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For over twenty years, closed queuing networks and related product–form

models have played a major role in the performance analysis of computer

systems. communication networks and other complex systems.’ The success of

these models has largely been due to the excellent algorithms for computing

the steady-state performance measures that have been developed, such as the

convolution algorithm [Buzen 1973; Reiser and Kobayashi 1975], the mean

value analysis (MVA) algorithm [Reiser and Lavenberg 1980], the tree convolu-

tion algorithm [Lam and Lien 1983], the recursion by chain algorithm (RE-

CAL) [Conway and Georganas 1986a, 1986b], the mean value analysis by chain

(MVAC) algorithm [Conway et al. 1989], and the distribution analysis by chain
(DAC) algorithm [de Souza e Silva and Lavenberg 1989]. See Bruel and Balbo

[1980], Conway and Georganas [1989], and Lavenberg [1983] for an overview.

While these algorithms for closed queuing networks have significant differ-

ences, they can all be related by their common recursive approach [Conway

and Georganas 1989]. These algorithms have been very successful, but they do

encounter difficulties when the model becomes large in one way or another, for

example, have many chains, many queues or large populations. Thus, special

approaches for analyzing large closed networks also have been developed, such

as the algorithm PANACEA based on asymptotic expansions of integral

representations [McKenna and Mitra 1982; 1984; McKenna et al. 1981; Ra-

makrishnan and Mitra 1982]. Other asymptotic methods for large models have

also been developed [Birman et al. 1992; Knessl and Tier 1992; Kogan 1992;

Kogan and Birman 1992].

In this article, we propose a radically different algorithm for calculating the

performance measures of closed queuing networks and related product–form

models, which we believe usefully complements existing algorithms, because it

applies to both large and small models. In contrast to the recursive approach of

the nonasymptotic algorithms above, we directly calculate the difficult normal-

ization constant or partition function at a desired argument (total population

vector) by numerically inverting the generating function of the normalization

constant. Moreover, we directly calculate mean queue lengths by performing

only two inversions. One consequence of this direct approach is a very low

storage requirement.

To show that our algorithm can usefully complement existing algorithms, we

solve some challenging examples. For instance, Example 8.4 has 1000 queues,

4000 jobs, and 11 closed chains with the product of the chain populations being

more than 10 ‘b. This example was solved in less than a minute by our

algorithm on a SUN SPARC-2 workstation. Some models of this size can also

be handled nicely by the asymptotic approaches in Knessl and Tier [1992] and

McKenna and Mitra [1982], but we do not need to have any infinite-server

queues or be in the normal usage regime as required by McKenna and Mitra

[19821,anclwe do not need to have all chain populations be large as required
by Knessl and Tier [1992]. Moreover, we do not need to revert back to one of

the other algorithms when the model is small.

We now describe the general class of probability distributions that we

consider. Here we do this abstractly; in Section 4, we will consider a special

1See. for example. Bruel and Balbo [1980], Conway and Gcorganas [1989], Kelly [1979], Lavenbcrg
[1983]. and Whittle [1986].
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class of closed queuing networks. Now let the state variable be a job uector

n= (n,,..., nL ); n ~ is the number of jobs of type 1; nl might be the number of

customers of a particular class at a particular queue. Let there be a specified

population Lector K = (Kl, . . . . KP); K, is the population of chain j, a fixed

quantity specified as part of the model data. The state space is the set of

allowable job vectors, which depends on K and is denoted by S(K). In this

setting, the probability distributions that we consider have the form

p(n) = g(K) -’f(n), (1.1)

where

and ~ is a (known) nonnegative real-valued function on the L-fold product of

the nonnegative integers. (For example, we might have f(n) = ~~=, fl(n[) with

.f~(7zl) = p~’.) The term g(K) in (1.1) and (1.2) is called the normalization
constant or the partition function. For the closed queuing network models (and

many other models), we will consider, the state space has the special form

(S(K)= nlnl>O, ~n{=KJ, l<j<p
)

(1.3)
IEC,

for special sets Cj, 1< j S p.

Given a probability distribution as in (1.1), where the function ~ is relatively

tractable, the major complication is determining the normalization constant

g(K). In this setting, the convolution algorithm calculates g(K) by expressing it

in terms of values g(K) where K <“ K (i.e., K/ s K1 for all 1 and K; < K1 for

at least one 1) [Bruel and Balbo 1980; Conway and Georganas 1989; Lavenberg
1983]. Other existing nonasymptotic algorithms proceed in a similar recursive

manner. See Conway and Georganas [1989] for a unified view.

In contrast, we calculate g(K) by numerically inverting its generating func-

tion

G(z) = ~ “.” ~ g(K) fiz~
K,=o K,, = O ,=1

(1.4)

where z = (zI, ..., ZP) is a vector of complex variables. To quickly see the

potential advantage of this approach, note that we can calculate g(K) for one

vector K without calculating g(K’ ) for all the ~}= ~Kj nonnegative vectors K’

less than or equal to K.

There are two obvious requirements for carrying out our program. First, we

need to be able to compute the generating function values in (1.4) and, second,

we need to be able to perform the numerical inversion. The first requirement

often turns out to be surprisingly easy, because the generating function of a

normalization constant often has a remarkably simple form. This has long been

known in statistical mechanics. In that context, the normalization constant is
usually referred to as the partition function and its generating functions is

referred to as the granal partition fimction; for example, see Reif [1965, pp. 213

and 347]. For the special case of multi-chain closed queuing networks, with

only single-server and infinite-server queues, the generating function is dis-
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played quite compactly in (4.4) below. Generating functions of other queuing

network models (e.g., involving load-dependent servers) are given in Bertozzi

and McKenna [1993]. They are not quite so nice as the subclass we consider

here, but they tend to be tractable. See Choudhury et al. [1995] for generating

functions of other product–form models.

Generating functions of normalization constants have not been used much to

study closed queuing networks, but they have been used. Indeed, Reiser and

Kobayashi [1975] used generating functions to derive their convolution algo-

rithm for the normalization constants in multichain networks. Another early

use of generating functions is by Williams and Bhandiwad [19761; Kelly [1979]

also briefly discusses generating functions. More recently, in the tradition of

the statistical mechanics, generating functions have been used to do asymp-

totic by Birman et al. [1992], Kogan [1992], and Kogan and Birman [to appear].

Gordon [1990] and Bertozzi and McKenna [1993] have also recently used the

generating functions to derive closed-form expressions for the normalization

constant by applying Cauchy’s theorem and the theory of residues. This extends

the classical closed-form expression for the normalization constant in a single-

chain network with only distinct single-server queues due to Koenigsberg [1958;

1986] and Harrison [1985]. In addition to deriving important new expressions

for the single-chain case, Bertozzi and McKenna [1993] also consider the

relatively complicated multidimensional case (with restrictions). They also

provide a nice overview of the generating function structure of closed queuing

networks.

To numerically invert the generating function of the normalization constant,

we apply a Fourier-series method. In particular, we recursively apply the

lattice-Poisson numerical inversion algorithm for one-dimensional generating

functions in Abate and Whitt [1992a; 1992b] and Choudhury et al. [1994a] p

times to treat a p-dimensional generating function. (For a closed queuing

network, the dimension p is equal to the number of closed chains. ) As noted in

Choudhury et al. [1994a], the one-dimensional algorithm applies to complex-

valued functions as well as real-valued functions, so such a recursive procedure

is possible.

Unfortunately, however, the numerical inversion here is not routine. The
previous numerical inversion algorithms in Abate and Whitt [1992a; 1992b] and

Choudhury et al. [1994a] focused on calculating probability distributions. Since

probabilities are bounded between O and 1, it is much easier to develop an

effective algorithm (control the numerical errors) to compute probabilities. In

sharp contrast, the normalization constants g(K) depend on the vector argu-

ment K in a relatively complicated way and may be very small or very large. We

address this problem here by introducing appropriate scaling, see (2.10). The
scaling hex-e parallels the previous use of scaling in the algorithm of Choudhury

and Lucantoni [1995] to compute high-order moments of probability distribu-

tions and in the convolution algorithm, see Lam [1982] and Lavenberg [1983,
p. 132]. However, unlike Choudhury and Lucantoni [1995] and Lam [1982], the

scaling here is static rather than dynamic, that is, determined prior to the main

computation. As a result, the implementation of our approach can be simpler

than that of dynamic scaling. In addition, computation of the scale parameters

is insignificant compared to the remaining computation. Another difference

with Lam [1982] is that the scaling there is used to keep the intermediate and

final partition functions within the range of floating point computation. In

contrast, our main goal in scaling is to control the aliasing error in the
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inversion. (See (2.4) and (2. 12).) Of course, we also take steps to ensure that no

difficulty arises due to numbers getting outside the range of floating point

computation. Typically, small problems can be solved without scaling, but

scaling becomes necessag as the model becomes large,

Our general approach is applicable to a large class of product-form models,

but in this paper we only develop a detailed scaling algorithm for a subclass of

closed queueing networks (i.e., ones with only single-server and (optionally)

infinite-server queues; see Sections, 4 and 5). The procedure here applies

directly to this subclass of models and illustrates what can be done by similar

methods for other classes of models. Indeed, in Choudhury et al. [1995], we

report on a different scaling algorithm to calculate normalization constants by

numerical inversion in resource-sharing models as in Kaufman [1981] and

circuit-switched communication network models as in Kelly [1986].

The computational requirement of our algorithm grows exponentially in the

dimension of the generating function. Since the dimension of the generating

function is the number of closed chains, the computational requirement grows

exponentially in the number of closed chains, just as for the convolution

algorithm. (See Section 2.5 for a discussion of computational complexity.)

However, we show that this difficulty can often be circumvented by appropriate

dimension reduction based on model structure. Indeed, a critical step in solving

the 1l-dimensional example mentioned at the outset is reducing the dimension

from 11 to 2. Given this dimension reduction to 2, the original dimension could

just as well be 100 or ever 1000 instead of 11. Our experience with large models

indicates that they often have such special structures, that dramatic dimension

reduction may be the rule rather than the exception in applications.

It turns out that, conceptually, our dimension reduction scheme parallels the

dimension reduction achieved with the convolution algorithm using the tree

convolution algorithm of Lam and Lien [1983] even though the actual algo-

rithms are quite different. The dimension reduction is perhaps easier to

understand with generating functions, because convolution of normalization

constants corresponds simply to multiplication of their generating functions,

and multiplication is inherently a more elementary operation than convolution.

Another important way that we gain computational efficiency is by using

Euler summation to compute large sums, just as is done for Laplace transforms

in Abate and Whitt [1992a] and Choudhury et al. [1994a]. (Other acceleration

techniques could be used as well [VVimp 1981].) Unlike the inversion formula

for Laplace transforms [Abate and Whitt 1992a; Choudhury et al. 1994a], the

inversion formula for a generating function is a finite sum [Abate and Whitt

1992a, 1992b]. Hence, here we do not face the problem of calculating an

infinite series, However, the size of the finite series is directly proportional to

the desired function argument (here a chain population). When this is large, it

may be possible to greatly reduce the computation by employing a summation

acceleration method. For this purpose, we use Euler summation. For example,

with acceleration the computation for a population of 100,000 or more may

require a sum of fewer than 100 terms. Since saving is possible for each

dimension (chain), the total saving grows geometrically with the number of
chains. In this way, the inversion algorithm is able to exploit the special

structure of large populations, much as the asymptotic methods do. (See

Section 2.4 for more details.) Without using acceleration techniques, the

computational complexity of our inversion algorithm is essentially the same as

for the tree convolution algorithm [Lam and Lien 1983], but the acceleration
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techniques enable us to do better with large chain populations. There also is a

much smaller storage requirement with the inversion algorithm. (See

Section 2.5.)
In this paper, we propose both a general algorithm for a large class of

problems (Sections 2 and 3) and a specific algorithm for an important subclass

of problems, the multichain closed queuing networks with only single-server

and (optionally) infinite-server queues (Sections 4–6). The specific algorithm

should usually perform as a black box (give proper answers for any specified

model parameters without any adjustments or “tuning” of algorithm parame-

ters), whereas the general algorithm requires tuning in the choice of algorithm

parameters, for example, scaling and the use of Euler summation.

A major part of the inversion algorithm involves error control. There are

always two sources of error: aliasing error and roundoff error. In addition, if

Euler summation is used to compute large sums, a third source of error,

truncation error, is also introduced (note that we do not do pure truncation).

Sections 2.1,2.2, and 2.4 explain these errors and the techniques for controlling

them. We do not have a simple expression for the final error but we do provide

a good practical procedure for determining it. This is done by performing two

different computations based on different parameters. Since the inversion

involves entirely different contours in the complex plane for different algo-

rithm parameters, the accuracy can usually be seen from the number of places

where these computations agree. We also provide means to improve the

accuracy if it turns out to be inadequate.

Here is how the rest of this paper is organized. In Section 2, we describe the

basic numerical inversion algorithm for computing the normalization constant

g(K) in (1.2) given the generating function G(z) in (1.4). In Section 3, we
discuss dimension reduction. In Section 4, we consider the special class of

closed queuing network models with only single-server and (optionally)

infinite-server queues. In Section 5, we develop our scaling algorithm for this

class of models. In Section 6, we indicate how to calculate mean queue lengths

and higher moments directly by performing only two numerical inversions. We

give a concise summary of the algorithm in Section 7. Then, we present

illustrative numerical examples in Section 8. Finally, we draw conclusions in

Section 9. For an overview of other recent applications of numerical inversion

to performance analysis models, see Choudhury et al. [1994b].

2. The Basic Inuemion Algor-ithrn

Let g(K) be the p-dimensional partition function in (1.2) and let G(z) be its

P-d~mensional generating function in (1.4). We can invert G(z) by a direct
p-dlrnensional inversion as in Choudhury et al. [1994a] or by recursively
performmg p one-dimensional inversions. (In general, a p-dimensional inver-

sion can be done in such a recursive manner [Choudhury et al. 1994a]. ) We use

the recursive approach because it seems easier to handle the scaling and

dimension reduction with it.

2.1. THE RECURSIVE ALGORITHM. To represent the recursive inversion, we
define partial gene~atingjimctions by

.

~ ., ““” ~ g(K) fiz:g(J)(z,,K, +l) = ~ for OSj <p, (2.1)
K,=o 1=1
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where Zj=(zl, zz, . . ..zj) and Kj =:( KJ, K,+l, . . ..K) for I<j <p. Let ZO
/’iJ)and KP+, be null vectors. Clearly, K = Kl, z = Zp, g (zp, Kp+ ~) = G(z) and

g(”)(zo, K1) = g(K).
Let 1, represent inversion with respect to ZJ. Then, the step-by-step nested

inversion approach

g @(z,_l, Kj) = l,[g(’)(z,, K,+l)], I<j <p, (2.2)

starting with j = p and decreasing j by 1 each step. In the actual program

implementation, we attempt the inversion shown in (2.2) for j = 1. In order to

compute the right-hand side, we need another inversion with j = 2. This

process goes on until at step p the function on the right-hand side becomes the

p-dimensional generating function and is explicitly computable. By simply

relabeling the p transform variables, we see that the scheme above can be

applied to the p variables in any order.

In each step, we use the lattice-Poisson inversion algorithm in Abate and

Whitt [1992a; 1992b] with modifications to improve precision and allow for

complex inverse functions as in Choudhury et al. [1994a]. We show below the

inversion formula at the jth step. For simplicity, we suppress those arguments

that remain constant during this inversion, letting gl( KJ) = g(J - I)(zJ _ ~, KJ ) and

G,(-zj) = g(J) (Zl, K ~, ~). With this notation, the inversion formula 1s

“-’ k( ri(Y)))-e7’23)X ~ (–1) G rexp
~= –K,

where i = ~, 1, is a positive integer, r] is a suitably small positive real

number and e] represents the aliasing error, which is given by

(2.4)e] = 5 gJ(.K, + 2n11Kl)r12’’11~J.
~=1

Note that, for j = 1, gl(K1) = g(K) is real, so that G1(Z1) = Gl(zl). This

enables us to cut the computation in (2.3) by about one half. For j = 1, we

replace (2.3) by

Equations (2.3) and (2.4) can be obtained by applying the discrete Poisson

summation formula [Abate and Whitt 1992a; 1992b]. The idea is to consider
the sequence MA”, ) = g,( K, )r,~] for KJ >0 and M K] ) -0 otherwise, and then

construct a periodic sequence by adding translations of the original sequence

(with successive shifts of multiples ?f 21JKJ), that is, by aliasing. The resulting
periodic sequence is (gJ(K, ) + e, )r,A J for ej in (2.4). The discrete Fourier series
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representation of this periodic sequence is the right-hand side of (2.3) (without

the term –,e, ) multiplied by r,~. Next, (2.3) is obtained by multiplying both

sides by r]‘kJ and moving e, to the right side.

An alternative way of obtaining (2.3) without the error term is simply to

apply the trapezoidal rule form of numerical integration to the Cauchy contour

integral

g,(~,) = #T/cG,(Z,)Z;(KJ+’’Ciz,
r,

(2.6)

where C,, is a circle of radius r, which does not contain any of the singularities

of G,(z, ). In this context, the error expression e, in (2.4) may also be regarded

as the discretization error of the trapezoidal rule. Note that even though, in

general, the trapezoidal rule is a rather elementary form of numerical integra-

tion, in the current context it really outperforms more sophisticated numerical

integration procedures. This is due to the oscillating nature of the integrand,

and is verified by the tight and easily controllable error expression given by

(2.4); that is, the actual error in (2.4) is usually much less than the customary

error bound associated with the trapezoidal rule; see Abate and Whitt [1992a]

for more discussion and references.

To control the aliasing error (2.4), we choose

~J = lo–Y,/~lK 1 J. (2.7)

Inserting (2.7) into (2.4), we get

This choice of r, enables us to more easily control the aliasing error e, using

the parameter yJ. For instance, if g] were bounded above by 1, as is the case

with probabilities, then the aliasing error would be bounded above by 10- ‘J/(1

– lo-~) = 1O-YJ.

As is clear from (2.8), a bigger y~ decreases the aliasing error. However, since
~,–~J = lo~J /2J, the factor ~J–‘J in (2.3) increases sharply with y, and thus can

cause roundoff error problems. Since the parameter 1, does not appear in the

aliasing error term (2.8), it can be used to control the growth of r,-~l without

altering the aliasing error. Bigger values of 1, yield less roundoff error, but

more computation because the number of terms in (2.3) is proportional to 1,.

(See Choudhury et al. [1994a] for more discussion.)
An inner loop of the inversion requires more accuracy than an outer loop

since the inverted values in an inner loop are used as transform values in an

outer loop. With a goal of about eight significant digit accuracy, the following

sets of 1, and y, typically are adequate:

assuming that computations are done using double-precision arithmetic. It is

usually not a good idea to use the same 1, for all j, because then more

computation is done to achieve the same accuracy.
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In Abate and Whitt [1992a; 1992b] and Choudhury et al. [1994a], the inverse

function was mainly assumed to be a probability, so that the aliasing error ej in

(2.8) could be easily bounded. In contrast, here the normalization constants
may be arbitrarily large and therefore the aliasing error e, in (2.8) may also be

arbitrarily large. Thus, in order to control errors, we scale the generating

function in each step by defining a scaled generating finction as

where aOj and al are positive real numbers. We invert this scaled generating

function after choosing aOj and aj so that the errors are suitably controlled.

(See Section 2.2 below.)

Let ~J(KJ) represent the inverse function of ~’(zl ). The desired inverse
function gj(Kj) may then be recovered from :J(KJ) by

g, ( K, ) = @aJ-KJ~,( Kj ) . (2.10)

2.2. CHOOSING SCALING PARAMETERS. Note that the inversion procedure in

(2.2) is a nested procedure, so that scaling done at one step will also modify the
functions in subsequent steps. By (2.8), the~liasing error term for computing

jjj(K, ) from the scaled generating function G,(zJ ) in (2.9) is

~J = 5 E](KJ + 2nlJK1)10-~~”. (2.11)
~=1

Since the quantities needed in product-form models typically involve ratios of

normalization constants, we really care about the relative error and not the

absolute error. The relative error is given by

so that it can be bounded via

Let

Then

(~.lz)

(2.13)

(2.14)

(2.15)

Hence, to limit the aliasing error, we want C, in (2.14) to be not too large, that

is,

cl < 10YJ. (2.16)

Our main purpose in scaling is to satisfy (2.16), which in turn controls the

relative aliasing error. However, note that only the scale parameter aj is useful



944 G. L. CHOUDHURY ET AL.

for this purpose since C, is independent of the other scale parameters aOJ. We

can use the other scale parameter acj~ to make it more likely that ~,( KJ ) does

not exceed the range of floating point computation, but we also use another

measure to avoid floating point range exception. We compute and store only

the logarithms of large quantities or the ratios of large quantities. In that

context we also treat sums (al + . . . + a),) where a ~ is the largest term as

products of the form al (1 + az/ul + . . . +a~/al).

An obvious problem with condition (2.16) is that we do not know ,gJ(K,)

explicitly. However, since 10 YJ is verv lar~e, it should be possible to satisfy

(2:16) b~ roughly controlling the grow~h ra~e’ of gJ(K, ) as
on the structure of the generating function. Specifically,

possible to express g,(K, ) as

K] gets large based

in many cases it is

(2.17)

where the A,’s are usually unknown constants, but the B,’s are known func-

tions of K,. Indeed, we show that this structure holds for the closed queuing

networks m Section 5. Then our strategy is to identify the fastest growing

function B,(K, ), and introduce a scaled version

~,( K,) = cql, a,~JB[(KJ) (~18)

as in (2.10), so that

[

//n
~l(K1 + 2n11K1)

Max

1

< /3,
~l(K1)

(2.19)
?1

where ~ is of the order of 1. Indeed, we identify the fastest growing function

by requiring that (2.19) hold for all i. For the scaling of closed queuing

networks in Section 5, we find that it suffices to consider only the case n = 1 in

(2.19). Given (2.19), we use the scaling in (2.18) in (2.10),

We have just described a general scaling strategy. We present a specific

scaling algorithm for a class of closed queuing networks that follows this

strategy in Section 5. With the aid of (2.19), we are able to treat multiplicities

in the factors of the generating function. However, to treat near multiplicities,

we must go beyond (2.19) as we do in Section 5.5. Hence, (2.19) should be

regarded only as a reasonable starting point. Difficult cases will require

refinement.

2.3. VERIFICATION OF THE ACCURACY OF COMPUTATION. The inversion
algorithm given by (2.2), (2.3), and (2.5) with scaling (2.10) is really a family of

algorithms, one for each vector 1 = (11, . . .,1P ). Our experience is that there

exists a minimum vector Im,n = (11 ~,n, ..., 1P ~ln ) such that the algorithm will

be sufficiently accurate whenever 1‘ >1 ~,n. However, the required computation

increases as 1 increases, so we do not want 1 larger than necessary. Typically

1l,m]n = 1, 12,m,” c /3, m,” = 2, /4, m,,, = lj, m,n = /6 ~,n = 3, etc. Each I corre_

spends to a unique set of contours in the p-dimensional complex plane.
In addition to being a means to achieve greater accuracy, we use the vectors

1 to verify the accuracy. If we run the algorithm with I ~ and 1~, where

14,1B > lm,”, 1A # lB and the answers agree up to t significant places (with
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large t,say 6 or higher) then we regard both answers as accurate up to t

significant places. (This agreement could happen by chance only with very

small probability.) We have tested this property for many cases where the

results can be computed easily by other methods.

2.4. EULER SUMMATION AND TRUNCATION. In Abate and Whitt [1991a] and

Choudhury et al. [1994a], Euler summation is used to efficiently calculate

infinite series arising in the inversion of Laplace transforms. We also use Euler

summation here to speed up the calculation of large finite series in (2.3). Euler

summation is especially appropriate for alternating series. Note that we have

chosen our parameters so that the inner sums of the inversion formula (2.3)

will tend to be nearly an alternating series.

Consider a real series of the form

cc

s= ~(–l)bk, (2.20)
k=o

and let the partial sums be

SJ = ~ (–l)kak. (2.21)
k=:O

Here a~ = O for k > K, but in general this need not hold. Euler summation

approximates S in (2.20) by

nl–1 m

~(rn, n) = S,l + (–1)”+] ~ (--l) A2-(~+’)A~a,, +l = x( )
?; 2.kS

?l+k~
k=O k=O

where A is the finite-difference operator; that is, A a,, = a,, + ~ – a,, and Aka,, =

A(Ak- la~).

We suggest using the Euler sum on the inner sums in (2.3) and (2.5)

whenever K] is large. (Note that for the inner sum in (2.3) the Euler sum

should be applied twice, once for positive k and once for negative k). Clearly,

using the Euler sum (2.22) makes sense only if KJ > (m + n). We typically use

n=llandnz=200r 40.

In general, it is difficult to show that Euler summation will necessarily be

effective. Hence, we just apply it and see if it works, using the error estimate

IE(m, n) – li(nz, n + 1)1 and the accuracy verification in Section 2.3. Euler
summation has worked for all the closed queuing network examples we have

considered, including the examples here in Section 8. In some cases, Euler

summation is effective because the terms in the series S very rapidly approach

O. Then Euler summation is tantamount to simple truncation, but this is not

the only case.

We mention that for the loss networks considered in Choudhury et al. [1995]

Euler summation is less effective, but significant computational savings are still
possible via appropriate truncation, after identifying where the primary contri-

bution to the sum comes from. There also are many alternative acceleration

procedures; see Wimp [1981]. In other words, the inversion algorithm offers the

possibility of further computational savings through further analysis.
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2.5. COMPUTATIONAL COMPLEXITY AND STORAGE REQUIREMENTS. To un-

derstand the computational complexity, look at the basic inversion formula in

(2.3) and (2.5). The computation complexity is determined by how many times

we have to compute the transform G(z). Other work (such as finding the

scaling factors) is relatively small. From (2.2), (2.3) and (2.5), we see that the

total number of times G(z) has to be computed is about

PP

2’-’ ~l,~K,, (2.23)
1=1 ~=1

where p is the dimension of the generating function (number of closed chains),

K, is the population of the jth chain and lJ is the jth roundoff-error-control

parameter in (2.3).

To say more, we need to know more about the structure of G(z). For the

special case of the closed queuing networks considered in Section 4, G(z) is

given in (4.5). For that generating function, each computation of G(z) requires

about pq’ + p + q’ = pq’ complex multiplications, where q’ is the number of

distinct single-server queues (excluding multiplicities). Hence, the total number

of complex multiplications is of order

pq’2p-1 fil, fiK,.
,=1 ~=1

(2.24)

An analysis of the computational complexity of previous algorithms has been

done by Conway and Georganas [1989]. From Conway and Georganas [1989,

p. 177] we see that the number of multiplications and additions in the

convolution algorithm for the case of all single-server queues is

2p(N– l)fi (K, + 1), (~25)
,=]

where N is the total number of queues.

From (2.24) and (2.25), we see that the dominant term is ~~= ~ K, in both

cases. Based on this initial analysis, our algorithm is worse than the convolu-

tion algorithm, because we have the additional factor 2‘ - I ~ P~=, 11and because
we need complex multiplication. As an example, for p = 4 we typically have

11 = 1, 1, = 1A = 2, and lJ = 3; this gives 2P-lIlf=ll, = 96.

However, there are several other considerations strongly favoring our algo-

rithm. First, q’ may be significantly less than N, as is the case in our numerical

examples. Second, if the class populations K, are large, then we can exploit

Euler summation as in Section 2.4. If Euler summation is indeed used with
m + n = 31, then (2.24) is replaced by

pq’2p”’ fil, fimin{31, K,}. (2,Q6)
J=l ,=1

For example, if K, = 3100 for all j, then (2.26) is a reduction of (2.24) by a

factor of 100P.
Conway and Georganas [1989, p. 177] point out that the term IT;. ,(K, + 1)

in (2.25) needs to be replaced by IT,f= ,(KJ + 1)($ + 2)/2 if all queues have

load-dependent service rates, causing a dramatic increase in computation, In
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contrast, whenever the generating function can be expressed in a simple closed

form, the computational burden with our algorithm will not increase signifi-

cantly.

Another dramatic reduction of (2.’24) and (2.26) with our algorithm occurs if

we can exploit dimension reduction, which we discuss in the next section. This

effectively reduces p.

A final consideration is the storage requirement. We have virtually no

storage requirement since we compul e g(K) directly without storing intermedi-

ate values. In contrast, the storage requirement with the convolution algorithm

is about 2~$. I(K, + 1).

3. Dimension Reduction by Decomposition

In general, the inversion of a p-dimensional generating function G(z) repre-

sents a p-dimensional inversion whether it is done directly or by our proposed

recursive technique. Fortunately, however, it is often possible to reduce the

dimension significantly by exploiting special structure. To see the key idea,

note that if G(z) can be written as product of factors, where no two factors

have common variables, then the inversion of G(z) can be carried out by

inverting the factors separately and the dimension of the inversion is thus

reduced. For example, if G(zl, Zz, z~) = G1(zl)Gz(z~, z~), then G can be

treated as one two-dimensional problem plus one one-dimensional problem,

which is essentially a two-dimensional problem, instead of one three-dimen-

sional problem. The factors can be treated separately because factors not

involving the variable of integration pass through the sum in (2.3). We call this

an ideal decomposition. It obviously provides reduction of computational com-

plexity, but we do not really expect to be able to exploit it, because it

essentially amounts to having two or more completely separate models, which

we would not have with proper model construction. (We would treat them
separately to begin with.)

Even though ideal decomposition will virtually neL1er occur, key model

elements (e.g., closed chains) are often only weakly coupled, so that we can still

exploit a certain degree of decomposition to reduce the inversion dimensional-

ity, often dramatically. The idea is to look for conditional decomposition. The

possibility of conditional decomposition stems from the fact that when we

perform the (j – l)st inversion in (2.2), the outer variables ZI,. ... z,_, are

fixed. Hence, for the (j – I)st inversion it suffices to look for decomposition in

the generating functions regarded as a function of the remaining p – j + 1

variables. For example, if G(zl, Zz, z~) = Gl(zl, ZZ)GZ(ZI, Zj), then for each

fixed Zl, the transform G as a function of (zz, z~) factors into the product of

two functions of a single variable. Hence, G can be treated as two two-dimen-

sional problems instead of one three-dimensional problems.

More generally, we select d variables that we are committed to invert. We

then look at the generating function with these d variables fixed and see if the

remaining function of p – d variables can be factored. Indeed, we write the

function of the remaining p – d variables as a product of factors, where no
two factors have any variables in common. The maximum dimension of the

additional inversion beyond the designated d variables is equal to the maxi-

mum number of the p – d remaining variables appearing in one of the factors,

say m. The overall inversion can then be regarded as being of dimension
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d + m. The idea, then, is to select an appropriate d variables, so that the

resulting dimension d + m is small.

This dimension reduction can be done whenever a multidimensional trans-

form can be written as a product of factors. As we will see in Section 4, this

structure always occurs with closed queuing networks. For closed queuing

networks there is a factor for each queue in the network, and the variable z,

appears in the factor for queue i if and only if chain j visits queue i. Thus,

conditional decomposition tends to occur when chains tend to visit relatively

few queues. This property is called sparseness of routing chains in Lam and

Lien [1983]. In that paper, it is noted that this sparseness property is likely to

be present in large communication networks and distributed systems.

To carry out this dimension reduction, we exploit the representation of the

generating function G(z) as a product of separate factors, that is:

G(z) = R6{(2,) (3.1)
[=1

where m > 2 and i2, is a subset of {~1, Zz, ..., ZP}. We assume that each d,(~l)

cannot be further factorized into multiple factors, unless at least one of the

latter is a function of all variables in the set 2,.

We now represent the conditional decomposition problem as a graph prob-

lem. We construct a graph, called an interdependence graph, to represent the

interdependence of the variables z~ in the factors. Wae let each variable z~ be

represented by a node in the graph. For each factor G, (2, ) in (3.1), form a fully

connected subgraph r, by connecting all nodes (variables) in the set 2,. Then

let r = u~~lrl.

Now for any subset D of r, we identify the maximal connected subsets S(D)

of 17 – D; that is, S,(D) is connected for each i, S,(D) n S,(D) = @ when

i # j and u ,S1(D) = r – D. Let IA I be the cardinality of the set A. Then, the

dimension of the inversion resulting from the selected subset D is

inversion dimension == ID I + max {IS, (D) I}. (3.2)

It is natural to consider the problem of minimizing the overall dimension of

the inversion. This is achieved by finding the subset D to achieve the following

minimum:

{
minimal inversion dimension = YJ$ ID I + max { IS, (D) 1}. (3.3)

1—

In general, it seems difficult to develop an effective algorithm to solve this

graph optimization problem, and we suggest it as an interesting research
problem. However, for the small-to-moderate number of variables that we

typically encounter, we can solve (3.3) by inspection or by enumeration of the

subsets of r in increasing order of cardinality. Since our overall algorithm is

likely to have difficulty if the reduced dimension is not relatively small (e.g.,
< 10), it is not necessary to consider large sets D in (3.3). This dimension

reduction is illustrated in Section 5.4 and Examples 8.3 and 8.4 in Section 8.

As we mentioned in the introduction, it turns out that our approach to

dimension reduction is essentially equivalent to the tree algorithm of Lam and

Lien [1983] used with the convolution algorithm, even though the actual

algorithms are different. The connection is easily seen by noting that convolu-
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tion of normalization constants corresponds to multiplication of the generating

functions. It appears that the dimension reduction is easier to understand and

implement with generating functions, because multiplication is a more elemen-

tary operation than convolution.

4. Closed Queuing Networks

In this section, we consider multichain closed queuing networks with only

single-server queues (service centers with load-independent service rates) and

(optionally) infinite-server queues. This section closely follows Sections 2.1 and
2.2 of Bertozzi and McKenna [1993], which, in turn, closely follow Bruel and

Balbo [1980]. However, we do not consider the most general models in Bertozzi

and McKenna [1993] and Bruel and Balbo [1980]. We use the following

notation:

—p = number of closed chains

—M = number of job classes (M > p).

—N = number of queues (service centers). Queues 1,..., q are assumed to be

of the single-server type and queues q + 1, ..., N are assumed to be of the

infinite-server (IS) type. As usual, for the single-server queues, the service

discipline may be first-come first-served (FCFS), last-come first-served pre-

emptive-resume (LCFSPR) or processor sharing (PS). In the case of FCFS,

the service times of all job classes at a queue are assumed to be exponential

with the same mean.

—Rv, ,1 = routing matrix entry, probability that a class r job completing

se&ice at queue i will next proceed to queue j as a class s job for 1 s i,

j < N, 1< r, s < M (i.e., class hopping is allowed). The pair (r, i) is referred

to as a stage in the network.

—class vs. chain. Two classes, r and s, communicate with each other if some i

and j, stage (s, j) can be reached from stage (r, i) in a finite number of steps

and vice versa. With respect to the relation of communication, all the classes

can be divided into mutually disjoint equivalence classes called (closed)

chains (ergodic sets in Markov chain theory). All classes within a chain

communicate. No two classes belonging to different chains communicate.

Since we are considering the steady-state distribution of a model with only

closed chains, we do not need to consider any transient stages, that is, stages

(r, i) that will not be reached infinitely often.
—Kj = number of jobs in the jth closed chain, 1< j <p, which is fixed.

—K=(K1,..., KP), the population vector, specified as part of the model data.

—n,i = number of jobs of class r in queue i, 1 < r < M, 1 < i s N.

—ni = number of jobs in queue i, that is, n, = Z:!lnrt, l<i <N.

—n = (n,,), 1 < r s M, 1 < i s N, the job vector, the queue lengths, the state

variable.

—C, = set of stages in the jth closed chain. Clearly, X(,,,, ~ ~,n., = KJ, 1<
j<p.

—q], = X,, (,,,, ~ c, n,,, number of jobs from chain j at queue i.
—s(K) = state space of allowable job vectors or queue lengths (including those

in service), that is,

(S(K) = n: n,, ● Z+ and
}

~ n,L=K1,l<j<p, (4.1)

(r, i)e C,

where Z+ is the set of nonnegative integers.
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—e,, = visit ratio, that is, solution of the traffic rate equation

For each chain there is one degree of freedom in (4.2). Hence, for each

chain j, the visit ratios {e,,: (r, i) = C,} are specified up to a constant

multiplier.

—t,, = the mean service time for class r at queue i.

—p:, = t,, e,,, 1 s r s M, 1 s i s N, the relative traffice intensities.

—The steady-state distribution is given by (1.1) and the partition function by

(1.2), where

(4.3)

‘PJ(} = ~V=~+ l~(rl)~:, PJI and PJ, = ‘t,,[)e c, flt ‘or i = 1>2> “ “ “ ‘ q> ‘he aggre-
gate relative traffic mtensltles.

—The generating function G(z) is given by (1.4), using (1.2) and (4.3). As

shown in (2.25) of Bertozzi and McKenna [1993], G(z) can be expressed

simply as

(4.4)

In general, there may be multiplicity in the denominator factors of (4.4) if

two or more queues are identical with respect to visits by customers of all

classes. In such a situation (4.4) becomes

fw(~;= 1 P,. Zj
G(z) =

)

ryl(l – X:=l pjizj)’n’ ‘
(4.5)

where

&l Zl=q. (4.6)
~=1

For us, (4.5) is the relevant form, not (4.4); that is, the key parameters are p

and q’. Our algorithm simplifies by having different queues with identical

single-server parameters. (Evidently, the reverse is true for the theory of

residues [Bertozzi and McKenna 1993].)

Given the normalization constant g(K) in (1.2) and (4.3), we can directly
compute the steady-state probability mass function p(n) in (1.1). Moreover,

several important performance measures can be computed directly from ratios

of normalization constants. For example, the throughput of class r jobs at

queue i is

0,, = er,
g(K – 1,)

for (r, i) = Cl,
g(K)

(4.7)

where lJ is the vector with a 1 in the jth place and O’s elsewhere; for example

see Lavenberg [1983, p. 147]. The means E[n.,l] and lZ[qJ1] and higher moments

E[ n~, ] and E[ qj~ ] can also be computed directly from the normalization
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constants, but the standard formulli~s involve more than two normalization

constant values. We develop an improved algorithm for means and higher

moments via generating functions in Section 6 below.

From (4.7) we see that we will often neecl to compute normalization con-

stants g(K) for several closely related arguments K. When the population

vector K is large, it is possible to calculate such closely related normalization

constants efficiently by exploiting shared computation. This technique is de-

scribed in Choudhury et al. [1995, Sect. 5.2].

5. Scaling for Closed Queuing Nctiodis with Single-Serlwr and In~inite-Sezzer

Queues

In this section, we indicate how to chloose the scale parameters aO, and a, in

(2.1 O) in order to invert the generating function G(z) in (4.5) for the class of

closed queuing networks considered here. Our final scaling algorithm is given

in Section 5.5 beginning with (5.41). We develop it by starting with more

elementary cases and work our way up to the full generality of (4.5). The

general strategy has already been described in Section 2.

5.1. SCALING FOR A SINGLE CHAIN WITH ONLY SINGLE-SERVER QUEUES. In

this case, we have (4.5) with p = 1 without the term in the numerator

corresponding to infinite-server queues. Using (2.10), we see that the scaled

generating function is given by

~ol
C(z, ) = — (5.1)

H::l(l – P,, alz, )’n’ “

When there are no multiplicities (i.e.. rn, = 1 for all i) and one aggregate

relative traffic intensity p,, is dominant (substantially larger than all others), it

is easy to see that we should have al = l/max{ ~l,). We now give a

careful analysis to account for the multiplicities. See Section 5.5 below

discussion of near multiplicities.

Carrying out a partial fraction expansion with (5.1), we get

where

(-1) ’’”-’

[

d,?l, -J

All = —
(a“l m, –j)!( p~,a~ i

- ~W
z,=l/p,, ff,

more

for a

(5.2)

(5.3)

whenIn general, the constants A,J in (5.3) are difficult to compute (except

nZ, = 1 for all i), so we will treat tjhem as unknown constants. Through a

term-by-term binomial expansion and by collecting the coefficient of zf ~, we

get

~(K,) = fi ;A,, B1, (K,), (5.4)
1=1 J=l

where

(5.5)
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Note that (5.4) is of the same form as (2.17). Hence, we can get the scale

parameters by focusing on the fastest growing function B,( K] ), and imposing

condition (2.19). Note thtit, for any given i, the term corresponding to i = VZ, is

the fastest mowing; therefore we concentrate only on that term. It can be

shown that the most restrictive condition in (2.19) comes from n
(~. 19) will be satisfied with /3 = 1 by setting

~ol =1 and a,
(}

=Min5,
1 PI,

where

1 and that

(5.6)

(5.7)

From (5.6) and (5.7), we see that we do indeed have the obvious scaling with

a, = 1 when m, = 1 for all i. Moreover, we have this same scaling when K1

becomes very large, because a, - 1 for all i as K, ~ =when mt > 1.

5,2. S~~MTN~ FOR A SINGLE CHAIN WITH SINGLE-SERVER AND INFINITE-

SERVICE QUEUES. In this case, the term in the numerator of (4.5) correspond-

ing to the infinite-server queues has to be included. Instead of (5.2), from the

partial-fraction expansion we get

(5.8)

At first assume m, = 1 for all i. For ease of notation, also let A,l = A,. Then

(5.8) becomes

‘/’ At exp( Ploalzl)
G(z, ) = a(,, ~

,=, (1 –p,, a,zl) “
(5.9)

Collecting the coefficient of zf’ on the right side of (5.9), and after some

manipulation. we get

~(K, ) = fiAj@,), (5.10)

where

(5.11)

A~ain (5, 10) is of the same form as (2.1 7). The fastest growing term in this case

is the one corresponding to the largest p,,. Let

PI. m.x = Max{ pi,}. (5.12)
1

To proceed further with (5.11 ), wc consider two cases: In Case 1, Plo\pl,,m,,x <

K,, while in Case 2, Pl~l/Pl.n,,,, > K,. In Case 1, by noticing the connection to
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the Poisson distribution. it can be shown that

1

-(1

PI(J ‘ ( pi,,/p*.m3y, )J

()

Plo
~ exp — ~E -- < exp — for 1 >K,. (5.13)

Pl, ma ,=(J j!
P1. mdx

Using (5.13), we see that condition (2.19) is satisfied (with ~ = 2) by making

the following choices of scale parameters

“=ex+k%i])anda=+ (5.14)

In Case 2, relation (5.13) does not hold. In this case we control the growth

rate of the fastest growing term in (5,;11 ). Let B;( K, ) represent this term, which

is given by

(al P,(,)k”’ Cl”, (alp,,,r’
B;(K, ) = ao, ~ , - =

lm=lw q-K,) “
(5.15)

1.

The approximate expression in (5.15) is obtained by Stirling’s approximation to

the factorial. Note that B:( K, ) is independent of i (since Case 2 ensures that

p,(J/pl, > K] for all i). Therefore, we can control the growth rate of B;(K1 ) for

all i by choosing the scale parameters to cancel out the two dominant terms in

the expression for the factorial. This is done with the choice

~ul = exp( –Kl ) and
K1

al=—.
PI(I

(5 .16)

The scaling for Cases 1 and 2 in (5.141) and (5.16) can be combined as follows:

~(11 = exp( –al p[,l) and a,
{)

=Min ~,~ . (5.17)
1 PI(1 PI,

Finally, based on (5.6) and (5.17), we extend the scaling in the case nz, > 1 as

follows:

a!,), = exp(–al PI()) and a!,

{)

=Min ‘,? , (5.18)
[ PI(I Pl,

where a, is as in (5.7).

5.3. SCALING FOR MULTIPLE CHAtNS WITH SINGLE-SERVER AND INFINrTE-

SERVER QUEUES. For the general case, the generating function is as in (4.5).

In order to carry out the innermost level of inversion (i.e., the pth or last step

of inversion) with respect to ZP we may assume that z, for i = 1,2, . . ..p — 1

is constant. We rewrite (,4.5) as

x[exP(Pp(z,7)p:*(l- ,_g,:p,z,) ’”]. (5.19)
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The first factor on the right side of (5.19) is a constant, while the second

factor is the same as in the one-dimensional inversion considered in Section 5.2

with pl(l replaced by ~,, n and PI, replaced by pP,/[l – Z:Iltp, z,]. The second

parameter is complex, so we replace it by its modulus. Using (5.18), we get the

scaling as

%lp – ~xPf – ~p Ppo )

where

(
1

and
‘P =

{(1

~in ~ q

1 P,]II ‘ Pp1

(5.20)

for m, = 1

1[
m- 1 KP+j

1

l/21,, KJ,
a= (5+~1)

11’
n for m, > 1.
,=1 K,l + 21J,K[, +j

Note that it is possible to have p,,, = O for some i, but not all i. If pP1 = O,

~z[,)/’P,)t = x, so that the ith term does not yield the minimum in (5.20).

Next we consider the inversion with respect to ZP_,. The generating function

in this step is the inverse function in the pth step. Using (5.19), we can write it

as

3 ‘/’-( Z,,_l, Kp)p) = f,,[G(z)]

(5.22)

where A,j has an expression similar to (5.3). The dominant term in (5.22) is of

the form

exp[Z~I,’p,[lz,)
K,, +lll, “

(5.23)

n:: ,( 1 – Xf=-l’p,, z,
1

Note that in (5.22) we have implicitly assumed that pr,l # O. If instead p,,, = O

for some i, then corresponding to that i the term

K –IL
Pp,“

P- X;:,’p,,Z,]~“,-’
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would be missing. Hence, instead of (5.23), in general the dominant term in

(5.22) is

exp(2;f=–11 PI(lz, )
K,,q,,, + m, ‘

rr::, [l – xf=-’ I pjlzJ 1
(5.24)

where 7P, = 1 if pPl # O and qPl = 0, otherwise.

Note that (5.24) is similar to G(z) with p replaced by p – 1 and rnl replaced

by K.v., + m,. Therefore, from (5.20), we get the scaling in the (p – l)st step,,
as ao,p-l = exp(—aP–l pP_l, O) and

.,,,= yn{~(fi)

where

p–2

)

1 – z P,, z, 9
j= 1

IIW,)-,J$-I

[

N,,,, _ ,

z— KP_l+j
a 1,/1–1 =

J=l Kp-l_+ 21pKp-1 +~j

I

where

N = Kpqp, + m, – 1l,p–1

with qP, defined as above.
Proceeding as above, we get the scaling in step j, 1< j

{()Ka
(YOj = exp( – aJ P,[l ) and aj= Min ~, ~

1 Pj(l P],

(5.25)

(5 .26)

]–1

}

1 – z Pkizk >

k=l

(5.27)

where

and
P

(5.28)

(5.29)
k= J+]

with ~k, = 1 if pk, # O and q~, = O, otherwise. In (5.29) if an upper sum index

is smaller than the lower sum index, then that should be interpreted as a

vacuous sum.

Note that the scale parameters above are not constant. The scaling at the jth

step depends on Zk for 1 s k s j – 1. Since the z~’s change during the course

of inversion, so do the scale parameters. From (2.3), it is clear that the Zk

values are always on a circle and therefore the modulus IZk I is constant.

Furthermore, since the parameters p~, are nonnegative the most restrictive

scaling (smallest values of a,) comes when zk = Izk I (i.e., the point zk is on the
positi~e real line) for 1 s k s j – 1. From (2.3), it is clear that this vestrictiue

scaling is indeed done once during the course of the inversion algorithm. If we

use the restrictive scaling for all cases, then the scale parameter at the jth step

becomes constant. The advantage of this scaling is that we then need to
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compute each scale parameter only once. Secondly, we need not recover the

original inverse function from the inverse of the scaled generating function in

each step using (2.10). Instead, the recovery may be done only once at the end

of all inversions and all intermediate computation may be done using only

scaled functions. The use of this restrictive scaling makes all the computations

related to scaling insignificant compared to the overall computations. Through

numerical investigations we observed that the restrictive scaling produces

about the same accuracy as the scaling in (5.27), so that we recommend using

it. It is as given below:

(5.30)

where all is as given in (5.28).

Our numerical experience indicates that the scaling procedure just described

works in almost all cases. However, for some very large examples (e.g.,

Example 8.4) the scale parameter a, may need to be modified slightly. This is

done by multiplying a, by a factor ~, in the range of 0.8 s ~, < 1.2. We can

determine if further tuning is necessary by using the accuracy checked based

on different sets of the 1, parameters.

5.4. SCALING WITH DIMENSION REDUCTION. In many situations, there will

be dimension reduction. As indicated in Section 3, the possibility of dimension

reduction can be checked using the interdependence graph approach. The

scaling can be done independently of the dimension reduction, just as de-

scribed in Section 5.3, except that the dimension reduction determines the

order of the variables to be inverted. The d variables requiring full inversion

become variables Zl, ..., z~ and the remaining p – d variables become

“ that is, the remaining variables appear in the inner loops.‘d+!~...~zp~

It is also possible to directly determine scaling after the dimension reduction

is done. We illustrate that in this subsection with an example. We also show

how it is sometimes possible to replace a numerical inversion by an explicit

formula.

Consider a closed queuing network with p closed chains, one infinite-server

queue and p – 1 groups of single-server queues where each group i has ml

identical queues. The ith chain (2 < z < p) goes through each single-server

queue in group i at least once and the infinite-server queue any number of

times. (For notational simplicity, we assume that the group index i ranges from

2 to p, so that there are no groups with index 1.) As for the first chain, it goes
through the infinite-server queue and all single-server queues in the model at
least once. Note that we have not fully specified the routing matrix here, which

is not necessary for computing g(K).

For this model, q’ = p – 1 and p,, = O unless j = 1 or j = i or z = O, that is,

the generating function becomes

(5.31)

To construct the interdependence graph for G(z), we form a subgraph with

two nodes for each factor in the denominator, z ~ and z, for 2 < i < p. Since
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b2PCL/\ FIIG.1. Interdependence graph r for (5.31).

Z2 23”00

viewed as a product of p factors, each with one z

the numerator is represented by a one-node subgraph.

these subgraphs, we obtain the interdependence graph

in Fismre 1.

the numerator can be

variable, each factor in

Taking the union of all

r for (5.31) is depicted

If we delete the subset D ~ {zl}, then F becomes disconnected into subsets

S,(D) = {z,} for 2 s i s p. According to (3.2), the dimension of the inversion

resulting from the subset D is 2 in this case. That is, the inversion dimension

can be reduced from p to 2.

To show the inversion order more precisely, eq. (5.31) can be rewritten as

exp( PIOZI)

h
exp( PIOZ, )

(5 .32)‘(z) = ~y.2(1 – Pltzl
)“” 1=2 (1 – ( p,tzl\l – pltzl))m’ “

If we keep ZI constant, then the first factor on the right side of (5.32) becomes

constant and the second factor becomes a product of p – 1 terms, each of

which is a function of a single z variable. Each such factor may be inverted

independently with respect to the corresponding z variable, and once we take

a product of each inverse function, we get a function of Z1 and K?, KS, ..., Kp.

A final inversion with respect to ZI yields the desired normalization constant

g(K). So the p-dimensional problem is reduced to a two-dimensional one. Next

comes the question of scaling.

From the scaling in Section 5.2, we see that the scaling required to invert the

ith factor (2 s i s p) in (5.32) is given by

(20t = exP( — ~, P,()) and a,= Min(~,(~)(l-pllz,l)], (5.33)

where

a=~~lK:,;;::]” : :’;. 534)

It is also possible to explicitly invert the ith product factor (2 s i s p) in

(5.32) and, when we do, we get

exp( p,Ozl)
gtlJ(zl,K2) = =Y=z(l – ~lzzl)’”’

“ ( P,o)k
xl?rz~

(

rni+K1 -k-l

)

K,–k
Pti

Ki–k
(5.35)

1=2 ~=o . (1 – Plizl)K’-k “
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The dominant term in (5.35) is of the form

exp( PIL)zl )

rIf=’2(1– p,lz, )
K,+m, “

Therefore, from (5. 18), we get the scaling in order to invert with respect to ZI

as

~o, 1 = exp(–a, 1310) and al

{1

=Min a,~ , (5 .36)
1 Plo PI,

where

(5.37)

and

N,l =m, – 1 +K,. (5.38)

It is to be noted that all scaling done in this subsection could also be derived

from the final scaling equations in Section 5.3 ((5.28)–(5.30)); in this section

q,, = 1 for j = 1 and j = i and q,, = O, otherwise.

5.5. NEAR MULTIPLICITIES. We have indicated that much of the difficulty in

the scaling is due to the possibility of multiple factors in the denominator of

(4.5). It should be intuitively clear that these same difficulties can arise with

near multiplicities, and that so far our scaling algorithm does not account for

near multiplicities. Moreover, in an application we might not recognize exact

multiplicities.

In this subsection, we introduce a heuristic scheme to account for near

multiplicities. Consider the single-chain setting with only single-server queues

in Section 5.1, and assume, without loss of generahty, that p 1, > PI, ~+ 1 for all i.

(This involves a sorting, which is of low complexity.) Without multiplicities or
near multiplicities, the scaling should be al = 1/p ~~, but with multiplicities or

near multiplicities perhaps other terms should play a role in the minimum in

(5.6). To capture the effect of near multiplicities, for the scaling only, we
replace PI,, in (5.1) and (5.6) by the average of the i largest relative traffic

intensities, that is

Moreover, in (5.7) we act as if the multiplicity associated with the ith group of

queues is

%, = ~mk; (5.40)
k=l

that is, we replace a, in (5.7) with d, based on }?I, in (5.40). Note that al = al
A

and pll = pll, but that ii, s ai and plt > pi,, so that the first ratio al\pll is

unchanged, but the other ratios in (5.6) are decreased, which may reduce a, in

(5.6). The extra reduction will tend to occur when there are near multiplicities.
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Based on this idea, we propose replacing the restrictive scaling in (5.30) by

an even more restrictive scaling. We let

{)K a.

%J = exp( – a, p,,, ) and a,=Min ~,~ , (5.41)
1 P]o P,,

where

(5.42)

P

N,l = fit --1 + ~ K~~~, (5.43)
k=]+l

(5.44)

with { ~,,: 1< i < q’} being the sorted version (in decreasing order of magni-

tude) of { p,[/(l – ~~:~ pkl[zkh 1 .< i < q’} and {M,: 1 s i s q’} is the rear-
ranged version of {m,: 1 s i < q} associated with { P,,}.

6. Moments via Generating Functions

Given the steady-state probability mass function, we can calculate moments.

Without loss of generality, let (r, i) c Cl. We start with a standard expression

for the probability mass function of qll, the number of chain 1 customers at

queue i, namely.

P(ql, = k) =
dt@@ – ~11)– plig(K – (k + 011))

> (6.1)
g(K)

see (3.257) on p. 147 of Lavenberg [1983]. (A similar expression holds for the

mass function of n,, [Lavenberg 1983]. It involves pji instead of PI,.)

From the telescoping property of (6.1), we can write the tail probabilities as

From (6.2) we obtain the standard formula for the mean,

K,
~ g(K - kl,)

E[qli] = ~ ~(qlt ~ ~) = Z ~lt
k=l k=l g(K) ;

(6.2)

(6.3)

for example, see (3.258) on p, 147 of Lavenberg [1983]. Unfortunately, formula

(6.3) is not too convenient for us, because it requires KI + 1 normalization
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function calculations and thus K, + 1 numerical inversions. We now show how

this mean can be calculated by two inversions.

For this purpose, we rewrite (6.3) as

p:’h(K)
-E[%, I = ~(K) – Is (6.4)

where

K,

h(K) = ~ p;Lg(k, Kz). (6.5)
k=O

Let H( ZI ) be the generating function of h(K) with respect to KI. Then

. }n

*=0 Ik=o

k=O ,n=k

g~l)(zl/’plt, K2)
—

I–zl ‘
(6.6)

where g(L)(zl, Kz)

represents the full

is the partial generating function in (2.1). Now, if H(z)

generating function of MK), then from (6.6) it is clear that

CXZ1/’P1,, Z2, . . ..ZP)
H(z) =

I–zl “
(6.7)

Since H(z) is of the same form as G(z) it may be inverted by the established
inversion procedure. Hence, we can obtain the mean E[ql, ] using two inver-

sions from (6.4). We invert G(z) and H(z), respectively, to obtain g(K) and

h(K).
By the same approach. we can also calculate higher moments. For example,

2p[’hi(K)
~[!llt(!71, – 1)] = 2 ~ kP(qll >k) = (6.8)

k=O g(K) ‘

where

K,

hi(K) = ~ kp;~g(k, K2).
k=f.1

(6.9)
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Let HI( z, ) be the generating function of h,(K) with respect to K,. Then

Hl(z, ) = ~ z~hl(m, K2)
nl=o

l?l = o /i=()
-x -1.

(6.10)

Moreover, the full generating function of h I(K) is

z,
H,(z) = — ( )-fiG $Z2,..., ZP . (6.11)

1 – z, clz~ PI,

Finally, note from (4.5) that

(6.12)

so that the new generating function is a sum of generating functions of the

same form as G(z).

For higher factorial moments, we proceed in the same way using (6.2) and

E[~lt(~li – 1) ““(~li –z+ 1)1 =1 ~ k(k– 1)”. ”(k _ 1+ 2) P(qll >k).
k=O

(6.13)

For more on moments, see McKenrla [1989], McKenna and Mitra [1984], and

references there.

7. A Summaiy of the Algorithm

For general p-dimensional transforms, the overall inversion algorithm is ob-

tained by combining (2.2), (2.3), (2.5), (2.9), and (2.10), which requires specify-

ing the parameters y], 1], au, and a,, l_< j s p. The function g(K) is thus

calculated by p nested inversions of G,( ZJ), 1 s j s p, in (2.9). We first

determine the order of the variables to be inverted by applying the dimension

reduction scheme in Section 3. Given the order of the variables to be inverted,

we use the special structure of the closed queuing networks to determine the

scale parameters aOJ and CY1.In particular, we use the scale parameters aII,

and aj in (5.41) in (2.9). We then apply (2.2)–(2.5) to calculate ~l(Kl) = jj(K)

and (2. 10) to calculate g(K). In particular, from (2.10) we obtain

P P

(7.1)

Finally, to do (2.2)–(2.5), we need to specify the inversion parameters y, and 1,.
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As indicated in Section 2, as standard values we use 11 = 1, yl = 11; 1; = 13 = 2,

y? = y~ = 13; 14 = 15 = l,, = 3, yd = yj = y6 = 15. If necessary, we increase y,

to reduce the aliasing error, and we increase 1, to reduce the roundoff error,

with the understanding that this will increase the computation time. The

general idea is to control errors more carefully on the inner loops (for large j).

We have just given a full algorithm with specific values for the parameters y,,

/j, at,, and a,, 1 < j s p. These parameters can be used for tuning if necessa~.

We repeat the calculation with different sets of parameters 1, to obtain an

accuracy check.

For large models, we can calculate using logarithms, as indicated in Section

2.2, and we can exploit shared computation of closely related normalization

constants as indicated at the end of Section 4.

8. Numerical Examples

All computations reported in this section were done on a SUN SPARC-2

workstation using double-precision arithmetic.

As a prelimina~ sanity check, we verified the accuracy of our algorithm by

testing it against simple examples for which the exact value is readily available.

In particular, we tested our algorithm against the classical Koenigsberg [19581

formula for single-chain models with only distinct single-server queues, [Bertozzi

and McKenna 1993, (3.9)], and the generalization allowing IS queues [Bertozzi

and McKenna 1993, (3.22)]. In all cases, there was agreement to 8–12 signifi-

cant digits. Furthermore, whenever our results based on two different contours

agreed up to n significant places, they also agreed with the alternate formula

to that many places. This observation indicates that we can rely on our internal

accuracy check.

In this section, we give numerical results for our algorithm applied to four

more challenging closed queuing network examples. For each example, we

calculate the normalization constant g(K) in (1.2) and (4.3) for specified

population vectors K from the generating function G(z) in (4.5). Thus, the

parameters are the number of chains, p, the number of distinct single-server

queues, q’, the multiplicities m,. the aggregate relative traffic intensities P,,,
1 < j s p, O s i s q’, and the desired population vector K.

Note that the normalization constant g(K) only depends on these parame-

ters p, q’, nzl, p,, and K. Hence. we do not fully specify the models below, In

particular, we do not give the routing probabilities R,,,:, or the mean service

times t,,.Thus, there are many detailed models consistent with our partial

model specifications. One possible routing matrix consistent with the data that

we provide is a cyclic routing matrix, all of whose entries are O’s and 1‘s, which
yields visit ratios e,, = 1 for all stages (r, i) from (4.2). If we consider this case,

then t,,= P;,and the throughputs 6,~ in (4.7) coincide with the normalization

constant ratios g(K – 1,)/g(K). We also display these ratios along with the

values of g(K) in our numerical results below. We note that the throughputs

for any more detailed model can be found by solving (4.2) for the visit ratios e,,

and then applying (4.7).

For the first three examples, the total number of single-server queues is the

same, namely, q = 50. However, in each example we consider ten distinct

queues, each with multiplicity five. Thus, q’ = 10 in each example. This reduces

the computational complexity for our algorithm, but not for the others. We
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also allow for IS queues, with almost no additional computational complexity.

(Note that any number is IS queues can be aggregated trivially into a single IS
queue.) Multiplicities and the presence is IS queues evidently complicate the

theory of residues [Bertozzi and McKenna 1993].

What is different in our examples is the number of closed chains. The first

example has only one chain, and is thus the easiest example. The second

example has four chains, while the third and fourth examples have eleven

chains. However, the dimension can be reduced from eleven to two in the last

two examples, whereas the dimension cannot be reduced below four in the

second example, so that for our algorithm the second example is the most

difficult. The last case of the second example took about half an hour (on the

SUN SPARC-2 workstation).

The numerical results below are shown to seven significant figures, which is

more than adequate for most applications. However, the realized accuracy was

found to be 8–12 significant places. This was determined either by comparison

with the convolution algorithm or by our internal accuracy check using two sets

of 1, values for each case. (The parameters 11 appears in (2.3); see Section 2.3.)

Each number below is expressed as aek, which means a x 10~.

For all the examples, we used Elder summation whenever Kj exceeds C,

requiring the computation of C terms. Euler summation works in all these

examples, providing tremendous computational savings whenever a particular

K, is large. For all examples, C = 100 was adequate and for most examples

C = 31 was adequate.

Example 8.1. In the first example, there are an arbitrary number of

infinite-server queues and a total of 50 single-server queues, which consist of

10 distinct queues, each with a multiplicity of 5. The model has one closed

chain going through all infinite-server queues and each single-server queue at

least once.

The classical closed-form expression for the normalization constant g(K)

due to Koenigsberg [1958; 1986] and Harrison [1985] holds in a single-chain

model when there are no multiplicities and no load-dependent servers; see

Bertozzi and McKenna [1993, (3.9)]. They derived corresponding closed-form

expressions for g(K) when there are multiplicities but no load-dependent

servers [Bertozzi and McKenna 1993, (3.12)] and when there is an IS queue but

no multiplicities [Bertozzi and McKenna 1993, (3.22)], but evidently no closed-

form expression has yet been derived for the case considered here in which

there are both multiplicities and an IS queue. Moreover, with either multiplici-

ties or an IS queue, our algorithm may be competitive with computation from

the closed-form formulas. However, without multiplicities or load-dependent

servers, the simple classical formula [Bertozzi and McKenna 1993, (3.9)] seems

clearly best.

Here p = 1, q’ = 10 and m, = 5, 1 < i s 10. The relative traffic intensities

are pit, = 5 and

p,, = O.li for i = 1,2 10,. . . . .

so that p,, ranges from 0.1 to 1.0. We consider eight cases for the total

population: K] = 2 X 10~ for k = O, 1,...,7. We give the numerical below in

Table I.
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TABLE 1, NUMERICALRESULTSFOREXAMPLE8,1.

population K, normalization constant g(K, ) ratio g(Kl - l)/g(Kl)

2 5.377500e2 6.043701e-2
20 1.906584e13 4.461 782e- 1

200 1.381312e26 9.659115e-l
2000 1.284918e31 9.978987e-l

20,000 1.541538e35 9.997990e-l

200,000 1.569301e39 9.999800e-l

2,000,000 1.572100e43 9.99998Ce-l

20,000,000 1.572380e47 9.999998e-l

For all but the last case, the numbers agree with the convolution algorithm

(the agreement is more than the displayed seven digits; often up to 12 digits). A

straightforward implementation of the convolution algorithm seemed to have a

numerical under/overflow problem, but we corrected this by working with

logarithms and ratios of very large or very small quantities. In the last case, the

convolution algorithm runs out of storage space, so that we verify the accuracy

only by our internal accuracy check using two different values of 11 as

explained in Section 2.3.

In terms of computation time, our inversion algorithm is virtually instanta-

neous (less than one half-second) for all these cases, because Euler summation

with 31 terms works. In contrast, the convolution algorithm took 2 minutes for

K, = 200 and 20 minutes for KI = 2000. Thus, we would project that the

convolution algorithm would take over three hours for the last case with

K, = 20,000.

To provide a further computational check, we also considered this same

example with the multiplicity of each queue changed from 5 to 1. Then we can

also apply formula (3.22) of Bertozzi and McKenna [1993]. Moreover, from that

formula we can calculate the limiting value of the normalization constant as

K, ~ =, which is finite in this case. In particular, in this case

exP( P1, JPI, IO)
lim g(K1) =

e510y
—

~:=1( Pl,lo – PI,, )
— = 408986.88024.

K,+% 9!

Here are some of our results: For K, = 2, g(K1) = 57.050000000; for KI = 200.

g(K1 ) = 408986.87849; and for Kl >2000, g(K1 ) agrees with the asymptotic
formula to all exhibited digits. For the first two cases, our results agree with

Bertozzi and McKenna [1993, (3.22)] to all exhibited digits.

Example 8.2. This example is identical to Example 8.1, except that now

P = 4 and each of the four chains goes through each of the 50 single-server
queues at least once and the first chain does not go through any infinite-server

queue. No dimension reduction is possible in this case, because p,, is positive

for all z’ and j. Since we have 10 distinct queues, each with multiplicity 5, this

model does not satisfy the assumptions for the residue results in Bertozzi and

McKenna [1993]. However, as we have noted before, the multiplicities reduce

the computational complexity here. The relative traffic intensities are:

PI() = 0> P20 = 5, P30 = 10, p~,, = 20
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TABLE II. NUMERICAL RESULTS FOR EXAMPLE 8.2.

chain populations
Kl Kz K, K4

2222
20 2 2 2

100 2 2 2

500 2 2 2

5000 2 2 2

20 20 2 2

100 100 2 2

500 500 2 2

500 500 5 5

—.

normalization constant g(K)
—.

3.915239e14

II,066795e25

2,254450e36

3.288626e44

4,527130e54

3.859354e45

2.719940e129

1.653278e497

i.026054e515
—-

ratio g(K-1, )/g(K)

6.347791e-2
4.429595e-l
8.677053e- 1
9.793468e- 1
9.979961e-l
3.499500e-l
5.030302e-l
5.221141e-l
5.100207e- 1

and

pJt=O.li+j–l for i=l,...,10 andj=l,4 ..,4

so that p,, ranges from 0.1 to 4.0. (Again there are both multiplicities and near

multiplicities.) We give numerical results for nine cases in Table II.

Here again, we verified accuracy in all but the last case using the convolution

algorithm. The agreement, again, is more than the displayed seven digits. The

convolution algorithm runs out of storage space for the last case, so that we

veri@ accuracy in that case only by our internal accuracy check by, for which

we used the following sets of 1, parameters:

Setl:ll= l,lz=2,1~=2,1d=3

Set2:ll =1, lz=2,1j=3,1d=3

The computation time for our algorithm is half an hour for the last case

using Euler summation with 31 terms, which effectively reduces both KI and

Kz from 500 to 31. If the convolution algorithm did not have a storage

problem, it would have taken over three and a half hours in the last case. It is

to be noted that even if we multiply KI and Kz by a factor of 10 or 100, our

computation time would remain about the same, but the convolution algorithm

would have its run-time and storage requirement multiplied by 102 or 1002.

Example 8.3. Again q = 50, q’ = 10, and m, = 5, 1 < i < 10, but now

p = 11. However, here it is possible to reduce the dimension to 2, so that this

example is actually easier than Example 8.2 for our algorithm. (This would also

be the case for the tree convolution algorithm [Lam and Lien 1983.]) The

relative traffic intensities are:

plo = 5j – 10 for j=2,3,...,ll, andp10 =50,

p,, = O.l(j – 1) for j=2,...,ll,

P,j = 1 + O.l(j – 1) for j=2,. ... ll,

with pj, = O for all other (j, i).
This example is precisely of the form considered in Section 5.4. Indeed, the

generating function is given in (5.31) and the interdependence graph is given in

Figure 1 there. Thus, the dimension can be reduced from 11 to 2. The

numerical results for eight cases are given in Table III.
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TABLE 111. NUMERICALRESULTSFOREXAMPLE8.3.

chain populations
K, for2Sj< 11, KI

2 2

2 20

2 200

2 2000

5(j-1) 2
5(j-1) 20

5(j-1) 200
5(j–1) 2000

normalization constant g(K)

1.235628e25
7.503087e45
5,970503e129

1.937826e683

3XXM462e107

1.677866e133
8.032122e260
1.617153e926

ratio g(K-1 I )/g(K)

1.492001 e-2

1.296652e- 1

4.477497e-l

4.982502e-l

8.039024e-3

6.803960e-2

2.858885e-l

4.746674e-l

TABLE IV. NUMERICALRESULTSFORCASE1 OFEXAMPLE8,4.
r

chain populations

K, for25j 511 K, normalization constant g(K) ratio g(K–11 )/g(K)

200 20 1.232036e278 4.582983 e-3

200 200 2.941740e579 4.281094e-2

200 2000 3.399948e2037 2.585489e-l

200 20,000 9.07177e8575 4.846930e- 1

In each case, the inversion for variables Zz, z~, . . . . z, ~ are done explicitly,

using (5.35), and hence no lJ is involved for 2 < j s 11. Hence, only a

one-dimensional algorithm is required for this example. The accuracy is checked

by doing the calculation with /l = 1 and 11 = 2.

Example 8.4. This is our most challenging problem. It is the same as

Example 8.3 except that we change the multiplicities m, and the chain

populations KJ. We increase m, from 5 to 100, 1 s i s 10. Hence, now there

are q = 1000 single-server queues, but still only q’ = 10 distinct queues. We

consider three cases. First, we increase the chain populations to K] = 200 for

2< j < 11. We obtain three subcases by considering three different values for

K1. Our numerical results are given below in Table IV.

As in Example 8.3 the accuracy was checked by performing the calculations

twice, once with 11 = 1 and once with 11 = 2. Again. the inversions for

variables Zz, Zq, . . . . Zll are done explicitly by (5.35), so that the numerical

inversion was essentially one-dimensional,

The results in Table IV were obtained in less than 1 minute by exploiting

Euler summation with 51 terms. This example would seem to be out of the

range of existing algorithms, with the possible exception of the tree-convolu-

tion algorithm and the ones based on asymptotic [Knessl and Tier 1992;

McKenna and Mitra 1982]. For example, convolution would require a storage
of size 2001° X 2 X 104 = 2.5 X 1027 for the last case of Table IV. The last

case would appear to be difficult even for the tree algorithm.
From McKenna and Mitra [1982; 1984], McKenna et al. [1981]; and Ramak-

rishnan and Mitra [1982], we see that the PANACEA algorithm based on

asymptotic requires that there be an IS queue and that each chain visit this

queue. Unlike McKenna and Mhra [1982; 1984], McKenna et al. [1981]; and

Ramakrishnan and Mhra [1982], the asymptotic approximation in Knessl and

Tier [1992] does not require any IS queue, but it requires that all chain

populations be large. To show that our algorithm does not have such limita-

tions, we consider two modifications of Case 1. Case 2 has classes 1 and 2 with
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TABLE V. NUMERICAL RESULTS FORCASE2 OFEXAMPLE8.4.

chain populations

K, for2Sj Sll KI normalization constant g(K) ratio g(K - 11 )/g(K)

in all cases: 2 3.84203 le407 5.128582e-4

K2 = 2, 20 1.484823e454 5,08701 8e-3

K3 =5and 200 600323 le747 4.70678%-2
Kjx200,4<j Sll 2000 5.442693e2154 2.705391o-1

20,000 2.494765e8617 4.852817e-l

TABLE VI. NUMERICAL RESULTS FOR CASE3 OFEXAMPLE 8.4.

I chain populations I I “1
K, for2-Sj<ll K, \ norrnadizations constant g(K) I ratio g(K-ll )/g(K) I

in all cases: 2 9.959619e313 4.762073e-4

Kz = 2, 20 1.447107e361 4.728591 e-3

K3=5and 200 1.222889e660 4.417444-2

K,=200,4Sj<ll 2000 2.948943e2096 2.645993e- 1

20,000 4.210541 e8588 4.851015e-l

small populations, while the other class populations remain large. In particular,

we let Kz = 2 and KS = 5. Numerical results for Case 2 appear below in

Table V.

Case 3 is a modification of Case 2 in which we remove all the IS nodes, that

is, we set p,O = O for all j. Numerical results for Case 3 appear below in Table

VI. As for Case 1, Cases 2 and 3 required about a minute on the SUN

SPARC-2 workstation.

Before closing this section, we point out that if the model is such that we

cannot take advantage of any of our speed-up techniques (namely, dimension

reduction, fast summation of large sums and large queue multiplicities), then

our algorithm will be slower than the convolution algorithm, as already

indicated in Section 2.5. Similarly, if dimension reduction is possible but none

of the other speed-ups, then our algorithm will be slower than the tree

convolution algorithm, which also dloes dimension reduction in the time do-

main.

To illustrate, Lam and Lien [1983] analyze an example with 64 queues and 32

chains, requiring about 3 x 107 operations. We analyzed this model and

observed that the effective dimension can be reduced from 32 to 9. However,

all chain populations are between 1 and 5 and so our speed-up technique based

on Euler summation does not apply. Also there are no multiplicities. We

estimated that our operation count for this example would be about 10 ‘z, so

that our algorithm is considerably slower than the tree-convolution algorithm,

even though our algorithm is faster than the pure convolution algorithm, which

has an operation count of about 10Z3. It appears that our algorithm nicely

complements the tree algorithm, because the tree algorithm will be faster if the
effective dimension-after-dimension reduction remains large but all chain

populations are small. In contrast, our algorithm will be faster if the effective

dimension-after-dimension reduction is small (typically 5 or less) but some of

the chain populations are large.
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9. Conclusions

We have presented a general algorithm for calculating normalization constants

in product-form models by numerically inverting their generating functions

(Section 2). An advantage of this algorithm over recursive algorithms is the
very small storage requirement. Another advantage is the fast computation of

large sums using acceleration methods, in particular Euler summation. We

have shown how the dimension can often be dramatically reduced by exploiting

conditional decomposition (Section 3). We have indicated that this dimension

reduction scheme is closely related to the tree convolution algorithm of Lam

and Lien [1983].

We have considered in detail the special case of closed queuing networks

with only single-server and IS queues, where the IS queues are optional

(Section 4), and developed an explicit scaling algorithm for this class of models

(Section 5). We have shown how to calculate mean queue lengths and higher-
order moments directly by performing only two inversions of the same form as

for the normalization constant (Section 6). We have summarized the inversion

algorithm (Section 7). Finally, we have presented a few numerical examples

illustrating the algorithm and showing that it can solve some challenging

problems (Section 8).

In subsequent work (e.g., [Choudhury et al. 1995]), we have developed

detailed scaling algorithms for other subclasses of product-form models, ex-

tending Section 5. In other, more recent work, we have developed an effective

automatic, dynamic scaling algorithm that requires only limited knowledge of

special generating function structure, in the spirit of Lam [1982]. This scaling

allows us to analyze models with general state-dependent service rates just as

efficiently as the models considered in this paper.

In conclusion, we think that the numerical inversion algorithm here usefully

complements existing algorithms for closed queuing networks and related

models, and that there is significant potential for further progress with this

approach.
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