Whitt (1984).) Let Dr
j (t) be the number of departures from

service pool j by time t, assuming all servers are always busy. Then, we consider the processes

D̃r
j (t)≡Dr

j (t/r), as r →∞. We first discuss the case of exponential service-time distributions, and

then generalize.

6.1. Exponential Service Times

Let each service pool contain servers having a common exponential service-time distribution. Since

we assume that all servers are always busy, pool j in model r of the sequence of fluid scaled

models has a Poisson departure process with intensity rµj = rηjsj. Therefore, the dilated departure

processes D̃r
j (t) are Poisson processes with intensity µj = ηjsj.

Lemma 3 (busy exponential service pools). For pools of permanently busy servers, each

with an exponential service distribution with mean 1/ηj, the dilated process D̃r
j (t) is a Poisson

process with intensity µj, for each r ≥ 0.

Now consider the customer who has been waiting in the queue the longest. Since we have a fully

connected model, that customer can be served by any service pool. The customer will enter service

in the service pool where a server frees up first. Since all residual service times are exponential,

the probability that the customer ends up being served at a pool j ∈ S is µj/
∑m

k=1 µk. By the

memoryless property, the pools where customers get served are mutually independent random

variables. Therefore, by the SLLN the proportion of class-i customers that get served at pool j

must be µj/
∑m

k=1 µk.
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Now let w be the solution to the waiting-time equation (15) for our system. Then, the rate that

fluid leaves queue i∈ C for service is νi = λiF
c
i (w) and we have

ri,j =
µj

∑m

k=1 µk

νi, for all i∈ C, j ∈ S. (16)

Notice that this solution (16) satisfies our system of stationary fluid equations (7)-(8) with ri,j > 0

for all i and j.

6.2. General Service Times

We now argue that the result in the previous section extends to the more general case of i.i.d.

non-lattice service times with no point mass at zero, in the limit as r →∞. We do this by showing

that the stationary departure process of each service pool j ∈ S in the time scale of individual

departures is asymptotically Poisson with rate µj.

In model r, the departure process Dr
j , j ∈ S, can be represented as the superposition of rsj

departure processes Dj,k, with one for each of the servers in the service pool:

Dr
j (t) =

rsj
∑

k=1

Dj,k(t).

In general, for different values of r, the sample paths of the departure processes will differ, but

the distributions of the departure processes will not. Since we have assumed that the servers are

permanently busy, each of these individual departure processes is a (possibly delayed) renewal

process with inter-renewal-time cdf Gj for all r. Since the distribution of Gj has been assumed

to be non-lattice, these renewal processes approach the associated equilibrium renewal process as

time t increases, by Theorem V.4.3 (4.6) on p. 155 of Asmussen (2003). Hence, in stationarity,

the rsj departure processes are i.i.d. stationary point processes (with stationary increments), each

having rate ηj . Hence, we can apply the classical limit theorem for sums of i.i.d. point processes

with stationary increments; see Chapter 5 of Khintchine (1960) and Proposition 9.2.VI of Daley

and Vere-Jones (1988). Our assumption of no point mass at zero implies that we have unit jumps

in the individual departure processes Dj,k. This gives us
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Lemma 4 (busy general service pools). For pools of permanently busy servers, each with

non-lattice service-time cdf Gj having no point mass at zero and with mean 1/ηj, we have

D̃r
j (·)≡

rsj
∑

k=1

Dj,k(·/r)⇒Πj(·) as r →∞,

where Πj is a Poisson process with intensity µj.

Since in the time scale of individual departures the departure process of each service pool j ∈ S

is asymptotically Poisson with intensity µj, our analysis from §6.1 applies, giving us

Theorem 3. If the service-time cdf ’s Gj are non-lattice with no point mass at zero, and if the

servers are permanently busy, then the routing flow rates in the fluid model are as given in (16).

Overall, this reasoning must be regarded as heuristic, because we have assumed that the servers

are always busy. However, simulation experiments confirm that this reasoning does indeed produce

the correct fluid flow rates. We will see in the next section that the stochastic conditions on the

service-time distributions cannot be eliminated altogether.

7. Dependence Upon the Stochastic Models

In this section we demonstrate that the behavior of the fully connected fluid model depends on

the stochastic structure of the sequence of pre-limit queueing models that converge to the fluid

model. For that purpose, we present a sequence of deterministic queueing models indexed by r

that would converge to a symmetric X fluid model described by (16) as r →∞ if they satisfied

the stochastic assumptions of Theorem 3, but which actually admit an asymmetric solution. Note

that the deterministic queuing models in our example are simply special cases of the more general

stochastic queueing models we are studying.

Our fluid model will have two customer classes and two server pools. Routing is possible from

each customer class to each pool, so that we may have ri,j > 0 for i = 1,2 and j = 1,2. Let the

fluid arrival rates be λ1 = λ2 = 2 and the fluid service rates be µ1 = µ2 = 2. This makes the model

symmetric in i and in j. Since the total input rate is equal to the total output rate, we are actually



Talreja and Whitt: Fluid Models for Overloaded Multi-Class Many-Server Queueing Systems with FCFS Routing

22 Article submitted to Management Science; manuscript no. MS-00251-2007

in the QED heavy-traffic regime (for which this result is also of interest!), but we can easily put

ourselves in the overloaded ED regime by adding deterministic abandonment.

Under the previous minimal stochastic assumptions for the service times in §6, we have the

symmetric solution to this fluid model and the rates become r1,1 = r1,2 = r2,1 = r2,2 = 1. However,

we can actually construct pre-limit models achieving

r1,1 = r2,2 = 1 + ǫ and r1,2 = r2,1 = 1− ǫ for any ǫ, −1≤ ǫ≤ 1, (17)

which is an asymmetric solution for ǫ 6= 0. Therefore, the extra degrees of freedom in the system

of linear equations in Theorem 1 can actually be exploited. And the resolution depends on extra

structure beyond the limiting fluid model itself. So the argument we gave in §6, starting from the

stochastic model is actually necessary.

We now proceed to construct a sequence of queueing models indexed by r for which (17) holds

with ǫ = 1. From our construction, it will be evident that constructions can be made for any other

ǫ in the specified range as well. In our queueing models, let all the service times be deterministic of

length 1. In model r, let each service pool have 2r servers. Thus, the maximum possible long-run

average total service rate is 2r for each service pool in model r, but we will scale by dividing by r,

so that the total average fluid service rate from each service pool j = 1,2 becomes µj = 2.

Similarly, we will let the arrival rate in model r for each customer class be 2r, making the fluid

arrival rate λi = 2 after dividing by r, again as already stipulated for the fluid model. We will

choose a special deterministic batch arrival process. We let arrivals occur in batches of size 2 with

intervals between successive batches deterministic with length 1/r to ensure that the long-run

average arrival rate is 2r. But we make the two arrival processes for the two customer classes be

asynchronous. In particular, in model r we let class-1 arrivals occur at times (k +1)/r, k ≥ 0, but

we let class 2 arrivals occur at times (2k + 1)/(2r), k ≥ 0. As stated above, a batch of 2 arrivals

comes at each arrival epoch. Note that the arrival epochs for batch arrivals in the two arrival

processes alternate.



Talreja and Whitt: Fluid Models for Overloaded Multi-Class Many-Server Queueing Systems with FCFS Routing

Article submitted to Management Science; manuscript no. MS-00251-2007 23

We also consider special initial conditions. We suppose that all servers are initially busy at time

0, but the two queues are initially empty. Moreover, we suppose that the 2r servers in service pool

1 free up two at a time at the times

δr,
1

r
+ δr,

2

r
+ δr, . . . ,

r− 1

r
+ δr , (18)

while the 2r servers in service pool 2 free up two at a time at the times

1

2r
+ δr,

3

2r
+ δr,

5

2r
+ δr, . . . ,

2r− 1

2r
+ δr , (19)

for some constant δr with 0 < δr < 1/(2r) for all r. For example, we could have δr = 1/(4r).

With these definitions, all customers from class 1 are served by servers from service pool 1, while

all customers from class 2 are served by servers from service pool 2. The servers free up in pairs

from alternating service pools. Following the requirement of the FCFS service discipline, these

pairs of servers will serve the two customers that have been waiting the longest, but the customers

that have been waiting the longest will also alternate from customer class to customer class, in a

way that guarantees that servers from pool 1 always select customers from class 1, while servers

from pool 2 always select customers from class 2. Moreover, in model r all customers spend exactly

time wr = δr in queue so in the fluid limit we have w = 0.

Note that both batch arrivals and batch service can be relaxed by making small perturbations

of the arrival times and service times. We thus could have an example with arrivals and service

both occurring one at a time, but we would get the same assignments as above. Even without the

batches, the conditions for the theorems in §6 are not satisfied. In particular, the example exploits

lattice structure in the service-time distribution. For this model, the servers are always busy, but

they do not eventually behave as the superposition of i.i.d. stationary point processes.

In summary, we constructed a sequence of special pre-limit queueing models, which converges to

the initial fluid model as r →∞, but for which the routing flow rates are not the unique solution

we get for queueing models satisfying the assumptions of Theorem 3. We have thus proven that

extra degrees of freedom in the routing flow rates cannot be resolved from the fluid model itself.

They must be resolved by stochastic properties of the pre-limit queueing models indexed by r.
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8. The Hybrid Case

We now observe that we can combine the methods in §§5 and 6 to analyze hybrid models, as

defined in §2. We analyze hybrid models by first treating the sparsely connected components,

obtaining the unique solution for the flow rates of each. If these flow rates are non-negative for

each sparsely connected component, we subtract the committed flow from the connecting arc to

the fully connected component. After we have done that for all sparsely connected components, we

solve for the flows in the remaining fully connected model. If we get any negative flow rates when

analyzing the sparsely connected components, the method does not work. For the final analysis

of the fully connected component, we assume that the relevant service-time distributions are non-

lattice without an atom at zero, so that we get the unique solution in (16); again, otherwise the

method does not work.

We illustrate this technique with the X + 1 model with exponential service as shown in Figure

1. The idea is that the allocation for class 3 can be easily determined. Then after removing that

pre-determined flow, we can solve the remaining X model as in the previous section. Note that

the waiting time w can be determined using the conservation of flow equation. Then, we must

have r32 = ν3 ≡ λ3F
c
3 (w). Given that r32 = ν3, the pool 2 service rate available for classes 1 and 2

becomes µ3 − ν3. Therefore, reasoning as for the X model, we get

r11 =
µ1ν1

µ1 +(µ2 − ν3)
, r12 =

(µ2 − ν3)ν1

µ1 +(µ2 − ν3)
, r21 =

µ1ν2

µ1 +(µ2 − ν3)
, and r22 =

(µ2 − ν3)ν2

µ1 +(µ2 − ν3)
.

Note that this solution satisfies the steady-state equations (7)-(8).

This approach can easily be extended to more general hybrid connected models. Figure 3 illus-

trates the technique applied to slightly more complicated models.

9. Simulation Results

In this section we compare our fluid approximations to simulated values. First, we do this for a

hybrid model, then for the X model with many different combinations of interarrival and service-

time distributions, and finally for sparsely connected models yielding negative flows.
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Figure 3 The first hybrid contains one sparsely connected component connected to the fully connected

component. The second contains two sparsely connected components and the third contains four sparsely

connected components.

9.1. A Hybrid Model

Since computing the fluid approximation for a hybrid model requires computation of fluid approx-

imations for both sparsely and fully connected components, presenting simulation results for a

hybrid model helps validate our method for all three classes of routing graphs. Therefore, we will

be working with a queueing model with the routing graph in the bottom left of Figure 3 and

approximate its dynamics with the corresponding fluid model. We simulated the model with both

exponential and uniform service-time distributions. For both cases we simulated Poisson arrivals

and exponential abandonment. We simulated 100,000 arrivals to the system, disregarding an initial

transient 20% of the run. Labelling the nodes in the figure from left to right, the remaining model

parameters we used are:

θi = 1 for i = 1, . . . ,4,

λ1 = 10000, λ2 = 4000, λ3 = 8000, λ4 = 6000,

ηj = 2 for j = 1,2,3,4 η5 = 4,

sj = 1000 for j = 1, . . . ,5.

We can think of this model as being model r = 1000 in a sequence of models indexed by r, where

sj = 1, λ1 = 10, λ2 = 4, λ3 = 8 and λ4 = 6. We focus on the proportions pi,j given in (10). Table 1
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Table 1 Simulation results for hybrid model with expo-

nential and uniform service-time distributions.

Route Fluid Approx. EXP UNIFORM

p1,1 0.4667 0.4652 ± 0.0058 0.4623 ± 0.0083

p1,2 0.4667 0.4682 ± 0.0084 0.4678 ± 0.0076

p1,3 0.0667 0.0664 ± 0.0115 0.0698 ± 0.0107

p2,3 0.4615 0.4617 ± 0.0134 0.4612 ± 0.0089

p2,4 0.5385 0.5382 ± 0.0134 0.5387 ± 0.0089

p3,3 0.2692 0.2691 ± 0.0124 0.2714 ± 0.0073

p3,4 0.3141 0.3164 ± 0.0049 0.3164 ± 0.0052

p3,5 0.4167 0.4144 ± 0.0141 0.4120 ± 0.0073

p4,5 1 1 1

gives our results. EXP refers to the model with service times exponential with mean 1/ηj, while

UNIFORM refers to the model with service times uniform in the interval [1/(2ηj),3/(2ηj)]. The

second column contains the fluid approximation values computed using the method described in §8.

As indicated in §8, the dedicated flow rates for the sparsely connected components are computed

first, and then the fully connected component is considered. All simulation results in this section are

given as 95% confidence intervals. We see that for all routing proportions our fluid approximation

gives results very close to the simulated values in both the exponential and uniform cases.

9.2. The X Model

We now focus on the X model in more detail. We work with the X model since it is the simplest

nontrivial fully connected model. In light of §6, we should expect our fluid approximations to be

close to accurate for arbitrary arrival processes satisfying the SLLN in (1) and for i.i.d. service

times with non-lattice cdf’s without atoms at 0. We see evidence that this is true by simulating

the X model with mutually independent i.i.d. sequences of interarrival times and service times, for

various combinations of interarrival-time and service-time distributions.

The parameters we used for our X model simulations are:

θ1 = θ2 =
1

2
, λ1 = 2000, λ2 = 3000, η1 = 1, η2 = 2, s1 = s2 = 1000.

As in §6 the fluid approximation gives p1,1 = p2,1 = 1−p1,2 = 1−p2,2 = 1/3. Table 2 gives our simu-

lation results. In this table, EXP and UNIFORM denote exponential and uniform distributions,
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Table 2 X model simulation results for various combinations of arrival processes and service time distributions.

Interarrival EXP GAMMA HY PEREXP UNIF ORM TWOPOINT CONSTANT

Service Param.

EXP p11 0.3335 ± 0.0039 0.3320 ± 0.0063 0.3302 ± 0.0054 0.3328 ± 0.0055 0.3348 ± 0.0043 0.3330 ± 0.0041

p21 0.3320 ± 0.0048 0.3330 ± 0.0021 0.3334 ± 0.0049 0.3331 ± 0.0023 0.3334 ± 0.0049 0.3329 ± 0.0063

GAMMA p11 0.3344 ± 0.0056 0.3326 ± 0.0067 0.3333 ± 0.0054 0.3315 ± 0.0046 0.3315 ± 0.0055 0.3328 ± 0.0044

p21 0.3322 ± 0.0035 0.3335 ± 0.0045 0.3342 ± 0.0049 0.3346 ± 0.0046 0.3341 ± 0.0029 0.3333 ± 0.0027

HY PEREXP p11 0.3327 ± 0.0096 0.3334 ± 0.0066 0.3331 ± 0.0057 0.3312 ± 0.0046 0.3331 ± 0.0066 0.3355 ± 0.0072

p21 0.3334 ± 0.0058 0.3332 ± 0.0033 0.3335 ± 0.0057 0.3342 ± 0.0030 0.3332 ± 0.0061 0.3320 ± 0.0046

UNIF ORM p11 0.3335 ± 0.0045 0.3334 ± 0.0048 0.3343 ± 0.0044 0.3342 ± 0.0047 0.3337 ± 0.0044 0.3337 ± 0.0037

p21 0.3328 ± 0.0027 0.3325 ± 0.0052 0.3327 ± 0.0044 0.3323 ± 0.0033 0.3339 ± 0.0033 0.3339 ± 0.0025

TWOPOINT p11 0.3335 ± 0.0066 0.3325 ± 0.0040 0.3341 ± 0.0062 0.3346 ± 0.0034 0.3311 ± 0.0059 0.3326 ± 0.0044

p21 0.3323 ± 0.0056 0.3333 ± 0.0031 0.3331 ± 0.0029 0.3322 ± 0.0026 0.3342 ± 0.0040 0.3329 ± 0.0030

CONSTANT p11 0.3343 ± 0.0056 0.3321 ± 0.0038 0.3328 ± 0.0022 0.3328 ± 0.0034 0.3333 ± 0.0034 0.3340 ± 0.0047

p21 0.3331 ± 0.0037 0.3346 ± 0.0022 0.3341 ± 0.0018 0.3337 ± 0.0020 0.3334 ± 0.0022 0.3328 ± 0.0032

as defined as in the previous section. In addition, we have:

• GAMMA denotes a gamma distribution with mean 1/η and squared coefficient of variation

(SCV, variance divided by the square of the mean) 1/2 (equivalent to E2, an Erlang of order 2),

• HY PEREXP denotes a hyperexponential distribution (a mixture of two exponentials with

means 1/ξj and probability weights pj) with mean 1/η ≡ (p1/ξ1) + (p2/ξ2), balanced means

(p1/ξ1) = (p2/ξ2) and SCV = 4,

• TWOPOINT refers to a two-point distribution attaching probability 1/2 to each of the two

points 1/(2η) and 3/(2η),

• CONSTANT refers to the constant 1/η.

Each box in the table contains 95% confidence intervals for p1,1 and p2,1. We exclude p1,2 and

p2,2 since necessarily p1,2 = 1 − p1,1 and p2,2 = 1 − p2,1. For this example, we have no difficulties

even with the lattice service distributions TWOPOINT and CONSTANT , because the random,

exponentially distributed abandonment serves to remove the deterministic regularity. We also ran

the same simulations with batch arrivals of size 2 and obtained essentially the same results. This

gives further evidence that the arrival distributions do not play a role in the fluid approximations.

These results are presented in the e-companion.

9.3. Negative Flows

In this subsection we consider examples of sparsely connected models in which the unique solution

for the flow rates ri,j produces one or more negative values, so that global FCFS cannot be achieved
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for the model. First, we give a simple example with a single negative flow, and show that simulation

matches the result obtained by decomposing the network into two separate sparsely connected

networks by setting the negative flow eqal to 0, with global FCFS in each component. Next, we

consider a more complicated example with two negative flows. We give one example in which only

one of these flows should be set equal to zero and another in which both should be set equal to

zero. From the parameters, we can perhaps guess the right result, but we have yet to devise a

systematic procedure for determining which negative flows should be set equal to zero. We have

not yet shown that an initially positive flow never should be set equal to zero, but we have not

experienced it.

9.3.1. One negative flow. Consider a W model with the following parameters: λ1 = λ2 =

3, λ3 = 10, θ1 = θ2 = θ3 = 2 and µ1 = µ2 = 1. After solving the system of equations (7)-(8) we find

that p2,2 = −2/3 < 0, with all other flow rates positive. This indicates that global FCFS can not

be achieved for this model. When simulating the model with Markovian parameters for r = 1000,

we find that

p1,1 = p2,1 = p3,2 = 1, p2,2 = 0, w1 = 0.892± .006, w2 = 0.893± .006, w3 = 1.150± .007.

Since p22 = 0, with all other proportions positive, the model actually decomposes into two models.

The first model consists of customer classes 1 and 2 and service pool 1. The second model consists

of customer class 3 and service pool 2. Since wait times for both queues are practically the same,

we see that global FCFS is achieved in the first model in the decomposition. Since the second

model only contains one queue, global FCFS is trivially achieved in the second model.

9.3.2. Two negative flows. We now simulate models for which the fluid flow-rate equations

give two negative flow rates. In the first model, both flows in the simulated queueing model are

actually close to zero. In the second, only one of the flows is actually close to zero. That shows that

we have difficulty in deciding how to decompose the model, without performing simulations. But

we do find that the fluid approximation closely matches simulation after we have found the proper

decomposition. We show the fluid model description both before and after doing the decomposition.
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“Super” N model. Consider a model with parameters given in the left of Figure 4, again

with exponential interarrival, abandonment, and service distributions. We refer to this model as

a “super” N model. Our fluid approximation and simulation results are given in Table 3. Notice

Figure 4 “Super” N and “Super” W model simulation parameters.

Table 3 Simulation results for the “super” N model.

p1,1 p1,2 p2,2 p2,3 p3,3 w1 w2 w3

Fluid Approx. 2.333 -1.333 3.667 -2.667 1 .770 .770 .770

Removing (2,3) 1 0 1 0 1 .346 .346 1.151

Removing (1,2) 1 0 1 0 1 .346 .346 1.151

Simulation 0.976 ± .006 0.024 ± .006 1 0 1 .333 ± .007 .359 ± .006 1.151 ± .010

here we have p12 < 0 and p23 < 0 in the initial fluid approximation. For this example, our simulation

gives p12 ≈ 0 and p23 ≈ 0 as well, and shows that the waiting times are quite different at the three

queues. We clearly are not able to achieve global FCFS in this model. This result is consistent with

decomposing the original model by either (i) removing the route from class 2 to pool 3 first or (ii)

removing the route from class 1 to pool 2 first. In both cases after the first decomposition we are

left with the N model of the previous subsection and an I model, and in both cases we get the

same approximation. In this example we could have simply eliminated the two negative flows at

the outset. This is in contrast to the “super” W model discussed below.

“Super” W model. Now consider a model with parameters given in the right of Figure 4, again

fully Markovian. We refer to this model as a “super” W model. We give our fluid approximation

and simulation results in Table 4. After solving the system of routing flow equations we find that
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Table 4 Simulation results for the “super” W model.

p1,1 p2,1 p2,2 p3,2 p3,3 p4,3 w1 w2 w3 w4

Fluid Approx. 1 1.111 -0.111 2.222 -1.222 1 .923 .923 .923 .923

Removing (3,3) 1 .500 .500 1 0 1 .752 .752 .752 1.151

Removing (2,2) 1 1 0 2.167 -1.167 1 .896 .896 .936 .936

Simulation 1 .500 ± .025 .500 ± .025 1 0 1 .754 ± .007 .754 ± .00 .754 ± .007 1.151 ± .008

p2,2 = −1/9 and p3,3 = −11/9, with all other flow rates positive. Again, this indicates that global

FCFS cannot be achieved for this model. Here we see that although the fluid rate equations give

us a negative value for p2,2, simulation tells us that this proportion is not actually zero. If we

decompose the model by first removing the flow from class 3 to pool 3, then we get a symmetric

W model and an I model (second row of Table 4), where each of these models can achieve global

FCFS. Clearly, this would give us a good fluid approximation. However, if we instead decompose

the model by removing the flow from class 2 to pool 2, we get a symmetric V model and an N

model (third row of Table 4). But since simulation results tell us p2,2 > 0, this would not give us a

good fluid approximation. In this example we can anticipate in advance what will happen in the

initial fluid calculation. Moreover, we can easily see how the network should be decomposed, but

we have yet to specify an automatic procedure to determine the appropriate decomposition. This

phenomenon tells us that further analysis is necessary in order to determine what actually happens

in models for which the fluid rate equations yield multiple negative flow rates.

10. Conclusions

We have shown how to determine the fluid flow rates, and thus also full steady-state performance

descriptions, for a large subclass of overloaded network fluid models with abandonment. We have

identified a hierarchy of complexity in the models, which is captured by the routing graph. We

obtain the desired routing flow rates in three cases: when the model is (i) sparsely connected,

(ii) fully connected and (iii) an appropriate combination of these two cases. Other cases remain

unsolved. The analysis determines whether or not global FCFS is achievable; we obtain a complete

description when it is (in the second case it always is). When it is not, the behavior is evidently

captured by an appropriate decomposition in which one or more arcs with negative flows are
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removed from the model. In the last two solved cases, the routing flow rates are actually not

uniquely determined in general, but become so once we make stochastic assumptions about pre-

limit queueing models converging to the fluid limit. But the results hold for quite general stochastic

models, as a consequence of the classic limit theorem establishing convergence of the superposition

of independent stationary point processes to a Poisson process.

There are many fascinating open problems. We have yet to determine the stationary behavior in

the sparsely connected and hybrid cases when global FCFS fails. We have shown that this occurs

when the characterizing linear system yields negative flows. Evidently, the system behavior can be

described by setting some of these negative flows to zero and analyzing the separate components

of the resulting decomposed network, but we have yet to determine precisely what happens.

There are many routing graphs we have not yet been able to analyze. Moreover, it remains to

prove conjectures 1 and 2, stating that the steady-state fluid equations are asymptotically correct

both as r →∞ and then as t→∞.
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