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In this electronic companion, we first discuss transient dynamics for the fluid model discussed

in the main paper. Next, we give simulation results for the X model with batch arrivals and the

N model. Finally, we discuss open questions related to this work.

1. Transient Dynamics of the Fluid Model

We discuss the transient dynamics of the fluid model, thus elaborating on Conjecture 1 of the main

paper. We assume we are given transient routing flow rates for the model and specify dynamics in

terms of these flow rates. This section closely follows the discussion of transient dynamics of the

single-class single-pool fluid model given in Whitt (2006). We can think of Bi,j(t, y) as the amount

of class i fluid in service in service pool j at time t that has been in service for time less than or

equal to y, and Qi(t, y) as the amount of class i fluid in queue at time t that has been in queue for

time less than or equal to y. As stated in Conjecture 1 in the main paper, we assume that these

functions are continuous with respect to y. We further stipulate that they should have densities b

and q:

Bi,j(t, y) =

∫ y

0

bi,j(t, u)du and Qi(t, y) =

∫ y

0

qi(t, u)du, for all i∈ C, j ∈ S, and y ≥ 0.

(1)
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Also, let Bi,j(t)≡Bi,j(t,∞) be the total amount of class i fluid in service in service pool j at time

t and let Qi(t) ≡ Qi(t,∞) be the total amount of class i fluid in queue at time t, for i ∈ C and

j ∈ S. A clear relationship between Q and B is if the class i queue is not empty then all service

pools that can serve class i fluid must be full:

Qi(t) > 0 =⇒
∑

j∈S(i)

Bi,j(t) = 1 for all t≥ 0, for all i∈ C. (2)

In other words, the model is work-conserving.

Similarly, Ri,j(t) can be thought of as the amount of class i fluid that has been routed to pool j

by time t. We stipulate that this function also has a density ri,j so that

Ri,j(t) =

∫ t

0

ri,j(u)du, for all t≥ 0, for all i∈ C, j ∈ S. (3)

We assume here that the functions Ri,j, i ∈ C, j ∈ S, are given. We do not describe their

dynamics here. Our goal here is to specify the dynamics of Qi and Bi,j , i ∈ C, j ∈ S, in terms of

Ri,j , i∈ C, j ∈ S. In the main paper we discuss how to determine Ri,j, i∈ C, j ∈ S, when the system

is in stationarity.

To describe service and abandonment, we work with hazard rates of the service-time and

abandonment-time distributions, which are well defined by the assumption that F and G are

absolutely continuous:

hs,j(x)≡
gi(x)

Gc
i(x)

and ha,i(x)≡
fi(x)

F c
i (x)

for x≥ 0, for all i∈ C and j ∈ S.

(In this context, 0/0 is naturally to be interpreted as 0.) Clearly, hs,j(x) is the conditional rate of

service for a customer in service pool j ∈ S that has been in service for x amount of time, conditional

on that customer not having been served previously. Similarly, ha,i(x) is the conditional rate of

abandonment of a class i ∈ C customer that has been in queue for x amount of time, conditional

on that customer not having abandoned previously. The total service rate for class-i customers in

service pool j at time t is then

σi,j(t)≡

∫
∞

0

bi,j(t, x)hs,j(x)dx, for all t≥ 0, (4)
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and the total class-i abandonment rate is

αi(t)≡

∫
∞

0

qi(t, x)ha,i(x)dx, for all t≥ 0. (5)

Define the vector versions of the above functions in the obvious way.

For each class i ∈ C and pool j ∈ S, fluid in service at time t that is not served in the next u time

units remains in service, giving us the equation

bi,j(t+u,x+u) = bi,j(t, x)
Gc

j(x+u)

Gc
j(x)

, for all x≥ 0, t≥ 0, and u > 0. (6)

Similarly, for each class i ∈ C, fluid waiting in queue at time t that does not abandon or go into

service in the next u time units, remains in the queue, giving us

qi(t+u,x+u) = qi(t, x)
F c

i (x+u)

F c
i (x)

, for all x≥ 0, t≥ 0, and u > 0, (7)

for content that has not moved into service.

If the queue is not empty, class-i fluid moves into service at time t at the rate

νi(t)≡
∑

j∈S(i)

ri,j(t), for all t≥ 0. (8)

The fluid that moves into service is always the fluid that has been waiting the longest. Therefore,

for each class i and time t, there exists some queue boundary qb
i (t) such that

qi(t, x) = 0, for all t≥ 0 and x > qb
i (t). (9)

We note here that if Wi(t) is the amount of time class-i fluid waits before entering service, then

for each t≥ 0, x≥ 0, Wi(t) satisfies the relationsip Wi(t− qb
i (t)) = qb

i (t).

Also, for each class i ∈ C, the corresponding queue will receive new input at the rate λi as long

as class i input to the system can not go directly into service. Therefore,

qi(t,0) = λi, for all t≥ 0 such that qb
i (t) > 0. (10)



Talreja and Whitt: Electronic Companion – Fluid Models for Overloaded Multi-Class Many-Server Queueing Sys. with FCFS Routing

4 Article submitted to Management Science; manuscript no. MS-00251-2007

Furthermore, for the case where the class i ∈ C queue is empty but all eligible service pools are

busy we have

qi(t,0) = λi − νi(t), for all t≥ 0 such that
∑

l∈C(j)

Bl,j(t) = 1 for all j ∈ S(i) and Qi(t) = 0.

(11)

In this case λi units of class i∈ C fluid enter the system in one unit of time but in this unit of time

νi(t) units of fluid enter service directly. The rest of the fluid joins the class i queue.

We also have directly from the definitions of b(t, x) and r(t),

bi,j(t,0) = ri,j(t), for all t≥ 0, for all i∈ C, j ∈ S. (12)

We now conjecture that, given R, the equations above fully specify the dynamics of B and Q.

Conjecture 1. Given R such that Ri,j(0) = 0 for all i∈ C, j ∈ S, there exist unique continuous

functions B and Q satisfying the description in (1)-(12) and Bi,j(0, y) = Qi(0, y) = 0 for all y ≥ 0,

i∈ C, and j ∈ S.

We show in §7 of the main paper that it is in general not possible to determine the rates R

without taking into account stochastic properties of the pre-limit queueing model. This is why we

assume above that R is given.

2. Additional Simulation Results

In this section we present additional simulation results. We consider the X model with batch

arrivals and the N model. As in the main paper, all results in this section were computed by

simulating 100,000 arrivals to the queueing system, disregarding the initial transient 20%. Also,

each of the simulated values are given as 95% confidence intervals.

2.1. X Model with Batch Arrivals

The parameters we used for our X model simulations are:

θ1 = θ2 =
1

2
, λ1 = 2000, λ2 = 3000, η1 = 1, η2 = 2, s1 = s2 = 1000.
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Table 1 X model simulation results with batch arrivals for various combinations of arrival processes and service

time distributions.

Interarrival EXP GAMMA HY PEREXP UNIF ORM TWOPOINT CONSTANT

Service Param.

EXP p11 0.3331 ± 0.0032 0.3336 ± 0.0028 0.3327 ± 0.0027 0.3335 ± 0.0040 0.3345 ± 0.0030 0.3326 ± 0.0035

p21 0.3337 ± 0.0021 0.3336 ± 0.0028 0.3338 ± 0.0026 0.3330 ± 0.0035 0.3319 ± 0.0024 0.3340 ± 0.0020

GAMMA p11 0.3332 ± 0.0023 0.3332 ± 0.0033 0.3328 ± 0.0016 0.3337 ± 0.0029 0.3322 ± 0.0035 0.3337 ± 0.0023

p21 0.3331 ± 0.0026 0.3331 ± 0.0018 0.3330 ± 0.0032 0.3330 ± 0.0019 0.3331 ± 0.0021 0.3335 ± 0.0020

HY PEREXP p11 0.3337 ± 0.0047 0.3335 ± 0.0043 0.3329 ± 0.0024 0.3348 ± 0.0044 0.3324 ± 0.0048 0.3322 ± 0.0038

p21 0.3341 ± 0.0025 0.3339 ± 0.0032 0.3324 ± 0.0027 0.3331 ± 0.0031 0.3327 ± 0.0057 0.3324 ± 0.0027

UNIF ORM p11 0.3331 ± 0.0038 0.3327 ± 0.0025 0.3330 ± 0.0038 0.3331 ± 0.0032 0.3323 ± 0.0015 0.3341 ± 0.0032

p21 0.3334 ± 0.0024 0.3333 ± 0.0028 0.3337 ± 0.0022 0.3331 ± 0.0021 0.3335 ± 0.0023 0.3332 ± 0.0019

TWOPOINT p11 0.3324 ± 0.0026 0.3342 ± 0.0042 0.3344 ± 0.0044 0.3338 ± 0.0030 0.3334 ± 0.0031 0.3340 ± 0.0027

p21 0.3330 ± 0.0012 0.3335 ± 0.0020 0.3328 ± 0.0029 0.3337 ± 0.0015 0.3333 ± 0.0027 0.3330 ± 0.0021

CONSTANT p11 0.3340 ± 0.0030 0.3334 ± 0.0028 0.3346 ± 0.0036 0.3324 ± 0.0034 0.3327 ± 0.0045 0.3343 ± 0.0035

p21 0.3339 ± 0.0024 0.3341 ± 0.0025 0.3331 ± 0.0028 0.3340 ± 0.0024 0.3338 ± 0.0027 0.3327 ± 0.0024

These parameters are the same as in §9.2 of the main paper, but now arrivals occur in batches

of size 2. The fluid approximation gives p1,1 = p2,1 = 1 − p1,2 = 1 − p2,2 = 1/3. Table 1 gives our

simulation results.

The rows and columns are labelled as in Table 2 of the main paper. Notice that in all cases we

get results consistent with our fluid approximation. This gives us further evidence that the arrival

distributions do not play a role in the fluid approximations.

2.2. N Model

In this section we simulate an N model with parameters given in Figure 1, and with exponential

interarrival, abandonment, and service distributions. Since the N model is sparsely connected,

Figure 1 N model simulation parameters.

we compute our fluid approximation as in §5 of of the main paper. We give numerical results for
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Table 2 Simulation results for the N model.

p1,1 p1,2 p2,2 w1 w2 Q1 Q2

Fluid Approx. 1 0 1 0.346 0.346 499.4 499.4

Simulation 0.975 ± .007 0.025 ± .007 1 0.335 ± .004 0.359 ± .005 490.7 ± 7.9 512.9 ± 7.0

both the fluid approximation and the simulation of the queueing model in Table 2. We find this

N model interesting because our fluid approximation gives p1,2 = 0. The simulation also gives us

p1,2 ≈ 0, but the error is larger than in our previous examples. We attribute the small deviation

from 0 here to not being close enough to the fluid limit (r may not be large enough). We believe

that a stochastic refinement to our fluid model may explain the deviation and provide an improved

approximation.

For recent work on the N model, but under a different routing policy, see Tezcan and Dai (2006).

3. Future Work

There are a number of interesting questions we would like to answer about multi-class many-server

queueing systems with FCFS routing and corresponding fluid models. Here we list some of them.

• When global FCFS fails. We have yet to describe the stationary behavior in the sparsely

connected and hybrid cases when global FCFS fails. We have shown that this occurs when the

characterizing linear system yields negative flows. Evidently, the system behavior can be described

by setting some of these negative flows to zero and analyzing the separate components of the

resulting decomposed network, but we have yet to determine precisely what happens. We conjecture

that system behavior can be accurately described by decomposing the network by eliminating a

subset of the arcs for which the corresponding flows ri,j the are initially not strictly positive. It

remains to develop a systematic procedure to determine the proper decomposition. This problem

occurs when there are initially two negative flows. We have given examples with two intial negative

flows for which it is appropriate to delete (i) one of the two arcs corresponding to the two negative

flows, and (ii) both of these arcs.

• More general routing graphs. We have only described how to compute the flow rates for

sparsely connected and fully connected routing graphs, and combinations of these. We have yet to
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analyze other routing graphs.

• Proof of fluid limit. It remains to prove that the steady-state fluid equations are asymp-

totically correct. In particular, it remains to prove the conjectures here and in the main paper.

Perhaps this can be done first in discrete-time as in Whitt (2006) and then extended to continuous-

time. Alternatively, perhaps it can be done directly for the fully Markovian model, with Poisson

arrivals, exponential service, and exponential abandonment. This has been done in the single-class

single-pool case in Whitt (2004).

• Class-dependent service. We have restricted our analysis to systems where service-time

distributions depend only on the service pool. We would like to be able to extend the analysis to

systems where service times depend on both service pool and customer class. Toward this end, the

recent QED limits by Gurvich and Whitt (2006) may provide guidance.

• Stochastic refinement. It remains to develop stochastic refinements to the fluid approxima-

tions. Stochastic refinements would give us a better second-order understanding of the queueing

systems we have considered.

• State-space collapse. A more tractable first step would be to determine when the queueing

systems considered here admit state-space collapse. Positive results could potentially be established

using results in Dai and Tezcan (2006), which rely on hydrodynamic scaling as described in Bramson

(1998). State-space collapse results would facilitate arguments towards stochastic refinements. We

have reason to believe that state-space collapse does occur here because of the fact that in the fluid

limit virtual wait times at all queues are the same. See Gurvich and Whitt (2006) for related work.
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