
NUMERICAL INVERSION OF PROBABILITY
GENERATING FUNCTIONS

by

Joseph Abate Ward Whitt
900 Hammond Road AT&T Bell Laboratories

Ridgewood, NJ 07450-2908 Room 2C-178
Murray Hill, NJ 07974-0636

July 26, 1991

Revision: May 18, 1992

Abstract

Random quantities of interest in operations research models can often be determined

conveniently in the form of transforms. Hence, numerical transform inversion can be an effective

way to obtain desired numerical values of cumulative distribution functions, probability density

functions and probability mass functions. However, numerical transform inversion has not been

widely used. This lack of use seems to be due, at least in part, to good simple numerical

inversion algorithms not being well known. To help remedy this situation, in this paper we

present a version of the Fourier-series method for numerically inverting probability generating

functions. We obtain a simple algorithm with a convenient error bound from the discrete Poisson

summation formula. The same general approach applies to other transforms.

Key Words: numerical inversion of transforms, computational probability, generating functions,

Fourier-series method, Poisson summation formula, discrete Fourier transform.

1. Introduction and Summary

The analysis of stochastic models in operations research increasingly involves algorithms for

computing probability distributions of interest. There are many useful tools for this purpose, but

one that does not seem to be sufficiently well appreciated is numerical transform inversion.

Numerical transform inversion is especially attractive for queueing models, because many

probability distributions of interest can be (or have been) characterized in the form of transforms.

However, queueing textbooks provide remarkably little guidance. Indeed, there currently seems

to be a trend to avoid transforms altogether. While alternative techniques are often effective, we

contend that it is often surprisingly easy to extract useful numerical results from transforms.

To make a case for numerical transform inversion, in this paper we present and explain a

simple algorithm for numerically inverting probability generating functions based on the Fourier-

series method. Variants of the same method apply to other transforms, as can be seen from our

longer review in [1]. We relate our algorithm to the literature in Remark 1 below; see [1] for

further discussion.

The Fourier-series method can be interpreted as numerically integrating a standard inversion

integral by means of the trapezoidal rule (which turns out to be surprisingly effective). The same

formula is obtained by using the Fourier series of an associated periodic function constructed by

aliasing. (For the sequences considered here, the discrete Fourier transform plays the role of the

Fourier series.) The key mathematical result is the Poisson summation formula, which identifies

the discretization error associated with the trapezoidal rule and thus helps bound it. For

characteristic functions and Laplace transforms of real-valued functions of a real variable, the

inversion integral is over an unbounded interval, so that the approximating sum also needs to be

truncated, which is the most difficult step. However, for generating functions, the inversion

integral is over a finite interval, so that no truncation is needed. Thus, for most problems

- 2 -

involving probability generating functions we obtain a simple computation with a guaranteed

error bound.

Suppose that we wish to calculate terms from a sequence of real numbers {q k : k ≥ 0 } with

q k ≤ 1 for all k using the generating function (or z-transform)

G(z) =
k = 0
Σ
∞

q k z k , (1)

where z is a complex number. In particular, we assume that G(z) can be evaluated for any given

z, and our object is to obtain an approximation (with predetermined error bound) for q k as a

function of G(z 1) , . . . , G(z n) for finitely many complex numbers z 1 , . . . , z n . The bound

q k ≤ 1 automatically holds when q k is a probability. Hence, in the applications we have in

mind, there is nothing extra to verify. This known bound plays an important role in the error

analysis, but it is not absolutely essential. Since q k ≤ 1, G(z) is finite and analytic for all

z < 1. The following theorem provides a simple algorithm with an error bound. (We prove the

theorem in §2.) Let i = √ − 1 and let Re (z) be the real part of z.

Theorem 1. For 0 < r < 1 and k ≥ 1,

q k − q̃ k ≤
1 − r 2k

r 2k
_______ ,

where

q̃ k =
2kr k

1_ ____
j = 1
Σ
2k

(− 1) j Re (G(re π j i / k))

=
2kr k

1_ ____



G(r) + (− 1) kG(− r) + 2

j = 1
Σ

k − 1
(− 1) j Re (G(re π j i / k))





.

We call the algorithm based on Theorem 1 LATTICE-POISSON (because it is for lattice

distributions and because of the central role played by the Poisson summation formula). To show

how easy LATTICE-POISSON is to perform, we display below a UBASIC program to calculate

- 3 -

the complementary cdf of the number of customers served in an M/M/1 busy period. UBASIC is

a public-domain high-precision version of BASIC created by Kida [9] to do mathematics on a

personal computer; see Neumann [11]. UBASIC permits complex numbers to be specified

conveniently and it represents numbers and performs computations with up to 100-decimal-place

accuracy. (Diskettes containing UBASIC and the algorithm LATTICE-POISSON are available

from the authors. An electronic file containing a C++ program is also available from the authors.)

However, ordinary BASIC, FORTRAN or C with double precision would suffice. We discuss the

particular M/M/1 example further in §3.

THE UBASIC PROGRAM

1 ’The Algorithm LATTICE-POISSON
2 ’
3 ’A variant of the Fourier-series method
4 ’for lattice distributions
5 ’applied to the complementary cdf of the number of customers
6 ’served in an M/M/1 busy period
7 ’

20 input ‘‘LATTICE POINT=’’;N
21 E=8
22 R=1/10ˆ(E/(2*N))
23 H=#pi/N
24 U=1/(2*N*RˆN)
25 ’
30 Sum=0
31 for K=1 to N− 1
32 Z=R*exp(#i*H*K)
33 Sum+=((−1)ˆK)*fnGen(Z):next
34 Sum=2*Sum+fnGen(R)+(− 1)ˆN*fnGen(−R)
35 Fun=U*Sum
36 ’
40 print
41 print ‘‘LATTICE POINT=’’;N, ‘‘FUNCTION=’’;using(2,7),Fun
42 end
43 ’
80 fnGen(Z)
81 Rho=0.75:Bt=4*Rho/(1+Rho)ˆ2
82 Gz=(1−sqrt(1−Bt*Z))/sqrt(Bt*Rho)
83 Gnz=(1−Gz)/(1−Z)
84 return(re(Gnz))

- 4 -

Remarks (1) We do not regard Theorem 1 as new, but it does not seem to be very well known.

Indeed, the methods supporting Theorem 1 are classical, but we know of no explicit statement.

The essential idea is expressed in §1 of Lyness [10], but the focus there is on further analysis

using the Mo
. .
bius function to treat the case in which we need not have q k ≤ 1 for all k.

Essentially the same algorithm was proposed without error analysis by Cavers [3]. Nearly

equivalent algorithms were also proposed by Jagerman [7], [8] and Hosono [6]. Daigle [4] draws

on the same ideas, but his algorithm is more complicated since he considers the special case with

r = 1.

(2) The algorithm LATTICE-POISSON is by no means the only way to calculate q k from (1).

Procedures for numerically differentiating (1) are incorporated in mathematical software packages

such as MACSYMA, MATHEMATICA and MAPLE. For example, the M/M/1 busy-period

probabilities in §3 are also easily calculated this way.

(3) For practical purposes, we think of the error bound in Theorem 1 as r 2k , because

r 2k /(1 − r 2k) is approximately equal to r 2k when r 2k is small. Hence, to have accuracy to 10 − γ ,

we let r = 10 − γ/2k . In the displayed program, we set γ = E = 8 on line 21 and set r in this

manner on line 22.

(4) We are primarily interested in probability applications for which q k ≤ 1 for all k. If

{q k } does not initially have this property, then we may be able to work with qk′ = aq k b k with

generating function G ′ (z) = aG(bz).

(5) Of course, the finite sum in Theorem 1 is not easy to compute if k is extremely large, but

for most operations research applications the indices k of interest are not extremely large.

Moreover, for very large k, we would suggest using asymptotic analysis. This is illustrated for

the example in §3.

- 5 -

(6) Even for small k, computing the finite sum in Theorem 1 involves a potential roundoff

error problem. The potential roundoff problem is evident from the multiplication by r − k , which

by Remark (2) is 10γ/2 when 10 − γ accuracy is desired. Assuming that q k ≥ 0 for all k, the terms

in the finite sum are all bounded by G(1) =
k = 0
Σ
∞

q k . Thus, if G(1) is of order 1, then

approximately 3γ/2 − digit precision is needed to obtain 10 − γ accuracy. For further discussion,

see Remark 5.8 of [1].

2. Derivation and Discussion of Theorem 1

Given the generating function G(z) in (1), we can express the terms of the sequence {q k } via

a Cauchy contour integral as

q k =
2π i
1_ ___

C r

∫
z k + 1

G(z)_ ____ dz , (2)

where C r is a circle about the origin of radius r, 0 < r < 1. Upon making the change of variables

z = re iu , we obtain the expression

q k =
2πr k

1_ ____
0
∫
2π

G(re iu) e − ikudu

=
2πr k

1_ ____
0
∫
2π

[cos ku Re (G(re iu)) + sin ku Im (G(re in))] du , (3)

where Im (z) is the imaginary part of z. If we calculate (3) approximately using the trapezoidal

rule with a step size of π / k, then we obtain

q k ∼∼
2πr k

1_ ____
j = 1
Σ
2k

(− 1) j Re (G(re i jπ/ k)) , (4)

just as in Theorem 1, so that it only remains to determine the error bound.

The framework above can also be regarded as a special case of a sequence

{a k : − ∞ < k < ∞} with
k = − ∞

Σ
∞

a k < ∞. (In particular, let a k = q k r k with 0 < r < 1 for

- 6 -

k ≥ 0 and a k = 0 for k < 0.)

We then can consider the Fourier transform

φ(u) =
k = − ∞

Σ
∞

a k e iku , (5)

which has an inverse

a k =
2π
1_ __

0
∫
2π

φ(u) e − iku du , (6)

as can easily be verified by substituting (5) into (6); see p. 511 of Feller [5]. With a k = q k r k for

k ≥ 0 and a k = 0 for k < 0, (6) reduces to (3).

The error bound for the trapezoidal rule approximation to (6) now follows from the discrete

Poisson summation formula.

Theorem 2. (discrete Poisson summation formula) For integers k and m > 0,

a k =
m
1_ __

j = 0
Σ

m − 1
φ(2π j / m) e − i2π j k / m −

j ≠ 0
j = − ∞
Σ
∞

a k + j m .

Proof of Theorem 2. Given k and m, form the periodic sequence with terms

ak
p =

j = − ∞
Σ
∞

a k + j m . (7)

(The series in (7) converges absolutely since
j = − ∞
Σ
∞

a j < ∞.) Next construct the discrete

Fourier transform of {ak
p }, see p. 51 of Rabiner and Gold [12], to obtain

- 7 -

âk
p

=
m
1_ __

j = 0
Σ

m − 1
aj

p e i2πk j / m

=
m
1_ __

j = 0
Σ

m − 1

l = − ∞
Σ
∞

a j + lm e i2π j k / m

=
m
1_ __

j = − ∞
Σ
∞

a j e i2π j k / m =
m
1_ __ φ



 m

2πk_ ___




.

Finally, from the inversion formula for discrete Fourier transforms,

ak
p =

j = 0
Σ

m − 1
âj

p
e − i2π j k / m

=
m
1_ __

j = 0
Σ

m − 1
φ(2π j / m) e − i2π j k / m .

Theorem 2 implies that the trapezoidal rule approximation to (6) with step size 2π / m has

discretization error

e d =

j ≠ 0
j = − ∞
Σ
∞

a k + j m . (8)

For the special case of a k = q k r k for k ≥ 0 and a k = 0 for k < 0,

e d =
j = 1
Σ
∞

a k + j m =
j = 1
Σ
∞

(q k + j m) r k + j m (9)

so that

e d ≤
1 − r m

r k + m
_ ______ . (10)

When we focus on q k , we divide (10) by r k and obtain the error bound r m /(1 − r m), which

yields Theorem 1 when we set m = 2k as in (4). We obtain the last equality in Theorem 1

because Re (G(z)) = Re (G(z
_
)).

- 8 -

3. The M/M/1 Example

The number of customers served in a busy period of an M/M/1 queue with traffic intensity ρ

has a probability mass function

p k =
k
1_ _ 

 k − 1
2k − 2

ρk − 1 (1 + ρ) − 2k + 1 , k ≥ 1 , (11)

and probability generating function

P(z) ≡
k = 0
Σ
∞

p k z k =
√ β ρ

1 − √ 1 − βz_ ___________ , (12)

where β = 4ρ /(1 + ρ)2; see p. 65 of Riordan [13]. The tail probabilities

q k = p k + 1 + p k + 2 + . . . (13)

thus have generating function

G(z) ≡
k = 0
Σ
∞

q k z k =
1 − z

1 − P(z)_ ________ (14)

for P(z) in (12).

The displayed program in §1 computes q k to an accuracy of 10 − 8 in the case ρ = 0. 75. The

real part of G(z) for any z is computed in lines 80-84. The damping parameter r is set equal to

10 − γ/2k to achieve accuracy 10 − γ ≡ 10 − E = 10 − 8 in lines 21-22. The sum in Theorem 1 is

computed in lines 30-34.

As indicated in Remark 5 above, the transform can be used to determine the asymptotic

behavior of p k and q k as k → ∞. In particular, from (12) and p. 150 of Wilf [14] or p. 498 of

Bender [2], we find that

p k ∼ α k ≡ −
√ β ρ

1_ ____
k 3/2 Γ(− 1/2)

βk
_ ____________ =

2√ β ρ πk 3

βk
_ _________ , (15)

where p k ∼ α k means that p k /α k → 1 as k → ∞, which agrees with what we get from (11) by

- 9 -

applying Stirling’s formula. Moreover, from (14) we obtain

q k ∼
β − 1 − 1

α k_ _______ =
(1 − ρ)2

4ρ_ ________ α k (16)

for α k in (15).

Table 1 compares the exact values of p k and q k based on (11) and (13) with the numerical

inversion based on Theorem 1 and the asymptotic values from (15) and (16). From Table 1, we

see that the asymptotics do not become accurate too quickly, but they become accurate before the

calculation becomes difficult. It is interesting that the asymptotics are much better for the

probability mass function values p k than for the complementary cumulative distribution function

values q k . (Similar behavior holds for the continuous-time length of the M/M/1 busy period.)

Finally, note that the numerical inversion consistently achieves the prescribed 10 − 7 accuracy.

4. Conclusions

We have applied the discrete Poisson summation formula (Theorem 2) to characterize the

discretization error associated with the trapezoidal-rule method for numerically integrating

standard inversion integrals for generating functions ((3) and (6)). For most operations research

applications, sufficient accuracy (e.g., 10 − 8) is obtained with a very manageable computation

(Theorem 1). Similar methods also can be used to numerically invert other transforms but easily

computable error bounds are usually not available; see [1]. In summary, we believe that

numerical transform inversion deserves a more prominent place in the operations research toolkit.

(However, we do not make strong claims of originality, because these techniques are classical,

and variants of our algorithm LATTICE-POISSON were previously proposed by others.)

Acknowledgment. We thank Dimitris Bertsimas, Bharat Doshi, Kerry Fendick, Daniel Heyman,

Toshio Hosono, David Jagerman and Henk Tijms for assistance. We thank Kerry Fendick for

writing the C++ program implementing LATTICE-POISSON.

References

[1] J. Abate and W. Whitt, ‘‘The Fourier-series method for inverting transforms of probability

distributions,’’ Queueing Systems, 10 (1992), 5-88.

[2] E. A. Bender, ‘‘Asymptotic methods in enumeration,’’ SIAM Review 16 (1974) 485-515.

[3] J. K. Cavers, ‘‘On the fast Fourier transform inversion of probability generating

functions,’’ J. Inst. Maths. Applics. 22 (1978) 275-282.

[4] J. N. Daigle, ‘‘Queue length distributions from probability generating functions via

discrete Fourier transforms,’’ Oper. Res. Letters 8 (1989) 229-236.

[5] W. Feller, An Introduction to Probability Theory and its Applications, Vol. II, second

edition (Wiley, New York, 1971).

[6] T. Hosono, ‘‘Numerical algorithms for Taylor series expansion,’’ Electronics and

Communications in Japan 69 (1986) 10-18.

[7] D. L. Jagerman, ‘‘An inversion technique for the Laplace transform,’’ Bell System Tech. J.

61 (1982) 1995-2002.

[8] D. L. Jagerman, MATHCALC, AT&T Bell Laboratories, Holmdel, NJ, 1987.

[9] Y. Kida, ‘‘UBASIC Version 8.12,’’ Faculty of Science, Kanazawa University, 1-1

Marunouchi, Kanazawa 920, Japan, 1990.

[10] J. N. Lyness, ‘‘Differentiation formulas for analytic functions,’’ Math. Computation 22

(1968) 352-362.

[11] W. D. Neumann, ‘‘UBASIC: a public-domain BASIC for mathematics,’’ Notices Amer.

Math. Soc. 36 (1989) 557-559.

- R-2 -

[12] L. R. Rabiner and B. Gold, Theory and Application of Digital Signal Processing

(Prentice-Hall, Englewood Cliffs, New Jersey, 1975).

[13] J. Riordan, Stochastic Service Systems (Wiley, New York, 1962).

[14] H. S. Wilf, Generating functionology (Academic, New York, 1990).

_ ___
p k q k_ ___

(inversion (asymp (inversion (asymp
exact -exact) -exact) exact -exact) -exact)

k values × 1010 ÷ exact values × 1010 ÷ exact
from (11) for E = 7 from (15) from (13) for E = 7 from (16)_ ___

1 0.571428571 69 −0.44 0.428571429 220
2 0.139941691 21 −0.20 0.288629738 128
3 0.068542869 11 −0.13 0.220086869 87
4 0.041965022 7 −0.10 0.178121847 66
5 0.028776015 4 −0.08 0.149345832 51

10 0.008803257 1 −0.04 0.079604889 20
20 0.002483026 −0.02 0.035708032 5
40 0.000575657 −0.009 0.012072949 1 1.27
80 0.000088790 −0.005 0.002492008 0.70

160 0.000006017 −0.002 0.000208294 0.38
240 0.000000629 −0.002 0.000023794 0.27
320 0.000000078 −0.001 0.000003121 0.21
400 0.000000011 −0.001 0.000000443 0.17_ ___ 
























































































































































































Table 1. A comparison of numerical-inversion and asymptotic approximations with exact
values of p k and q k in (11) and (13).

