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W e develop stochastic models to help manage the pace of play on a conventional 18-hole golf course. These models
are for group play on each of the standard hole types: par-3, par-4, and par-5. These models include the realistic

feature that k�2 groups can be playing at the same time on a par-k hole, but with precedence constraints. We also con-
sider par-3 holes with a “wave-up” rule, which allows two groups to be playing simultaneously. We mathematically
determine the maximum possible throughput on each hole under natural conditions. To do so, we analyze the associated
fully loaded holes, in which new groups are always available to start when the opportunity arises. We characterize the
stationary interval between the times successive groups clear the green on a fully loaded hole, showing how it depends
on the stage playing times. The structure of that stationary interval evidently can be exploited to help manage the pace of
play. The mean of that stationary interval is the reciprocal of the capacity. The bottleneck holes are the holes with the least
capacity. The bottleneck capacity is then the capacity of the golf course as a whole.
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1. Introduction

We develop mathematical models to study the pace
of play in golf. It is natural to dismiss the topic as
frivolous, because golf is “only” a game. However,
golf courses provide important recreational services,
with multi-billion-dollar economic impact. Indeed, in
2008 Haydu et al. (2008) published the results of a
research study of the economic impact of golf
courses in the United States, in which they con-
cluded that “The golf sector is the largest component
of the turfgrass industry, accounting for a 44% share.
The nearly 16,000 golf courses generated $33.2 billion
in (gross) output impacts, contributed $20.6 billion in
value added or net income, and generated 483,000
jobs nationwide.”
In order for golf courses to be successful and

achieve their mission they must be properly designed
and well managed. Unfortunately, there is concern
that the pace of play has become too slow, that is, that
the amount of time spent waiting and the overall time
required to play a full round of 18 holes have become
excessively long. Indeed, Riccio (2014a) established
the Three/45 Golf Association “dedicated to leading,
educating, and advocating for a quicker pace of play,
including golfers, owners, managers, superintendents
and designers.” Riccio (2014b) also conducted a study
of the pace of play on on a sample of 175 American
golf courses using GPS collected data on 40,000 com-
pleted 18-hole rounds of golf during June 2013. This
study showed that 70% of the rounds lasted more

than 4 hours and 10% lasted more than 5 hours. A sta-
tistically significant positive relationship was found
between the time of play and the number of rounds
per course.
It is natural to respond to this challenge by apply-

ing the principles of production and operations man-
agement (POM), as Riccio (2012, 2013, 2014a) has
advocated. POM principles should apply because suc-
cessive groups of golfers playing on a conventional
18-hole golf course can be viewed, at least roughly, as
a production line. The groups can be regarded as
“jobs” that flow through a serial network of 18
queues, with unlimited waiting space at each queue
and service in order of arrival. However, there are
several complicating features. First, to satisfy the high
demand and exploit valuable resources, golf courses
are typically quite heavily loaded. Second, the system
starts empty at the beginning of each day and should
terminate with the last group completing play on all
holes. Thus, the system is a transient network of
queues operating under heavy-traffic conditions.
Consequently, conventional steady-state analysis of a
stationary queueing model is of doubtful relevance.
Nevertheless, POM principles suggest seeking to bal-
ance the desire to put more golfers on the course in
order to maximize the use of a valuable resource and
the desire to put fewer golfers on the course in order
provide a good experience by keeping delays low.
Closer examination of group play on golf courses

reveals other complications. The one that we primar-
ily address is the fact that more than one group can
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play at the same time on many of the holes, but under
precedence constraints. There are three types of holes
on a golf course: par 3, par 4, and par 5. Typically,
two groups can be playing on a par-4 hole at the same
time, while three groups can be playing on a par-5
hole at the same time. A conventional par-3 hole is
more elementary because only one group can play on
it at the same time, but there also is the modified par-
3 hole “with wave-up,” which allows two groups to
play at the same time there too, while still maintain-
ing the order determined by their arrival; see Tiger
and Salzer (2004), Riccio (2013), and section 5 here.
This simultaneous play on most holes has the impor-
tant consequence that the times between successive
groups completing play on a hole will tend to be less
than the time required for each group to play the
hole.
To explain in greater detail, we describe the steps

of group play on a par-4 hole. There are five steps, each
of which must be completed before the group moves
on to the next step. These five steps can be
diagrammed as

T ! W1 ! F ! W2 ! G: ð1Þ

The first step T is the tee shot (one for each member
of the group); the second step W1 is walking up to
the balls on the fairway; the third step F is the fair-
way shot; the fourth step W2 is walking up to the
balls on or near the green; the fifth and final step G
is clearing the green, which may involve one or
more approach shots and one or more shots (putts)
on the green for each player in the group. The goal
in golf is to put the ball into the hole on the green
using as few strokes (shots) as possible. A hole is
rated par 4 because good play should require four
shots: one from the tee, one from the fairway, and
two more to clear the green (put it in the hole on
the green).
The rules of play allow two groups to play at the

same time on a conventional par-4 hole. Two succes-
sive groups can be simultaneously playing on the
hole, because each group is allowed to hit its initial
tee shots after the previous group has hit its fairway
shots, and so will be safely out of the way, while each
successive group is allowed to hit its fairway shots
only after the previous group has cleared the green.
Usually about 12 of the 18 holes are par-4 holes. The
par-5 holes are longer, allowing three groups to play
at the same time, while the par-3 holes are shorter,
allowing only one group to play at one time, except
under the wave-up rule.

1.1. A Stochastic Model of Group Play
In this paper, we contribute by developing a tractable
stochastic model of group play on each hole of the

golf course, paying special attention to the inevitable
randomness in the times required for each group to
complete each stage of play. We develop three mod-
els, one for each of the standard hole types: par-3,
par-4, and par-5. Putting these models together, we
obtain a queueing network model of successive
groups of golfers playing on the successive holes of a
conventional 18-hole golf course over a single day. In
the overall queueing network model, there could be
18 different models for the 18 holes, if the parameters
for the holes with the same par value are different.
We have begun using this model to develop useful

performance formulas and to simulate the play of suc-
cessive groups of golfers over the 18-hole golf course
during a day; see Fu and Whitt (2014). For example,
we are studying alternative schedules for group start
(tee) times. We have found that both the number of
groups to complete play can be increased and the
maximum expected time required to play a round per
group can be decreased by using a nonconstant tee
schedule, making the earlier intervals between tee
times shorter than the later ones appropriately. Thus,
the present paper is a first step toward applying POM
principles to improve the performance of golf
courses.
In this paper, we apply the stochastic model to ana-

lytically determining the capacity of each hole. The
capacity is the maximum possible throughput, where
the throughput is the rate that groups of golfers
complete play on the hole. The maximum possible
throughput is realized as the limiting throughput
in an idealized fully loaded hole, where there always
are groups ready to start play (tee off) at the first
opportunity.
These maximum throughput results for individual

holes translate into the capacity of the golf course as a
whole. The holes with the least capacity are called the
bottleneck holes. The capacity of the entire golf course
is the capacity of the bottleneck holes. As emphasized
by Riccio (2013), it is important to know the capacity
of the golf course when setting tee time schedules. No
gain in the throughput can be achieved when the
starting rate (reciprocal of the interval between tee
times) exceeds the capacity. Since par-3 holes tend to
be the bottleneck holes, Riccio (2014a) recommends
that course managers set the tee interval on the first
hole to at least the time it takes to play the longest par
3. Course designers can make that rule easier to fol-
low by putting that longest par-3 hole at the begin-
ning of the course; that makes any queue buildup
easier to see. These principles are supported by our
analysis; see Corollary 3.
More generally, course designers can use the hole

capacity values to help choose arrangements of the
holes that are efficient as well as satisfying for golfers
and spectators. This follows POM principles as in P2
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on p. 481 and section 7.2 of Whitt (1985) and Yama-
zaki et al. (1992).

1.2. Stage Playing Times
Our stochastic queueing models for group play on
golf courses are closely related to previous models in
Kimes and Schruben (2002), Tiger and Salzer (2004),
Riccio (2012, 2013); for example, see the single-hole
bottleneck model on p. 32 of Riccio (2013). However,
we innovate by converting the basic steps of group play
into critical stages, so that our model primitives
become the stage playing times; see section 2.1. In addi-
tion, we provide the first direct mathematical analysis
of these stochastic models. Like the previous models,
our models can also be analyzed with computer simu-
lation, but mathematical methods facilitate analysis of
the pace of play.
The stage playing times that are the primitives of

our models depend on the number of players in the
group and their characteristics, and require careful
modeling and data analysis, but we do not carry out
that step here. We aim to help understand how the
stage playing times translate into the time required
for the group to play each hole and the entire golf
course. The analysis here makes it possible to deter-
mine how changes in the stage playing times obtained
through course design and management decisions
will impact capacity.
We think that stage playing times provide a use-

ful modeling framework for the design and analysis
of golf courses. We think that it can be fruitful to
separate the overall analysis into three parts. In the
first part, we study how course design, course man-
agement, and golf group behavior affect stage play-
ing times. In the second part, we study how the
distribution of stage playing times of all the groups
on all holes affects the pace of play on those holes.
In the third part, we study how the results for indi-
vidual holes can be combined to determine the
impact on the pace of play on the entire 18-hole
golf course. We are concerned with the second part
here. We suggest measuring stage playing times of
groups and applying the analysis here to see what
that implies about the successive times for groups
to play each hole and the successive times between
successive groups completing play on each hole.
The formulas developed here show how changes in
the stage playing times will impact the capacity; for
example, for a par-4 hole, we can combine equa-
tions (14) and (15).
It is significant that the stage playing times are not

only useful to expose the key structure determining
performance, but they are also convenient to measure
on the golf course. It is far easier to measure group
stage playing times than to record the times each
individual golfer performs each step.

1.3. The Impact of Variability on Performance
Established POM principles have revealed that vari-
ability usually seriously inhibits performance effi-
ciency; for example, see Hopp and Spearman
(1996). Counter to naive intuition, variability often
does not average out, but degrades the average
performance. That is illustrated by the impact of
variability in the service-time distribution on the
steady-state waiting time in the classical M/GI/1
queueing model; the Pollaczek–Khintchine formula
for the mean waiting time shows that it is directly
proportional to the variability of the service-time
distribution, as characterized by its squared coefficient
of variation (scv, variance divided by the square of
the mean). Since variability tends to be hard to
understand, this important insight is often missed.
A major goal of our stochastic model is to address
that problem.
There often is significant variability in group play

on golf courses, extending beyond the inevitable ran-
domness required for each golfer to make a shot and
walk up to the ball. First, many golf courses allow
groups to either walk the course or use carts, and this
choice may make a significant difference on stage
playing times. Second, many golf courses allow
groups to consist of different numbers of golfers, any-
where from one to four, or even more; obviously that
too should impact group playing times. Third, there
may be unusually slow groups, typically because they
contain inexperienced golfers.
Consistent with intuition, Riccio (2012, 2013) has

shown that the presence of groups that tend to take
longer to play all the holes can have a dramatic detri-
mental impact on the performance of subsequent
groups to play the course. We do not address that
phenomenon here, but we intend to use variants of
the model here to study the impact of slow groups on
the performance over the full golf course in the future.
Nevertheless, our analysis in this paper shows that

increased variability in stage playing times consis-
tently reduces the maximum possible throughput on
each hole separately. Thus, the capacity of the golf
course is necessarily reduced when variability of
stage playing times increases. That can be explained
succinctly by the conclusion of our analysis: For each
of the holes-types in which multiple groups can play
at the same time, the random variable representing
the interval between successive groups clearing the
green on a fully loaded hole is a strictly increasing
strictly convex function of the stage playing time vari-
ables; see equations (15), (65) and the final line of The-
orem 9. The explicit formulas quantify the impact.

1.4. Organization of the Paper
Here is how the rest of this paper is organized: First,
in section 2 we develop the model of successive
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groups playing a par-4 hole. We start in section 2.1 by
converting the five steps described above into three
stages of group play. Then in section 2.2 we develop a
concise recursion to model group play, based on spec-
ified stage playing times. Afterward, we discuss the
performance measures of interest and carefully define
the throughput. In section 3 we examine the par-4
model under the condition that it is fully loaded, and
determine the capacity of the hole; the formula is
given in equation (14), drawing on equation (15). In
section 4, we introduce a specific model of the stage
playing times and show how they impact the capacity
of a par-4 hole.
We analyze the more elementary par-3 hole, with

and without wave-up, in section 5. We show that the
fully-loaded par-3 hole with wave-up has essentially
the same structure as a fully-loaded par-4 hole, but
the stage playing times appear in a different way.
We develop the corresponding exact model of a

par-5 hole and analyze the associated fully loaded
model in section 6. As might be anticipated, since
three groups can be simultaneously on each par-5
hole, the stochastic analysis is more complicated
for a par-5 hole, so that it is more complicated to
compute the capacity. However, we provide a
remarkably tractable simplification under an addi-
tional approximation assumption in section 6.2. In
section 6.3, we give a simulation example of group
play on a par-5 hole. Finally, in section 7 we draw
conclusions.

1.5. Related Queueing Literature
This paper is self-contained, but there is related work
in queueing theory. The simultaneous play and the
conventions for managing it introduces precedence
constraints, as studied in the sophisticated queueing
theory based on the max-plus algebra in Baccelli et al.
(1992, 1989), Heidergott et al. (2006), Mairesse (1997),
but we do not see how to apply that theory. Even if it
could be applied, the direct analysis here is appealing
because it is more accessible.
The linear flow with constraints makes the overall

network model a serial or tandem queueing network
with a form of blocking, as in Perros (1994) and the
many references therein, but the form of blocking
here is evidently not covered by that literature. Our
determination of maximum throughput is in the spirit
of the throughput analysis for linear loss networks in
Momcilovic and Squillante (2011), but that is a differ-
ent model.

2. Stochastic Model of Groups Playing
a Par-4 Hole

In this section, we develop a stochastic model of
successive groups of golfers playing a par-4 hole.

2.1. Representation of the Group Play in Three
Stages
Recall the five steps of group play on a par-4 hole:
T, W1, F, W2, and G, depicted in equation (1). Each
step must be completed before the group proceeds
to the next step. An important part of our modeling
approach is to not directly model the performance of
these individual steps. Instead, we aggregate the five
steps into three stages, which are important to cap-
ture the way successive groups interact while play-
ing the hole. In particular, we represent the three
stages as:

ðT;W1Þ ! F ! ðW2;GÞ ð2Þ

Stage 1 is (T, W1), stage 2 is F, and stage 3 is
(W2, G). We use this particular aggregation, because
it turns out to be the maximum aggregation permit-
ted by the precedence constraints, which we turn to
next.
We now describe the precedence constraints, which

follow common conventions in golf. Assuming an
empty system initially, the first group can do all the
stages, one after another without constraint. How-
ever, for n ≥ 1, group n + 1 cannot start stage 1 until
both group n + 1 arrives at the tee and group n has
completed stage 2, that is, has cleared the fairway.
Similarly, for n ≥ 1, group n + 1 cannot start on stage
2 until both group n + 1 is ready to begin there and
group n has completed stage 3, that is, cleared the
green. These rules allow two groups to be playing on
a par-4 hole simultaneously, but under those specified
constraints. We may have groups n and n + 1 on the
course simultaneously for all n. That is, group n may
first be on the course at the same time as group n � 1
(who is ahead), but then later be on the course at the
same time as group n + 1 (who is behind). The groups
remain in their original order, but successive groups
interact on the hole. The group in front can cause
extra delay for the one behind.
We now formalize those rules with a mathematical

model. Let An be the arrival time of the nth group at
the tee of this hole on the golf course. Let Sj,n be the
time required for group n to complete stage j,
1 ≤ j ≤ 3; these are called the stage playing times. The
mathematical model data for a par-4 hole consists of a
sequence of 4-tuples: {(An, S1,n, S2,n, S3,n): n ≥ 1},
where the four components for each n are nonnega-
tive random variables.
We now turn to the performance measures, show-

ing the result of the groups playing on the hole. Let Bn

be the time that group n starts playing on this hole,
that is, the instant when one of the group goes into
the tee box. Let Tn be the time that group n completes
stage 1, including the tee and the following walk; let
Fn be the time that group n completes stage 2, its shots
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on the fairway; and let Gn be the time that group n
completes stage 3, and clears the green.

2.2. The Fundamental Recursion
We now give a concise mathematical representation
of the description above. This representation relates
the model primitives to the performance random vari-
ables by the following four-part recursion:

Bn � An _ Fn�1; Tn � Bn þ S1;n;

Fn � ðTn _ Gn�1Þ þ S2;n and Gn � Fn þ S3;n; ð3Þ

where � denotes “equality be definition” and
a ∨ b � max{a, b}. As initial conditions, assuming
that the system starts empty, we set F0 � G0 � 0.
The two maxima capture the two precedence con-
straints.
The model in equation (3) extends directly to any

number of such single-hole models in series. We sim-
ply let the completion times Gn from one queue be the
arrival times at the next queue.

2.3. Performance Measures
We now define associated performance measures,
starting with temporal performance measures for
group n. In doing so, we follow the factory physics
conventions in Hopp and Spearman (1996) and Riccio
(2013) as much as possible. The principal temporal
performance measures for group n are: the waiting
time (before starting play on the hole), Wn = Bn � An;
the playing time (the total time group n is actively
playing this hole, possibly including some waiting
there), Xn � Gn � Bn; and the sojourn time (the total
time spent by group n at the hole, waiting plus play-
ing), Un = Gn � An = Wn + Xn. Let X

w
n be the waiting

time while playing the hole for group n and let X
p
n be the

active playing time while playing on the hole. Since
X

p
n ¼ S1;n þ S2;n þ S3;n for a par-4 holes, we can eas-

ily calculate Xw
n , given the playing time Xn as

Xw
n � Xn � X

p
n.

We are primarily interested in determining the
maximum throughput. For the golf course, the
definition of throughput is complicated because the
state changes over the course of each day, starting
empty, and getting more congested throughout
most of the day. However, the rate groups com-
plete play may rapidly approach a limit, even if
the system is overloaded. We will be focusing on
that limit.
First, we define the random cycle time for group n as

Cn � Gn � Gn�1; n� 1; ð4Þ
and the cycle time for group n is its expected value,
E[Cn]. Second, the average random cycle time for the
first n groups is

�Cn � 1

n

Xn
k¼1

Ck ¼ Gn

n
; n� 1: ð5Þ

The average cycle time for the first n groups is then
just E½�Cn�.
The typical case is to have

Cn ) C1; E½Cn� ! E½C1� and �Cn ) E½C1�
as n ! 1; ð6Þ

where C1 is a random variable and ⇒ denotes con-
vergence in distribution, in which case we let E½C1�
be the cycle time; That is the standard case, referred
to on p. 17 of Riccio (2013).
We define the random throughput rate for the first n

groups as

Hn � 1=�Cn ¼ n

Gn
; n� 1: ð7Þ

Given that positive finite limits hold in equation (6),
we have

Hn ) h � 1

E½C1� as n ! 1: ð8Þ

Thus, the throughput is h � 1=E½C1�.
We define other average performance measures just

like equations (5) and (7). For example, the average
sojourn time, that is, the average time spent at the hole
per group (among the first n groups) is

�Un � 1

n

Xn
k¼1

Uk ¼ 1

n

Xn
k¼1

ðGk � AkÞ: ð9Þ

We next turn to the performance measures,
counting the number of groups at the hole. (Neces-
sarily, any number greater than 2 at a par-4 hole
must be waiting in queue, because at most two can
be playing at the same time, but there is no limit
on the number that can be waiting (unless other
assumptions are made). The counting could be
done at an arbitrary time, at an arrival epoch (the
times An) or at a green clearing epoch (the times
Gn). At arrival time or departure time n, customer
n might or might not be counted. Let Na

n be the
number at the hole, either waiting or playing, as
seen by group n upon arrival, but not counting the
arrival; then

Na
n � n� 1�max fk� 0 : Gk �Ang; n� 1: ð10Þ

Let N(t) be the number in the system at time t; then

NðtÞ ¼ Na
n þ 1; An�1 � t\An: ð11Þ
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3. Model of a Fully Loaded Par-4 Hole

In order to determine the capacity of a par-4 hole,
which we understand to be the maximum possible
throughput, we now focus on a fully-loaded hole, that
is, all groups are at the hole at time 0 ready to play,
that is, An � 0 for all n. Given the recursion in equa-
tion (3), it actually suffices to have only the weaker
condition An ≤ Fn�1 for all n≥1, because then the tee
box is never idle after the first group starts (at
A1 = B1 = 0). The capacity of a par-4 hole, which we
denote by h*, is the throughput h as defined in equa-
tion (8) for the fully loaded par-4 hole.

3.1. A Simplified Recursion
It is easy to see that, under this fully loaded condition,
the recursion in equation (3) reduces to

Bn� Fn�1; Tn�BnþS1;n;

Fn�ðTn_Gn�1ÞþS2;n and Gn�FnþS3;n; n�1;
ð12Þ

where F0 � G0 � 0.

3.2. The Random Cycle Times
Our main result is a law of large numbers (LLN) for the
cycle times Cn � Gn � Gn�1 of a fully loaded par-4
hole. The limit is the maximum throughput for a
par-4 hole. We make customary independence and
identical distribution (i.i.d.) assumptions for the stage
playing time vectors. By allowing the three compo-
nents of that vector to be dependent, we include the
phenomenon of an occasional slow group, that tends
to play more slowly on all stages. We show that a slow
group does not decrease the capacity of a hole beyond
its impact on the mean. Riccio (2013), p. 46, shows that
groups that are slow on all holes can have a devastat-
ing impact on the pace of play for all groups playing
after it. That impact is caused by the larger variance
for each hole and the dependence over multiple holes.

THEOREM 1. (LLN for the cycle times Cn for the fully
loaded model) Consider the fully loaded par-4 model in
which the sequence of stage playing time random vectors
{(S1,n, S2,n, S3,n): n ≥ 1} is i.i.d. each distributed as the
random vector ðS1; S2; S3Þ, whose components are
strictly positive with finite means. Then

�Cn � 1

n

Xn
k¼1

Ck �Gn

n
! E½Y� as n!1 w:p:1; ð13Þ

so that

Hn� 1
�Cn

� n

Gn
! 1

E½Y��h� as n!1 w:p:1; ð14Þ
where

Y � ðS1 _ S3Þ þ S2 with 0\E½Y�\1: ð15Þ
and S3 is independent of ðS1; S2Þ.

A key step in the proof of Theorem 1 is a represen-
tation of the fairway completion times as partial sums
of random variables constructed from the stage play-
ing times. Since this is the key structural result, we
refer to it as a theorem instead of a lemma. Here, we
make no stochastic assumptions.

THEOREM 2. (representation for Fn as a partial sum) For
the fully loaded par-4 hole with recursion in equation
(12),

Fn¼Fn�1þYn; n�2; so that Fn¼
Xn
k¼1

Yk; n�1; ð16Þ

where

Yn � ðS1;n _ S3;n�1Þ þ S2;n; n� 2; and
Y1 ¼ S1 þ S2:

ð17Þ

PROOF. For n ≥ 2, the recursion in equation (12) can
be expressed as

Fn ¼ðTn_Gn�1ÞþS2;n ¼ðFn�1þS1;nÞ_ðFn�1þS3;n�1Þ
þS2;n ¼ Fn�1þðS1;n_S3;n�1ÞþS2;n ¼ Fn�1þYn;

ð18Þ

so that equation (16) holds. h

PROOF OF THEOREM 1. Since Gn = Fn+S3,n by equation
(12), the difference between Gn and Fn is asymptoti-
cally negligible when we divide by n. Given the
assumed independence among the random vectors
(S1,n, S2,n, S3,n), the random variables Yn are only
one-dependent and they are identically distributed
for n ≥ 2. (One-dependent means that Yn and Yn+1

may be dependent of each n, but {Yj: j ≤ n} and
{Yn+j:j > 1} are independent for each n.) The one-
dependence implies that the LLN applies directly to
the two subsequences {Y2k: k ≥ 1} and {Y2k+1: k ≥ 0}.
Adding yields the LLN for the full sequence {Yk:
k ≥ 1} itself: �Fn � n�1Fn ! E½Y� w.p.1 as n ? ∞.
Since S1∨S3 ≤ S1 + S3 and the individual means
are finite, E[Y] < ∞. Since the means are positive,
E[Y] > 0, so that 1/E[Y] < ∞ too. Since Gn = Fn + S3,n
and n�1S3,n ? 0 as n ? ∞ w.p.1, we also have
�Gn � n�1Gn ! E½Y� w.p.1 as n ? ∞, which directly
implies equation (13). The final claimed indepen-
dence follows from equation (17) and the indepen-
dence assumed in Theorem 1. h

For designing a par-4 hole and for improving the
pace of play, it is important to see how the random
variable Y depends on the stage playing times Si for
i = 1, 2, 3. For example, formula equation (15) implies
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that Y decreases directly with a decrease in S2, but Y
fails to change if we decrease only the smaller of S1
and S3.
We now formalize the notion that greater variabil-

ity in the stage playing times will tend to increase the
random variable Y in equation (15) and thus decrease
the maximum possible throughput, as discussed in
section 1.3. To do so, we use the notion of convex (or
variability) stochastic ordering; see Chapter 9 of Ross
(1996). We say that one random vector Z1 in Rk is sto-
chastically less variable than another Z2, and write
Z1 ≤c Z2, if

E½fðZ1Þ� �E½fðZ2Þ� for all
convex real-valued functions f :

ð19Þ

COROLLARY 1. (convex stochastic order) If the
assumptions of Theorem 1 are satisfied for two random
vectors ðSðiÞ1 ; S

ðiÞ
2 ; S

ðiÞ
3 Þ with i=1,2 and

ðSð1Þ1 ; S
ð1Þ
2 ; S

ð1Þ
3 Þ� cðSð2Þ1 ; S

ð2Þ
2 ; S

ð2Þ
3 Þ in R3; ð20Þ

then

E½fðYð1Þ��E½fðYð2ÞÞ� for all
nondecreasing convex real-valued functions f :

ð21Þ

PROOF. From equation (15), we see that Y is a con-
vex function of the vector (S1, S2, S3), but then any
nondecreasing convex real-valued function of a con-
vex function is itself convex. h

We conclude this subsection by giving an explicit
representation of the random cycle times
Cn � Gn�Gn�1 in terms of the stage playing times,
from which we can see that they are one-depen-
dent under the conditions of Theorem 1. However,
this structural results seems less revealing than
Theorem 2. Let ðxÞþ ¼ maxfx; 0g:

THEOREM 3. (random cycle times) For a fully loaded
par-4 hole,

Cn � Gn � Gn�1 ¼ ðS1;n � S3;n�1Þþ þ S2;n þ S3;n;
n� 2:

ð22Þ

PROOF. From equations (12) and (17), for n ≥ 2,

Cn � Gn � Gn�1 ¼ Fn þ S3;n � Fn�1 � S3;n�1

¼ Yn þ S3;n � S3;n�1 ¼ ðS1;n _ S3;n�1Þ þ S2;n

þ S3;n � S3;n�1 ¼ ðS1;n � S3;n�1Þþ þ S2;n þ S3;n:

h

3.3. Playing Times in a Fully-Loaded Model
We now expose the efficiency of having two groups
allowed to play on a par-4 hole simultaneously. In
the previous subsection, we saw that the long-run
average time between successive groups completing
play of a fully loaded par-4 hole is E[Y], while
the time each group spends on the par-4 hole is the
playing time Xn�Gn�Bn. We now show that the
playing times on a fully loaded par-4 hole are in
steady state for all n ≥ 2, with a mean that is greater
than E[Y]. Moreover, we quantify the difference. We
also identify the waiting time while playing, Xw

n ,
and its mean.

THEOREM 4. (the playing times for the fully loaded
model) In the fully loaded par-4 model, for n ≥ 2, the
playing times, Xn, and waiting times while playing, Xw

n ,
simplify to

ðXn;X
w
n Þ � ðGn � Bn;Xn � X

p
nÞ

¼ ðYn þ S3;n; ðS1;n _ S3;n�1Þ � S1;nÞ: ð23Þ

Under the assumptions of Theorem 1, the distribution of
ðXn; Xw

n Þ is independent of n for all n ≥ 2, with

E½Xn� ¼ E½Y� þ E½S3� and
E½Xw

n � ¼ E½ðS1 _ S3Þ� � E½S1� for all n� 2:
ð24Þ

PROOF. From the definition of a playing time, the
recursion equation (12) and Theorem 2, it follows
immediately that

Xn � Gn � Bn ¼ Fn þ S3;n � Fn�1 ¼ Yn þ S3;n; n� 2:

Recall that Yn itself involves S3,n�1, not S3,n. Thus,
under the assumptions of Theorem 1, the distribu-
tion of Xn is independent of n for all n ≥ 2. For the
waiting time while playing,

Xw
n � Xn � X

p
n ¼ Xn � ðS1;n þ S2;n þ S3;nÞ

¼ ðS1;n _ S3;n�1Þ � S1;n;

as claimed. h

3.4. The Moments of the Random Variable Y
We now derive the moments of the random variable
Y, which plays a key role for the fully loaded par-4
hole. Let H and Hi be the cdf’s of Y and Si, respec-
tively, for example, Hi(x) � P(Si ≤ x) and let
�HiðxÞ � 1�HiðxÞ be the complementary cdf (ccdf).

THEOREM 5. (moments of Y) Consider the fully loaded
par-4 model. (a) If the assumptions of Theorem 1 hold,
then
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E½Y� ¼
Z 1

0

H�ðxÞdx; where

H�ðxÞ � �H1ðxÞ þ �H2ðxÞ þ �H3ðxÞ � �H1ðxÞ �H3ðxÞ:
ð25Þ

(b) If, in addition, the random variables S1, S2, and S3
are mutually independent and the cdf’s H1 and H3 have
densities h1 and h3, then

VarðYÞ ¼ VarðS2Þ þ VarðS1 _ S3Þ; ð26Þ
where,

E½ðS1 _ S3Þ2� ¼
Z 1

0

E½S21jS1 [ x�PðS1 [ xÞh3ðxÞdx

þ
Z 1

0

E½S23jS3 [ x�PðS3 [ xÞh1ðxÞdx
ð27Þ

and

E½ðS1 _ S3Þ� ¼
Z 1

0

½ �H1ðxÞ þ �H3ðxÞ � �H1ðxÞ �H3ðxÞ�dx:
ð28Þ

PROOF. From equation (17), we have

Y¼d ðS1 _ S3Þ þ S2 ¼ S1 þ S2 þ S3 � ðS1 ^ S3Þ; ð29Þ

where S1 is independent of S3 and ^ denotes the
minimum, so that

E½Y� ¼ E½S1� þ E½S2� þ E½S3� � E½S1 ^ S3�: ð30Þ
Since S1 is independent of S3, we can exploit the tail
integral formula for each of the four means to obtain
(25). Moving on to the variance, we can use the first
expression in equation (29) with the extra assump-
tion and write equation (26), with equations (27)
and (28) following by direct argument. h

We now give explicit expressions for the moments
of Y when S1, S2, and S3 are mutually independent
exponential random variables. We anticipate that, as
in many production settings, the stage playing times
actually should be considerably less variable than an
exponential distribution under normal conditions.
However, it is unclear what will be the impact of
some of the more serious sources of variability dis-
cussed in section 1.3. Thus, we are including this case
because it provides a tractable frame of reference. The
formulas also can be useful as checks on simulations.
We consider more realistic stage service-time distri-
butions in the next section.

COROLLARY 2. (moments of Y for independent
exponential playing times) For the fully loaded par-4 hole

in which Si are mutually independent exponential
random variables with means l�1

i , i = 1, 2, 3, then

E½Y� ¼ 1

l1
þ 1

l2
þ 1

l3
� 1

l1 þ l3
ð31Þ

and

VarðYÞ ¼ 1

l22
þ 1

ðl1 þ l3Þ2
þ VarðZÞ; ð32Þ

where Z � ðS1 _ S3Þ � ðS1 ^ S3Þ,

E½Z2� ¼ PðS1\S3ÞE½S23� þ PðS3\S1ÞE½S21�
¼ l1

l1 þ l3

� �
2

l23
þ l3

l1 þ l3

� �
2

l21

and

E½Z� ¼ PðS1\S3ÞE½S3� þ PðS3\S1ÞE½S1�
¼ l1

l1 þ l3

� �
1

l1
þ l3

l1 þ l3

� �
1

l3
:

If, in addition, l1 = l3, then Z¼d S1 ¼d S3, so that

VarðYÞ ¼ 1

l22
þ 5

4l21
: ð33Þ

PROOF. First, we obtain equation (31) directly from
equation (29) and the property that the minimum of
exponential variables is exponential with a rate
equal to the sum of the rates. For equation (32), we
use equation (26) and

ðS1 _ S3Þ ¼ ðS1 ^ S3Þ þ Z; ð34Þ

where, by the lack of memory property, these are
independent with the displayed moments. For the
special case in which S1 ¼d S3, those formulas sim-
plify. In particular, we get

VarðYÞ ¼ VarðS2Þ þ VarðS1 _ S3Þ
¼ E½S2�2 þ E½S1�

2

� �2

þVarðS1Þ;

which implies equation (33). h

4. Models of the Stage Playing Times

In order to apply the model of a par-4 hole as devel-
oped in section 2 and determine the maximum
throughput for the hole, we need to specify the stage
playing time distributions. For this purpose, it is natu-
ral to rely on performance data from golf courses; that
is, we would directly fit the distributions to data on
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group play. However, to gain insight, it may also be
useful to develop relatively parsimonious models
with only a few parameters; for example, this is useful
to conduct simulation experiments and do further
mathematical analysis. In this section, we show how
that can be done.
We first introduce general parametric structure to

reduce the number of parameters. Then, we consider
triangular stage playing time distributions, similar to
those used in Tiger and Salzer (2004). Finally, we
develop a model to account for the extra variability
caused by an exceptional long delay, as occurs with a
lost ball. Rare long stage service times can have a dra-
matic impact, as shown by Riccio (2012, 2013).

4.1. Parametric Models with Special Structure
We introduce additional structure in the stage playing
time distributions in order to obtain models with only
a few parameters. In particular, in the spirit of p. 94 of
Riccio (2012) or p. 32 of Riccio (2013), we assume that
S1, S2, and S3 are mutually independent random vari-
ables with

S1 ¼d S3; ð35Þ
so that one parameter can be the means
E½S1� ¼ E½S3�; that is, we have

m ¼ E½S1� ¼ E½S3� ¼ E½S2�
r

: ð36Þ

Hence, there are only the two parameters m and r
beyond the distributions of S1 and S2. Moreover, we
can go further by letting S2 have a distribution of
the same type as S1.

EXAMPLE 1. (A CONCRETE EXPONENTIAL EXAMPLE). We
now consider a concrete example of the exponential
stage playing times satisfying equations (35) and
(36). To characterize the variability of Y, let c2Y be its
scv. For this example, we have

E½Y� ¼ ð3þ 2rÞm
2

; VarðYÞ ¼ ð5þ 4r2Þm2

4
and

c2Y �VarðYÞ
E½Y�2 ¼ 5þ 4r2

ð3þ 2rÞ2 :
ð37Þ

Following Riccio (2012, 2013) again, let m = 6 and
r = 1/2. First, for r = 1/2, E[Y] = 3m/2, Var(Y) = 3m2/
2 and c2Y ¼ 3=8 ¼ 0:375. From equation (37), we see
that, for m = 6, E[Y] = 12 and Var(Y) = 54. Since the
expected total playing time on an 18-hole course with-
out any waiting would be 18915 = 270 minutes or 4.5
hours, the value m = 6 gives reasonable sojourn times
on the golf course only in the case of deterministic
stage playing times (which were used by Riccio 2012).

For realistic random stage service times, a more realis-
tic value evidently would be m = 4.

4.2. The Case of Independent Triangular Stage
Playing Times
Aiming for a more realistic model than an exponential
distribution, we now follow Tiger and Salzer (2004)
and assume that Si has a triangular distribution, but
we simplify by assuming that it is symmetric. In
particular, let

Si ¼d mi � ai þ 2aiT; ð38Þ
where T�T[0, 1] is a (symmetric) triangular distribu-
tion on the interval [0, 1] with density

fTðxÞ ¼ 4t; 0� t� 0:5; and 4� 4t; 0:5� t� 1:

ð39Þ
so that E[T] = 1/2 and Var(T) = 1/24. An asymmet-
ric triangular distribution with higher probability on
large values than small values would evidently be
more realistic, but we use the more elementary sym-
metric model for its tractability. We achieve an
asymmetric distribution in the next section by add-
ing the possibility of extra delays, as caused by lost
balls.
Definition (38) is tantamount to assuming that Si

has a triangular distribution on the interval [mi�ai,
mi+ai], so that E[Si] = mi and VarðSiÞ ¼ a2i =6. We fur-
ther simplify by assuming that equation (36) holds
and

a1 ¼ a2 ¼ a3 ¼ a; ð40Þ
so that there are only the three parameters m, r, and
a. With that simplifying assumption, we have

S1 _ S3 ¼ m� aþ 2aðT1 _ T2Þ; ð41Þ
where T1 and T2 are two i.i.d. triangular random
variables on [0, 1].
Since

PðT� tÞ ¼ 2t2; 0� t� 1=2; and

PðT� tÞ ¼ 1� 2ð1� tÞ2; 1=2� t� 1;

we have

PðT1 _ T3 � tÞ ¼ PðT� tÞ2 ¼ 4t4 and

fT1_T3
ðtÞ ¼ 16t3; 0� t� 1=2;

PðT1 _ T3 � tÞ ¼ ð1� 2ð1� tÞ2Þ2 and

fT1_T3
ðtÞ ¼ 8½�1þ 5t� 6t2 þ 2t3�;

1=2� t� 1;

ð42Þ

so that E½T1 _ T3� ¼ 37=60 and VarðT1 _ T3Þ
¼ 101=3600. Hence,
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E½S1_S3� ¼mþ 7a

30
and VarðS1_S3Þ ¼ 101a2

900
ð43Þ

and

E½Y� ¼ ð1þ rÞmþ 7a

30
and VarðYÞ ¼ 251a2

900
: ð44Þ

EXAMPLE 2. (TRIANGULAR ANALOG OF EXAMPLE 1). Just
as in Example 1, suppose that m = 6 and r = 1/2. If
a = 3 (which is as large as possible), then E[Y] = 9.7,
Var(Y) = 2.51 and c2Y ¼ 0:02667; if a = 1, then E[Y] =
9.233, Var(Y) = 0.2789 and c2Y ¼ 0:003271. Notice
that the variability as measured by c2Y is much less
than for the exponential distribution.

4.3. Modification for Occasional Lost Balls
The triangular distribution captures the variability
we expect to have in stage playing times under nor-
mal circumstances. The variability is significantly
less than the exponential distribution. However,
there can be unexpected delays, such as are caused
by a lost ball, which makes the time much longer
than it would be otherwise. To avoid excessive
delays, golf courses often impose an upper limit on
the time spent looking for a lost ball, such as 5 min-
utes, but there could be more than one lost ball on
any given hole.
To model these rare events in a relatively simple

way, we consider random extra delays at an upper
limit. For simplicity, we assume that a lost ball can
only occur during the first stage, including the tee
shot and the following walk, so we only modify the
distribution of S1. We first let this upper limit be the
constant value L minutes. We then assume that such
unexpected events occur for each group on the first
stage of each hole with probability p. So, we introduce
the two extra parameters p and L.
Thus, given any of the models for Si discussed

above, this modification leads to a new distribution
for S1. Let the new random time for group play on
stage 1 be �S1, and let �Y, be the new random time
between successive times to clear the green, which is
still defined by equation (15), but with �S1 replacing S1.
Now we have

Pð�S1 ¼ S1Þ ¼ 1� p and Pð�S1 ¼ LÞ ¼ p: ð45Þ
Then the first two moments of �S1 are

E½�S1� ¼ ð1� pÞE½S1� þ pL and

E½�S21� ¼ ð1� pÞE½S21� þ pL2;
ð46Þ

so that

Varð�S1Þ ¼ ð1� pÞ½r2S1 þ pðL� E½S1�Þ2�: ð47Þ

Then

�Y ¼ ð�S1 _ S3Þ þ S2:

However, for bounded stage playing times such as
occur with the triangular distribution, we can go fur-
ther. If, in addition to equations (35) and (36), we have

PðS3 � LÞ ¼ 1; ð48Þ
then we have

E½�Y� ¼ pðLþ rmÞ þ ð1� pÞE½Y� and

E½�Y2� ¼ pðLþ rmÞ2 þ ð1� pÞE½Y2�: ð49Þ

Hence, we can combine the lost-ball feature with the
model in section 4.2 to obtain a tractable model. If
we add condition equation (40), then we obtain trac-
table models depending on the parameter 5-tuple
(m, r, a, p, L). We can thus incorporate the rare lost
ball with the usual low variability of the triangular
distribution to obtain a final estimate of the pace of
play. In particular, we can combine equations (49)
and (44) to obtain the first two moments of �Y for the
tri + LB model with parameter 5-tuple (m, r, a, p, L):

E½�Y�¼pðLþ rmÞþð1�pÞ ð1þrÞmþ7a

30

� �

E½�Y2�¼pðLþ rmÞ2þð1�pÞ 251a2

900
þ ð1þrÞmþ7a

30

� �2
 !

:

ð50Þ

EXAMPLE 3. (EXAMPLE 2 REVISITED WITH THE TRIANGULAR

DISTRIBUTION AND LOST BALLS). For example, Let Si
have triangular distributions as in section 4.2 with
parameters m, r and a. Since E½S1� ¼ m and
VarðS1Þ ¼ a2=6.

E½�S1� ¼ ð1� pÞmþ pL and

E½�S21� ¼ ð1� pÞ m2 þ a2

6

� �
þ pL2;

ð51Þ

Suppose that we use the parameters m = 6 and
r = 1/2 for the triangular distribution, as in Example
2, and let p = 0.05 and L = 12 for the lost balls. Then,

E½�S1� ¼0:95ð6Þ þ ð0:05Þð12Þ ¼ 6:3 and

E½�S21� ¼ð0:95Þ 36þ 9

6

� �
þ ð0:05Þð144Þ ¼ 42:825

ð52Þ

so that

Varð�S1Þ ¼ 42:825� ð6:3Þ2 ¼ 42:825� 39:69 ¼ 3:135

ð53Þ
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Since VarðS1Þ ¼ 1:50, the variance of S1 increased by
more than a factor of 2.
The next step is to determine the distribution of �Y.

Notice that

Pð�Y ¼ 12þ S2Þ ¼ 0:05 ¼ 1� Pð�Y ¼ YÞ: ð54Þ
Hence,

E½�Y� ¼ ð0:05Þð15Þ þ ð0:95Þð9:7Þ
¼ 0:75þ 9:215 ¼ 9:965 and

E½�Y2� ¼ ð0:05Þð225Þ þ ð0:95Þð96:6Þ
¼ 11:25þ 91:71 ¼ 102:96

ð55Þ

so that

Varð�YÞ ¼ 102:96� ð9:965Þ2 ¼ 102:96� 99:30

¼ 3:66 and c2�Y ¼ 3:66=ð9:965Þ2
¼ 3:66=99:30 ¼ 0:03865

ð56Þ

As expected, c2�Y is considerably greater than
c2Y ¼ 0:02667, by a factor of about 1.5, but c2�Y is still
about 10 times smaller than for the exponential dis-
tribution. It is thus natural to regard the exponential
distribution as a crude upper bound.
We show histograms of Y (based on n = 105 groups)

when the stage playing times have the triangular dis-
tribution with (m, r, a) = (6, 0.5, 3) in Figure 1 and
that triangular distribution modified to account for
lost balls with (p, L) = (0.05, 12) in Figure 2. The lost
balls clearly produce a heavier upper tail, but within
a reasonable range, because Y remains bounded
above by ð�S1 _ S3Þ þ S2 � 12 þ ð3 þ 3Þ ¼ 18 (com-
pared to ððS1 _ S3Þ þ S2 �ð½6 þ 3� _ ½6 þ 3�Þ þ ð3þ
3Þ ¼ 15 for the triangular distribution).

5. A Par-3 Hole, with and without
Wave-up

There are three steps for group play on a par-3 hole,
with or without wave-up:

T ! W ! G:

The first step T is hitting shots off the tee; the sec-
ond step W is walking to the green, possibly includ-
ing approach shots; and the third step G is putting
on the green. In this case, we identify the stages
with steps, but speak of stages, to be consistent with
par-4.
A par-3 hole without wave-up is relatively simple,

because only one group can be on the course at that
hole at any one time. If we have stage playing times
Si,n for group n as before, then the total time for group
n to play the hole is Xn = S1,n + S2,n + S3,n. And these
group playing times are also the cycle times in this
case.
We now compare a par-3 hole to a par-4 hole,

assuming identical stage playing times. We provide
conditions under which the capacity of a par-4 hole
is greater than the capacity of a par-3 hole and
quantify the difference. Let a superscript denote the
hole type.

COROLLARY 3. Suppose that the sequence of stage play-
ing time vectors {(S1,n, S2,n, S3,n):n ≥ 1} is i.i.d. and
distributed as ðS1; S2; S3Þ, where Si is strictly positive.
Suppose that these are used on both par-3 and par-4
holes. Then,

E½Xð3Þ� � E½Yð4Þ� ¼ E½S1 þ S3� � E½ðS1 _ S3Þ�[ 0: ð57Þ2 4 6 8 10 12 14 16
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Figure 1 Histogram of the Distribution of Y when the Stages have a
Triangular Distribution with (m, a) = (6, 3), having mean
9.71 and variance 2.51
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Figure 2 Histogram of the Distribution of Y when the Stages have
a Triangular Distribution Modified to Account for Lost Balls
with (p, L) = (0.05, 12), having mean 9.97 and variance
3.81

Whitt: The Maximum Throughput on a Golf Course
Production and Operations Management 24(5), pp. 685–703, © 2014 Production and Operations Management Society 695



Corollary 3 is consistent with experience indicating
that the par-3 holes often tend to be bottleneck holes.
That is the motivation for the wave-up rule discussed
next.

5.1. A Par-3 Hole with Wave-Up
The wave-up rule stipulates that, after a group has hit
its tee shots and walked up to their balls near the
green, they should wait before clearing the green until
the following group hits its tee shots, provided that
the following group has already arrived and is ready
to play. If the following group has not yet arrived at
the hole, then the current group immediately starts
stage 3. The following group then cannot start play on
the hole until after the current group completes stage
3 and departs. The wave-up rule is intended to reduce
the expected time between successive groups clearing
the green, and thus increase the capacity of par-3
holes. We show how to quantify that benefit.
We now develop the recursion for the par-3 hole

with wave-up. Let An be the time that group n arrives
at the hole and is ready to play. Let Bn be the time that
group n starts playing on this hole, that is, the instant
when one of the group goes into the tee box. Let Tn be
the time that group n completes stage 1, the tee shots;
let Wn be the time that group n completes stage 2, its
walk to the green and its chip shots; and let Gn be the
time that group n completes stage 3, and clears the
green.
The wave-up rule makes the formulas for Bn and

Gn in terms of the other variables somewhat com-
plicated. At time Wn∨Gn�1, group n�1 has cleared
the green and group n has completed stage 2, so
that group n is ready to play stage 3. However,
group n+1 may impose a constraint. At time
Wn∨Gn�1, group n can start stage 3 (to play on the
green) only if either (i) group n+1 has not yet
arrived at the hole and is not ready to tee off or if
(ii) group n+1 has completed its tee shots. Other-
wise, group n starts stage 3 at time Tn+1. Thus, we
introduce the event En, defined by

En � fAn �Wn�1 _ Gn�2\Tng; n� 1; ð58Þ
and let Ec

n be its complement, n ≥ 1. If group n is
the last scheduled group, then let Anþ1 � 1 (or a
very large value), so that the event Enþ1 ever occurs.
Thus the wave-up rule is specified by the following

four-part recursion:

Bn�ðWn�1_Gn�2Þ1EnþðAn_Gn�1Þ1Ec
n
; n�2;B1�A1;

Tn�BnþS1;n;Wn�TnþS2;n; n�1; and

Gn�½ðWn_Gn�1Þ1Ecnþ1þTnþ11Enþ1
�þS3;n

�ðWn_Gn�1ÞþS1;nþ11Enþ1
þS3;n:

ð59Þ

As initial conditions, assuming that the system starts
empty, we set W0�G0�G�1�0. If n is the last group,
then, instead,

Gn � Wn _ Gn�1ð Þ þ S3;n:

Note that the expression for Bn involves Gn�2,
because only two groups can be playing on the hole at
the same time. Observe that the event En in (58) actu-
ally simplifies. By the first line of (59),

Tn ¼ Bn þ S1;n �Wn�1 þ S1;n [Wn�1;

so that En = {An ≤ Wn-1 ∨ Gn-2}. Note that care is
needed in treating the last group to play, if n is the
last group, then An+1 is made large, so that En+1

never occurs.

5.2 A Fully Loaded Par-3 Hole with Wave-up
For a fully loaded hole, the recursion in (59) sim-
plifies, because An = 0 for all n, except for the last
group. In particular, except for the last group, the
event En in (58) occurs for all n and the recursion
in (59) becomes

Bn �Wn�1 _ Gn�2; Tn � Bn þ S1;n;

Wn �Tn þ S2;n and Gn � Tnþ1 þ S3;n; n� 1: ð60Þ

Again, as initial conditions, assuming that the sys-
tem starts empty, we set W0�G0�G�1�0. If n is the
last group, then, instead, Gn � Wn _ Gn�1 þ S3;n.
We now show that this recursion simplifies, so that

we can identify the maximum throughput. Indeed,
we find that the random cycle time of a par-3 hole
with wave-up has the same structure as for a par-4
hole, but with the stage playing times playing differ-
ent roles. The following result parallels Theorem 2,
with Tn playing the role of Fn before.

THEOREM 6 (representation for Tn as a partial sum) For
the fully loaded par-3 hole with wave-up, the recursion
for Tn in equation (60) can be expressed as

Tn ¼ Tn�1 þ Yn; n� 1; so that Tn ¼
Xn
k¼1

Yk;

n� 1;where

ð61Þ

Yn � ðS2;n�1 _ S3;n�2Þ þ S1;n; n� 1; ð62Þ
with T0 = 0�S2,0�S3,0�S3,�1�0. The playing time is
Xn � Gn�Bn = Yn+1 + S1,n + S3,n.

PROOF. From the first steps of equation (60), we get
B1 = 0, T1 = S1,1, B2 = W1 = S1,1 + S2,1, and T2 =
S1,1 + S2,1+S1,2 = T1 + S2,1 + S1,2, so that G1 = T2 + S3,1
and T3 = T2 + (S2,2∨S3,1) + S1,3. We then can imply
mathematical induction. We get Tn = (Wn�1∨Gn�2) +
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S1,n. We then insert the expression for Gn�2 to get
Tn = (Wn�1∨[Tn�1+S3,n�2])+S1,n and the expression
for Wn�1 to get

Tn ¼ ð½Tn�1 þ S2;n�1� _ ½Tn�1 þ S3;n�2�Þ þ S1;n; ð63Þ

from which equation (62) follows. The playing time
Xn is obtaining by combining Gn=Tn+1+S3,n,
Tn=Bn+S1,n and Tn+1�Tn=Yn+1. h

We thus can apply Theorem 6 to obtain the follow-
ing analog of Theorem 1.

THEOREM 7. (Maximum throughput) Consider the fully
loaded par-3 model with wave-up in which the sequence
of stage playing time random vectors {(S1,n, S2,n, S3,n):
n ≥ 1} is i.i.d. each distributed as the random vector
ðS1; S2; S3Þ, whose components are strictly positive with
finite means. Then

�Cn ! E½Y� and Hn ! 1

E½Y� � h� as n ! 1 w:p:1

ð64Þ

where Y is a generic random variable distributed as Yn in
equation (62), that is,

Y¼d ðS2 _ S3Þ þ S1; ð65Þ
The average playing time converge to E[X]=E[Y]+
E[S3]+E[S1].

PROOF. Given Theorem 1 and the extra condition,
we can apply the LLN to deduce the stated limit for
n�1Tn. The relation equation (62) implies that the
sequence {Yn} is two-dependent. Hence, the proof is
a minor variant of the proof of Theorem 1. We
obtain the other limits because Tn � Wn = S2,n and
Gn � Tn+1 = S3,n. Here, we use the fact that n�1Sj,n?
0 w.p.1 as n?∞. The reasoning applies to the play-
ing times Xn, except that they are 3-dependent
instead of 2-dependent. h

Theorems 6 and 7 show that the fully loaded par-3
hole with wave-up has essentially the same mathe-
matical structure as a fully loaded par-4 hole, except
that different random variables appear in the expres-
sion for Yn in equation (62) and Y in equation (65)
than appeared in equations (17) and (15). We see that
both the fully loaded par-4 and the fully loaded
par-3 hole with wave-up can easily be analyzed in
detail.
We can also compare the par-4 hole to the par-3

hole with wave-up. Under extra conditions, we see a
reversal of the ordering in Corollary 3; the maximum

throughput on a par-4 hole becomes larger than on a
par-3 with wave-up. We say that S1 is stochastically
greater than or equal to S2 and write S1 � stS2 if
PðS1 [ tÞ�PðS2 [ tÞ for all t.

COROLLARY 4. Suppose that the three sequences of stage
playing time vectors {Si,n:n ≥ 1}, 1 ≤i ≤3 are
independent and each is i.i.d. and distributed as Si.
Suppose that these are used on both a par-4 hole and a
par-3 hole with wave-up. If S1 � st S2 (as seems natural),
then

E½Yð3Þ� �E½Yð4Þ� so that h3� � h4�: ð66Þ

On the other hand, if S1 � stS2, then

E½Yð3Þ� �E½Yð4Þ� so that h4� � h3�: ð67Þ

PROOF. We only prove equation (66), because the
proof for (67) is essentially the same. Note that

ðS1 _ S3Þ � S1 ¼ ðS3 � S1Þþ and

ðS2 _ S3Þ � S2 ¼ ðS3 � S2Þþ:

Use the assumed stochastic order to construct ran-
dom variables ~S1 and ~S2 such that Pð~S1 � ~S2Þ ¼ 1
with ~Si distributed the same as Si, i = 1, 2; see Prop.
9.2.2 of Ross (1996). That implies that
PððS3 � ~S1Þþ � ðS3 � ~S2ÞþÞ ¼ 1, so that E½ðS3 � S1Þþ�
�E½ðS3 � S2Þþ�, which in turn implies that E½S1_
S3� � E½S1� �E½S2 _ S3� � E½S2�, which implies equa-
tion (66) by just adding E½S1� þ E½S2� to both
sides. h

6. A Par-5 Hole

In contrast, a par-5 hole is more complicated, because
now three groups can be on the course simulta-
neously. For a par-5 hole, we identify seven steps
instead of the five steps for a par-4 hole. There now
are two fairway shots instead of only one and three
walking steps instead of only two. These seven steps
can be grouped into five stages, as opposed to three
for a par-4 hole:

ðT;W1Þ ! F1 ! W2 ! F2 ! ðW3;GÞ
Assuming an empty system initially, the first group

can do all the stages, one after another without con-
straint. However, for n ≥ 2, group n cannot start stage
1 until both group n arrives at the tee and group n � 1
has completed stage 2, that is, has completed its fair-
way shots (completed F1). Similarly, for n ≥ 2, group
n cannot start stage 2 until both group n arrives at
stage 2 and group n � 1 has completed stage 4, that
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is, has cleared the second fairway shot (completed F2).
After completing stage 2, each group may go right on
to stage 3. For n≥2, group n cannot start stage 4 until
both group n arrives at stage 4 and group n � 1 has
completed stage 5, that is, has cleared the green (com-
pleted (W3,G)). After completing stage 4, each group
may go right on to stage 5.
As before, let An be the arrival time of the nth group

at the tee of this hole on the golf course. Let Si,n be
the time required for group n to complete stage i,
1 ≤ i ≤ 5. Let Bn be the time that group n starts play-
ing on this hole, that is, the instant when one of the
group goes into the tee box; let Tn be the time that
group n completes stage 1, including the tee and the
following walk; let F1,n be the time that group n com-
pletes stage 2, their first shots on the fairway; let W2,n

be the time that group n completes stage 3, their walk
from the first fairway shots to their second ones; let
F2,n be the time that group n completes stage 4, their
second shots on the fairway; and let Gn be the time
that group n completes step 5, and clears the green.
Clearly, Gn is the group-n departure or completion
time, while Bn is the group-n start time.
The mathematical model that relates the model

primitives to the performance consists of the follow-
ing six-part recursion:

Bn �An_F1;n�1; Tn � BnþS1;n;

F1;n �ðTn_F2;n�1ÞþS2;n; W2;n � F1;nþS3;n;

F2;n �ðW2;n_Gn�1ÞþS4;n and Gn � F2;nþS5;n; ð68Þ

n� 1: As initial conditions, assuming that the system
starts empty, we set F1,0 � F2,0 � G0 � 0.

6.1. A Fully Loaded Par-5 Hole
Paralleling section 3 , we now consider a fully-loaded
par-5 hole; that is, all groups are at the hole at time 0
ready to play. Under this fully loaded condition, the
recursion in equation (68) reduces to

Bn �F1;n�1; Tn �BnþS1;n ¼ F1;n�1þS1;n;

F1;n �ðTn _F2;n�1ÞþS2;n; W2;n � F1;nþS3;n;

F2;n �ðW2;n_Gn�1ÞþS4;n and Gn � F2;nþS5;n; ð69Þ

n ≥ 1. Again, as initial conditions, assuming that the
system starts empty, we set F1,0 � F2,0 � G0 � 0.
The fully loaded model can be analyzed more

directly than the original model with random arrivals,
but the structure evidently is much more complicated
than for a par-4 hole. We present three preliminary
theorems that expose structure and then apply them
to characterize the maximum throughput in Theorem
11 below. The preliminary theorems can be regarded
as components of the statement and proof of the main
result.

THEOREM 8. (two-dimensional recursion) For the fully
loaded par-5 hole starting out empty, the sequence of
fairway-clearing vectors {(F1,n, F2,n):n ≥ 1} can be
represented as a two-dimensional recursion driven by the
vectors (S1,n, S2,n, S3,n, S4,n, S5,n�1) in the form

F1;n ¼½ðF1;n�1 þ S1;nÞ _ F2;n�1� þ S2;n;

F2;n ¼½ðF1;n þ S3;nÞ _ ðF2;n�1 þ S5;n�1Þ� þ S4;n; ð70Þ

n ≥ 2, where F1,1 = S1,1 + S2,1 and F2,1 = F1,1 + S3,1 +
S4,1 = S1,1 + S2,1 + S3,1 + S4,1.

PROOF. First, note that the initial values F1,1 and
F2,1 are valid starting empty. Then note that, for
n ≥ 2, the recursion in equation (69) can be
expressed as

F1;n ¼ ðTn _ F2;n�1Þ þ S2;n
¼ ½ðF1;n�1 þ S1;nÞ _ F2;n�1� þ S2;n; ð71Þ

as given in the first line of equation (70). Then,

F2;n ¼ ðW2;n _ Gn�1Þ þ S4;n
¼ ½ðF1;n þ S3;nÞ _ Gn�1� þ S4;n; ð72Þ

implying the second line of equation (70). h

We now will develop a single recursion for each of
the two differences:

Dn � F2;n � F1;n and Vn � F1;n � F2;n�1; n� 2:

ð73Þ
where these sequences are initialized by
D1 = S3,1 + S4,1 and V1 = F1,1 = S1,1 + S2,1.
We will then exploit the relation

F2;n � F2;n�1 ¼ Dn þ Vn; n� 2: ð74Þ
We also have the exceptional first time,
F2,1 = S1,1 + S2,1 + S3,1 + S4,1.

THEOREM 9. (one-dimensional recursion for the difference
Dn) For the fully loaded par-5 hole starting empty,

Dn ¼ ½S3;n _ ðS5;n�1 � S2;n � ðS1;n �Dn�1ÞþÞ� þ S4;n;
n� 2;

ð75Þ

and D1 = S3,1 + S4,1 for Dn in equation (73). Hence, Dn

is a nondecreasing nonnegative function of Dn�1, S3,n,
S4,n, S5,n�1, �S1,n, and �S2,n with Dn ≤ S3,n + S5,n�1 +
S4,n, n ≥ 2, so that

E½Dn� �E½S3;n� þ E½S5;n�1� þ E½S4;n�; n� 1: ð76Þ
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Moreover, Dn + Vn is an increasing convex function of
(S1,n, S2,n, S3,n, S4,n, S5,n).

PROOF. We subtract F1,n from the second equation
in equation (70) to get

Dn �F2;n � F1;n ¼ ½S3;n _ ðF2;n�1 � F1;n þ S5;n�1Þ� þ S4;n

¼½S3;n _ ð�Vn þ S5;n�1Þ� þ S4;n; n� 2:

ð77Þ
We then subtract F2,n�1 from the first equation in
equation (70) to get

Vn �F1;n � F2;n�1 ¼ ½ðF1;n�1 � F2;n�1 þ S1;nÞ _ 0� þ S2;n

¼½ð�Dn�1 þ S1;nÞ _ 0� þ S2;n

¼ðS1;n �Dn�1Þþ þ S2;n; ð78Þ

where (x)+�(x∨0). We then substitute equation (78)
into equation (77) to get

Dn ¼ S3;n_ð�ðS1;n�Dn�1Þþ �S2;nþS5;n�1Þ
� �þS4;n;

n�2;

ð79Þ
which implies equation (75). To see that Dn is a non-
decreasing function of Dn�1, notice that, if Dn�1

increases then (S1,n � Dn�1)
+ necessarily decreases

or stays the same, but then �(S1,n � Dn�1)
+ neces-

sarily increases or stays the same. Finally, the upper
bound follows from, first, replacing all negative
terms by 0 and, second, by applying the elementary
inequality (a∨b) ≤ (a + b) for nonnegative a and b.
The final conclusion follows by combining equations
(77) and (78). h

THEOREM 10. (one-dimensional recursion for the
difference Vn) For the fully loaded par-5 hole starting empty,

Vn ¼ ðS1;n �Dn�1Þþ þ S2;n; n� 2; ð80Þ

with V1 = F1,1 = S1,1 + S2,1 for Vn in equation (73).
Hence, Vn is a nondecreasing nonnegative function of
S1,n, S2,n, and �Dn�1 The sequence {Vn:n ≥ 1} can
also be represented directly as as the one-dimensional
recursion

Vn�F1;n�F2;n�1¼S2;nþðS1;n�Dn�1Þþ

¼S2;nþ S1;n�S4;n�1�½S3;n�1_ðS5;n�2�Vn�1Þ�
� �þ

; n�3;

V2�ðS1;2�D1ÞþþS2;2

¼ðS1;2�S3;1�S4;1ÞþþS2;2; ð81Þ

and V1 = S1,1+S2,1. Hence, Vn is a nondecreasing non-
negative function of S1,n, S2,n, Vn�1, �S3,n�1, �S4,n�1,
and �S5,n�2, with

Vn�S1;nþS2;n; so that E½Vn��E½S1;n�þE½S2;n�;
n�2:

ð82Þ

PROOF. The reasoning is similar to the proof of The-
orem 9. We start with equation (78) and then insert
equation (77), both from the proof of Theorem 9.
After elementary algebra, we obtain equation (81).
The remaining relations then follow easily. h

We can now apply Theorems 9 and 10, under addi-
tional conditions, to determine the maximum
throughput. Let ⇒ denote convergence in distribution.
Let ¼d denote equality in distribution.

THEOREM 11. (maximum throughput) For the fully
loaded par-5 hole starting empty, if the stage playing
times come from 5 independent sequences of i.i.d. random
variables with finite means, then

Dn ) D and
E½Dn� " E½D�\E½S3� þ E½S5� þ E½S4�\1 as
n ! 1;

ð83Þ

where the limiting random variable D has a distribution
satisfying the stochastic equation

D¼d ½S3 _ ðS5 � S2 � ðS1 �DÞþÞ� þ S4; ð84Þ
with all the random variables on the right side being
mutually independent, and

Vn ) V and E½Vn� " E½V�\E½S1� þ E½S2�\1 as
n ! 1;

ð85Þ
where the limiting random variable can be expressed
in terms of the limit D satisfying equation (84) above by

V¼d S2 þ ðS1 �DÞþ: ð86Þ
In addition, V satisfies the stochastic equation

V¼d ½S2 þ S1 � S4 � S3 _ ðS5 � VÞ½ �ð Þþ; ð87Þ
with all the random variables on the right side being
mutually independent. As a consequence, if in addition
the random variables S2 and S4 have positive density
functions, then

�F2;n � F2;n
n

¼ 1

n

Xn
k¼1

ðF2;k � F2;k�1Þ ¼ 1

n

Xn
k¼1

ðDk þVkÞ

) E½D� þ E½V� ð88Þ

so that

Hn ) h� ¼ 1

E½D� þ E½V� as n ! 1; ð89Þ
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where V is characterized directly in equation (87) and in
terms of D in equation (86) and D is the unique solution
to the stochastic equation (84).

PROOF. Under the assumptions, the sequence {Dn:
n ≥ 1} is a stochastically nondecreasing stochasti-
cally bounded Markov chain, that is,

0 � D0 �D1 � stD2 � stD3 � st. . . ð90Þ

and

0 ¼ E½D0� �E½D1� �E½D2� �E½D3� � . . .�E½S3� þ E½S5�
þ E½S4�\1

ð91Þ
by so that the limit in equation (83) holds. A proper
limit exists in equation (83) because the mean is uni-
formly bounded by equation (91). The same argu-
ment applies to the sequence {Vn:n≥1}. The
equations (84) and (87) follow by taking limits in
equations (75) and (81), exploiting the continuity of
the right side. The limit equation (88) follows from
the LLN applied to the sequences {Dk} and {Vk}
separately. The extra positive density condition
before equation (88) implies that the Markov chains
can be regarded as Harris recurrent, so that a cou-
pling argument can be applied to identify an
embedded renewal process, justifying the LLN, as in
Athreya and Ney (1978) and Lindvall (1992). Then,
the limit in equation (89) follows from the conver-
gence-together theorem, Theorem 11.4.7 of Whitt
(2002). h

In Theorem 11, we made a stronger assumptions
about the stage playing times than we did in Theo-
rems 1 and Theorem 7 for par-4 and par-3 with wave-
up. We conjecture that the conclusion remains true if
only the stage playing time vectors are i.i.d., but that
remains to be proved.
Theorem 11 characterizes the maximum through-

put for a par-5 hole, and should prove useful in estab-
lishing additional properties, but it does not provide
an explicit formula. However, the required means
E[D] and E[V] in equation (89) can be calculated
by iterating the one-dimensional recursions in (75)
and (81), using the averages

�Dn � 1

n

Xn
k¼1

Dk and �Vn � 1

n

Xn
k¼1

Vk ð92Þ

for suitably large n. This is an efficient simulation,
requiring only that we generate the stage playing
time vectors (S1,k ,..., S5,k), 1 ≤ k ≤ n, and then apply
the recursions. We illustrate in section 6.3.
We conclude by stating a result for the playing

times on a par 5 hole.

COROLLARY 5. (playing time) For the fully-loaded par-5
hole, under the conditions of Theorem 11, the playing
time is Xn�Gn�Bn¼ðDnþVnÞþDn�1þS5;n so that
its average for n groups converges as n ? ∞ to

E½X� ¼E½Y�þE½D�þE½S5� ¼ 2E½D�þE½V�þE½S5�: ð93Þ

PROOF. From equations (69), (73) and (74)

Xn � Gn � Bn ¼ F2;n þ S5;n � F1;n�1

¼ ðF2;n � F2;n�1Þ þ ðF2;n�1 � F1;n�1Þ þ S5;n

¼ ðDn þ VnÞ þDn�1 þ S5;n:

ð94Þ

h

6.2. A Possible Simplification
We now develop a simplification of the recursion for
a par-5 hole under an additional assumption. Since it
can be shown that Dn � F2,n � F1,n ≥ S3,n + S4,n, it
may be reasonable to assume as an approximation
that Dn�1 ≥ S1,n. Then the explicit formulas in Theo-
rems 9 and Theorem 10 simplify. The elementary
proof is omitted.

COROLLARY 6. (simplification) If, in addition to the
assumptions of Theorem 11, Dn�1 ≥ S1,n, then (S1,n�
D1,n�1)

+ = 0 and the exact formula for Dn in equation
(75), Vn in equation (80) and F2,n � F2,n�1 simply,
producing

Dn¼½S3;n_ðS5;n�S2;nÞ�þS4;n; Vn¼S2 and

F2;n�F2;n�1¼Zn�½S3;n_ðS5;n�S2;nÞ�þS4;nþS2;n; n�2:

ð95Þ

Hence, the reciprocal of the maximum throughput rate
can be expressed as

1

h�
¼ E½Z�; where Z¼d ½S3 _ ðS5 � S2Þ� þ S4 þ S2

ð96Þ
so that

E½Z� ¼ E½S3� þ E½S4� þ E½S5� � E½S3 ^ ðS5 � S2Þ�
�E½S4� þ E½S5�; ð97Þ

where

E½S3 ^ ðS5 � S2Þ� ¼
Z 1

0

PðS3 [ xÞPðS5 � S2 [ xÞdx:
ð98Þ

6.3. A Simulation Example for a Par-5 Hole
Simulation experiments of a par-5 hole were
conducted to numerically verify that the different
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recursions in section 6.1 are consistent. In particular,
we used simulation to estimate the cycle time E½C1�.
The first recursion is the general recursion in (68) but
with a very high arrival rate to make the hole over-
loaded. This was compared to the direct recursions
for the fully loaded par-5 model provided in: (i)
equation (69), (ii) equation (70) with Gn = F2,n + S5,n,
(iii) equations (75) (80), and (74) plus Gn = F2,n + S5,n,
and (iv) equations (75), (81) and (74) plus Gn =
F2,n + S5,n. the simulations confirmed that these all
agree.
For the example, we let the stage service times be

mutually independent, with the times Sj,n being i.i.d.
for each j, 1 ≤ j ≤ 5. The stage service-time distribu-
tions were variants of the models used to study the
par-4 hole. In particular, as in section 4.2 , a symmetric
triangular distribution was used for each stage, with
the possibility of a lost ball in the first stage (which
includes driving from the tee). For the basic triangular
distributions, we let ai = a for 1 ≤ i ≤ 5, and we let the
mean values be related by

m1 ¼ m5 ¼ m and mi ¼ rm; 2� i� 4: ð99Þ
Thus the vector of triangular random variables has
the parameter triple (m, r, a); we used (m, r, a) =
(4, 0.5, 1.5).
As in section 4.3, the possibility of an occasional lost

ball was included in the first stage. For the model with

parameters (m, r, a) = (4,0.5, 1.5) and (p, L) = (0.05,
12), the mean and variance of the random cycle time
C1 were estimated based on a sample of size 106

determined by 500 independent replications of 10,000
groups and using the last 2000 observations. The esti-
mated mean was E½C1� ¼ 6:98 and the estimated
squared coefficient of variation (scv, variance divided
by the square of the mean) was c2C1 ¼ 0:079. We also
found that the playing time had mean E[Xn] =
E[Gn � Bn] = 15.29 and variance Var(Xn) =
Var(Gn � Bn) = 4.03, and so scv 0.0172. Since a par-5
hole is the longest hole, the expected playing time will
usually be longer than for the other holes, but
nevertheless the cycle time may be shorter. Again, this
is consistent with experience.
It is also natural to consider whether the simplify-

ing assumption in Corollary 6 that Dn�1 ≥ S1,n is rea-
sonable or not. Unfortunately, we find that it is not,
given the lost ball feature. It is likely to hold, at least
approximately, if there are no lost balls. But necessar-
ily the reverse inequality S1,n > Dn�1 will hold when-
ever there is a lost ball.
We show the histogram of the random cycle times

Cn � Gn � Gn�1 when the stage playing times have
the triangular distribution with (m, r, a) = (4,0.5, 1.5)
modified to account for lost balls with
(p, L) = (0.05, 12) in Figure 3. The lost balls produce a
heavier upper tail, but within a reasonable range,
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Figure 3 Histogram of the Distribution the Cycle Time Cn � Gn � Gn�1 when the Stages have the Triangular Distributions with
(m, r, a) = (4, 0.5, 1.5), with S1 Modified to Account for Lost Balls with (p, L) = (0.05, 12). The mean is 6.98 and the variance is 3.85
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because, by Theorem 9 and Theorem 10, Cn remains
bounded above by �S1;n þ S2;n þ S3;n þ S4;n þ S5;n�1 þ
S5;n � 28:5 (compared to 16.5 for the triangular
distribution).

7. Conclusions

We have developed stochastic models of group play
on each of the standard holes of a golf course. These
models are similar to simulation models constructed
by Kimes and Schruben (2002), Tiger and Salzer
(2004), and Riccio (2012, 2013), but we innovate by
combining the steps of group play into the essential
stages for representing the precedence constraints
associated with more than one group simultaneously
playing on the hole. For example, the five steps of
group play on a par-4 hole depicted in equation (1)
are converted to the three stages depicted in equation
(2). Thus, the mathematical model data for each hole
are the group arrival times An and the stage playing
times Si,n for all groups n. The mathematical models
are concisely expressed as recursions. For par-4, par-3
with wave-up, and par-5, these recursions are given
in equations (3), (59) and (68), respectively. This sim-
plification is valuable for exposing the essential math-
ematical structure. It is not essential for simulation,
although it also might be helpful there.
We have applied the stochastic models to deter-

mine the capacity of each hole. To do so, we consid-
ered fully loaded versions of the holes, in which new
groups are always ready to tee off at the first opportu-
nity. For the fully loaded models, the recursions sim-
plify. The respective recursions for the fully loaded
models are given in equations (12) (60), and (69). The
maximum possible throughputs (the capacities) of
these holes are given in equations (14), (64), and (89),
respectively.
The capacity of the hole has a relatively simple con-

cise expression in terms of the stage playing times for
par-4 and par-3 with or without wave-up. Thus, the
formulas provide a strong basis for comparing these
holes, as illustrated by Corollaries 3 and 4. They
clearly can be valuable in course design, for example,
if the objective is to make the capacities of the holes
nearly equal.
The story for par-5 holes is more complicated. For

par-5, the capacity is expressed in terms of the steady-
state means of two one-dimensional Markov pro-
cesses in Theorem 11. These two component means
can be calculated as the long-run averages of the one-
dimensional recursions, as indicated in equation (92).
The simple simulation in section 6.3 shows that the
capacity can be readily computed, even though a con-
venient explicit formula is not available. Corollary 6
also gives an explicit expression of the throughput for
a par-5 hole under a simplifying assumption, which

seems that it might often be reasonable, but that
assumption is not satisfied by the example in section
6.3, which includes the possibility of a lost ball on
stage 1.
We introduce tractable models of the stage playing

times in section 4. These are symmetric triangular dis-
tributions modified by the possibility of a lost ball in
the first stage (when driving from the tee). These are
alternatives to the assymmetric triangular distribu-
tions used by Tiger and Salzer (2004). Figure 2 shows
that the new distribution is also skewed, like the
asymmetric triangular distribution. As a step toward
exposing the essential structure, we introduced sim-
plified models of the stage playing times with fewer
parameters. For example, for the three stage playing
times on a par-4 hole, there are a total of 5 parameters
(m, a, r, L, p) obtained by combining equations (35),
(36), (38), (40), and (45). The parameter m is a basic
mean value parameter, while r is a relative mean
value parameter. The parameter a characterizes the
spread of the basic triangular distribution, and thus
can be thought of as a variability parameter, but it
does not include the contribution of lost balls. Finally,
L and p directly quantify the quantitative impact and
likelihood of a lost ball. Example 3 shows that the
capacity of a par-4 hole can be easily computed for
this stage playing time model. The impact of the
parameters can be seen there as well. Since we have
not yet fit these models to data, this approach should
be viewed as illustrating what can be done to obtain
tractable models of the stage playing times.
These models of individual holes extend directly to

models of play on an 18-hole golf course with any
configuration of these holes, possibly with different
parameters for each hole. These models can thus be
applied directly to simulate the performance of
groups playing on a golf course. As indicated in sec-
tion 1.1, work is under way to develop analytical per-
formance approximations of the performance on the
entire course, exploiting the representations here; see
Fu and Whitt (2013).
Evidently the methods developed here for model-

ing and analyzing the pace of play on golf courses has
the potential for application to other production and
service problems, because similar precedence con-
straints hold in other contexts. For example, such pre-
cedence constraints within an emergency department
are illustrated by the activities network flow chart in
Figure 8 of Armony et al. (2013).
There are many remaining directions for research.

It would be nice to better understand the random
cycle times on a par-5 hole, but our results in section
6.1 reveal limitations on what is possible. The analysis
here does not cover all considerations. While a rare
extremely long stage playing time, such as might
occur with a lost ball, can be incorporated through the
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distribution of the stage playing times, we have yet to
model the deleterious impact of an exceptionally slow
group, that tends to be much slower than other
groups on most holes. It remains to explore alterna-
tive control schemes for improving the pace of play.
Finally, it is important to fit the models to data on
group play over golf courses. We can then determine
appropriate stage playing time distributions and ver-
ify that the model assumptions are reasonable.
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