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Abstract

To better understand what stochastic model might be appropriate in applications with sys-
tem data, we study the consequences of fitting a stationary birth-and-death (BD) process to the
sample path of a periodic Mt/GI/∞ model. The fitted BD process will necessarily have the
correct steady-state distribution (appropriately defined), but will not have the correct transient
behavior. Nevertheless, the fitted birth-rate and death-rate functions have structure determined
by the Mt/GI/∞ model that should be seen with data if the Mt/GI/∞ model is appropriate.
In this paper, we establish heavy-traffic fluid limits that yield explicit approximation formulas
for the fitted birth-rate and death-rate functions that can help evaluate whether a periodic
Mt/GI/∞ model is appropriate. We also establish many-server heavy-traffic fluid limits for the
steady-state distribution in the periodic Mt/GI/∞ model. For the special case of sinusoidal
arrival rates, the limiting steady-state distribution has an arcsine law.

Keywords: stochastic grey-box queueing models, periodic queues, periodic arrival rates, periodic
steady state, birth-and-death processes, fitting birth-and-death processes to data, many-server
heavy-traffic limits.
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1 Introduction

This paper is a sequel to [5, 6] in which we began to investigate grey-box modeling of queueing
systems. Specifically, we investigated if we can diagnose what stochastic queueing models might be
appropriate in an application by fitting a stationary state-dependent birth-and-death (BD) process
to system data. In doing so, we assume that the data can be regarded as a segment of the sample
path from a stochastic process {Q(t) : t ≥ 0} that takes values on the nonnegative integers and
makes all its transitions in unit steps, but may not itself be a BD process.

In [5, 6] we studied this BD fitting applied to the general GI/GI/s and periodic Mt/GI/s
models, respectively, and found that the fitted birth-rate and death-rate functions have structure
that can help us diagnose when those models are appropriate. In [5] we also established heavy-
traffic limits that added insight. Our purpose here is to do the same for periodic Mt/GI/∞ models.
In particular, here we develop heavy-traffic fluid approximations for the fitted birth-rate and death-
rate functions by establishing heavy-traffic fluid limits. These fluid rate approximations characterize
the structure of the birth-rate and death-rate functions in the periodic Mt/GI/∞ model. We also
establish fluid limits for the steady-state distribution of periodic Mt/GI/∞ queues, extending a
result for the Mt/M/∞ special case in [27].

1.1 Estimating Steady-State Distributions via BD Rates

Suppose that Q(t) has a proper limiting steady-state probability mass function (pmf) α as t → ∞;
i.e., P (Q(t) = k) → αk as t → ∞ for each k ≥ 0, where

∑∞
k=0 αk = 1. Given system data, i.e.,

a segment {Q(s) : 0 ≤ s ≤ t} of the sample path, a standard way to estimate the pmf α is to
calculate the proportion of time spent in each state; i.e., if Tk(t) is the total time spent in state k
during [0, t], then we estimate αk by

ᾱk(t) ≡
Tk(t)

t
, k ≥ 0, (1)

where ≡ denotes equality by definition.
Given that all transitions of the stochastic process {Q(t) : t ≥ 0} are unit transitions, then there

is an alternative way to estimate α that may be attractive. Let Ak(t) and Dk(t) be the number
of arrivals and departures, respectively, observed in state k over [0, t]. State-dependent birth and
death rates can be estimated by

λ̄k(t) ≡
Ak(t)

Tk(t)
and µ̄k(t) ≡

Dk(t)

Tk(t)
. (2)

We then estimate the steady-state distribution by solving the local-balance equations for a BD
process; i.e., we let ᾱe(t) ≡ {ᾱe

k(t) : k ≥ 0} be the solution to the equation

ᾱe
k(t)λ̄k(t) = ᾱe

k+1(t)µ̄k(t), k ≥ 0, (3)

with the additional property that
∑∞

k=0 ᾱ
e
k(t) = 1. We use the superscript e to denote that the

vector ᾱe
k(t) is obtained from the estimated BD rates in (2) via (3).

If the stochastic process {Q(t) : t ≥ 0} is actually a BD process, then (2) is the natural model-
fitting procedure [2, 14, 29]. In fact, these are the maximum likelihood estimators for these rates.
Then (3) is the standard way to find the steady-state pmf α. However, we are not restricting
attention to BD processes.

It is remarkable that, without making any stochastic assumptions, the two empirical steady-
state probability vectors ᾱ(t) in (1) and ᾱe(t) in (3) are intimately related: If Q(0) = Q(t), then the

2



two probability vectors ᾱ(t) and ᾱe(t) constructed from the sample path over [0, t] are identical.
More generally, they are stochastically ordered; see Theorem 1 of [26]. Moreover, under minor
regularity conditions, ᾱe

k(t) and ᾱk(t) are both consistent estimators of αk, i.e.,

αk ≡ lim
t→∞

ᾱk(t) = lim
t→∞

P (Q(t) = k) = lim
t→∞

ᾱe
k(t); (4)

see Chapter 4 of [9] and Corollary 4.1 of [26]. (These properties can be regarded as consequences
of rate-conservation, like Little’s law, i.e., the fundamental queueing relation L = λW , e.g., see
[9, 15] and references therein.) In this paper we will be concerned with the limiting rates, as is
relevant if we have large samples. When we refer to estimates such as λ̄k without a time argument,
we understand that it represents the limit as t → ∞.

1.2 The Indirect Estimation Procedure for Periodic Mt/GI/s Queues

The indirect estimation procedure was investigated for periodic Mt/GI/s models in [6]. Of course,
P (Q(t) = k) does not converge as t → ∞ in the periodic Mt/GI/s model, so we need to explain.

Suppose that the arrival-rate function is periodic with period c. The stochastic process {Q(t) :
t ≥ 0} has a dynamic steady-state pmf α(t), 0 ≤ t < c (a family of pmf’s indexed by t), and an
overall steady-state pmf αc if the following limits are well defined probability vectors:

αk(t) ≡ lim
n→∞

P (Q(nc+ t) = k) = lim
n→∞

1

n

n
∑

j=1

1{Q(jc+t)=k}, 0 ≤ t < c, and

αc
k ≡ 1

c

∫ c

0
αk(t) dt = lim

t→∞
1

t

∫ t

0
1{Q(s)=k} ds, k ≥ 0. (5)

Moreover, αc can be directly regarded as a limiting steady-state pmf (a special case of the pmf α
defined above) if we randomize the initial time uniformly over the interval [0, c]. It is the steady-
state pmf αc that we consider for periodic queues. The overall steady-state pmf αc is of practical
interest, e.g., for a hospital emergency room, because it reveals the long-run frequency of different
occupancy levels and thus the average congestion and the average use of resources.

The numerical examples in [6] were for the sinusoidal arrival rate function

λ(t) ≡ λ̄λ1(t), where λ1(t) ≡ 1 + β sin (γt), (6)

which has cycle length c = 2π/γ. There are three parameters: (i) the average arrival rate λ̄, (ii) the
relative amplitude β and (iii) the time scaling factor γ or, equivalently, the cycle length c = 2π/γ.

In §5 of [6] it was shown for that it was possible to fit the rather complex stationary state-
dependent birth-rate function associated with the Mt/GI/s model having the arrival-rate function
in (6) using a parametric function with only two parameters, in particular,

λp
k ≡ a arctan b(k − c) + d, (7)

which is nondecreasing in k with finite limits as k increases and decreases, and has the parameter
four-tuple (a, b, c, d). For the arrival-rate function in (6), we found that it suffices to let c = d = λ̄, so
that leaves only the two parameters a and b. Consistent with expectations, the indirect estimation
procedure was especially effective in obtaining a reasonable estimate of α with relatively small
sample sizes, especially in the tails where there are only a few data points.
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1.3 Application of the Fitted BD Process

We have found that the fitted BD process can be effective as a direct approximation for the stochas-
tic process representing the number of customers in the system in the non-Markov stationary many-
server M/GI/s + GI queueing model with customer abandonment (the +GI), which has i.i.d.
service times and patience times with general distributions. In [24] we found that this complex
non-Markov model could be well approximated by the associated M/M/s+M(k) BD model, where
M(k) denotes a state-dependent abandonment rate. The approximating BD model was constructed
directly (analytically) in [24], but we also have observed that the statistical fitting approach tends
to produce a very similar BD model to that analytical approximation. For the M/GI/s + GI
queueing model in [24], the fitted BD process can be effective as a direct approximation for the
stochastic process representing the number in system.

However, as in [5, 6], we have a different objective here. We are not seeking a direct approx-
imation. Instead, we want to develop a diagnostic tool to test whether the Mt/GI/∞ model is
appropriate; we do not intend that the BD process be used as a direct approximation, although it
necessarily has the correct steady-state distribution. In [5] we did find that the fitted BD process
can be used as a direct approximation for the transient behavior of the GI/GI/s model if we in-
clude an additional time transformation. However, for the periodic Mt/GI/s models considered in
[6] and here, the stationary fitted BD process cannot capture the periodic transient behavior of the
original model. The fitted BD process can be a convenient way to calculate the steady-state distri-
bution of the periodic model, as illustrated by §5 of [6], but mostly we want to identify structure
in the fitted birth-rate and death-rate functions that will allow us to determine whether data are
consistent with the periodic model, as we illustrate in §1.4 below.

1.4 A Diagnostic Tool for Model Fitting

Our study of the GI/GI/s models in [5] and Mt/GI/s models in [6] show that the fitted rates in
these models tend to have consistent structure that helps determine if such a model is appropriate.
From these studies of theGI/GI/s andMt/GI/s models, we find that these models have signatures.
If these features are not seen in data analysis, then the candidate model is likely to be inappropriate.
For example, when s is not too small, for a wide class of these models (i.e., for different arrival and
service processes) the fitted death rates tend to have the approximate form

µ̄k ≈ (k ∧ s)µ, k ≥ 0, (8)

when the mean service time is E[S] = 1/µ, where a ∧ b ≡ min {a, b} and ≡ denotes equality
by definition. (This holds exactly for exponential service distributions.) The fitting can detect
systematic deviations from these s-server models, e.g., caused by time-varying staffing or agent
absenteeism, as discussed in [12, 25].

Figure 1 (a variant of Figure 23 of [6]) illustrates by showing the fitted BD rates obtained from
25 weeks of data from an Israeli emergency department studied in [1, 28].

It is well known that the arrivals to an ED vary strongly over time, just as in most service
systems. Thus, a natural candidate rough aggregate model for an ED is the Mt/GI/∞ queue,
which has a nonhomogeneous Poisson process (NHPP) as its arrival process, i.i.d. service (length-
of-stay, LoS) times with some general (non-exponential, perhaps lognormal) distribution, s servers,
unlimited waiting space and service in order of arrival. The assumption that the length-of-stay
random variables are i.i.d. might be postulated under the assumption that the length of stay
should only depend on the patient’s medical condition, and usually the medical conditions of
different patients can be regarded as being mutually independent.
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Figure 1: The fitted state-dependent birth rate λ̄k (left) and death rate µ̄k (right) obtained from
arrival and departure data in an Israeli emergency department over 25 weeks, taken from [28]

Given an understanding of what the fitted BD rates look like in Mt/GI/∞ models, the fitted
rates for the ED in Figure 1 are very revealing. As anticipated, the fitted birth rates are roughly
consistent with an NHPP (Mt) arrival process having a periodic arrival rate function, but the fitted
death rates are inconsistent with the IS model having i.i.d. service times; e.g. see Figures 1, 4,
5 and 8 in [6]. The fitted death rates are approximately piecewise-linear with the slope changing
at about k = 40, but the death-rate function does not look like (8) for either s = 40 or s = ∞.
These tentative conclusions about the ED based on the analysis of Mt/GI/s queues are strongly
supported by further data analysis in [28]. The data analysis in [28] supports an Mt/Gt/∞, where
there is strong time-dependence in the LoS distribution (the Gt) as well as the arrival rate function.
That conclusion in turn is consistent with other observations, e.g., see [1, 23] and references there.
The fitted BD is convenient because it quickly exposes the difficulty with the candidate Mt/GI/∞
model using i.i.d. service times, but we must know what would occur with the Mt/GI/∞ model
in order to interpret plots based on data, such as Figure 1.

1.5 New Asymptotic Formulas

The study [6] exposed important properties of the fitted BD rates for the periodic Mt/GI/s model,
but it did not generate explicit formulas for the fitted BD rates, except in the special cases in
which the fitted BD rates are obviously simple because of Markovian structure. For example, the
limiting fitted death-rate function in Mt/M/s models (where the service times are independent of
the arrival process) is always given by (8).

The present paper contributes by establishing many-server heavy-traffic (MSHT) limits that
yield explicit first-order fluid approximations for the fitted BD rates in the time-varying Mt/GI/∞
infinite-server (IS) model. These limiting rates show what the fitted rates should look like in large-
scale many-server models. Thus the results here facilitate model diagnosis, as illustrated for the
ED example in §1.4.

We also establish new limits for the steady-state distribution of the periodic Mt/GI/∞, clari-
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fying and extending results for the Mt/M/∞ model with a sinusoidal arrival-rate function in [27].
We show that for all models with sinusoidal arrival rate, the limiting steady-state distribution is
the arcsine law on an interval with end points depending on the model parameters. Theorem 3.3
provides a simple explanation through a new representation for the mean function.

Here is how the paper is organized: We start in §2 by providing background on the time-varying
Mt/GI/∞ IS model. In §3 we propose explicit approximations for the steady-state distribution and
the BD rates. Then in §4 we establish MSHT limits that show the approximations are asymptoti-
cally correct. In §4.2 we also establish limits for state occupation times in more general time-varying
IS models.

In §5 we establish additional results for the case of sinusoidal arrival rates, which are often
used in studies of queues with time-varying arrival rates, e.g., [13]. In §6 we carefully examine
the case of deterministic service times. We show that the fitted rates can be decreasing functions
of the state with long deterministic service times. We give detailed formulas for exponential and
hyperexponential service times in §7. In §8 we show that the local-balance method for getting the
steady-state distribution from the fitted BD rates described in §1.1 does not extend directly to the
fluid limit. Finally, we draw conclusions in §9.

2 Background

2.1 The Mt/GI/∞ Queueing Model

The stochastic queueing models considered in this paper are Mt/GI/∞ infinite-server (IS) queueing
models, having a nonhomogeneous Poisson process (NHPP, the Mt) as an arrival process with a
time-varying arrival-rate function λ(t). For simplicity, we assume that the arrival-rate function is
differentiable and bounded above and below, i.e., we assume that there are constants λL and λU

such that
0 < λL ≤ λ(t) ≤ λU < ∞ for all t. (9)

The service times of successive customers are assumed to be independent and identically distributed
(i.i.d.) random variables, each distributed as a random variable S with a general cumulative
distribution function (cdf) G having finite mean E[S] = 1/µ. There are infinitely many servers, so
that each customer enters service immediately upon arrival. We assume that the arrival process is
independent of the service times. We assume that the system started empty in the distant past,
but that condition can be relaxed by letting λ(t) = 0 before some starting time t0.

By Theorem 1 of [8], the number in system at time t, denoted by Q(t), has a Poisson distribution
for each t with mean function

m(t) ≡ E[Q(t)] = E[λ(t− Se)]E[S] = E[S]

∫ ∞

0
λ(t− s)dGe(s), t ≥ 0, (10)

where Se is a random variable with the stationary-excess cdf Ge associated with the service-time
cdf G, i.e.,

Ge(t) ≡ P (Se ≤ t) ≡ 1

E[S]

∫ t

0
(1−G(s)) ds, t ≥ 0. (11)

Moreover, the departure process in the Mt/GI/∞ model is an NHPP with departure rate function

δ(t) = E[λ(t− S)] =

∫ ∞

0
λ(t− s)dG(s), t ≥ 0. (12)
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In the special case of exponential (M) service, we have Se
d
= S, where

d
= means “equal in distribu-

tion,” so that, by combining (10) and (12), we obtain the familiar conclusion

δ(t) =
m(t)

E[S]
= m(t)µ. (13)

2.2 The Mt/GI/∞ Queueing Models with Periodic Arrival Rates

We will focus on the special case of the Mt/GI/∞ IS model in which the arrival-rate function λ
is periodic with periodic c and average arrival rate λ̄. The mean m(t) in (10) and the departure
rate δ(t) in (12) become periodic functions when the arrival-rate function is periodic. If the system
starts empty at time 0, then m(t) and δ(t) converge (in a nondecreasing way) to those periodic
expressions, as shown in §2.2 of [6].

For the IS model we have the following stronger result.

Theorem 2.1 (regenerative structure) For the Mt/GI/∞ model with periodic arrival-rate function

having period c that starts empty at time 0, the stochastic process {Q(nc+ t) : n ≥ 1} is a regenera-

tive process for each t, 0 ≤ t < c, with the epochs n at which Q(nc+ t) = 0 serving as regeneration

epochs. Moreover, the mean time between successive regenerations is 1/P (X(m(t)) = 0) < ∞,

where X(m) is a random variable with the Poisson distribution having mean m and m(t) is the

periodic mean function. Thus, the limits in (5) are valid. Moreover, αc can be regarded as a special

case of the direct steady-state pmf α in §1.1 if we randomize the initial time uniformly over the

interval [0, c].

Proof. From the convergence of m(t) to the periodic limit, we have Q(nc + t) ⇒ X(m(t)) as
n → ∞, where ⇒ denotes convergence in distribution. Thus, P (Q(nc+ t) = 0) → P (X(m(t)) = 0)
as n → ∞, where m(t) > 0 by virtue of (9). We then note that the sum on the right in the
expression for αk(t) in (5) when k = 0 is the averaged discrete-time renewal counting function,
so that the stated limit follows from the law of large numbers (LLN) for renewal processes, which
implies that the limit must coincide with the mean time between successive regenerations. The
regenerative structure then makes all the processes cumulative processes, e.g., as in [10]. The
associated expressions for αc in (5) are elementary consequences.

For the special case of a sinusoidal arrival rate function, many structural properties were es-
tablished in [7]. In particular, for the arrival function in (6) (and starting empty in the distant
past),

m(t) = λ̄E[S]m1(t), where m1(t) = 1 + β (C sin (γt)− S cos (γt)) , (14)

with Se distributed according to Ge as in (11) and

C ≡ E[cos (γSe)] and S ≡ E[sin (γSe)]. (15)

For M service, C = 1/(1 + γ2) and S = γ/(1 + γ2). From (14), (10) and (12), we see that the
corresponding formula for the departure rate is

δ(t) = λ̄δ1(t), where δ1(t) = 1 + β
(

C′ sin (γt)− S ′ cos (γt)
)

(16)

and
C′ ≡ E[cos (γS)] and S ′ ≡ E[sin (γS)]. (17)
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2.3 The MSHT Fluid Approximation for Large Scale

We will be interested in the fluid approximation of the periodic Mt/GI/∞ IS model, obtained
by letting the scale parameter (the average arrival rate) λ̄ get large. Following common practice,
we will consider a sequence of Mt/GI/∞ models indexed by n, where λ̄n = n, n ≥ 1. We let the
service-time cdf G be held fixed independent of n and let the arrival rate function be λn(t) = nλ1(t).

Let Qn(t) be the number in system as a function of n. Let An(t) and Dn(t) count the number
of arrivals and departures over the interval [0, t], t ≥ 0, respectively, again as a function of n. Let
(mn(t), λn(t), δn(t)) be the triple (m(t), λ(t), δ(t)) in §2.1 as a function of the scale parameter n.
Because of the linearity of the model, we have the scaling property

n−1(mn(t), λn(t), δn(t)) = (m1(t), λ1(t), δ1(t)) for all n ≥ 1, (18)

where (m1(t), λ1(t), δ1(t)) is understood to be (mn(t), λn(t), δn(t)) when n = 1; see §4 of [17]. As a
regularity condition, we assume that (9) holds for λ1(t), which implies that 0 < m1(t) < ∞ for all
t as well.

Moreover, by the weak LLN (WLLN) for the Poisson distribution,

n−1 (Qn(t), An(t),Dn(t)) ⇒ (m1(t), λ1(t), δ1(t)) as n → ∞ for each t > 0. (19)

The WLLN provides support for the simple fluid approximation

(Qn(t), An(t),Dn(t)) ≈ (nm1(t), nλ1(t), nδ1(t)) . (20)

See [18], Theorem 3.1 of [22] and references therein for more general functional LLN (FWLLN),
yielding uniform convergence over bounded intervals.

3 Simple Fluid Approximations

In this section we propose simple fluid approximations for the steady-state distribution and the
fitted BD rates in the periodic Mt/GI/∞ IS model with large scale based on the asymptotics in
§2.3.

3.1 The Overall Steady-State Distribution

We now develop an approximation for the steady-state distribution αc in (5). For simplicity, we
focus on the associated cumulative distribution function (cdf). Let Zn be a random variable with the
steady-state cdf of the scaled queue length Q̄n(t) ≡ n−1Qn(t), using the scaling in §2.3. Assuming
that the system started empty in the distant past, so that the process {Q̄n(t) : t ≥ 0} is in dynamic
steady state, with overall average value 1 and period c. Then

P (Zn ≤ 1 + x) ≡ 1

c

∫ c

0
P (Q̄n(t) ≤ 1 + x) dt (21)

Moreover, from the FWLLN version of (19) in Theorem 3.1 of [22] and the continuous mapping
theorem, it follows that Zn ⇒ Z as n → ∞, where Z gives the fluid model steady-state cdf, i.e.,

P (Z ≤ 1 + x) ≡ 1

c

∫ c

0
1{m1(t)≤1+x} dt, (22)

provided that m1(t) = 1 + x for only finitely many t. We propose (22) as a relatively simple
approximation for (21).

We illustrate with an explicit formula for the cdf of Z with the sinusoidal arrival rate function
in (6) that we will prove in §5.2.
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Theorem 3.1 (fluid steady-state cdf for sinusoidal arrival rates) Consider the fluid model asso-

ciated with the Mt/GI/∞ model with the sinusoidal arrival-rate function in (6) having parameter

triple (λ̄, β, γ) with λ̄ = 1. Then

P (Z ≥ 1− x) = P (Z ≤ 1 + x) =
1

2
+

1

π
arcsin (x/βSU ), 0 ≤ x ≤ βsU , (23)

where sU is given in (26); i.e., Z−1 has the arcsine cdf on [−βsU , βsU ]. Thus, the variance of Z is

β2s2U/2. For the special case of an exponential service distribution, sU = 1/
√

1 + γ2, as indicated

in Corollary 7.1 in §7.

Theorem 3.1 improves Theorem 3.1 of [27] for the Mt/M/∞ special case and extends it to general
service-time distributions. (The notation is slightly different here; the results above agree with
[27].) We also establish a local version of Theorem 3.1 in §5.2.

Theorem 3.2 (local limit for sinusoidal arrival rates) In the setting of Theorem 3.1,

1

t

∫ t

0
1{Qn(s)=⌊n(1+x)⌋} ds →

γ

2π

∫ 2π/γ

0
P (Qn(s) = ⌊n(1 + x)⌋) ds (24)

as t → ∞ and

γ

2π

∫ 2π/γ

0
P (Qn(s) = ⌊n(1 + x)⌋) ds → 2

βsU
√

1− (x/βsU )2
as n → ∞. (25)

The limit in (25) is the arcsine pdf on the interval [−βsU , βsU ].

3.2 Simplified Formulas for Sinusoidal Arrival Rates

The relatively clean mathematical results in Theorems 3.1 and 3.2 primarily follow from a simple
representation of the mean function m(t) in theMt/GI/∞ model with sinusoidal arrival rate, which
is primarily based on [7]. The representation in [7] is as the linear function of two trigonometric
functions in (14). The alternative representation is in terms of a single trigonometric function
centered at the times t∗ where the extreme values occur. In particular, in §5 we prove the following
extension of [7]. A previous simplification was given in Theorem 6.3 of [20]. The following is
essentially equivalent to Corollary 7.1 of [19].

Theorem 3.3 (the mean function with GI service) Consider the Mt/GI/∞ model with mean

service time E[S] = 1 and sinusoidal arrival rate function in (6), starting empty in the distant

past. Assume that neither S nor C in (15) is 0. Then all extreme points of s(t) ≡ (m1(t) − 1)/β
and thus m1(t) and m(t) in (14) are attained at the points t∗ + (kπ/γ) for integer k, where

t∗ ≡ t∗(γ) =
π

2γ
+

1

γ
tan−1 (S/C) and sU ≡ sup

t≥0
(s(t)) = [S2 + C2]1/2. (26)

In addition,

s(t∗ + t) = s(t∗) cos (γt) = s(t∗ − t) for all t, (27)

where

s(t∗) =
cos (tan−1 (S/C))(S2 + C2)

C = ±sU , (28)

If S > 0 and C > 0, then s(t∗) = +sU .
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Comparing (16) to (14), we see that the departure rate from an Mt/GI/∞ queue with a
sinusoidal arrival rate function also can be represented in terms of a single trigonometric function,
which facilitates analysis of networks of IS queues with sinusoidal arrival rates, as in [20].

Corollary 3.1 (the departure-rate function with GI service) Consider the Mt/GI/∞ model with

sinusoidal arrival rate function in (6), starting empty in the distant past. Assume that neither S ′

nor C′ in (17) is 0. All extreme points of δ(t) in (16) are attained at the points t∗∗ + (kπ/γ) for

integer k, where

t∗∗ ≡ t∗∗(γ) =
π

2γ
+

1

γ
tan−1 (S ′/C′) and δU ≡ sup

t≥0
(δ(t)) = [(S ′)2 + (C′)2]1/2. (29)

Then

δ(t∗∗ + t) = δ(t∗∗) cos (γt) = δ(t∗∗ − t) for all t, (30)

where

δ(t∗∗) =
cos (tan−1 (S ′/C′))((S ′)2 + (C′)2)

C′ = ±δU , (31)

If S ′ > 0 and C′ > 0, then δ(t∗∗) = +δU .

3.3 The Proposed Fluid Approximation for the Fitted BD Rates

We now define a state-dependent fitted fluid input rate function λf and a state-dependent fitted
fluid output rate function µf , as functions of the basic fluid model triple (m1, λ1, δ1) in (18)-(20),
analogous to the fitted birth and death rates for stochastic models introduced and studied in [5, 6].
The general idea is that the fitted input rate λf (x) in state x should be the average time-dependent
input rate λ1(t) over all times t at which m1(t) = x. Similarly, the fitted output rate µf (x) in state
x should be the average time-dependent output rate δ1(t) over all times t at which m1(t) = x.

The present fluid model setting is more elementary because there is no randomness; the functions
are all deterministic. However, there is some question about how the average should be computed.
We make some assumptions on the states x that we consider. First, we consider x for which the
inverse m−1

1 (x) ≡ {t ∈ [0, c] : m1(t) = x} is a finite set. That might hold for all x, but we
only require it for the x we consider. We contend that the average should be a weighted average,
depending on the derivative m1(t), denoted by ṁ1(t). We shall want to apply the inverse function
theorem, so we assume that the derivative ṁ1(t) is well defined and positive at all times t such that
m1(t) = x for each state x we consider. Let nm(x) be the number of points in the set m−1

1 (x) and
let tmj (x) be the jth such point ordered within [0, c). Then we let

λf (x) =

nm(x)
∑

j=1

pmj (x)λ1(t
m
j (x)) and µf (x) =

nm(x)
∑

j=1

pmj (x)δ1(t
m
j (x))), (32)

where

pmj (x) ≡
amj (x)

∑nm(x)
j=1 amj (x)

and amj (x) ≡ 1

|ṁ1(t
m
j (x))| . (33)

Our second assumption implies that 0 < amj (x) < ∞ for the x we consider. Paralleling (20), we
propose the following fluid approximations for the fitted BD rates in model n:

λ̄n,⌊nx⌋(∞) ≈ nλf (x) and µ̄n,⌊nx⌋(∞) ≈ nµf (x) (34)

for all states x such that m1(x) > 0.
We next provide support for our formulation with the weights pmj (x) in (32) and (33) by estab-

lishing a heavy-traffic limit for the fitted birth rates in the Mt/GI/∞ IS model.
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4 The Many-Server Heavy-Traffic Limit for the Fitted Rates

4.1 MSHT Limit for the Fitted BD Rates

We consider the sequence of periodic Mt/GI/∞ IS queueing models indexed by the average arrival
rate, λ̄n = n, introduced in §2.3, but now we focus on a periodic arrival-rate function, assuming
that the system started empty in the distant past.

We now state our main result. For that purpose, let ⌊x⌋ be the greatest integer less than or
equal to x.

Theorem 4.1 (heavy-traffic limit of the fitted rates) Consider the sequence of Mt/GI/∞ models

indexed by n starting empty in the distant past, where λ1(t) is a bounded differentiable periodic

function. Consider a state x such that m−1
1 (x) is a finite set and the derivative ṁ1(t) is well

defined and positive at all times t such that m1(t) = x. Then, the fitted birth and death rates satisfy

λ̄n,k(t) ≡
∫ t
0 1{Qn(s)=k}λn(s) ds
∫ t
0 1{Qn(s)=k} ds

→
∫ c
0 P (Qn(s) = k)λn(s) ds
∫ c
0 P (Qn(s) = k) ds

≡ λ̄n,k(∞) and (35)

µ̄n,k(t) ≡
∫ t
0 1{Qn(s)=k}k(δ1(s)/m1(s)) ds

∫ t
0 1{Qn(s)=k} ds

→
∫ c
0 P (Qn(s) = k)k(δ1(s)/m1(s)) ds

∫ c
0 P (Qn(s) = k) ds

≡ µ̄n,k(∞)

as t → ∞. Moreover,

n−1λ̄n,⌊nx⌋(∞) → λf (x) and n−1µ̄n,⌊nx⌋(∞) → µf (x) as n → ∞, (36)

for all x such that m1(x) > 0, where λf (x) and µf (x) are defined in (32) with pmj (x) defined in

(33). In addition,

µf (x) = x

nm(x)
∑

j=1

pmj (x)(δ1(t
m
j (x))/m1(t

m
j (x))). (37)

Proof. The first expression for λ̄n,k(t) in (35) is elementary because the arrival rate depends on
time, but not on the state. The first expression µ̄n,k(t) in (35) follows from Theorem 2.6 of [6],
which states that, conditional on Q(t) = k, the departure rate at time t is

δk(t) = kgk,t(0) =
kµE[λ(t− S)]

E[λ(t− Se)]
=

kδ(t)

m(t)
. (38)

The limits in (35) follow from Theorem 2.1, treating the numerators and denominators separately.
For the scaling limits in (36), the main new part of Theorem 4.1, we exploit the fact the Qn(t) has
a Poisson distribution with mean nm1(t) for each t and n ≥ 1, which is asymptotically Gaussian
with that mean and variance. We prove the remaining limit in (36) by establishing limits for the
numerators and denominators on the right in (35) separately. The factor n−1 on the left in (36) is
removed by writing λn(t) = nλ1(t) and k = n(k/n) for k = ⌊nx⌋ in the expression for µ̄n,k(t). The
denominators are interesting in their own right because they are directly limits for occupation times.
Thus, we establish a MSHT limit for occupation times in a general sequence of Mt/GI/∞ models
scaled as above in §4.2 below. Given the continuity of the rate functions λ1(t) and δ1(t)/m1(t),
it suffices to apply the same arguments to the numerator and denominator, so the full proof is
completed in §4.2 below. This logic for the fitted death rates directly leads to the expression (37),
but the two formulas for µf (x) in (32) and (37) are actually equivalent, because at the times tmj (x),
we have m1(t

m
j (x)) = x, which makes xδ1(t

m
j (x))/m1(t

m
j (x)) = δ1(t

m
j (x)).
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4.2 A MSHT Limit for Occupation Times

We now complete the proof of Theorem 4.1 by establishing MSHT limits for the denominators in
(35). The denominators are directly limits for occupation times, for which there is a substantial
literature, e.g., [3], but evidently nothing previously for time-varying models. Thus, we establish
a MSHT limit for occupation times in a general sequence of Mt/GI/∞ models scaled as above,
without requiring that the arrival-rate function be periodic.

Theorem 4.2 (MSHT occupation time limits) Consider a general sequence of Mt/GI/∞ IS models

with scaling as in §2.3. If m1 is differentiable at t0 with m1(t0) = x and ṁ1(t0) 6= 0, then for each

u, −∞ < u < +∞,

√
nP (Qn(t0 + (u/

√
n)) = ⌊nx⌋) → φ(uṁ1(t0)/

√
x)√

x
as n → ∞. (39)

Moreover, there are times t1 and t2 such that t1 < t0 < t2 with m1(t) = x for t ∈ [t1, t2] only at t0.
For any such times,

n

∫ t2

t1

P (Qn(s) = ⌊nx⌋) ds → 1

ṁ1(t0)
as n → ∞. (40)

We first establish three lemmas used in the proof of Theorem 4.2.

Lemma 4.1 For all real x,

e
√
nx(1 + (x/

√
n))−n → ex

2

as n → ∞. (41)

Proof. Use natural logarithms and the expansion log (1 + x) = x− (x2/2) + O(x3) as x → 0 to
get

log (e
√
nx(1 + (x/

√
n)−n) =

√
nx− n log (1 + (x/

√
n))

=
√
nx−

√
nx+

x2

2
−O(x3/3

√
n) → x2

2
as n → ∞. (42)

We use Lemma 4.1 to establish two limits for the Poisson distribution. Let φ be the pdf of a
standard N(0, 1) Gaussian random variable. Let f(n) ∼ g(n) as n → ∞ mean that f(n)/g(n) → 1
as n → ∞. Let X(n) have a Poisson distribution with mean n.

Lemma 4.2 (first Poisson limit) Let X(n) have a Poisson distribution with mean n. For all real

x, √
nP (X(n) = ⌊n+ x

√
n⌋) → φ(x) as n → ∞. (43)

Proof. Using Stirling’s formula in line 2 and Lemma 4.1 in line 5, we have as n → ∞
√
2πnP (X(n) = ⌊n+ x

√
n⌋) =

√
2πne−nn⌊n+x

√
n⌋

(⌊n + x
√
n⌋)!

∼
√
2πne−nnn+x

√
n

(n+ x
√
n)n+x

√
ne−(n+x

√
n)
√

2π(n + x
√
n)

∼ ex
√
n(1 + (x/

√
n)−(n+x

√
n)

∼ ex
√
n(1 + (x/

√
n)−n(1 + (x/

√
n)−x

√
n

∼ ex
2/2e−x2

= e−x2/2 as n → ∞, (44)

which is equivalent to what is claimed.
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Lemma 4.3 (second Poisson limit) Let X(n) have a Poisson distribution with mean n. For all

real x, √
nP (X(n + x

√
n) = n) → φ(x) as n → ∞. (45)

Proof. Using Stirling’s formula in line 2 and Lemma 4.1 in line 4, we have as n → ∞
√
2πnP (X(n + x

√
n) = n) =

√
2πne−(n+x

√
n)(n + x

√
n)n

n!

∼
√
2πne−ne−x

√
n(n+ x

√
n)n

e−nnn
√
2πn

∼ e−x
√
n(1 + (1/x

√
n))n ∼ e−x2/2 as n → ∞, (46)

which is equivalent to what is claimed.

Remark 4.1 (local limit theorem) Lemma 4.2 can also be regarded as a consequence of the local
central limit theorem, because the Poisson random variable X(n) can be represented as the sum of
n i.i.d. random variables distributed as X(1); e.g., see [4, 11, 21].

We now complete the proof of Theorem 4.2.

Proof of Theorem 4.2. Let m ≡ nx. We apply a Taylor expansion of m1 about t0, writing
m1(t0 + (u/

√
n)) = m1(t0)+ uṁ1(t0)/

√
n+ o(1/

√
n) as n → ∞. Then, applying Lemma 4.3 in the

last step, we have

√
nP (Qn(t0 + (u/

√
n)) = ⌊nx⌋) =

√
nP (X(n(m1(t0) +

uṁ1(t0)√
n

+ o(1/
√
n)) = ⌊nx⌋)

=

√
nx√
x
P (X(nx+

√
nxuṁ1(t0)√

x
+ o(

√
nx)) = ⌊nx⌋)

=

√
m√
x
P (X(m+

√
muṁ1(t0)√

x
+ o(

√
m)) = ⌊m⌋)

→ φ(uṁ1(t0)/
√
x)√

x
as m → ∞ (47)

and so also as n → ∞, justifying (39). For (40), we apply (39). First, we observe that

n

∫ t2

t1

P (Qn(s) = ⌊nx⌋) ds = lim
a→∞

n

∫ t0+a/
√
n

t0−a/
√
n

P (Qn(s) = ⌊nx⌋) ds. (48)

Then, by successively making the change of variables s ≡ t0 + u/
√
n so that ds = du/

√
n, v ≡

uṁ1(t0)/
√
x and m ≡ nx, we obtain

n

∫ t0+a/
√
n

t0−a/
√
n

P (Qn(s) = ⌊nx⌋) ds =
√
n

∫ +a

−a
P (X(nx+

√
nxuṁ1(t0)/

√
x+ o(

√
n)) = ⌊nx⌋) du

=

√
nx

ṁ1(t0)

∫ +a

−a
P (X(nx+

√
nxv + o(

√
nx)) = ⌊nx⌋) dv

=

√
m

ṁ1(t0)

∫ +a

−a
P (X(m+

√
mv + o(

√
m)) = ⌊m⌋) dv

→ 1

ṁ1(t0)

∫ +a

−a
φ(v) dv as m → ∞ or n → ∞

→ 1

ṁ1(t0)
as a → ∞. (49)
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4.3 Aggregate Estimator for Large Scale

Good estimates of the fitted rates λ̄n,k and µ̄n,k from data tends to require a very large amount
of data as the scale n increases. Notice that the probability P (Qn(t) = k) appearing in (35) is at
most of order O(1/

√
n) because Qn(t) has a Poisson distribution with mean nm1(t) = O(n); see

Theorem 4.2. Thus large samples may be needed to obtain accurate estimations, even for the most
relevant states k, when n is very large.

To address this problem, we propose aggregate estimators of the birth and death rates, and
show that they are asymptotically equivalent to the direct estimators. We do so by showing that
they too converge to the fluid rate functions λf and µf after scaling. In particular, for large n, we
propose estimating the birth rate by λ̄n,k ≈ λag

k (mc;n, ǫ) for suitably large m and suitably small ǫ,
where

λ̄ag
⌊nx⌋(mc;n, ǫ) ≡

∫mc
0 1{⌊nx⌋≤Qn(t)≤⌊n(x+ǫ⌋}λn(t) dt
∫mc
0 1{⌊nx⌋≤Qn(t)≤⌊n(x+ǫ)⌋} dt

(50)

for each n ≥ 1, m ≥ 1 and ǫ > 0.
The corresponding aggregate estimator for the death rate is somewhat more complicated. We

would first write

µ̄ag
⌊nx⌋(mc;n, ǫ) ≡

∫mc
0

∑⌊n(x+ǫ)⌋
k=⌊nx⌋+1 1{Qn(t)=k}k(δ1(t)/m1(t)) dt
∫mc
0 1{⌊nx⌋≤Qn(t)≤⌊n(x+ǫ⌋} dt

, (51)

which is not so convenient. However, we can bound µ̄ag
⌊nx⌋(mc;n, ǫ) above and below by more

convenient estimators, i.e.,

µ̄ag,L
⌊nx⌋(mc;n, ǫ) ≤ µ̄ag

⌊nx⌋(mc;n, ǫ) ≤ µ̄ag,U
⌊nx⌋(mc;n, ǫ), (52)

where

µ̄ag,L
⌊nx⌋(mc;n, ǫ) ≡

∫ c
0 1{⌊nx⌋≤Qn(t)≤⌊n(x+ǫ)⌋}⌊nx⌋(δ1(t)/m1(t)) dt

∫ c
0 1{⌊nx⌋≤Qn(t)≤⌊n(x+ǫ)⌋} dt

and

µ̄ag,U
⌊nx⌋(mc;n, ǫ) ≡

∫ c
0 1{⌊nx⌋≤Qn(t)≤⌊n(x+ǫ)⌋}⌊n(x+ ǫ)⌋(δ1(t)/m1(t)) dt

∫ c
0 1{⌊nx⌋≤Qn(t)≤⌊n(x+ǫ)⌋} dt

, (53)

because ⌊nx⌋ ≤ k ≤ ⌊n(x+ ǫ)⌋ in the numerator of (50)
If we let n ↑ ∞ and then ǫ ↓ 0, then we get the same limits for µ̄ag,L

⌊nx⌋(mc;n, ǫ) and µ̄ag,U
⌊nx⌋(mc;n, ǫ)

and so for all three. It would be natural to use the two bounds as direct estimators, knowing that
the more precise formulation falls in between.

As before, from Theorem 2.1, we have

λ̄ag
⌊nx⌋(mc;n, ǫ) → λ̄ag

⌊nx⌋(∞;n, ǫ) and µ̄ag
⌊nx⌋(mc;n, ǫ) → µ̄ag

⌊nx⌋(∞;n, ǫ) (54)

as m → ∞, where

λ̄ag
⌊nx⌋(∞;n, ǫ) ≡

∫ c
0 P (⌊nx⌋ ≤ Qn(t) ≤ ⌊n(x+ ǫ)⌋λn(t) dt
∫ c
0 P (⌊nx⌋ ≤ Qn(t) ≤ ⌊n(x+ ǫ)⌋) dt (55)

and

µ̄ag
⌊nx⌋(∞;n, ǫ) ≡

∫ c
0

∑⌊n(x+ǫ)⌋
k=⌊nx⌋+1 P (Qn(t) = k)⌋k(δ1(t)/m1(t)) dt
∫ c
0 P (⌊nx⌋ ≤ Qn(t) ≤ ⌊n(x+ ǫ)⌋) dt , (56)

and similarly for the two bounds in (53).
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Theorem 4.3 (MSHT asymptotics for the aggregate estimators) Consider the sequence of periodic

Mt/GI/∞ models starting empty in the distant past. Consider a state x such that m−1
1 (x) is a

finite set and the derivative ṁ1(t) is well defined and positive at all times t such that m1(t) = x.
If first n → ∞ and then ǫ ↓ 0, then

n−1λ̄ag
⌊nx⌋(mc;n, ǫ) → λf (x) and n−1µ̄ag

⌊nx⌋(mc;n, ǫ) → µf (x) (57)

for each m ≥ 1, where λf (x) and µf (x) are defined in (32) with pmj (x) defined in (33). The same

limit holds for the two bounding death rates in (53).

Proof. We apply Theorem 3.1 of [22] to get the functional weak LLN (FWLLN)

sup
0≤t≤T

{
∣

∣n−1Qn(t)−m1(t)
∣

∣} ⇒ 0 as n → ∞ for each T, 0 < T < ∞. (58)

We observe that the floor function is asymptotically negligible as n → ∞, so that it can be ignored
in the limit. We then apply the continuous mapping theorem with the integral functional to get the
first limit on n. We use the assumption that the inverse of m1, m

−1
1 (x), is a finite set for each x to

have the set of discontinuities of the indicator function be a finite set. For each tmj (x) ∈ m−1(x), the

limit of [m−1(x+ ǫ)−m−1(x)]/ǫ as ǫ → 0 is the absolute value of the derivative of m−1(x), which is
1/|ṁ1(t

m
j (x))|, by virtue of the inverse function theorem. The argument for the two founding fitted

death rates is essentially the same. The limit for µ̄ag
⌊nx⌋(mc;n, ǫ) then follows by a sandwiching

argument.
As usual, let f(n) = o(n) as n → ∞ mean that f(n)/n → 0 as n → ∞.

Corollary 4.1 Under the conditions of Theorems 4.1 and 4.3,

λ̄n,⌊nx⌋(∞)− λ̄ag(⌊nx⌋;n, ǫ) = o(n) as n → ∞ and ǫ ↓ 0. (59)

Remark 4.2 (differentiability) By (10) and (12), a natural sufficient condition to have the func-
tions λ1, m1 and δ1 all be bounded and differentiable is simply to have that condition imposed on
λ1.

Remark 4.3 (conjectured joint limit) The iterated limit in which first n → ∞ and then ǫ → 0 in
Theorem 4.1 provides theoretical support for the approximation

λe
n,kn ≈ nλf (x) and µe

n,kn ≈ nµf (x) when x = kn/n (60)

and n is not too small. We conjecture that there is direct convergence as well when n → ∞ with
kn/n → x under regularity conditions, but that remains to be shown.

Remark 4.4 (exponential service) If the service-time distributon is exponential, then we have
µf (x) = µx, as we should because δ1(t)/m1(t) = µ for all t.

5 The Mt/GI/∞ Fluid Model with Sinusoidal Arrival Rate

We start by proving the results in §3.1 and §3.2, in reverse order. We then discuss the relation of
these results to previous results for the Mt/M/∞ model in [27]. Afterward, we turn to the fitted
fluid input and output rate functions.
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5.1 Proof of the Theorem in §3.2

We use a basic trigonometric identity.

Lemma 5.1 (trigonometric identity) For strictly positive real numbers x and y,

tan−1 (x/y) = cos−1 (y/[x2 + y2]−1/2) (61)

and

cos (tan−1 (x/y)) =
y

√

x2 + y2
. (62)

For more general real numbers x and y that are not both 0, (61) and (62) hold, except for an

ambiguity about the sign.

Proof of Theorem 3.3. First, the formulas in (26) are Theorem 4.1 and Corollary 4.2 of [7],
which are conveniently proved using the complex variables, starting with sin (θ) = [eiθ − e−iθ]/2i
and cos (θ) = [eiθ + e−iθ]/2. Then (27) is an elaboration of Theorem 4.3 of [7], which is proved
using the sine and cosine addition formulas. In particular, from (26), using the addition formulas
in lines three and four, along with Lemma 5.1 in line six,

s(t∗ + t) = C sin (γ[t∗ + t])− S cos (γ[t∗ + t)]

= C sin
(π

2
+ tan−1 (S/C) + γt

)

− S cos
(π

2
+ tan−1 (S/C) + γt

)

= C cos (tan−1 (S/C) + γt) + S cos (tan−1 (S/C) + γt)

= C cos (tan−1 (S/C)) cos (γt)− C sin (tan−1 (S/C)) sin (γt)
+S sin (tan−1 (S/C)) cos (γt) + S cos (tan−1 (S/C)) sin (γt)

=
[cos (tan−1 (S/C))(S2 + C2)

C cos (γt)

= s(t∗) cos (γt) = ±sU cos (γt), (63)

where s(t∗) = +sU if S > 0 and C > 0, as claimed in (27) and (28).

Remark 5.1 (the sign of C and the location of the first extreme point) If C > 0, then s(t∗) > 0
and π/2γ < t∗ < π/γ, i.e., the first extreme point occurs in the second quarter cycle. However, if

C < 0, the then the sign of s(t∗) is ambiguous, which can be attributed to the location of the first

extreme point after π/2γ. For many examples, such as exponential and hyperexponential service

distributions, this anomaly cannot occur, but it can occur, as we illustrate with the deterministic

service distribution in §6.

5.2 Proofs of the Theorems in §3.1

Proof of Theorem 3.1. From Theorem 3.3, (14) and (27), for x ≥ 0,

P (Z ≤ 1 + x) ≡ 1

c

∫ c

0
1{s(t)≤(x/β)} dt

=
γ

2π

∫ 2π/γ

0
1{cos(γt)≤(x/βsU )} dt

=
1

2
+

γ

π

∫ 2π/γ

0
1{cos(γt)≤(x/βsU )} dt
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=
1

2
+

γ

π

[

π

2γ
− arccos (x/βsU )

γ

]

=
1

2
+

1

π

[π

2
− arccos (x/βsU )

]

=
1

2
+

1

π
arcsin (x/βsU ), (64)

as claimed.

Proof of Theorem 3.2. The limit in (24) follows from Theorem 2.1. The limit in (25) follows
from the limit (40) in Theorem 4.2. That yields

(2πn/γ)αc
n,⌊n(1+x)⌋ →

2

|ṁ1(t
m
j (1 + x))| as n → ∞, (65)

where ṁ1(t) = βṡ(t), so that

|ṁ1(t
∗ + t)| = |βṡ(t∗ + t)| = βγsU | sin(γt)| (66)

for t∗ and sU in (26). because m1(t
∗ + t) = βsU cos(γt),

tm∗
1 (1 + x) = tm1 (1 + x)− t∗ = arccos (x/βsU )γ. (67)

Because sin (arccos (x)) =
√
1− x2 for 0 ≤ x ≤ 1 (as can be seen by letting y = arccos (x) and

applying the identity sin2 (y) + cos2 (y) = 1),

2

|ṁ1(tmj (1 + x))| =
2

βsU
√

1− (x/βsU )2
, |x| ≤ βsU , (68)

which is the arcsine pdf on the interval [−βsU , βsU ].

5.3 The Mt/M/∞ Steady-State Distribution with Large Scale

Figures 1 and 2 of [27] show the steady-state pmf and cdf in the periodic Mt/M/∞ model with the
sinusoidal arrival rate function in (6) for β = 10/35 = 0.286, γ = 1 and four values of n = λ̄ = 10,
35, 100 and 1000. We are especially interested in the large-scale case with n = λ̄ = 1000.

Figure 2 here repeats part of Figure 1 of [27] showing the pmf for n = λ̄ = 1000 and three values
of γ = 1/8, 1 and 8. For γ = 8, we see the approximately Gaussian form characteristic of small
scale, but as γ decreases we see the arcsine form. The high values of the density at the extremes
can be understood by observing that they occur where the derivative of m(t) is 0, and so changes
relatively slowly.

In contrast, Figure 2 of [27] shows that the cdf is actually quite close to piecewise-linear, if not
exactly piecewise-linear. That apparent inconsistency can be resolved by increasing the horizontal
scale, as we do below in Figure 3. Figure 3 shows that the limiting cdf is not actually linear
for λ̄ = 1000. Nevertheless, we see that the cdf view in Figure 3 shows that it is reasonable
to regard the steady-state distribution of m1(t) as being approximately uniform over the interval
[1− βsU , 1 + βsU ].
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Figure 2: The steady-state pmf in the Mt/M/∞ model with the sinusoidal arrival rate function in
(6) for λ̄ = 1000 β = 10/35 = 0.286 and three values of γ: 1/8, 1 and 8.
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Figure 3: The cdf of the scaled steady-state random variable Z̄n in the Mt/M/∞ model with the
sinusoidal arrival rate function in (6) for β = 10/35 = 0.286, γ = 1 and four values of n = λ̄ = 10,
35, 100 and 1000.

5.4 The Fitted Fluid Input and Output Rate Functions

Let λf and µf be the associated fitted fluid input and output rate functions. Paralleling our use
of s(t) in §3.2 to study the mean function m(t), we introduce associated scaled fluid input rate
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function λs and µs, defined by

λs(y) ≡ [λf (1 + βy)− 1]/β for − sU ≤ y ≤ sU . (69)

By (27), the fluid rate function satisfies

λf (m1(t
∗ + t)) = [λ1(t

∗ + t) + λ1(t
∗ − t)]/2 (70)

Hence, we have
λs(s(t∗ + t)) = [sin (γ(t∗ + t)) + sin (γ(t∗ − t))]/2 (71)

for s(t) in §3.2 and
λf (m1(t

∗ + t)) = 1 + βλs(s(t∗ + t)) for all t. (72)

We define the associated scaled fluid output rate µs based on µf , defined as in (69), where µf is
defined just as λf in (70) using δ1(t) = E[λ1(t− S)] in (12) instead of λ1; i.e.,

µs(s(t∗ + t)) = E[sin (γ(t∗ − S + t)) + sin (γ(t∗ − S − t))]/2. (73)

The extra expectation in (73) makes the algebra more complicated.
To work with the death rates, we need to relate the trigonometric integrals E[sin (γS)] and

E[cos (γS)] to their counterparts S and C with S replaced by Se. We use an elementary trigono-
metric identity connecting S and Se.

Lemma 5.2 (trigonometric identity for S and Se) For any nonnegative random variable S with

mean E[S] = 1 and any real number γ > 0,

E[sin (γS)] = γE[cos (γSe)] = γC and E[cos (γS)] = 1− γS. (74)

Hence, if E[cos (γS)] 6= 1, then S > 0.

Proof. Apply integration by parts, e.g.,

E[sin (γS)] =

∫ ∞

0
sin (γx)g(x) dx

= − sin (γx)Gc(x)|∞0 −
∫ ∞

0
Gc(x)(−γ) cos (γx) dx = γC. (75)

Theorem 5.1 (the scaled fitted fluid rates) Consider the Mt/GI/∞ fluid model with E[S] = 1
and the sinusoidal arrival rate function λ1 in (6), where we start empty in the distant past. As in

Theorem 3.3, assume that neither S nor C is 0. That implies that s(t) is not identically 0 and that

the mean function m(t) is not a constant function. For t∗ in (26), the associated scaled fitted fluid

input and output rates satisfy

λs(s(t∗ + t)) = µs(s(t∗ + t)) = cos (tan−1 (S/C)) cos (γt) =
( C√

S2 + C2

)

cos (γt), (76)

so that

λs(s(t∗ + t)) = µs(s(t∗ + t)) = µs(s(t∗ − t)) = λs(s(t∗ − t)) for all t. (77)

As a consequence, λf (x) = µf (x) is a linear function of x, i.e.,

λf (x) = µf (x) = 1 + C(γ)(x− 1) for 1− βsU ≤ x ≤ 1 + βsU (78)
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for sU =
√
S2 + C2 as in (26), where

C(γ) ≡ cos (tan−1 (S/C))
sU

=
C

S2 + C2
. (79)

In general, the signs of s(t∗) = cos (tan−1 (S/C)) in (76) and C(γ) in (79) are ambiguous, but

if S > 0 and C > 0, then both are positive, so that λs(s(t∗ + t)) and λs(s(t∗ − t)) are decreasing

functions of t in the interval [0, π/γ], and λf (x) is an increasing function of x over [1−βsU , 1+βsU ].

Proof. We apply the symmetry of the function s(t) about t∗ as shown in (27). For (76), we apply
(71), using the trigonometric sum and difference formulas in the third and fourth lines, to get

λs(s(t∗ + t)) = [sin (γ(t∗ + t)) + sin (γ(t∗ − t))]/2

= [sin ((π/2) + tan−1 (S/C) + γt) + sin ((π/2) + tan−1 (S/C) − γt)]/2

= [cos (tan−1 (S/C) + γt) + cos (tan−1 (S/C)− γt)]/2

= cos (tan−1 (S/C)) cos (γt), (80)

where cos (tan−1 (S/C)) is given in (62). Similarly, using (12),

µs(s(t∗ + t)) = E[sin (γ(t∗ − S + t)) + sin (γ(t∗ − S − t))]/2

= E[sin ((π/2) + tan−1 (S/C)− γS + γt) + sin ((π/2) + tan−1 (S/C) − γS − γt)]/2

= E[cos (tan−1 (S/C)− γS + γt) + cos (tan−1 (S/C)− γS − γt)]/2

= E[cos (tan−1 (S/C))− γS] cos (γt), (81)

where, by applying Lemma 5.2 in the last step,

µs(s(t∗)) = E[cos (tan−1 (S/C))− γS]

= cos (tan−1 (S/C))E[cos(γS)] + sin (tan−1 (S/C))E[sin (γS)]

= cos (tan−1 (S/C))E[cos(γS)] + (S/C)E[sin(γS)]

= cos (tan−1 (S/C))
(

E[cos(γS)] +

(S
C

)

E[sin(γS)]

)

= cos (tan−1 (S/C)). (82)

6 Fluid Model for the Mt/D/∞ Model

To illustrate the ambiguities about the sign of S and C in (76) and (79) and in the trigonometric
function in Lemma 5.1, we carefully treat the special case of a deterministic (D) service-time
distribution, amplifying §6 of [7]. In the process, we show that the bounds in Corollary 4.1 of [6]
are attained asymptotically. We also show that the fitted fluid input and output rate functions can
be decreasing functions of the state. (We have verified that this property occurs in simulations of
Mt/D/∞ queues.)

Let the cumulative arrival rate function associated with a general arrival rate function be λ(t),
starting from time 0, be

Λ(t) ≡
∫ t

0
λ(s) ds. (83)

With D service times having value 1,

m(t) = Λ(t)− Λ(t− 1) =

∫ t

t−1
λ(s) ds. (84)
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Let D(t) be the cumulative output by time t, starting from time 0, and let δ(t) be the departure
rate function. Clearly,

D(t) = Λ(t− 1) and δ(t) = λ(t− 1). (85)

In the special case of sinusoidal arrival rate function in (6), starting out empty in the distant
past, we can carry out the integration in (83) and (84) to get

Λ(t) = λ̄ (t+ (β/γ)(1 − cos (γt))) (86)

and
m(t) = λ̄ (1 + (β/γ)(cos (γ(t− 1))− cos (γt))) . (87)

Let
s(t) = (m(t)− λ̄)/β. (88)

Theorem 6.1 (the mean function with D service) Consider the Mt/D/∞ model with sinusoidal

arrival rate function in (6), starting empty in the distant past, where the service times are of length

1. Let

t∗ ≡ t∗(γ) ≡ (π/2γ) + 1/2 and sU ≡ sU (γ) ≡ (2/γ)(sin(γ/2)). (89)

Then

s(t∗ ± t) = sU cos (γt). (90)

Hence, all extreme points of m(t) are attained at the points t∗+(kπ/γ) for integers k and the values

of these extreme points are m(t∗) = λ̄ (1± βsU ).

Proof. It suffices to apply (87) and (88) to directly calculate (90). We use the standard trigono-
metric sum and difference formulas in the second and third lines to write

s(t∗ + t) = (1/γ)[cos (γ((π/2γ) − (1/2) + t))− cos (γ((π/2γ) + (1/2) + t))]

= (1/γ)[sin ((γ/2) − γt)) + sin ((γ/2) + γt))]

= (2/γ) sin (γ/2) cos (γt) = sU cos (γt). (91)

Since cos is an even function, bounded above by 1, with the maximum attained at time 0, the
stated properties of m(t) as a function of t follow.

We remark that it is also possible to apply Corollary 4.2 of [7]. To do so, we first observe
that E[cos (γSe)] = sin (γ)/γ and E[sin (γSe)] = (1 − cos (γ))/γ. Then we observe that sin (γ) =
2 sin (γ/2) cos (γ/2) and 1 − cos (γ) = 2(1 − cos (γ/2)2) = 2 sin (γ/2)2. Combining these, we see
that E[sin (γSe)]/E[cos (γSe)] = tan (γ/2), so that t∗ = tλ + 1/2, as can be calculated directly in
this case with D service. We can also apply the same trigonometric relations with Corollary 4.2 of
[7] to show that (E[cos (γSe)]

2 + E[sin (γSe)]
2)1/2 = 2 sin (γ/2)/γ.

Corollary 6.1 (more for the mean function with D service) Consider the setting of Theorem 6.1.
For 0 < γ < 2π, m(t∗ ± t) is a strictly decreasing function of t over the interval [0, π/γ], so that

m(t) attains its maximum

mU = λ̄ (1 + βsU ) (92)

at time t∗, where t∗ and sU are defined in (89), while m(t∗ ± t) is a strictly increasing function of

t over the interval [π/γ, 2π/γ], so that m(t) attains its minimum

mL = λ̄ (1− βsU ) (93)
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at time t∗ + (π/γ). In addition,

mU (γ) → λ̄(1 + β) and mL(γ) → λ̄(1− β) as γ → 0, (94)

while

mU (γ) → λ̄ and mL(γ) → λ̄ as γ → ∞. (95)

However, for 2π < γ < 4π, sin (γ/2) ≤ 0, so that m(t∗ ± t) is a strictly increasing function

of t over the interval [0, π/γ], so that m(t) attains its maximum mU in (92) at time t∗ + (π/γ) =
(3π/γ) + 1/2, while m(t∗ ± t) is a strictly decreasing function of t over the interval [π/γ, 2π/γ], so
that m(t) attains its minimum mL in (93) at time t∗ + (2π/γ) and at time t∗.

Proof. These subsequent results depend on the behavior of sin(γ/2) and cos (γt) in (92) and (89).
First, sin (γ/2) is nonnegative for 0 ≤ γ ≤ 2π. Then cos (γt) is a strictly decreasing function of t
on [0, π/γ]. For the limits in (94), we use the asymptotic expression sin(x)/x → 1 as x → 0.

We see anomalous behavior in the mean when the D service time is an integer multiple of a full
cycle.

Corollary 6.2 (full-cycle service times) Consider the setting of Theorem 6.1, where the mean

service time is exactly one full cycle, i.e., 1 = 2π/γ, or an integer multiple. Then

m(t) = mU = λ̄ for all t. (96)

Proof. Apply (87).
However, if we exclude the case in Corollary 6.2, then m has a well defined inverse on a subin-

terval of the real line.

Corollary 6.3 (inverse of the mean function) Consider the setting of Theorem 6.1, where the mean

service time is not an integer multiple of a full cycle, i.e., we do not have 1 = 2kπ/γ for some

integer k. Then m is a strictly monotone function on the interval [t∗ − (π/γ), t∗] and so has a well

defined inverse m−1 on the interval [λ̄(1− sU ), λ̄(1 + sU )], where t∗ and sU are defined in (89). In

particular,

m−1(x) = t∗ +
1

γ
arccos ((x/λ̄)− 1)/sU ) for λ̄(1− βsU ) ≤ x ≤ λ̄(1 + βsU). (97)

Proof. Apply (90) to construct the inverse directly. To verify, observe that m−1(m(t∗ + t) =
t(∗) + t.

We now turn to the fluid limit. Let λf and µf be the associated fitted fluid input and output
rate functions. Let λf

U and λf
L be the corresponding maximum and minimum of the fitted fluid

input rate function λf and similarly for µf .

Theorem 6.2 (the fitted fluid rates) Consider the Mt/D/∞ model in the setting of Theorem 6.1,
where the mean service time is not an integer multiple of a full cycle 2π/γ, so that m(t) is not a

constant function. For t∗ in (89), the associated fitted fluid input and output rates satisfy

λf (m1(t
∗ + t)) = µf (m1(t

∗ + t)) =
λ(t∗ + t) + λ(t∗ − t)

2λ̄
= 1 + β(cos (γ/2) cos (γt)) (98)

As a consequence,

λf (x) = µf (x) = 1 + C(γ)(x− 1) for 1− βsU ≤ x ≤ 1 + βsU (99)
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for sU in (89), where
C(γ) ≡ β(γ/2) cot (γ/2), (100)

which is a strictly decreasing function of γ on [0, π] satisfying C(0) = β and C(π) = 0. Hence, for

0 < γ < π, we have 0 < C(γ) < 1, so that λf is not the identity function.

Proof. We apply the symmetry of the function m(t) about t∗, as shown in Theorem 4.3 of [7] or
directly above in (90). For (98), we apply (27), using the trigonometric sum and difference formulas
in the fourth and fifth lines, to get

λf (m1(t
∗ + t)) = [λ1(t

∗ + t) + λ1(t
∗ − t)]/2

= 1 + (β/2)[sin (γ((π/2γ) + (1/2) + t)) + sin (γ((π/2γ) + (1/2) − t))]

= 1 + (β/2)[sin ((π/2) + (γ/2) + γt)) + sin ((π/2) + (γ/2) − γt))]

= 1 + (β/2)[cos ((γ/2) + γt) + cos ((γ/2) − γt)]

= 1 + β[cos (γ/2) cos (γt)] (101)

and

µf (m1(t
∗ + t)) = [δ1(t

∗ + t) + δ1(t
∗ − t)]/2 = [λ1(t

∗ − 1 + t) + λ1(t
∗ − 1− t)]/2

= 1 + (β/2)[sin (γ((π/2γ) − (1/2) + t)) + sin (γ((π/2γ) − (1/2) − t))]

= 1 + (β/2)[sin ((π/2) − (γ/2) + γt)) + sin ((π/2) − (γ/2) − γt))]

= 1 + (β/2)[cos ((−γ/2) + γt) + cos ((−γ/2) − γt)] (102)

= 1 + β[cos (−γ/2) cos (γt)] = 1 + β[cos (γ/2) cos (γt)] = λf (m1(tm + t).

Then we apply (98) to observe that λf (x) = λf (m1(t
∗ + t)) when m1(t

∗ + t) = x or, equivalently,
when m−1(x) = t∗ + t, so that t = m−1(x)− t∗. Hence, we can apply (97) to get

λf (x) = 1 + β[cos (γ/2) cos (γ(m−1(x)− t∗)))

= 1 + β cos (γ/2)(x− 1)/sU , (103)

which reduces to (99).

Corollary 6.4 (more for the fitted fluid rate functions) In the setting of Theorem 6.2, there are

four different cases for 0 < γ < 4π, depending on whether γ belongs to one of the four subintervals:

(i) (0, π), (ii) (π, 2π), (iii) (2π, 3π) or (iv) (3π, 4π), leading to λf = µf being a strictly increasing

(decreasing) function in cases (i) and (iii) ((ii) and (iv)). In particular,

(i) If 0 < γ < π, then λf (m1(t
∗+ t)) is a strictly decreasing function of t on the interval [0, π/γ]

attaining its maximum of 1+β(cos (γ/2) at time t = 0, and its minimum of 1−β(cos (γ/2) at time

π/γ. Since m1(t
∗ + t) is also a strictly decreasing function of t on the interval [0, π/γ] in this case,

λf = µf is strictly increasing on [mL/λ̄,mU/λ̄] and

λf
U (γ) = µf

U (γ) = λf (t∗) = 1 + β cos (γ/2) and λf
L(γ) = 1− β cos (γ/2). (104)

Moreover,

λf
U (γ) = µf

U (γ) → 1 + β and λf
L(γ) = µf

U(γ) → 1− β as γ → 0. (105)

(ii) However, if π < γ < 2π, then λf (m1(t
∗ + t)) is a strictly increasing function of t on the

interval [0, π/γ] attaining its maximum of 1− β(cos (γ/2) > 1 at time t = πγ, and its minimum of

23



1+ β(cos (γ/2) < 1 at time t = 0. Since m1(t
∗ + t) is still a strictly decreasing function of t on the

interval [0, π/γ], in this case λf = µf is strictly decreasing on [mL/λ̄,mU/λ̄] and

λf
U (γ) = µf

U(γ) = λf (tm) = 1− β cos (γ/2) and λf
L(γ) = 1 + β cos (γ/2). (106)

(iii) If 2π < γ < 3π, then λf (m1(t
∗ + t)) is a strictly increasing function of t on the interval

[0, π/γ], but now m1(t
∗+t) is also a strictly increasing function of t on the interval [0, π/γ]. Hence,

just as in case (i), λf = µf is strictly increasing on [mL/λ̄,mU/λ̄].

(iv) If 3π < γ < 4π, then λf (m1(t
∗ + t)) is a strictly decreasing function of t on the interval

[0, π/γ], just as in case (i), but now m1(t
∗ + t) is a strictly decreasing function of t on the interval

[0, π/γ]. Hence, just as in case (ii), λf = µf is strictly decreasing on [mL/λ̄,mU/λ̄].

Proof. We observe that cos (γ/2) > 0 in cases (i) and (ii), whereas cos (γ/2) < 0 in cases (ii)
and (iii). The overall complexity occurs because the cases for m1(t

∗ + t) and λf (m1(t
∗ + t)) are

different.

Corollary 6.5 (half-cycle service times) Consider the Mt/D/∞ model with sinusoidal arrival rate

function in (6), starting empty in the distant past, where the mean service time is exactly one half

cycle, i.e., 1 = π/γ. Then

λf (x) = µf (x) = 1 for all x. (107)

Proof. Apply (98).

7 Exponential Service and Relatives

Most results for the case of exponential service are given in §5 of [7]. We see that the fitted fluid
input and output rate functions are especially nice in this case.

Corollary 7.1 (M service) In addition to the assumptions of §5, suppose that the service-time

distribution is exponential (M) with E[S] = 1. Then Se is distributed as S, C = 1/(1+ γ2) > 0 and

S = γ/(1 + γ2) > 0 for all γ > 0. Thus, sU = 1/
√

1 + γ2 and C(γ) = 1, so that λf = µf is the

identity function, i.e.,

λf (x) = µf (x) = x for all x, 1− βsU ≤ x ≤ 1 + βsU . (108)

Some of the nice structure for M service carries over to Hk service, i.e., a mixture of k expo-
nential cdf’s. Let the mean-1 service time S have an Hk cdf, so that

Gc(x) ≡ 1−G(x) ≡
k

∑

i=1

pie
−µix, x ≥ 0, (109)

where
k

∑

i=1

pi = 1 and

k
∑

i=1

pi/µi = E[S] = 1. (110)
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Corollary 7.2 (Hk service) In addition to the assumptions of §5, suppose that the service-time

distribution is hypexponential (Hk) with E[S] = 1 as in (109) and (110). Then Se has an Hk

distribution with

P (Se > x) =

k
∑

i=1

qie
−µix, x ≥ 0, where qi = pi/µi and

k
∑

i=1

qi = 1. (111)

Consequently, for all γ > 0,

0 < C =

k
∑

i=1

qi
1

1 + (γ/µi)2
<

1

1 + γ2
and 0 < S =

k
∑

i=1

qi
(γ/µi

1 + (γ/µi)2
<

γ

1 + γ2
. (112)

Hence, letting sU,GI denoting sU as a function of the mean-1 service-time distribution,

sU,Hk
< sU,M . (113)

For all non-M Hk distributions, λf is an increasing function, but not equal to the identity function.

Proof. First, (111) follows immediately from (109) and the definition of Se.

8 Local Balance with Large Scale

We have developed the fluid limits and associated fluid approximations for the birth-rate and death-
rate functions in periodic Mt/GI/∞ queues in order to have convenient analytical expressions to
serve as diagnostic tools to see if a periodicMt/GI/∞model might be appropriate in an application.
The various analytical results here and in [5, 6] contribute to our diagnostic toolkit. They provide
established structure of fitted birth-rate and death-rate functions in classes of models that can serve
as reference points when we look at data, as in the ED example in §1.4.

While we have been successful in this objective, we also see something anomalous in our asymp-
totic results, which might be regarded as another example of a failure for two iterated limits in
different order to be equal, as in the [16]. In particular, from Corollary 7.1, we see that we cannot
apply the local balance equation (3) to obtain the limiting steady-state pmf from the large scale
approximations of the fitted BD rates. For example, the natural approximating fitted birth and
death rates with large scale for the Mt/M/∞ model based on Theorems 4.1 and 5.1 plus Corollary
7.1 are

λ̄n,k = λ̄n,k = k, n(1− βsU) ≤ k ≤ n(1 + βsU )

This BD process on the interval [n(1− βsU ), n(1 + βsU )] has steady-state pmf

ᾱn,n(1−βsU )+k = rn,k/

n(1+βsU )
∑

j=n(1−βsU )

rn,j, 0 ≤ k ≤ 2nβsU ,

where, by telescoping products,

rn,k =

∏n(1−βsU )+k−1
j=n(1−βsU ) λn,j

∏n(1−βsU )+k
j=n(1−βsU )+1 µn,j

=
n(1− βsU )

n(1− βsU ) + k
.

We thus, see that rn,k decreases from just below 1 at k = n(1− βsU)+ 1 to (1−βsU )/(1+βsU ) at
k = n(1 + βsU ) − 1. Thus αn,k is decreasing, approximately linearly. Clearly, this distribution is
not the arcsine pdf appearing in Theorem 3.2. Since this was not our objective, we do not consider
this to be a serious defect. Nevertheless, it leaves open the question of whether there is not a more
refined scaling, as for diffusion process limits, that provides a more unified revealing story.

25



9 Conclusions

In this paper we established heavy-traffic fluid limits for the periodic Mt/GI/∞ model, which
provide convenient explicit formulas for the approximate birth-rate and death-rate functions to
help diagnose whether a periodic Mt/GI/∞ model might be appropriate in an application. We
would make that judgment by comparing the birth-rate and death-rate functions fitted to the
system data to the analytical forms that we have shown are appropriate for the Mt/GI/∞ model.
The entire process is illustrated by the emergency department example in §1.4. An extensive
examination of the data from that application in [28] presents strong evidence that an Mt/GI/∞
model is appropriate except that the service-time distribution is strongly time-dependent. This
paper allows us to anticipate the inadequacy of the Mt/GI/∞ model in that application.

In this paper we established many-server heavy-traffic fluid limits for the steady-state dis-
tribution and the fitted birth and death rates in periodic Mt/GI/∞ models. The simple fluid
approximation for the steady-state cdf in §3 should serve as a useful approxiation. Theorems 3.1
and 3.2 expose the simple arcsine limit for sinusoidal arrival rates.

Theorem 4.1 establishes many-server heavy-traffic (MSHT) limits for the fitted birth and death
rates in general periodic Mt/GI/∞ queueing models. Since the estimation tends to require a
great amount of data when the scale increases, we also proposed alternative aggregate estimators.
Theorem 4.3 shows that these aggregate estimators also converge to the same limits after scaling.

We also obtained stronger explicit results for the special case of sinusoidal arrival-rate functions.
Theorem 6.2 shows that the limiting fitted birth and death rates are equal and linear over a finite
interval, with these being the restriction of the identity function if and only if the service-time
distribution is exponential. Formula (78) shows that the linear functions for different service-time
distributions coincide at the overall average arrival rate. An explicit expression for the slope is
given in (79).

In §7 we gave explicit formulas for the fitted rates with exponential and hyperexponential
service-time distributions. In these cases, the limiting fitted rates are always strictly increasing,
but that is not the case for all service-time distributions. In §6 we carefully analyzed the case of
deterministic service times, exposing unusual behavior; e.g., we showed that the limiting fitted rate
functions are actually decreasing for some cases of long service times.

In §8 we observed that the steady-state distribution of the fitted BD process using the asymp-
totic rates does not necessarily coincide with the many-server heavy-traffic limit of the steady-state
distributions. This limit-interchange problem does not affect the use of the fitted rates as a di-
agnostic tool, but it raises the question of whether there might be additional limits in a more
revealing refined heavy-traffic scaling, as for diffusion process limits. That remains a topic for
future research. There are many other directions for future research, e.g., It remains to establish
corresponding results for the periodic finite-capacity Mt/GI/s model and other models.
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