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ABSTRACT

We consider an infinite-capacity s-server queue in a finite-state random envi-
ronment, where the traffic intensity exceeds 1 in some environment states and
the environment states change slowly relative to arrivals and service comple-
tions. Queues grow in unstable environment states, so that it is useful to look
at the system in the time scale of mean environment-state sojourn times. As
the mean environment-state sojourn times grow, the queue-length and work-
load processes grow. However, with appropriate normalizations, these pro-
cesses converge to fluid processes and diffusion processes. The diffusion process
in a random environment is a refinement of the fluid process in a random envi-
ronment. We show how the scaling in these limits can help explain numerical
results for queues in slowly changing random environments. For that purpose,
we apply recently developed numerical-transform-inversion algorithms for the



MAP/G/1 queue and the piecewise-stationary Mt/Gt/1 queue.

1. Introduction

An important feature of many complex systems is the existence of differ-

ent behavior on different time scales. For example, in communication and

computer systems the relevant time scale for users may be seconds, while the

relevant time scale for system transactions may be milliseconds or microsec-

onds.

In stochastic models, different time scales can be represented by nearly-

completely-decomposable (NCD) Markov chains; e.g., see Simon and Ando

[38], Courtois [12], Latouche [26], Philippe, Saad and Stewart [34], Chang and

Nelson [3] and Latouche and Schweitzer [28]. In an NCD Markov chain, the

state space can be decomposed into subsets such that the chain usually tends

to move around within each subset and only rarely moves from one subset to

another. If the local chain is ergodic, then the chain tends to reach a local

steady-state within each subset before it leaves. Thus, in a longer time scale

the chain tends to move from one steady-state regime to another, so that

the long-run steady-state probability distribution is an average of the local

steady-state distributions.

However, very different behavior can occur if local steady state cannot be

reached in some of the subsets. Local steady state will not happen if the

Markov chain is transient or null-recurrent within such a subset. This phe-

nomenon arises naturally in an infinite-capacity queue in a slowly changing

environment, where the queue is unstable in some environment states. The

simplest example is perhaps the NCD Markov-modulated M/M/1 queue con-

sidered by Latouche and Schweitzer [28]. Their model is the M/M/1 queue



in a finite-state Markovian environment, where the environment states change

very slowly and in some environment states the arrival rate is greater than the

service rate. Latouche and Schweitzer study the steady-state distribution as

the expected sojourn times in the environment states tend to infinity.

If the queue is unstable in some environment states, and if the environment

states change slowly, then it is useful to focus on such systems in the time

scale of expected sojourns in environment states. We show that, if we scale

space and time appropriately, then the families of queue-length and workload

processes converge to stochastic fluid processes (fluid processes in random

environments) as the expected environment-state sojourn times go to infinity.

After performing the scaling for the fluid limit, the scaled environment process

tends to become fixed, while the arrival and service rates in each environment

state are accelerated. (It is possible to think of the system with this scaling

from the outset.) The acceleration of the arrival and service rates makes the

law of large numbers applicable to the arrival and service processes, and thus

to the queueing processes, within each environment state.

The first implication of this result is that it is natural to study such queue-

ing systems via approximating stochastic fluid processes. To a large extent,

this view is already taken when people directly introduce Markov-modulated

fluid models to represent discrete queueing systems, e.g., see Anick, Mitra and

Sondhi [1], Mitra [32], Stern and Elwalid [39], Elwalid and Mitra [14], Rogers

[37], Kulkarni [24] and references cited there. Nevertheless, it is useful to make

the connection between the models clear.

Once we see the connection between the fluid models and the associated

queueing models, we realize that it may not actually be necessary to sepa-

rately consider the fluid models. We show that any Markov-modulated fluid



model can be represented as a limit of MMPP/G/1 queues, where G can be

any distribution, including exponential (M). The MMPP/M/1 model is espe-

cially tractable because its queue-length process is a quasi-birth-death (QBD)

process. A new efficient algorithm for QBD process has been obtained by La-

touche and Ramaswami [27]. Moreover, we show by example that the limit

is approached sufficiently quickly that algorithms for the MMPP/G/1 queue

can serve as algorithms for Markov-modulated fluid models. We expect that

direct algorithms for stochastic fluid models will usually be more efficient than

MMPP/G/1 queueing algorithms applied to queueing-model approximations

of fluid models, but it is important to recognize that the set of all Markov-

modulated fluid models can be regarded as being contained in the closure of

the set of MMPP/M/1 queueing models.

The second implication of the fluid limits is that much of the queueing

system behavior in this setting can be understood through the scaling in the

fluid limit theorem: Remarkable statistical regularity in numerical results for

the queueing systems can be seen when the scaling is done. We contend that

the limit theorem is important, not only for generating approximations for

intractable systems, but also to interpret the results for tractable systems.

To show how well the scaling explains results for queues in slowly changing

random environments, we exploit numerical-transform-inversion algorithms for

solving the piecewise-stationary Mt/Gt/1 queue in Choudhury, Lucantoni and

Whitt [8] and the MAP/G/1 queue in Lucantoni [29], Lucantoni, Choudhury

and Whitt [30], Choudhury and Whitt [10] and Choudhury, Lucantoni and

Whitt [9].

We also gain insight by looking at how the limiting fluid process depends on

the queueing model. It turns out that the behavior of the environment process



is critical, whereas the behavior of the queueing processes within environment

states is not critical. This is easy to understand from the perspective of time

scales. Changes in the environment occur in the important long time scale,

whereas changes in the queue within an environment state occur in the less

important short time scale. Thus, the limiting results still hold with the same

fluid process limits for the more general infinite-capacity s-server G/G/s queue

in the same Markovian environment (which requires some care in definition).

It is significant that the G/G/s structure affects the limit only via the number

of servers and the arrival and service rates; i.e., there is an asymptotic insen-

sitivity to the arrival process and service-time sequences within environment

states beyond their first moments. Moreover, in the limit the multiple-server

feature tends to play a minor role. As in previous heavy-traffic limits, the

system with s servers behaves the same as a single-server system with s times

the service rate.

On the other hand, changes in the environment process can significantly

affect the limit. The continuous-time Markov-chain (CTMC) environment pro-

cess has exponential sojourn times in each state. After scaling, these sojourn

times again have exponential distributions, but now with mean of order O(1).

The limiting fluid process in a random environment can be significantly dif-

ferent if the CTMC environment process is changed to a non-Markov process.

In some cases, especially with multiple servers, the queueing models are

not easy to solve directly. Then the limiting stochastic fluid models should

often be much easier to analyze. For example, consider the case of a G/G/s

queue with s > 1 in a two-state alternating-renewal-process environment. The

G/G/s model with s > 1 can be difficult even with only a single environment

state. And there is not yet a solution to the G/G/s queue in a two-state



environment. However, the limiting stochastic fluid model with a two-state

environment is quite nice. It has the structure of the GI/G/1 queue; see Kella

and Whitt [22].

This paper is intended to contribute to the growing literature on fluid limits

based on laws of large numbers, e.g., see Chen and Mandelbaum [5], Chen and

Yao [7] and Section 7.5 of Kella and Whitt [23]. In fact, the fluid limit here can

be regarded as a minor modification of previous heavy-traffic limit theorems

in Iglehart and Whitt [18], [19]. If we condition on the environment process,

then we have a sequence of fixed sojourns intervals in different environment

states. We can then proceed inductively, establishing the fluid limit in each

successive interval by using the standard heavy-traffic argument. The early

papers [18], [19] considered only heavy-traffic diffusion processes limits, but it

was known then that there existed corresponding laws of large numbers with

deterministic fluid limits, even though the word “fluid” was not used; e.g., see

Iglehart [17] and Whitt [40], [41], [42] for discussion. The interesting feature

here is the random environment process.

Just as the central limit theorem provides a refinement to the law of large

numbers, convergence to a diffusion process (Brownian motion) in a random

environment provides a refinement to the fluid limits. Again, these diffu-

sion limits follow by standard heavy-traffic arguments once we condition on

the environment process. After we condition on the environment process,

the queue can be regarded as time-dependent, and the heavy-traffic limiting

behavior is as described for the time-dependent M/M/1 queue by Mandel-

baum and Massey [31]. The behavior is somewhat simpler here, because our

time-dependent model is piecewise stationary. Whenever the fluid process is

positive, the diffusion process (Brownian motion) describes fluctuations in the



queue around the fluid process. When the fluid process is staying at 0, we need

to look more carefully at the queue. If the queue is strictly stable (ρ < 1), then

there is no diffusion or, equivalently, its variance parameter is 0. However, if

ρ = 1 in the queue, then the diffusion approximation is reflected Brownian

motion (RBM) with zero drift in this region. We avoid this case in the present

paper by assuming that always ρ > 1 or ρ < 1. (We intend to address the case

ρ = 1 in a subsequent paper.)

Since the diffusion approximation is a refinement to the fluid approxima-

tion, the diffusion approximation is more accurate. However, as shown for the

MMPP/G/1 queue in Section 4, the stochastic fluid approximation itself can

be quite accurate. Although the diffusion process in a random environment

is just a Brownian motion (with variance depending on the environment), it

is difficult to obtain its stationary distribution. An alternative diffusion ap-

proximation is RBM in a random environment, which has been considered by

Asmussen [2] and Karandikar and Kulkarni [20].

There is a setting when the stochastic fluid model is especially appropriate,

namely, when the diffusion limit coincides with the fluid limit. This will occur

when our G/G/s queue in a random environment is essentially a D/D/s queue

in a random environment. Bounds on the approximation error for the D/D/1

case can be constructed as in Chen and Yao [7]. Variants of D/D/1 queues in

a random environment are often appropriate models for emerging high-speed

communication networks and manufacturing systems. Thus there is especially

strong motivation for the stochastic fluid models in some contexts, e.g., as in

Anick et al. [1], Mitra [32], Stern and Elwalid [39] and Elwalid and Mitra [14].

Nevertheless, by virtue of the fluid limits, it is possible to represent these fluid

models as limits of MMPP/M/1 queues and thus apply algorithms for the



queueing models to solve the fluid models. This may be counter to intuition

until one realizes that Poisson processes with high rate behave essentially the

same as deterministic processes.

Here is how the rest of this paper is organized. We begin in Section 2 by

extending the NCD Markov-modulated M/M/1 queue considered by Latouche

and Schweitzer [28] to the s-server analog and indicating what the fluid lim-

its for the queue-length and workload processes should be. In Section 3 we

extend the model to a general G/G/s model in a general stochastic (possi-

bly non-Markovian) environment. We establish stochastic fluid limits for this

much more general model by assuming a conditional strong law of large num-

bers for the interarrival times and service times given that the environment is

in a particular state at a particular time. This general assumption covers many

standard examples and seems natural to make as a direct assumption in ap-

plications. In Section 4 we consider a numerical example for the MMPP/G/1

queue with a fixed general service-time distribution and an MMPP arrival

process with slowly changing environments. We show how the scaling in the

limits help interpret the numerical results.

In Section 5 we discuss diffusion process limits that serve as refinements to

the fluid limits in Section 3. Our key assumption is a conditional functional

central limit theorem for the interarrival times and service times after an en-

vironment process transition. In Section 6 we consider a numerical example

for the piecewise-stationary Mt/Gt/1 queue. Finally, in Section 7 we give the

proofs of the two theorems.

The limits we establish extend to queueing networks in slowly changing

environments, drawing on Chen and Mandelbaum [5], in the spirit of Chen

and Whitt [6], but we do not discuss networks here.



2. The NCD Markov-Modulated M/M/s Queue

We start by defining a family of Markovian queueing processes, which serve

as concrete examples of the systems we consider; this model illustrates a par-

ticular case when the general conditions in Section 3 hold. Our model here is

the multi-server generalization of the NCD Markov-modulated M/M/1 queue

considered by Latouche and Schweitzer [28].

We introduce a reference environment process, which is an irreducible finite-

state continuous-time Markov chain (CTMC) X ≡ {X(t) : t ≥ 0} with in-
finitesimal generator Q ≡ (Qij) of orderm. As usual, the off-diagonal elements
of Q are nonnegative and the row sums are zero. We make a family of slowly

changing environment processes Xε ≡ {Xε(t) : t ≥ 0} by simply slowing down
time:

Xε(t) = X(εt), t ≥ 0 , for ε > 0 . (2.1)

It is easy to see that the CTMC Xε has infinitesimal generator Qε ≡ εQ.
For each ε > 0, define a Markov-modulated M/M/s queue-length process

Nε ≡ {Nε(t) : t ≥ 0} by letting Nε evolve as an M/M/s queue with si servers,
arrival rate λi and individual service rate µi whenever the environment process

Xε is in state i. We assume that si is finite for all i and that each M/M/s

model has infinite capacity and the first-come first-served discipline. The

Markov property implies that there are no end effects when the environment

state changes. The traffic intensity in state i is ρi ≡ λi/siµi. We are interested
in cases where ρi > 1 for at least one i.

The process (Xε, Nε) is an NCD countably-infinite-state CTMC. In partic-

ular, (Xε, Nε) has infinitesimal generator matrix Aε which can be expressed in



block form as

Aε =

















B1 + εQ11I εQ12I . . . εQ1mI

εQ21I B2 + εQ22I . . . εQ2mI

εQm1I εQm2I . . . Bm + εQmmI

















(2.2)

where I is the (infinite-dimensional) identity matrix and Bi is the infinitesimal

generator matrix of the M/M/si queue-length process evolving in state i; i.e.,

with Bi(j, k) being the (j, k)
th element of Bi, Bi(j, j + 1) = λi for j ≥ 0,

Bi(j, j − 1) = jµi for 1 ≤ j ≤ si, Bi(j, j − 1) = siµi for j ≥ si and diagonal
elements chosen so that the row sums are all zero.

The idea is that the CTMC (Xε, Nε) should behave like a Markov-modulated

fluid process Y in the time scale 1/ε (or, equivalently, when time is sped

up by 1/ε) when space is scaled by ε and ε is small. The limit process

Y ≡ {Y (t) : t ≥ 0} is specified by the reference CTMC environment pro-
cess X and deterministic flow rates ri ≡ λi−siµi for each state i; when ri > 0,
there is inflow; when ri < 0, there is outflow. The process X is specified exoge-

neously and, given a sample path of X, Y evolves according to the differential

equation

dY (t)

dt
=











rX(t) if Y (t) > 0

(rX(t))
+ if Y (t) = 0 ,

(2.3)

where (x)+ = max{x, 0}; e.g., see Kulkarni [24]. The scale-(1/ε) behavior for
ε small will be formalized by a limit theorem in the next section. It implies

that

εNε(t/ε)→ Y (t) w.p.1 as ε→ 0 (2.4)

and leads to the associated approximation

Nε(t) ≈ ε−1Y (εt) . (2.5)



The statements in (2.4) and (2.5) are stated for a single t, but actually they

are for the entire process, i.e., for t ≥ 0.
The limiting fluid process Y is nontrivial if and only if ρi > 1 for at

least one i; i.e., if ρi ≤ 1 for all i and Y (0) = 0, then Y (t) = 0 for all
t by (2.3). The fluid limit is not difficult to understand: Scaling time by

1/ε is tantamount to making the environment processes Xε coincide with the

reference environment process X, while accelerating the arrival and service

rates. Since the arrival and potential service counting processes are Poisson

processes, the limit essentially follows from the strong law of large numbers

for the Poisson process.

In our treatment of the queue-length processes Nε each customer’s service

time is not determined upon arrival but instead by the service rates in effect

when that customer is in service. However, in some applications service times

may be determined upon arrival. Then it is useful to consider the workload

process. Let Wε(t) represent the workload at time t, i.e., the remaining service

time of all customers in the system at time t, for the queue in environment Xε.

It turns out that when the workload process Wε ≡ {Wε(t) : t ≥ 0} is properly
scaled (εWε(t/ε)) it too has a Markov-modulated fluid process limit, just like

the queue-length process, but now the deterministic flow rate is ri ≡ (λi/µi)−si
in environment state i.

3. More General Queues in Random Environments

The limiting behavior holds much more generally than for the Markov-

modulated M/M/s queue, but some care is needed in formulation. First, the

environment process X need not be a CTMC; X can be any finite-state pro-

cess. It is important to allow for more general reference environment processes,



because the reference environment process strongly determines system behav-

ior. As regularity conditions, we assume that the sample paths of X have only

finitely many jumps in any finite interval and are right continuous. We assume

that X is specified exogeneously.

It is also not necessary to define the family of slowly changing environment

processes Xε directly in terms of the limit X as in (2.1). It suffices to have

appropriately normalized versions of Xε converge w.p.1 to X as ε ↓ 0, as
indicated below.

We now want to define a queue-length process N in a random environment

X. To do so, we need to define N during any time interval [t, u) for which

the environment state is i. The idea is that N should act as a general G/G/si

queue in state i, where as before si is finite and may depend on i, there is

unlimited waiting room and the first-come first-served discipline prevails.

To begin the definition of N over [t, u), we need to know the initial condi-

tions at time t. Thus we need to know how many customers are in the system

at time t, their residual service times and their order of arrival. These initial

conditions can then be treated as a batch arrival at time t. Given the batch

arrival at time t determined by the process N before time t, we need to specify

the evolution of the general G/G/si model after time t. The generality makes

it cumbersome to specify the initial conditions for this process at t. (There

would be no difficulty in the Markovian setting of Section 2.) In fact, the

limiting behavior should be insensitive to these initial conditions. Hence, we

make a general conditional strong law of large numbers (CSLLN) assumption

on the interarrival times and service times after time t, which should apply to

many specific definitions.

We briefly comment on strategies that could be used to make specific def-



initions. One strategy is a single interrupted process for each environment

state; i.e., we can have stationary marked point processes of arrival times and

service times for each environment state. We can then allocate arrivals from

this single process whenever we are in the designated environment state. Thus,

we can work with the process Ai ≡ {Ai(t) : t ≥ 0}, where Ai(t) is the number
of arrivals in the interval [0, t] where here t is understood to be the total time

spent in environment state i. The idea is that we simply continue where we

left off when we revisit each environment state.

If we want to assign service times at arrival instants (as with the work-

load process), then we can start with a stationary marked point process of

arrival times and service times. Then the service times are the marks that

go with the single arrival process above. On the other hand, if we want to

let service times be determined while service is in process (as with the queue-

length process), then we can allocate service times from a single potential

service process associated with each server and each environment state; i.e.,

allocate service completions from server j in environment state i by the pro-

cess Sij ≡ {Sij(t) : t ≥ 0}, where Sij(t) is the number of potential service
completions in the interval [0, t], where t is the total time server j is busy in

environment state i.

A second strategy is an independent restart. Instead of continuing where

we left off in a single arrival process when revisiting an environment state, we

can start with an independent version of the arrival and service process upon

each new visit to an environment state. It is then necessary to specify initial

conditions for each restart. For example, we might restart with a stationary

version. Note that the Markov-modulated M/M/s queue is consistent with

both of these general strategies.



As indicated above, we do not focus on any specific construction. We

assume that the queue behavior after each environment process transition is

governed by a sequence of potential interarrival times and service times, which

satisfies a CSLLN, as specified below. However, we do not make any other

direct assumptions, such as independence, for this sequence. Let ukn be the

potential interarrival time between the (n− 1)st and nth new arrival after en-
vironment process transition k and let vkn be the n

th potential service time.

When we work with the queue-length process N , the service times are assigned

when customers enter service; when we work with the workload processW , the

service times are assigned upon arrival. Let Hk be the history of the system up
to the time of the kth environment process transition. We assume that the en-

vironment process is specified exogeneously. Hence, it is reasonable to assume

that the future of the environment process is conditionally independent of the

potential interarrival-time and service-time sequence {(ukn, vkn) : n ≥ 1} given
the history Hk. We construct the actual interarrival times and service times in
the sojourn interval in the new environment state after the kth transition from

the potential sequence, using all relevant variables up to transition k+1 in the

environment process. Given that the kth environment process transition is at

time t, we obtain a potential queueing process over the interval [t,∞). If the
next transition of the environment process after time t is at time u, then the

resulting queue length process over the interval [t, u) is the restriction of the

queueing process on [t,∞) to the subinterval [t, u). Note that this construc-
tion is consistent with both of the two more specific constructions mentioned

above.

In this context we assume the CSLLN. For this purpose, let Ukn and Vkn be

the partial sums associated with potential interarrival-time and service-time



sequence {(ukn, vkn)}, i.e.,

Ukn = uk1 + . . .+ ukn and Vkn = vk1 + . . .+ vkn . (3.1)

We assume that

n−1Ukn → λ−1i and n−1Vkn → µ−1i w.p.1 as n→∞ (3.2)

on the set in which the kth environment process transition is to state i, for all

k and i. Condition (3.2) implies that the limits are unaffected by conditioning

on more of the history Hk.
Note that the CSLLN in (3.2) clearly holds in the case of the M/M/s queue

in Section 2 because on the set in which the kth environment process transition

is to state i {ukn : n ≥ 1} and {vkn : n ≥ 1} are independent sequences of i.i.d.
exponential random variables, which are otherwise independent of the history

Hk. Similarly, (3.2) holds for the more general GI/GI/s queue because, after
some initial segment to represent the initial conditions at the kth environment

process transition epoch, on the set in which the kth environment process tran-

sition is to a given state, the sequences {ukn} and {vkn} are again independent
sequences of i.i.d. random variables, but now with general distributions. Then

the limits in (3.2) hold if and only if these distributions have finite means. The

formulation (3.2) allows for even more general models.

To state our limit theorem, let D[0,∞) be the function space of right-
continuous real-valued functions with left limits, endowed with the usual Sko-

rohod topology, as in Ethier and Kurtz [15]. The limit will be convergence

w.p.1 for stochastic processes regarded as random elements of D[0,∞). The
proof is given in Section 7.

Theorem 1 Let Nε ≡ {Nε(t) : t ≥ 0} be the queue-length process and let
Wε ≡ {Wε(t) : t ≥ 0} be the workload process of a multi-server queue in



an exogeneous random environment Xε ≡ {Xε(t) : t ≥ 0}. Assume that the
interarrival times and service times in any environment state i after any time

t satisfy the CSLLN in (3.2). Let Xε(·/ε)→ X(·) in D[0,∞) w.p.1 as ε ↓ 0.
(a) If εNε(0)→ y in �

w.p.1, as ε ↓ 0, where y is deterministic, and if ser-
vice times are determined by the environment state when service is performed,

then

εNε(·/ε)→ Y (·) in D[0,∞) w.p.1 as ε ↓ 0 , (3.3)

where Y is the stochastic fluid process with environment process X, determin-

istic flow rate ri ≡ λi − siµi in state i and initial content Y (0) = y.
(b) If εWε(0) → z in �

w.p.1 as ε ↓ 0, where z is deterministic, and if
service times are assigned upon arrival, then

εWε(·/ε)→ Z(·) in D[0,∞) w.p.1 as ε ↓ 0, (3.4)

where Z is the stochastic fluid limit process with the same environment process

X, deterministic flow rate ri ≡ (λi/µi) − si in state i and initial content
Z(0) = z.

4. An MMPP/G/1 Queue Example

In this section we investigate how the stochastic fluid limit in Section 3

behaves as an approximation for the MMPP/G/1 queue when the environment

states of the MMPP arrival process change slowly and the queue is unstable

in some environment states. We do not consider the Markov-modulated fluid

process directly, although it is not difficult to do so. Instead, we consider

scaled MMPP/G/1 models and observe when convergence is taking place.

Here we only consider the steady-state workload distribution, which we

compute using the algorithm in Choudhury, Lucantoni and Whitt [9], a part



of the Q2 tool described in Choudhury and Whitt [10]. We could also com-

pute transient distributions using Lucantoni, Choudhury and Whitt [30]. For

the special case of exponential service times, the QBD process algorithm of

Latouche and Ramaswami [27] is an attractive alternative, but we want to see

the effect of the service-time distribution.

Hence, we consider the MMPP/G/1 model with only two environment

states, for which the MMPP/G/1 algorithm is very fast. (All computations

described below take only a fraction of a second on a SUN SPARC-2 worksta-

tion.) It does not seem necessary to consider large models (many environment

states) to demonstrate the point that MMPP/G/1 queues can closely approx-

imate stochastic fluid models.

We do the scaling from the outset, so that the environment CTMC can be

regarded as fixed. We let the mean holding times in states 1 and 2 be 1 and 5,

respectively. The scaling thus appears in the arrival and service rates within

the environment states. For each ε > 0, we let the mean service time be ε, so

that the service rate is 1/ε. We let the arrival rates in environment states 1 and

2 be 2/ε and 0.5/ε, respectively. Hence, the queue is locally unstable in state 1,

but locally stable in state 2. The long-run arrival rate is thus 0.75/ε, so that

the traffic intensity is 0.75 for all ε. Thus, there exists a proper steady-state

distribution.

We consider four different service-time distributions, all having the spec-

ified mean: deterministic (D), Erlang of order 4 (E4), exponential (M) and

hyperexponential with balanced means (H b2) having SCV c
2 = 4.0. (An Hb2

distribution is the mixture of two exponentials, with each exponential con-

tributing equally to the mean. It has two parameters: the mean and the SCV.)

Since the deterministic case can cause numerical problems for the numerical



inversion, we use the approximation procedure in Choudhury and Whitt [11]

in order to obtain high accuracy. In this setting we could just as well use Ek

for large k such as k = 1024. (E1024 does not increase the algorithm run time

noticeably with transform inversion.) Indeed, in this particular example the

service-time distribution does not matter much.

Table 1 gives results for the steady-state workload tail probabilities P (Wε >

x) as a function of x, ε and the service-time distribution. (Since the scaling

was done at the outset, no further scaling is needed.) We consider four values

each of x and ε: x = 0.5, 2.5, 4.5 and 6.5 and ε = 10−k for k = 1, 2, 3 and 4.

mean
service service-time
time distribution tail probability P (W > x)
ε x = 0.5 x = 2.5 x = 4.5 x = 6.5

D 0.40260 0.13739 0.04695 0.01604
10−1 E4 0.41100 0.14350 0.05040 0.01770

M 0.44246 0.16168 0.06119 0.02316
Hb2, c

2 = 4 0.52216 0.23002 0.01087 0.05168
D 0.37376 0.11418 0.03488 0.01066

10−2 E4 0.37383 0.11425 0.03492 0.01067
M 0.37670 0.11669 0.03614 0.01120

Hb2, c
2 = 4 0.38466 0.12398 0.03997 0.01289
D 0.37075 0.11183 0.03373 0.01017

10−3 E4 0.37082 0.11189 0.03376 0.01019
M 0.37105 0.11208 0.03385 0.01023

Hb2, c
2 = 4 0.37186 0.11281 0.03422 0.01038
D 0.37044 0.11159 0.03362 0.01013

10−4 E4 0.37045 0.11160 0.03362 0.01013
M 0.37047 0.11164 0.03363 0.01013

Hb2, c
2 = 4 0.37055 0.11169 0.03366 0.01015

Table 1. Steady-state workload tail probabilities P (W > x) in the MMPP/G/1

queue with fixed two-state environment process, mean service time ε and over-



all arrival rate 0.75/ε as a function of x, ε and the service-time distribution.

We also display the first four moments of the steady-state workload Wε

as a function of ε and the service-time distribution in Table 2. A significant

feature of the inversion algorithm [10] is that it can quickly calculate moments

of all orders.

The convergence to the fluid limit is evident from Tables 1 and 2, in the

way all results rapidly approach common limits as ε decreases. For practical

mean
service service-time
time distribution moments E[W k]
ε k = 1 k = 2 k = 3 k = 4

D 1.002 3.65 20.4 151.9
10−1 E4 1.042 3.88 22.2 170.0

M 1.161 4.63 28.5 234.6
Hb2, c

2 = 4 1.621 8.45 67.8 729.0
D 0.8504 2.860 14.47 97.64

10−2 E4 0.8508 2.862 14.48 97.76
M 0.8666 2.941 15.06 102.79

Hb2, c
2 = 4 0.9134 3.188 16.89 119.36
D 0.8350 2.786 13.95 93.09

10−3 E4 0.8354 2.788 13.96 93.21
M 0.8367 2.794 14.00 93.58

Hb2, c
2 = 4 0.8414 2.817 14.17 95.04
D 0.8334 2.779 13.89 92.64

10−4 E4 0.8335 2.779 13.90 92.65
M 0.8337 2.779 13.90 92.69

Hb2, c
2 = 4 0.8341 2.782 13.92 92.83

Table 2. The first four moments of the steady-state workload in the MMPP/G/1

queue with fixed two-state environment process, mean service time ε and over-



all arrival rate 0.75/ε. as a function of ε and the service-time distribution.

purposes, the tail probabilities reach their limit by ε = 10−2, while the mo-

ments reach their limit by ε = 10−3. The convergence is recognized by ob-

serving when changing ε makes negligible difference. From Tables 2 and 3, we

see that then the service-time distribution ceases to matter as well, just as we

would predict from Theorem 1. (The steady-state distributions of the limiting

stochastic fluid model there are independent of the service-time distributions

beyond their means.) Theorem 1 does not apply directly, because it describes

convergence of sample paths, and thus convergence of finite-dimensional dis-

tributions, but not convergence of steady-state distributions. For practical

purposes, it is reasonable to interchange the order of limits ε ↓ 0 and t→∞,
even though there is something more to prove.

We do not actually display the distribution for the stochastic fluid limit

in Tables 1 and 2, but the numerical results for the queueing models with

different scalings clearly show that convergence is taking place as ε ↓ 0 and
that the approximation will be excellent for ε suitably small. We could use

one computed case as an approximation for another.

5. Diffusion Process Refinements

We now obtain refinements to the fluid limits in Theorem 1 in Section 3.

For this purpose, we assume a conditional functional central limit theorem

(CFCLT) for the interarrival times and service times paralleling the CSLLN

in (3.2). However, first we need to define what we mean by conditional weak

convergence. Let⇒ denote the usual weak convergence (convergence in distri-



bution); e.g., see Ethier and Kurtz (1986). Let {Xn, n ≥ 1} and X be random
elements of a separable metric space. Then a standard characterization of

weak convergence is: Xn ⇒ X as n→∞ if Ef(Xn)→ Ef(X) as n→∞ for
all bounded continuous real-valued functions f . Now assume that the random

elements Xn, n ≥ 1, and X are also all defined on a common probability space
(Ω,F , P ) and let G be a sub-σ-field of F . We say that Xn ⇒ X conditional
on G if

E[f(Xn)|G]→ E[f(X)|G] w.p.1 as n→∞ (5.1)

for all bounded continuous real-valued functions f . It is elementary that con-

ditional weak convergence implies ordinary weak convergence, because the

convergence in (5.1) implies the convergence of the expectations. (Recall that

f is bounded and continuous.)

Now we are ready to state our CFCLT assumption. We assume that

[n−1/2(Uk,bntc − ntλ−1i ), n−1/2(Vk,bntc − ntµ−1i )]⇒ [B1(t), B2(t)] (5.2)

in D[0,∞)2 as n → ∞, conditional on history Hk, including that the kth

environment process transition is to state i, for each i and k, where bxc is the
greatest integer less than or equal to x andB1(t) and B2(t) are two independent

zero-drift Brownian motions with diffusion coefficients σ2ui and σ
2
vi. (It is also

straightforward to treat the case in which B1 and B2 are dependent.) As with

the CSLLN assumption (3.2), it is easy to see that (5.2) is satisfied in the

standard special cases.

For simplicity, we assume that we never have ρi = 1 for any i. Then the

diffusion limit applies precisely to the regions that the fluid limit is positive.

As in Theorem 1, we assume that the scaled environment processes converge



w.p.1, i.e., Xε(·/ε) → X(·) in D[0,∞) w.p.1 as ε ↓ 0. The diffusion limit de-
pends on both the limiting environment process and the limiting fluid process.

A subtle point is the proper treatment of the times when the fluid process

first hits 0. To the right of this time, the diffusion is 0, while to the left of

this time, with probability one, it will not be 0. Hence there will be jumps in

the limit process at these times. We circumvent this difficulty in the present

paper by avoiding these times. We do so by establishing convergence of the

finite-dimensional distributions at all times except those times which are jump

times with positive probability. This mode of convergence is weaker than weak

convergence in D[0,∞) with one of the usual topologies, but it justifies our
desired approximations. We intend to establish a stronger weak convergence

result in a subsequent paper.

Let Y be a fluid process and let Ẏ (t−) be the left derivative at t, i.e.

Ẏ (t−) = lim
u↓0

Y (t)− Y (t− u)
u

, (5.3)

which is always well defined since the sample paths of Y are piecewise linear.

Then let TY be the set of times t for which

P (Ẏ (t−) < 0, Y (t) = 0) > 0 . (5.4)

In many applications TY will be empty. For example, if the environment
process X is a continuous-time Markov chain, this will be the case.

We avoid these fixed zero-hitting times by considering convergence of the

finite-dimensional distributions for all times t not in the designated set TY .
We say that Zε(·) ⇒f Z(·) in D[0,∞) as ε ↓ 0 with respect to TY if for all
positive integers k and all positive time points t1, ..., tk not in TY

[Zε(t1), ..., Zε(tk)]⇒ [Z(t1), ..., Z(tk)] in � k as ε ↓ 0 . (5.5)



Obviously convergence in ⇒f implies ordinary convergence in distribution
Zε(t) ⇒ Z(t) in

�
as ε ↓ 0 for a single time point t not in TY (the case

k = 1 above).

Theorem 2 Let the processes Nε and Wε be defined as in Theorem 1. Assume

that Xε(·/ε)→ X(·) in D[0,∞) w.p.1 as ε ↓ 0, ρi 6= 1 for all i, and the CFCLT
in (5.2) holds.

(a) If εNε(0) ⇒ y in �
as ε ↓ 0, where y is deterministic, and if service

times are determined by the environment state when service is performed, then

√
ε(Nε(·/ε)− Y (·)/ε)⇒f Ỹ (·) in D[0,∞) with respect to TY , (5.6)

where Ỹ is a zero-drift Brownian motion with diffusion coefficient σ2y depending

on the state of the limiting fluid and environment process. When Y (t) = 0,

the diffusion coefficient σ2y of Ỹ (t) is 0; when Y (t) > 0 and X(t) = i, σ
2
y =

λ3iσ
2
ui + siµ

3
iσ
2
vi.

(b) If εWε(0) ⇒ z in �
as ε ↓ 0, where z is deterministic, and if service

times are assigned upon arrival, then

√
ε(Wε(·/ε)− Z(·)/ε)⇒f Z̃(·) in D[0,∞) with respect to TZ , (5.7)

where Z̃ is a zero-drift Brownian motion with diffusion coefficient σ2z depending

on the state of the limiting fluid and environment process. When Z(t) = 0,

σ2z = 0; when Z(t) > 0 and X(t) = i, σ
2
z = λiσ

2
vi + µ

−2
i λ

3
iσ
2
ui.

6. A Piecewise-Stationary Mt/Gt/1 Queue Example

In this section we investigate how the fluid and diffusion limits in Sections 3

and 5 behave as approximations for the piecewise-stationary Mt/Gt/1 queue.



The piecewise-stationary Mt/Gt/1 model is the stationary M/G/1 model in

a random environment, where the environment evolves deterministically. We

obtain exact results by applying the algorithm to compute the time-dependent

workload distribution in Choudhury, Lucantoni and Whitt [8]. Hence we only

consider the workload process here.

Let the service-time distribution be fixed; in particular, let it be gamma

with mean 1 and squared coefficient of variation (SCV, variance divided by

the square of the mean) c2. (The usual gamma shape parameter is 1/c2.)

We consider three cases: c2 = 0.25, 1.0 and 4.0. There are two environment

states. The process is in environment state 1 in the time interval [0, ε−1] and

in environment state 2 in the time interval [ε−1, 2ε−1]. The arrival rate is 2.0

in environment state 1 and 0.8 in environment state 2. Therefore, the queue

is unstable in environment state 1, but stable in environment state 2.

The limit theorems in Sections 3 and 5 imply convergence for the entire

workload processes, but for simplicity we consider only the marginal distribu-

tion at the end of the second interval. In particular, we look at the distribution

of the workload at time 2ε−1 as a function of ε. (Note that ε−1 is the sojourn

time in each environment state.) The fluid process increases at rate 1 in envi-

ronment state 1 and decreases at rate 0.2 in environment state 2, so that the

value of the fluid process is 0.8 at time 2. Theorem 1 implies that

εWε(2/ε)→ 0.8 w.p.1 as ε ↓ 0, (6.1)

so that the resulting fluid approximation is

Wε(2/ε) ≈ 0.8/ε. (6.2)

Similarly, Theorem 2 implies that

√
ε(Wε(2/ε)− 0.8/ε)⇒ N(0, σ2) in �

as ε ↓ 0, (6.3)



where N(m, σ) is a random variable having the normal distribution with mean

m and variance σ2. (Note that the time 2 is not a zero-hitting time for the

limiting fluid process.) By Theorem 2, the diffusion coefficient in environment

state i is λi(c
2 + 1). By basic properties of Brownian motion, the variance σ2

in (6.3) is the sum of the variances over the two intervals; i.e., σ2 = 2.8(c2+1).

A consequence of the diffusion approximation is the normal approximation

Wε(2/ε) ≈
0.8

ε
+
1√
ε
N(0, 2.8(c2 + 1)). (6.4)

Equivalently,

P
(

Wε(2/ε) >
0.8

ε
+ x
√

2.8(c2 + 1)/ε
)

≈ P (N(0, 1) > x). (6.5)

We evaluate the normal approximation (6.5) by computing the exact values

of the tail probability on the left side of (6.5) for three values of ε, five values

of x and three values of c2, using the numerical inversion algorithm in [8].

The results are shown in Table 3. The numerical inversion computations are

accurate to well beyond the given digits, so that the difference between the

numerical results and the normal tail probability is the error in the normal

approximation.

1/ε c2 σ/
√
ε x = −2.0 x = −1.0 x = 0.0 x = 1.0 x = 2.0

0.25 18.7 0.9817 0.8514 0.5099 0.1671 0.0267
102 1.00 23.7 0.9834 0.8530 0.5083 0.1676 0.0281

4.00 37.4 0.9895 0.8590 0.5067 0.1696 0.0315
0.25 59.2 0.9787 0.8445 0.5031 0.1613 0.0239

103 1.00 74.8 0.9791 0.8447 0.5027 0.1618 0.0245
4.00 118.3 0.9804 0.8461 0.5023 0.1628 0.0257
0.25 187.1 0.9775 0.8426 0.5006 0.1600 0.0228

104 1.00 236.6 0.9777 0.8424 0.5008 0.1597 0.0233
4.00 374.2 0.9782 0.8428 0.5007 0.1600 0.0237

P (N(0, 1) > x) 0.9773 0.8413 0.5000 0.1587 0.0227



Table 3. A comparison of workload tail probabilities for the piecewise-stationary

Mt/Gt/1 queue with the normal approximation. For each triple (x, ε, c
2), the

computed workload tail probability is the left side of (6.5).

The results in Table 3 strongly confirm the normal approximation (6.5),

which in turn supports the diffusion approximation. The diffusion approxima-

tion also confirms the fluid approximation, but in this case of a deterministic

environment process the fluid approximation might well be judged as insuffi-

ciently accurate. (In Table 3, the fluid approximation yields 1.00 for x < 0,

0.50 for x = 0 and 0.00 for x > 0.) The predicted standard deviation of

Wε(2/ε), σ/
√
ε in (6.3), is displayed in Table 3 to show the spread of the

normal distribution approximation about its mean, which is the fluid approx-

imation. For c2 = 1, the predicted standard deviation is 29.6%, 9.4% and

3.0% of the mean 0.8/ε when ε = 10−k for k = 2, 3 and 4. For applications

related to this example, the fluid approximation thus is probably good enough

for ε = 10−4, but not for ε = 10−2.

From Table 3, we see that the quality of the normal approximation improves

as ε decreases. The quality also tends to improve as c2 decreases (excluding the

case x = 0). Most important, Table 3 shows that the scaling in (6.5) provides

a unified view of the different cases considered.

We remark that the case we consider is a relatively good case for the

diffusion approximation. A more difficult case for ε not too small would be

λ1 = ρ1 = 1.1 and λ2 = ρ2 = 0.9. Then the queue is more likely to become

empty (be affected by the barrier at 0) in the first environment state. When the

traffic intensities are closer to 1 and the expected environment state sojourn

times are not exceptionally long, it is natural to consider RBM with drift, in a



random environment, as an approximating process. That approximation can

be obtained as a limit by considering a sequence of models in which the traffic

intensities approach 1 in each environment state, as in Iglehart and Whitt [19].

It is considered directly by Asmussen [2] and Karandikar and Kulkarni [20].

We do not consider it here; we intend to compare the different approaches in

a future paper.

7. Proofs

In this section we prove Theorems 1 and 2.

Proof of Theorem 1. It should be clear why the processes Nε and Wε

are convenient in the two circumstances: If service times are determined by

the environment state when service is performed, then the specified service

times vkn after environment process transition k will be the service times for

the process Nε after time t until the environment state next changes. If,

instead, service times are determined upon arrival, then the service times vkn

after environment process transition k will be the increments to the workload

process Wε until the environment state next changes.

The proofs for parts (a) and (b) are essentially the same, so we primarily

focus on part (a). Moreover, the overall argument is similar to previous heavy-

traffic limit theorems, e.g., in Iglehart and Whitt [18], [19] and Kella and Whitt

[21], so we will be brief. Since the limit process Y has continuous paths,

it suffices to use the topology of uniform convergence on bounded intervals

on D[0,∞). We show the desired convergence by focusing on the successive
sojourn intervals in environment states.

Let Tn (Tεn) be the n
th jump time of X (Xε) with Tn = ∞ (Tεn = ∞) if

there are fewer than n jumps. (Usually there will be infinitely many jumps.)



It is not difficult to see that the convergence assumption Xε(·/ε) → X(·) in
D[0,∞) w.p.1 as ε ↓ 0 is equivalent to

{(εTεn, Xε(Tεn) : 0 ≤ n ≤ n0} → {(Tn, X(Tn) : 0 ≤ n ≤ n0} w.p.1 (7.1)

in
� 2n0+2 as ε ↓ 0 for all positive integers n0. We now condition on the sample

path of the limiting environment process and the sample paths indexed by ε

converging to it.

Note that the fluid process has a constant rate over each sojourn interval,

except for those intervals [Tn, Tn+1) in which the fluid process has a negative

rate and hits 0. We break up these intervals into two pieces, so that the fluid

process has constant rate on all subintervals. For simplicity, assume that it

hits 0 before the endpoint Tn+1 w.p.1 when it does so, but it is not difficult to

treat the other case in which the fluid process hits 0 exactly at Tn+1 too. We

then augment the sequence {Tn} by the times that the fluid process first hits
the origin in a sojourn interval. Similarly, we augment each sequence {εTεn}
by the times that εNε(·/ε) first hits the origin in a sojourn interval. The fact
that the fluid process hits the origin before the end of the interval implies that

the scaled queueing process will also for ε suitably small. Hence, there is a new

time εTεn for each new Tn for all sufficiently small ε. We can now establish the

new version of (7.1) inductively, exploiting the old version of (7.1).

With the new sequence {Tn}, the fluid process has constant rate on each
subinterval [Tn, Tn+1). Given the w.p.1 representations of (7.1) and the condi-

tion εN(0)→ y w.p.1 as ε ↓ 0, where y is deterministic, it suffices to establish
uniform convergence on the environment-state sojourn intervals, i.e., it suffices

to show that

sup{|εNε(t/ε)− εNε(Tεn)− γit| : εTε,n ≤ t < εTε,n+1} → 0 w.p.1 as ε ↓ 0 (7.2)



on the set {X(Tn) = i} for each i and n, where γi = 0 if Y (t) = 0, Tn ≤
t ≤ Tn+1 (which will occur if Y (Tn) = 0, X(Tn) = i and ri ≤ 0), and γi = ri
otherwise. Note that, for almost all sample points in the set {X(Tn) = i},
Xε(εTεn) = i as well for all ε suitably small. On the set {X(Tn) = i} and over
the interval Tεn ≤ t < Tε,n+1, (7.2) corresponds to a heavy-traffic functional
strong law of large numbers (FSLLN) for the queue-length process Nε. This

heavy-traffic FSLLN follows by the same argument as for the heavy-traffic

functional central limit theorem (FCLT) in Iglehart and Whitt [18], assuming

that the interarrival times and service times satisfy FSLLNs. (That heavy-

traffic argument in [18] has some technical complications: In [18] it is shown

that it suffices to assume that all servers are continuously busy when the traf-

fic intensity is greater than or equal to 1. See Chen and Mandelbaum [4] for

related arguments applied to networks of single-server queues.) We also need a

functional generalization of (3.2). However, the assumed ordinary CSLLNs in

(3.2) are actually equivalent to the associated conditional FSLLNs; see The-

orem 4 of Glynn and Whitt [16]. Hence (3.3) is proved. When we turn to

establishing (3.4), we use the fact that the CSLLN assumption (3.2) implies

a corresponding CSLLN for the total input
∑A(t)
i=1 vi, where A(t) is the arrival

counting process associated with the interarrival-time sequence {un}.
Proof of Theorem 2. The proof begins just as in the proof of Theorem 1.

Once we specify the limiting environment process sample path, we specify the

corresponding fluid process sample path. Then we can recursively apply the

heavy-traffic limit theorem in Iglehart and Whitt [18] over successive environ-

ment process sojourn intervals. Suppose that, after the conditioning, [Ti, Ti+1)

is an interval for which Y (Ti+1−) > 0 and Y (Ti+1) = 0. The previous heavy-
traffic argument establishes a FCLT over the intervals [Ti, t] for any t such that



Ti < t < Ti+1. This in turn is equivalent to weak convergence in the space

D([Ti, Ti+1)), i.e., where the interval [Ti, Ti+1) is open on the right; see [42].

This means that we do not establish convergence at Ti+1, but we do not need to

because w.p.1 Ti+1 ∈ TYj . (We discuss this point further below.) Even though
we do not establish convergence at zero-hitting times, we can proceed induc-

tively over successive intervals [Ti, Ti+1]. The initial position for the diffusion is

determined by the previous interval, with the future increments of the Brown-

ian motion independent of the history in previous intervals, by virtue of (5.2).

The diffusion coefficients are obtained from p. 155 of Iglehart and Whitt [18]

and Section 2 of Whitt [40]. The argument just given establishes conditional

weak convergence as in (5.1) for the finite dimensional distributions, exclud-

ing time points in TY , where the conditioning σ-field G in (5.1) represents the
limiting environment process. As indicated after (5.1), this conditional weak

convergence of the finite-dimensional distributions directly implies ordinary

weak convergence of the finite-dimensional distributions, which is the result to

be proved.
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