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Abstract

A lockup period for investment in a hedge fund is a time period after making the investment

during which the investor cannot freely redeem his investment. It is routine to have a one-year

lockup period, but recently the requested lockup periods have grown longer. We estimate the

premium for such extended lockup, taking the point of view of a manager of a fund of funds,

who has to choose between two investments in similar funds in the same strategy category,

the first having a one-year lockup and the second having an n-year lockup. Assuming that the

manager will rebalance his portfolio of hedge funds on a yearly basis, if permitted, we define the

annual lockup premium as the difference between the rates of return from these investments.

We develop a Markov chain model to estimate this lockup premium. By solving systems

of equations, we fit the Markov chain transition probabilities to three directly observable

hedge fund performance measures: the persistence of return, the variance of return and the

hedge-fund death rate. The model quantifies the way the lockup premium depends on these

parameters. Data from the TASS database are used to estimate the persistence, which is found

to be statistically significant.

∗Prisma Capital Partners





1. Introduction

A lockup period for investment in a hedge fund is a time period after making the investment

during which the investor cannot freely redeem his investment. It is routine to have a one-year

lockup period, but recently the requested lockup periods have grown longer. It is reasonable for

an investor in a hedge fund to expect compensation for the restricted investment opportunities

imposed by an extended lockup condition, with the compensation increasing as the length of

the lockup period increases. We regard that compensation as a lockup premium, and we ask:

What should that lockup premium be as a function of the length of the lockup period?

In asking this question, we take the point of view of a manager of a fund of funds, who has

to choose between two investments in similar funds in the same strategy category, with the first

having a one-year lockup and the second having an n-year lockup. We assume that the manager

will re-balance his portfolio of hedge funds on a yearly basis, as permitted. This perspective

leads us to define the lockup premium as the incremental deterministic return rate required to

make the expected total returns of the two alternatives equal. Our definition accounts for lost

gains due to the inability to re-balance the investment portfolio in hedge funds, but not for other

lost investment opportunities, so we provide a conservative estimate of the lockup premium.

Investors can separately consider the consequence of other lost investment opportunities, if

that is desired. Indeed, recent financial history indicates that the other component may be

very important. Nevertheless, for clarity, we think it is desirable to separate these issues.

With that definition specified, our goal is to develop a mathematical model to estimate the

lockup premium as a function of the lockup period and key hedge-fund performance measures.

There are significant challenges in deciding what modelling approach to use. We want a model

that is easy to understand, properly reflects the specific lockup conditions, has predictive

power, can be effectively analyzed and can be fit to available data.

These requirements lead us to propose a relatively simple three-state Markov chain model.

This model formulation is admittedly highly stylized, but we think that actually is an advantage

rather than a disadvantage, because the data and their quality are quite limited. Nevertheless,

this stylized model may be viewed with skepticism, because it is unfamiliar. It is thus good to

remember that many of the most frequently used models are highly stylized, having very few

parameters; e.g., the geometric Brownian motion model underlying the Black-Scholes formula.

By introducing a model with relatively few parameters, we have fewer parameters to fit to

data. In this context, we contribute by developing an innovative way to calibrate (fit) the model
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to data. We do not directly fit the natural model parameters, which are the Markov chain

transition probabilities and the state-dependent returns, but instead we indirectly fit the model

to more directly observable hedge fund performance measures, specifically, the persistence of

return, the variance of return and the hedge-fund death rate. This indirect approach requires

that we solve systems of equations to determine the required model parameters. We carry

out this model fitting using hedge-fund return data from the Tremont Advisory Shareholders

Services (TASS) database.

Even though estimating the value of the premium for hedge-fund lockup is a liquidity

problem similar to determining the appropriate rate of return for a long term certificate of

deposit, it has its own special character. There is a complication with hedge funds, because

investors may actually have an early opportunity to redeem their investment. If the hedge fund

performs very poorly, so that it ceases operating, then a significant portion of the investment

is returned to investors, even if the lockup period has not expired. At first, glance, it might

appear that consequently there should be no liquidity problem at all, but the two extreme

alternatives are not the only possibilities: Hedge fund performance may be weak, so that

returns are low and future prospects are dim, even though the fund does not cease operating.

The lockup prevents the investor from moving his investment away from such “sick” funds.

This special way hedge fund lockup is treated makes the liquidity premium more complicated,

providing motivation for more careful analysis.

Our proposed model directly responds to this special feature of hedge fund investments.

We consider three possible states for a hedge fund: good, sick and dead. A good hedge fund

has had superior returns and thrives; a sick fund has had inferior returns but still continues

to survive; a dead fund has had very inferior returns and consequently gone out of business.

We assume that transitions among these states occur randomly according to a Markov chain.

The investor in a hedge fund that ends up in a dead state has suffered a very low return and

receives his share of the net asset value of the fund when the fund unwinds its investments.

At the next yearly reinvestment opportunity the investor is repaid his share of the final net

asset value of the dead fund and is assumed to invest in a new fund, which we take to be in an

initially good state. A dead state in our model, a year later, therefore transforms into a good

state.

There is no extra penalty from the lockup associated with a dead fund, but there is from

a sick fund. With only nominal one-year hedge fund lockup, we assume that investors will

reinvest in a good fund at the next yearly reinvestment opportunity whenever any fund they
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have invested in becomes sick. In contrast, with the extended lockup period, no reinvestment

is possible until the end of the lockup period. In the meantime, the sick fund may perform

poorly, and produce low returns, but there also is a chance that it may rebound and become

a good fund. Clearly, some care is needed to properly account for the various good and bad

possibilities, which inevitably must be regarded as random events. The Markov chain models

can capture the behavior described above, so provide insight.

It remains to specify the three Markov chain states. We propose classifying the funds

according to their return rates. Specifically, we focus on the relative return rates, represented

as the percent-point difference from the average annual return rate for that strategy category

of funds. We say that a fund is in a: good state when its relative return rate is higher than U

percent, sick state when its relative return rate is between L and U percent, and dead state

when its relative return rate is less than L percent. We leave U and L as model parameters

in general. Figure 1 illustrates possible state definitions in a plot of the distribution of annual

return rates based on 4788 selected observations from 2001 to 2005 from the TASS database.

Tentative levels U and L show how states might be defined. Throughout this paper, we assume

that the hedge fund starts off in a good state.

Figure 1: The distribution of hedge fund annual relative return rates based on 4788 selected observations from the
TASS database from 2001 to 2005. Tentative levels L and U divide the funds into the three states G, S and D.

A fundamental principal guides our analysis: the persistence hypothesis. We postulate

that there is a persistence in hedge fund performance within a particular hedge fund strategy

category: We assume that above-average funds will tend to continue doing well, while below-

average funds will tend to continue faltering. A persistence of γ means that for every 1

percentage point you earn above the average in the current year, you expect to earn γ percentage

points above the average in the next year.
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We estimated the persistence by doing a regression analysis on the hedge-fund-return data

from TASS, and found strong statistical evidence to support the persistence hypothesis. There

are eleven strategy categories of hedge funds in TASS. (See, e.g., Boyson and Cooper (2004),

Hasanhodzic and Lo (2007) or visit Credit Suisse/Tremont (www.hedgeindex.com) to find out

more about strategy categories.) Table 1 shows the auto-regression results from the data we

selected. We did the analysis by strategy category. Included are 95% confidence intervals for

Table 1: Auto-regression analysis results

strategy number of persistence lower upper R2 P-value
observations γ 95% 95%

Convertible arbitrage 244 0.49 0.38 0.60 0.24 4.24×10−16

Dedicated short bias 30 0.29 -0.04 0.62 0.10 0.08
Emerging market 325 0.35 0.26 0.45 0.13 1.02×10−11

Equity macro 270 0.06 -0.05 0.16 0.004 0.28
Event driven 534 0.27 0.20 0.34 0.09 9.27 ×10−13

Fixed income arbitrage 196 0.24 0.12 0.36 0.07 1.28×10−4

Fund of fund 982 0.27 0.22 0.32 0.10 4.48×10−24

Global macro 176 0.10 -0.06 0.27 0.009 0.21
Long short equity 1654 0.15 0.11 0.20 0.03 8.03×10−12

Managed future 238 0.22 0.09 0.35 0.04 1.12×10−3

Other 167 0.42 0.27 0.57 0.15 1.34×10−7

All 4816

each persistence factor (the regression coefficient). Zero persistence is contained in the 95%

confidence interval for only three strategies. The P-values give the probability of seeing the

observed persistence if there actually were none. The estimated persistence factors vary, but

for most strategy categories, the P-values are very small. The regression analysis shows that

R2 is very low, implying that there is considerable randomness. To illustrate, Figure 2 is the

scatter plot of two consecutive relative returns and the associated least-squares-fit with zero

intercept for four of these fund categories.

In this paper, we only consider fund strategy as a basis for persistence. Other classifications

might also produce persistence; e.g., one can estimate persistence based on the fund manager’s

tenure, asset size, fee structure, and so on, depending on the investor’s judgement. As long

as persistence is found or anticipated, our Markov chain model can be applied to estimate the

lockup premium.

The Markov chain model can be used to estimate how the lockup premium depends on the
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(a) Conertible arbitrage (b) Emerging market

(c) Event driven (d) Fund of fund

Figure 2: Scatter plots and associated least-squares lines for hedge fund annual relative return rates in successive years
from 2000 to 2005 for four strategy categories from the TASS database.

hedge-fund performance measures. Consistent with intuition, we show that the lockup premium

increases with both the variance of the return and the persistence of the return, provided that

the persistence is not too high. (There necessarily is no lockup premium with total persistence,

when γ = 1.) What is less obvious, but consistent with intuition upon reflection, is that the

lockup premium decreases with the hedge fund death rate. Of course, increased death rate is

bad for the investor, but the investor experiences the low return associated with a dead fund

whether or not there is a lockup. With the extended lockup, the higher death rate can only

help by giving the investor an opportunity to reinvest his money.

The models do more: The models quantify the effect of these observable hedge fund per-

formance measures on the lockup premium. For example, we show that the three-year lockup

premium in the DTMC model is quite well approximated by the function

ψ(δ, γ, σ) = 0.047 δ−0.11γ0.69σ0.64, (1.1)

where δ is the death rate, γ is the persistence and σ is the standard deviation of the yearly

relative returns (under parametric assumptions to be explained later).
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Organization of the paper. We start in §2 by reviewing the related literature on liquidity,

including premiums for hedge fund lockup. In §3 we carefully specify what we mean by the

lockup premium. In §4 we discuss persistence of hedge fund returns, reviewing the literature

and analyzing data from the TASS database. In §5 we develop a simple approximation for the

lockup premium based on persistence alone, without any Markov chains, assuming no dying

funds. This simple analysis provides a useful reference case, because it yields a simple formula.

In §6 we introduce and analyze our three-state DTMC model, carrying out our indirect fitting

procedure. In §7 we show how the model parameters and the lockup premium depend on basic

hedge fund performance measures. Finally, in §8 we draw conclusions. We present additional

material in an appendix.

2. Liquidity Literature Review

There is a substantial literature on liquidity, including hedge fund lockup, but it mostly has a

different character.

Liquidity premiums in asset pricing. The liquidity premium is well recognized as an

important factor in asset pricing, but it is commonly measured by transaction cost; e.g, see

Amihud and Mendelson (1986), Pastor and Stambaugh (2003), Chordia et al. (2001), and

Eleswarapu and Reinganum (1993). For example, in the stock market, bid-ask spread is one

measure of the liquidity premium. Amihud and Mendelson (1986) showed that there exists an

increasing and concave relationship between the asset return and the bid-ask spread. Darar

et al. (1998) confirmed this result, using the reciprocal of the stock turnover rate to measure

the liquidity premium. More recently, Vayanos (2004) considered liquidity in an equilibrium

model. He considered the liquidity premium in asset pricing with different transaction costs.

He showed that as assets become more volatile, the required excess return from a riskless asset

increases with the transaction costs.

Studies of liquidity have also been performed for the bond market; e.g., Amihud and

Mendelson (1991), Warga (1992), Krishnamurthy (2002) and Longstaff (2004). For bonds,

it is argued that there should exist a clear premium for liquidity, separate from the credit

risk premium. Most-recently-issued U.S. Treasury bonds are considered the most liquid bonds

available, among all bonds with similar conditions. Since US Treasury bonds are assumed to

be riskless, they provide a natural way to measure the liquidity premium, without having to

consider credit risk. The papers above study the liquidity premium by comparing the price of
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most-recently-issued US Treasury bonds (on the run) to the price of the bonds issued three

months previously (off the run).

There are a few papers that are more closely related to what we do here, namely, Longstaff

(1995, 2001) and Browne et al. (2003). These papers also view the liquidity premium as arising

from the investor’s inability to rebalance his portfolio in a timely way. Specifically, they define

the liquidity premium as the additional required fixed return to compensate for the loss of

the investor’s utility from the inability to rebalance the investor’s portfolio. They calculate

the required liquidity premium as a function of the degree of risk averseness in the utility

function, the market growth rate, and the liquidity restriction period. They rely heavily on

mathematical models and mathematical analysis for this purpose. Unlike these references, we

do not use utility functions.

We conclude this section by mentioning Hayes (2006), which used a Markov chain model

for a difference purpose – to develop a model for the maximum drawdown of hedge funds.

Empirical studies on hedge fund lockup. There is a growing literature on hedge funds,

e.g., see Agarwal and Naik (2005), but only a few researchers have focused on hedge fund

lockup. Liang (1999) found that the average hedge fund returns are related positively to the

lockup periods from the analysis of Hedge Fund Research, Inc. (HFR) database. Aragon

(2007) quantified the lockup premium for hedge funds empirically. He compared the hedge

fund performance with and without extended lockup conditions. He estimated that the average

difference in the annual returns is around 4 to 7 percentage points.

There also are empirical studies on the liquidity premium for funds other than hedge funds.

For example, Ippolito (1989) conducted a similar study for mutual funds. There is a load-type

mutual fund, which assesses sales charges. Ippolito (1989) found that the load-type mutual

funds make approximately 3.5 percentage points higher return than no-load mutual funds.

In summary, from our investigation of the literature, we find that only a few papers -

Longstaff (1995, 2001) and Browne et al. (2003) - have interpreted liquidity premium as quan-

tification of the cost of a restricted rebalance opportunity. We found no previous papers

employing models calibrated to data in order to estimate the liquidity premium. And none

of the papers have used Markov chains, with the exception of Derman (2007), which is a

preliminary account of the research reported here.
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3. Definition of the Lockup Premium

In this section we carefully specify what we mean by the lockup premium. To do so, we first

define the rate of return of an investment having a stochastic process X ≡ {X(t) : t ≥ 0};

i.e., the (random) value at the end of n years of one dollar invested in this investment at the

beginning of the first year is

Vn ≡ e(
R n

0
X(t) dt) (3.1)

dollars. We now define a deterministic value rn such that

enrn = E[Vn] (3.2)

for Vn in (3.1); i.e., rn is the constant rate of return, with continuous compounding, that yields

the same expected value E[Vn] over n years. Following common practice, we have “backed

out” the rate of return rn from the expected cash value E[Vn]. By (3.1) and (3.2), rn can be

expressed directly as

rn =
log E[Vn]

n
=

1

n
log
(

E

[

e(
R n

0
X(t) dt)

])

, (3.3)

where we use the natural logarithm (base e).

Now consider two different hedge funds within the same strategy, with rate of return

stochastic processes X1 and X2, as above. Let X1 have a 1-year lockup and let X2 have

an n-year lockup. Let the lockup premium pn be

pn ≡ r1n − r2n, (3.4)

where ri
n is the rate of return of Xi, defined as in (3.3). To evaluate the premium, we need to

determine the two return-rate stochastic processes X1 and X2; to do that, we will apply the

Markov chain model.

However, we do not actually have the continuous-time return-rate stochastic processes

directly available from the TASS database. Instead, monthly returns are reported. Consistent

with the framework above, we define a continuously compounded annual returns Bi for year i

from monthly returns Mi,j for the jth month within year i by geometric compounding, i.e.,

eBi = (1 +Mi,1)(1 +Mi,2) · · · (1 +Mi,12); (3.5)

i.e., the (random) value at the end of j months of one dollar invested in this investment at the

beginning of year i is (1 +Mi,1)(1 +Mi,2) · · · (1 +Mi,j) dollars. Consequently, the (random)
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total value Vn at the end of n years is the n-fold product

Vn =
n
∏

i=1

eBi = e
Pn

i=1
Bi (3.6)

for Ai in (3.5). Equivalently, starting from the reported monthly returns Mi,j, we let the

return-rate stochastic process X be defined by

X(t) ≡ 12 log (1 +Mi,j) for (i− 1) + (j − 1)/12 ≤ t < (i− 1) + (j/12), (3.7)

so that
∫ (i−1)+(j/12)

(i−1)+(j−1)/12
X(t) dt ≡ log (1 +Mi,j) (3.8)

for 1 ≤ i ≤ n and 1 ≤ j ≤ 12. With definition (3.7), equation (3.6) is consistent with definition

(3.1).

As indicated above, we start with the monthly returns Mi,j and then construct the annual

rate of return Bi by geometric compounding, as in (3.5). In order to reduce the effects of

systematic yearly fluctuations, and more closely approach stationarity, we focus on relative

return rates for each fund strategy. To do so, we let µi ≡ E[Bi], the mean return rate for a

particular hedge fund strategy within year i, estimated as the average of the observed values

of Bi over all funds within that strategy. Then the (random) relative return rate is

Ri ≡ Bi − E[Bi] ≡ Bi − µi. (3.9)

We exploit persistence of hedge fund returns in the setting of these relative return rates Ri.

Combining equations (3.6) and (3.9), we see that the (random) total value at the end of

year n of hedge fund j is

V j
n =

n
∏

i=1

e(µi+Ri) = e(
Pn

i=1
µi)e(

Pn
i=1

Rj
i ) (3.10)

and the difference between the expected total returns is

E[V 1
n ] − E[V 2

n ] = e(
Pn

i=1
µi)
(

E

[

e(
Pn

i=1
R1

i )
]

− E

[

e(
Pn

i=1
R2

i )
])

. (3.11)

Hence, the premium in (3.4) becomes

pn ≡ r1n − r2n =
1

n

[

log
(

E

[

e(
Pn

i=1
R1

i )
])

− log
(

E

[

e(
Pn

i=1
R2

i )
])]

, (3.12)

which is independent of the average rates µi.

To determine what this lockup premium pn should be, we will be modelling the relative-

return-rate stochastic process {R1
k : k ≥ 1} by a discrete-time Markov chain, and then defining

the associated relative-return-rate stochastic process {R2
k : k ≥ 1} to account for the extended

n-year lockup. With (3.12), we will also set the initial state as Good, as mentioned in §1.
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4. Persistence of Hedge Fund Returns

As indicated in §3, we specify how hedge funds perform by looking at the relative rate of return

of a fund, given by the Ri in (3.9). In that context, we say there is persistence if Ri+1 tends

to be similar to Ri. in particular, we measure persistence by the regression coefficient for pairs

(Ri, Ri+1). Before discussing our regression analysis, we review the literature on persistence.

The persistence literature. Persistence has been studied quite extensively within the

hedge-fund literature, but it remains a highly controversial topic. A consensus has not yet

been reached on the degree of persistence in hedge-fund returns, or even whether it exists

at all. Also, there are differences in the specific definition of persistence; e.g., Jagannathan

et al. (2006), Fung et al. (2008) and Kosowski et al. (2007) are about alpha persistence. How-

ever, persistence always represents the ability to predict future returns from past and present

returns.

There are serious questions about the quality of the data and the proper way to analyze it.

Researchers have tried to take advantage of the two main hedge fund databases - TASS and

HFR. In doing so, researchers have discovered that it is difficult to make unbiased estimates

because reporting is voluntary, and some funds stop reporting, especially those performing

poorly; see Jagannathan et al. (2006), Fung et al. (2008), Fung and Hsieh (2009) and Kosowski

et al. (2007).

Despite the difficulty with biases in the hedge fund data, researchers have conducted studies.

Although some researchers did not find evidence of performance persistence, others did. Brown

et al. (1999) used a simple two-state categorization - win or lose - to measure performance

persistence, recording a win if the fund beats the median return, but they did not find evidence

of persistence. Boyson and Cooper (2004) carried out a similar analysis and still did not find

evidence of persistence.

However, several papers found performance persistence for shorter periods ranging from

a quarter to three years. Koh et al. (2003) used the method of Brown et al. (1999) for

Asian hedge funds and found strong persistence in short horizons from monthly to quarterly.

Agarwal and Naik (2000) and Jagannathan et al. (2006) used linear regression, as we do,

as well as the previous two-way classifications. Agarwal and Naik (2000) did not provide

regression slope explicitly but showed that depending on the strategy category of hedge fund,

the percentage of funds which have statistically significant positive slope in regression ranges
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from 5 to 34 percent, where most of the strategy categories have around 20 percent. Using the

same parametric linear regression and non-parametric two-way classifications, Agarwal and

Naik (2000) claimed that the evidence of persistence is strongest for the shorter quarterly time

periods. On the other hand, Edwards and Caglayan (2001) found strong persistence in over

1-2 years from the Managed Account Reports (MAR/Hedge) data. Furthermore, Jagannathan

et al. (2006) found a significantly high performance persistence for a three-year period in

their empirical study with HFR data. Jagannathan et al. (2006) carefully took account of

the bias from voluntary reports and did regression analysis for the relative returns for three

consecutive years. Using generalized method-of-moment (GMM) estimation, they found a

statistically significant persistence factor of 0.56 for a three-year period.

There also exists indirect evidence of performance persistence from the study of hedge-

fund liquidation or survival. Brown et al. (2001) indirectly supported performance persistence

when they found that a negative aggregated return over the previous two years increases

the probability that a fund will liquidate. Furthermore, ter Horst et al. (2001) concluded

that hedge-fund survival is strongly related to historical performance. Baquero et al. (2005)

conducted probit regression analysis of hedge-fund liquidation. They found that funds with

high returns are much less likely to liquidate than funds with low returns from quarterly return

data, which again indirectly supports persistence.

Our regression analysis. As indicated in §1, we conducted linear autoregression analysis

with the TASS data to find the best linear regression line between two consecutive year’s

relative rates of return (the Ri in (3.9)). Specifically, letting the current year’s (annual) relative

return rate be denoted by Rc and the next year’s relative return rate be denoted by Rn, we

find the slope γ for the line Rn = γ ·Rc, which produces the minimum sum of squared errors.

The actual data analysis procedure is somewhat complicated. A fund usually keeps report-

ing its monthly returns as long as it continues operating. If a fund ceases reporting its returns

to TASS, then the last date of the report is marked as the drop date in the data. A fund may

stop reporting its returns if it is liquidated due to successive losses. However, it is not always

true that a hedge fund suffers huge losses when it ceases reporting. In fact, even a successful

fund may cease reporting if it no longer wants to reveal its performance publicly. Thus, we

cannot simply count the number of funds dropped from the data to estimate the liquidation

rate of hedge funds. If the reason why a fund ceases reporting is available, TASS reports it,

but the reason is often not reported.
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As mentioned above, TASS differentiates between the date the fund starts reporting and

the date the fund starts operating. Thus, we can exclude one possible bias: the so called backfill

bias. When a fund starts reporting returns after operating for several months or years, the

fund simultaneously reports several monthly returns at the time its first return is reported. It

is then possible for the fund manager to drop or change some bad monthly returns which have

been made before the reporting date, which may increase reported returns from the actual

returns. Fung and Hsieh (2000) calculate that the difference from actual returns and reported

returns is about 3.6% per year from this reason. Therefore, we consider monthly returns only

after the fund’s first reporting date. Similarly, if a fund’s monthly returns are reported less

than six times a year, we exclude these data due to the possibility of hiding or altering bad

returns.

The other criterion we consider is the Net Asset Value (NAV) managed by a fund, which

is also archived in TASS. If a fund’s managed assets are too small, then the monthly return

might be too volatile, since it may have relatively less ability to diversify its risks. We assume

that a fund has an ability to produce relatively stable returns once its managed assets reach

a certain level. Specifically, we consider monthly returns only if the fund’s NAV has reached

25 million dollars at least once, at which point we assume that the fund becomes mature, so

that it can produce relatively stable returns. Similar criteria were used by Boyson and Cooper

(2004).

Before conducting the regression, we also exclude pairs of return rates with extreme values,

depending on the distribution of the pairs of returns for each strategy category. Even one or

two outliers can seriously affect the regression, especially if we do not have a large number

of observations. Specifically, we exclude pairs of relative returns when one absolute relative

return exceeds ± 30% for fixed income arbitrage, equity macro and ± 40% for convertible,

dedicated short bias, and global macro strategy categories. We also exclude pairs of relative

returns exceeding ± 50% for emerging market, event driven, fund of fund, long/short equity,

managed future, and others strategy categories of funds.

After selecting the monthly returns based on the above criteria, we make pairs of two

successive annual returns for each hedge fund from 2000 to 2005. Thus, there are possibly

six pairs of annual returns of a fund, if it does not cease reporting during that period. As

indicated in (3.5), the monthly returns are annualized to produce annual returns, from which

we calculate relative rates of return Ri as indicated in §3. The regression analysis results in

very low intercept for all strategy categories. Thus, we conducted an auto-regression without
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an intercept to obtain our final estimate. The results are shown in Figure 2 and Table 1 in

§1. As can be seen there, we found eight out of eleven strategies of fund with significant

persistence: (i) convertible, (ii) dedicated short bias, (iii) emerging market, (iv) event driven,

(v) fixed income, (vi) fund of fund, (vii) managed future, and (viii) others. For these fund

strategies, the least-squares-fit slope, γ, ranges from 0.15 to 0.49.

A different way to estimate the persistence factor is to look at the ratio of the next-year

average return rates to the current-year average return rate, restricting attention to the returns

that are positive in the current year. (The same estimate is produced when you repeat that

procedure, but instead restrict attention to the return rates that are negative in the current

year.) See Appendix C for the details.

5. An Approximation for the Lockup Premium Based on Persistence Alone

Given the expression for the lockup premium pn in (3.3), (3.4) and (3.12), it should be evident

that no exact analysis is possible based on persistence alone. However, we now show that it is

possible to obtain a useful rough approximation for the lockup premium based on persistence

alone if we make an appropriate approximation in our definition of the lockup premium.

Modifying the definition of the premium. The idea is to simplify the expression for the

rate of return rn in (3.3). Expression (3.3) is complicated primarily because the expectation

operator appears in between the logarithm and the exponential functions, so they cannot cancel

each other out. What we do for our rough approximation, then, is act as if we can interchange

the order of the expectation operator and the exponential function. In the setting of (3.12),

that yields the approximation

pn ≈ p̃n ≡
1

n

[

log
(

e(E[
Pn

i=1
R1

n])
)

− log
(

e(E[
Pn

i=1
R2

n])
)]

=
1

n

n
∑

i=1

(

E[R1
i ] − E[R2

i ]
)

. (5.1)

Unlike pn in (3.12), the approximation p̃n in (5.1) is a linear function of the expected return

rates E[Rj
i ], and so is much easier to analyze.

We can also regard approximation (5.1) as an approximation derived from asymptotic

analysis, where we use the classic approximations log(1 + x) ≈ x and ex ≈ 1 + x+ 1
2!x

2 for x

close to 0. A one-term approximation is (5.1), while the two-term approximation is

pn ≈ p̃n + 1/(2n)

(

E

[

(
n
∑

i=1

R1
i )

2

]

− E

[

(
n
∑

i=1

R2
i )

2

])

. (5.2)

The second term explains most of the error for small n, e.g., for n ≤ 5; see §E in the Appendix.
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Assumptions based on persistence alone. We now show how persistence alone, without

any Markov chains, can be used to generate an estimate of the lockup premium, provided

that we use the linear approximation (5.1). This simple analysis depends on four additional

assumptions:

1. There is a single persistence factor γ with 0 < γ < 1.

2. We can ignore the phenomenon of hedge funds dying.

3. The return rates Ri each year are normally distributed with a fixed variance σ2.

4. The performance of a fund is considered good if its annual return exceeds the average

annual return.

Together with approximation (5.1), the first two assumptions imply that the expected

relative returns over time evolve linearly, enabling us to derive a simple approximate no-death

lockup premium as a function of the expected excess return rate of a good fund. The last

two assumptions enable us to determine the expected excess return rate of a good fund. The

third assumption can be weakened, but some analogous assumption is needed. The fourth

assumption is just one possible case; it can easily be varied without altering the rest of the

analysis.

The no-death lockup premium. Let YG denote the expected excess relative rate of return

of a good fund, assumed to be strictly positive. As in §3, let Rn be the relative return rate in

the nth year. As mentioned in §1, we assume that the hedge fund starts off in a good state.

Then, the assumed γ persistence implies that the expected relative return rate during the first

year is E[R1] = γYG, for 0 ≤ γ < 1. The notion of γ persistence, with no funds dying, implies

that we can recursively determine the expected relative return rates in successive years by

E[Rn] = γ · E[Rn−1] = γn · YG, n ≥ 1 . (5.3)

As a consequence of (5.3), the sum of the expected relative return rates up to the nth year

can be expressed as a product

n
∑

i=1

E[Ri] = YG

(

γ(1 − γn)

1 − γ

)

, 0 ≤ γ < 1 . (5.4)

Combining this simple analysis with approximation (5.1), we can compute the approximate

premium for an n-year lockup compared to 1-year lockup. Under a 1-year lockup, investors

14



have a chance to replace all sick funds with good funds at the end of each year. If they do, the

expected return each year is the same as in the first year: E[R1] = γYG. Thus, at the end of

the nth year, the total expected relative return is simply nγYG. On the other hand, under an

n-year lockup, the fund just evolves without replacement up to the nth year, as in (5.4). We

assume that after the nth year, the funds with 1-year and n-year lockups are both replaced by

funds with the same 1-year lockup, so that there necessarily will be no difference in a fund’s

return after the nth year.

Consequently, the approximate no-death lockup premium is

p̃n ≡ p̃n(γ, YG) =

(

1

n

n
∑

i=1

γYG

)

−

(

1

n

n
∑

i=1

γiYG

)

= YGγ

(

1 −
1 − γn

n · (1 − γ)

)

, n ≥ 1 , (5.5)

which is a concave increasing function in n for each γ, 0 < γ < 1, and a concave function of

γ for each n ≥ 1. The approximate lockup premium p̃n(γ) is not an increasing function of

γ overall; e.g., for n = 2, p̃n(γ) = YGγ(1 − γ)/2, which is increasing for 0 < γ < 1/2, but

decreasing for 1/2 < γ < 1. More generally, p̃n = 0 for both γ = 0 and γ = 1, with p̃n(γ) > 0

for 0 < γ < 1. However, the lockup premium function p̃n(γ) is increasing in γ for all sufficiently

small γ, for each n ≥ 1.

From (5.5), we see that p̃1 = 0, p̃n → γYG as n→ ∞, and we have the bounds

γYG

(

1 −
1

n(1 − γ)

)

≤ p̃n ≤ γYG

(

1 −
1

n

)

, n ≥ 1 , (5.6)

which yield convenient approximations. For large n or small γ, the lower bound is an accurate

approximation of p̃n.

The excess rate of return from a good fund. The approximate no-death lockup pre-

mium function p̃n(γ) clearly shows how the approximate lockup premium depends on the three

quantities: the length n of the extended lockup period, the persistence factor γ and the ex-

pected excess rate of return of a good fund, YG. Clearly, n is directly observable, and we have

seen how we can estimate γ, but it remains to specify YG.

However, if we define YG as the expected excess rate of return of a good fund and apply the

last two assumptions, then we can calculate YG as well. Letting N(m,σ2) denote a normally

distributed random variable with mean m and variance σ2, we have

YG = E[N(0, σ2)|N(0, σ2) > 0] = E[|N(0, σ2)|] = σE[|N(0, 1)|] =
√

2/πσ ≈ 0.8σ . (5.7)
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We can combine (5.5) and (5.7) to obtain the following general approximate no-death lockup

premium function

p̃n(γ, σ) = 0.8σγ

(

1 −
1 − γn

n · (1 − γ)

)

, n ≥ 1 . (5.8)

With assumptions 3 and 4 above, we see that the no-death lockup premium should be

approximately directly proportional to the standard deviation σ. Assumption 4 plays a key

role in getting the simple formula (5.7), but we can generalize for arbitrary boundary point U ,

using the following formula for the conditional expectation of a normal random variable:

E[N(m,σ2)|a ≤ N(m,σ2) ≤ b] = m+ σ
[φ ((a−m)/σ) − φ ((b−m)/σ)]

[Φ ((b−m)/σ) − Φ ((a−m)/σ)]
(5.9)

for −∞ ≤ a < b ≤ +∞, based on the relation xφ(x) = −φ′(x) where φ is the standard normal

density. From formula (5.9), we see that YG will not be proportional to σ if we change the

upper boundary point U .

We emphasize that, even under assumption 4 above, having p̃n be directly proportional

to σ depends critically on the third ceteris-paribus assumption made above. Since we are

free to choose the monetary units, we can choose to define all returns relative to the standard

deviation σ, which must be in the same units as the returns. In that sense, the lockup premium

is automatically proportional to σ. The proportionality conclusion becomes more meaningful

when we assume that the distribution of returns depends on σ as a simple scale factor, as

provided by assumption 3 above. We need to impose a strong condition on the way the return

distribution changes with σ in order to deduce the desired proportionality conclusion. The

normality is only used to compute the precise value of the mean.

Relating to the calibration by Markov chains. We remark that the Markov chain model

calibration will also produce its own estimates of the excess return YG, but we will find that

analysis yields similar conclusions. Indeed, our main numerical example has YG = 0.67σ. We

remark that we can obtain exactly that value if we take YG to be the median of the positive

relative returns, because the median of the random variable |N(0, 1)| is 0.67.

Anticipating our future numerical examples with Markov chains, we refer to our estimate

for the lockup premium in Figure 8 in §6.7 for the case γ = 0.5, σ = 0.1, δ = 0 and YG = 0.067.

Our estimate without death appears as the upper curve in Figure 8 in §6.7.

Figure 8 shows plots of two curves for positive death rates δ, obtained using the DTMC

model in §6 under the same approximation. The plotted cases for δ = 0.03 and δ = 0.06 show

the importance of going beyond the no-death model. Consistent with Figure 8, we will see
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that the lockup premium is decreasing in the hedge fund death rate with our Markov chain

model. Consequently, formulas (5.5) and (5.8) in this section, derived under the assumption

of zero death rate, provide upper bounds on our estimated lockup premium with positive δ,

with a simple closed-form formula.

6. The Discrete-Time-Markov-Chain Model

We start in §6.1 by discussing two important hedge-fund performance measures: persistence

and the death rate. Next in §6.2 we define the basic three-state DTMC model, which has six

parameters. Then in §6.3 we introduce four equations that the six parameters must satisfy,

based on standard hedge fund performance measures. In §6.4 we develop explicit formulas for

the three parameters appearing in the DTMC transition probabilities. In §6.5 we show how to

calculate all the parameters after specifying two of the relative returns. We present numerical

examples in §6.6. Finally, we show how to calculate the lockup premium in §6.7.

6.1. Important Hedge-Fund Performance Measures

Our Markov chain model will depend critically on the persistence of returns and the hedge-fund

death rate. So we discuss these performance measures further now.

Two persistence factors: γG and γS. In equations (6.5) and (6.6) below we will introduce

two state-dependent persistent factors γG and γS , instead of just the single γ. Clearly, this

generalization is important if the persistence factors for the two states do in fact differ sig-

nificantly. To illustrate what actually may happen, Figure 3 shows the results of a regression

analysis applied to two consecutive-year relative returns for positive and negative parts of the

current relative-return data separately. Figure 3 shows a significant difference in the slope of

regression line for several fund categories, suggesting that it may be important to use separate

state-dependent persistence factors.

The stationary death rate δ. We calibrate our models by specifying the overall annual

death rate, denoted by δ. Unfortunately, estimating the death rate from the TASS database

is difficult, in part because poorly performing funds often stop reporting, but funds also stop

reporting for other reasons, e.g., because they seek no new investors.

After checking the reasons for funds being terminated in the HFR data, Rouah (2006)

concluded that, after removing these biases, 3 to 5% of the hedge funds leave the database

each year because of failure. As noted in §4, Park (2006) estimated that the fund death rate
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(a) Convertible arbitrage

(b) Emerging market

(c) Event driven

(d) Fund of fund

Figure 3: Scatter plots and least-squares lines for positive current relative returns and negative current relative returns
of hedge funds from 2000 to 2005 in four categories: (i) convertible arbitrage (ii) emerging market, (iii) event driven, and
(iv) fund of fund.
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is only 3.1%, even though the total attrition rate from the TASS database was 8.7% , based

on her analysis from 1995 to 2004.

The death rate is closely related to the survival probability and median life of the fund.

Clearly, as the death rate increases, the survival probability and the median life decrease. Since

median life is more easily observable, it is convenient to verify the death rate of our model

through the median life in the hedge fund data.

One way to check the validity of the model is to calculate the survival probability curve

produced by the model. In terms of the transition matrix P to be introduced in (6.1). the

probability of surviving n years is Sn = Pn
G,G + Pn

G,S for n ≥ 1. Figure 4 shows the survival

probability curve for the DTMC model when δ = 0.03 and 0.06. When δ = 0.03, about 90%

survive for 5 years, whereas the survival probability goes down to around 80% when δ = 0.06.

If we increase δ above 0.07, then we are unable to fit the DTMC model.

Studies estimating the median survival time of hedge funds were discussed in §4. In ad-

dition, Gregoriou (2002) estimated that median survival time of all hedge funds is 5.5 years,

depending on factors such as millions managed, performance fee, leverage, minimum purchase

and also on the redemption period. More recently, Rouah (2006) reported estimates of median

survival time due before liquidation as ranging from 5.8 to 7.4 years based on the HFR data

and from 7.2 to 17.4 years based on the TASS database. This last observation by Rouah (2006)

suggests that the mean life of a fund across all strategies is approximated reasonably by the

DTMC model with δ = 0.06.
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Figure 4: The survival probability for the DTMC model when δ = 0.03 and 0.06, for parameter values given in the
Table 2.
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6.2. The Basic DTMC Model

As indicated in the introduction, we let our Markov chain models have three states: good,

sick and dead. We model the changing fund state over time as a DTMC, as in Chapter 4 of

Ross (2003). We let time be discrete, with the unit of time representing one year. The initial

DTMC is an absorbing Markov chain, with the D state being the sole absorbing state; once

a fund becomes dead, it remains dead forever. We consider a transition matrix depending on

three parameters: p, q and r:

P =
G
S
D





p 1 − p 0
q r 1 − q − r
0 0 1



 . (6.1)

which corresponds to the following diagram: We have assumed that it is impossible to transition

Figure 5: Transition probabilities in the absorbing Markov chain

from good to dead in a single year, thus eliminating one parameter.

We now move on to consider an associated ergodic Markov chain, having a non-degenerate

limiting steady-state distribution, by assuming that a new hedge fund appears in the good state

to replace a dead hedge fund right after it dies. This can be done with the new three-state

DTMC transition matrix

P =
G
S
D





p 1 − p 0
q r 1 − q − r
p 1 − p 0



 . (6.2)

In (6.2), the transition probabilities from a dead state are the same as from a good state,

because a dead fund is immediately replaced by a good fund.

From the basic theory of DTMC’s, as in Theorem 4.1 of Ross (2003), we obtain the steady-

state probability vector π ≡ (πG, πS , πD) by solving π = πP under the condition that πG +

πS + πD = 1. The stationary probability vector π for the transition matrix P in (6.2) is

πG =
q + p(1 − q − r)

2 − p− r
, πS =

1 − p

2 − p− r
, πD =

(1 − p)(1 − q − r)

2 − p− r
. (6.3)
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Our DTMC model uses both transition matrices. We use the absorbing transition matrix

in (6.1) when we compute the expected return of a fund, while we use the ergodic transition

matrix in (6.2) when we calculate the steady-state death rate and performance variance.

We will act as if the fund earns a state-dependent fixed relative rate of return in each state.

We must specify these relative rates of return. Let YG, YS and YD denote the relative rate

of return in the states G, S and D, respectively. In other words, eYG , eYS and eYD are the

return at the end of one year in the states G, S and D, if one dollar is invested in a fund at

the beginning of the year. Overall, we have six parameters: p, q, r, YG, YS and YD.

6.3. The Four Model-Fitting Equations

We first consider the death rate, which is defined as the proportion of live funds (in a good

or sick state) that die during one transition period, which we take to be one year. For the

transition matrix in (6.1), only sick funds can die in one transition. Thus, the death rate equals

the product of the steady-state probability that a fund is sick times the transition probability

from sick to dead. By (6.1) and (6.3), the death rate is

δ = πS · PS,D =
1 − p

2 − p− r
(1 − q − r) = πD . (6.4)

We now introduce two equations determined by the persistence. For greater model flexi-

bility, we allow different persistence in states G and S. The two DTMC-persistence equations

are:

γG · YG = p · YG + (1 − p) · YS and (6.5)

γS · YS = q · YG + r · YS + (1 − q − r) · YD . (6.6)

We explain these DTMC-persistence equations as follows: In equation (6.5), the fund starts

with state G; in equation (6.6) the fund starts with state S. The left side describes expected

return in the next period calculated using the relevant persistence factor, whereas the right side

calculates expected return in the next period using the transition probabilities of the DTMC

in (6.1).

Our fourth equation is for the steady-state variance of the annual returns Ri in (3.9). Notice

that its variance equals the variance of Bi, defined in (3.5). Since we are working with return

rates relative to the mean, the variance of the steady-state rate of return coincides with the

second moment. Thus, the variance equation is

σ2 = πG · Y 2
G + πS · Y 2

S + πD · Y 2
D . (6.7)
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6.4. Explicit Formulas for the Transition Probabilities

We now derive formulas for the DTMC transition probability parameters p, q and r in terms

of YG, YS , YD, γG, γS and δ using the three equations (6.4), (6.5) and (6.6).

The three formulas. Assuming that γG, γS , δ, YG, YS and YD are specified, the three

equations in (6.4), (6.5), and (6.6) produce three equations in the three unknowns p, q and r.

We first observe that the variable p can be solved from the single equation in (6.5), because

that is a single equation for the single unknown variable p. The solution is

p =
γG · YG − YS

YG − YS
. (6.8)

Having found the explicit expression for p in (6.8), we substitute in for p to obtain two

equations in the remaining two unknowns q and r. Indeed, given p, we can rewrite each of the

two remaining equations to express q directly as a function of r. First, from (6.4), we get

q ≡ q(r) = 1 − r −
δ(2 − p− r)

1 − p
= 1 − δ

(

2 − p

1 − p

)

− r
(1 − p− δ)

(1 − p)
. (6.9)

Since δ < 1 − p by (6.4), the function q(r) in (6.9) is necessarily strictly decreasing in r.

Next, (6.6) can be rewritten as

q ≡ q(r) =
γS · YS − YD − r(YS − YD)

YG − YD
=

(γS − r)YS − (1 − r)YD

YG − YD
. (6.10)

Combining the two equations (6.9) and (6.10), we get an explicit expression for r, first in terms

of p and then in terms of the basic model parameters, namely,

r =

(

1−p−δ(2−p)
1−p

)

−
(

γS ·YS−YD

YG−YD

)

(

1−p−δ
1−p

)

−
(

YS−YD

YG−YD

) =

(

(1−δ)(1−γG)YG−δ(YG−YS)
(1−γG)YG

)

−
(

γS ·YS−YD

YG−YD

)

(

(1−γG)YG−δ(YG−YS)
(1−γG)YG

)

−
(

YS−YD

YG−YD

) (6.11)

To be feasible, we of course need 0 ≤ q ≤ 1 − r and 0 ≤ r ≤ 1. Formulas (6.9) and (6.11)

simplify when δ = 0; see §D in the Appendix.

By further analysis, we can determine what parameter values can occur; see §F in the

Appendix for a detailed analysis. Figure 6 shows the three parameters as a function of δ with

YG = 0.067, YS = −0.15, YD = −0.20 and γG = γS = 0.5. From the analysis, it can be shown

that there is an upper limit on how high the death rate δ and the persistence γ can be. For

the other parameters we consider, the maximal possible death rate is δ = 0.07.

6.5. Determining All Model Parameters

We now put everything together to develop an algorithm for computing all the model param-

eters.
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Figure 6: The DTMC parameter values p, q and r as a function of δ when YG = 0.067, YS = −0.15, YD = −0.20 and
γG = γS = 0.5

An iterative algorithm. There are several ways we may proceed. We choose to specify YS

and YD in addition to δ, γG, γS and σ. (This decision is supported by the fact that the model

parameters are less sensitive to YS and YD than to YG, as we will see in §7.) Specifying these two

quantities determines all the parameters. We then calculate the model parameters iteratively.

We do so by guessing YG, which enables us to directly calculate the DTMC parameters p, q

and r, and then the steady-state probability vector π. Given π, we can then calculate σ from

(6.7). We then iterate until the calculated σ agrees with the initially specified value of σ.

Although it is not entirely evident from the equations, because π depends on YG too, our

calculations indicate that σ is an increasing function of YG, so it is easy to find the appropriate

value of YG, e.g., by performing bisection search. A simple plot of σ versus YG verifies this

property, and reveals the appropriate value of YG. We illustrate in Figure 7 below for the

special case in which YS = −0.15, YD = −0.20, γG = γS = 0.5 and δ = 0.03.
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Figure 7: The standard deviation of relative return σ versus YG when YS = −0.15, YD = −0.20, γG = γS = 0.5, and
δ = 0.03.
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Denominating in terms of σ. For additional insight, it is helpful to express our returns

in units of the standard deviation σ. We can divide through by σ2 in (6.7) to obtain

1 = πG · (YG/σ)2 + πS · (YS/σ)2 + πD · (YD/σ)2 . (6.12)

Observe that the steady-state probability vector π in (6.3) and the death rate δ in (6.4)

depend only on DTMC parameters p, q and r, while the equations (6.8), (6.10) and (6.11) for

p, q and r are invariant under scale multiples of YG, YS and YD.

Paralleling Figure above, it is useful to see how YG/σ behaves as a function of σ when we

fix YS/σ and YD/σ in addition to δ and γ. It turns out that, after fixing YS/σ = −1.5 and

YD/σ = −2.0, the value of YG/σ is constant when δ = 0 and almost constant (very weakly

increasing) when δ > 0. For the special case in which YS/σ = −1.5, YD/σ = −2.0, γG = γS =

0.5, and δ = 0.03, YG/σ ≈ 0.685 for σ ranging from 0.07 to 0.13. It is thus convenient and

useful to set YS and YD proportional to σ. We hereafter set YS = −1.5σ and YD = −2.0σ for

our analysis.

6.6. Numerical Examples

We now consider some numerical examples. Our base case is δ = 0.03, γG = γS = γ = 0.5, σ =

0.1, YS = −1.5σ = −0.15, and YD = −2.0σ = −0.20. If we try YG = 0.685σ = 0.0685, then we

get p = 0.8432, q = 0.3719, r = 0.5030, and σ = 0.1001.

Table 2 shows parameter values for various δ, γG, γS , with YS, YD and σ fixed as above, the

return YG is calculated iteratively by the method above. The last line of the Table 2 shows that

r is negative. If γG = γS = 0.5, our numerical analysis shows that r reaches 0 and becomes

negative when δ is above 0.07.

Table 2: Parameter value sets

δ γG γS σ YG YS YD Calculated σ p q r

0.00 0.5 0.5 0.1 0.067 -0.15 -0.20 0.1002 0.8456 0.3456 0.6544
0.03 0.5 0.5 0.1 0.0685 -0.15 -0.20 0.1001 0.8432 0.3719 0.5030
0.06 0.5 0.5 0.1 0.070 -0.15 -0.20 0.1001 0.8409 0.4207 0.2282
0.07 0.5 0.5 0.1 0.075 -0.15 -0.20 0.1001 0.8401 0.4474 0.0796
0.00 0.6 0.4 0.1 0.076 -0.15 -0.20 0.1000 0.8655 0.3982 0.6018
0.03 0.6 0.4 0.1 0.077 -0.15 -0.20 0.1002 0.8643 0.4320 0.4069
0.06 0.6 0.4 0.1 0.0775 -0.15 -0.20 0.1000 0.8637 0.5068 -0.0127
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6.7. The Lockup Premium Calculation

To calculate the lockup premium, we use formula (3.12). Without extended lockup, we start

with a good fund, so that R1
i for 1 ≤ i ≤ n are i.i.d. random variables each with two possible

values. Let St denote one of the three possible states at year t (t ≥ 1) : G, S or D. We define

S0 as the state of a fund at the beginning of the first year. As mentioned in §1, we assume

that S0 = G. Then,

E

[

e
Pn

i=1
R1

i |S0 = G
]

=
(

peYG + (1 − p)eYS
)n
. (6.13)

The corresponding expectation for the fund with extended lockup is more complicated, but

it can be calculated recursively. It is immediate to see that R2
1 = R1

1, resulting in p1 = 0. We

define

m(t, s) ≡ E

[

e
Pt

i=1
R2

i |S0 = G,St = s
]

· P t
G,s, (6.14)

where P t, the tth power of matrix P defined in (6.1), represents the probability of reaching St

from G at tth year. Then, we obtain the following recursion formulas

m(t,G) = peYGm(t− 1, G) + qeYGm(t− 1, S),

m(t, S) = (1 − p)eYSm(t− 1, G) + reYSm(t− 1, S) and

m(t,D) = (1 − q − r)eYDm(t− 1, S), (6.15)

where m(1, G) = peYG , m(1, S) = (1 − p)eYS and m(1,D) = 0. Notice that if a fund becomes

dead before year n, it starts with a good state. Furthermore, the new good fund is now under

1-year lockup instead of n-year. Because of this, care must be taken for a sample path once a

fund becomes dead. We finally have

E

[

e
Pn

i=1
R2

i |S0 = G
]

= m(n,G) +m(n, S) +

n
∑

t=2

m(t,D)
(

peYG + (1 − p)eYS
)n−t

. (6.16)

For example, if we set σ = 0.1, YG = 0.685σ, YS = −1.5σ, YD = −2.0σ, γG = γS = γ = 0.5

and δ = 0.03, we get p = 0.8432, q = 0.3719 and r = 0.5030 from §6.6. The difference

between a 2-year lockup and a 1-year lockup is 0.66 percentage points of return whereas the

difference between a 3-year lockup and a 1-year lockup is 1.01 percentage points of return.

Figure 8 shows the lockup premium calculated from (6.15) and (3.12) as well as the analytical

approximation for δ = 0 in (5.1). It is observed that both the one-term and two-term analytical

approximations in §5 constitute upper bounds for the lockup premium.
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Figure 8: The lockup premium function for DTMC model for three values of the hedge-fund death rate δ and analytic
approximation of lockup premium (§5) for δ = 0. The remaining model parameters are YG = 0.067, YS = −0.15, and
YD = −0.20 and γG = γS = γ = 0.5.

7. Sensitivity Analysis for the DTMC model

The mathematical models developed here are useful to estimate how the lockup premium

depends on the different variables. We describe highlights of such analyses here and present

more details in the appendix. Our results here are related to the standard base case with

γG = γS = γ = 0.5, σ = 0.1, YS = −1.5σ, YD = −2.0σ and δ = 0.03, as in the second row of

Table 2.

Figure 9 (i) shows the lockup premium for five values of γ: 0.1, 0.2, 0.3, 0.4 and 0.5 while

Figure 9 (ii) shows the lockup premium for five values of σ: 0.05, 0.10, 0.15, 0.20 and 0.25. In

both cases, these changes produce minor changes in YG and the other model parameters; see

the Appendix G.

We next consider how the DTMC model parameters p, q and r depend on the other driving

variables. To supplement Figure 6 and the commentary in §6.4, Figure 10 shows how these

parameters p, q and r depend on γ (assuming γG = γS = γ) and each of the return values YG,

YS and YD, taken one at a time. We see that the model becomes unstable if γ gets very large,

but there is nice near-linear behavior for values of γ ≤ 0.5. We also see that the parameters p,

q and r are considerably more sensitive to YG than the other two returns YS and YD.

Lastly, we consider how the DTMC lockup premium for a fixed lockup period depends

on three variables δ, γ, and σ. Figure 11 shows how the three-year lockup premium depends

on two of the three variables while fixing the remaining variable. We see that the three-year

lockup premium is reasonably well approximated by a linear function of γ and σ, respectively;
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Figure 9: The lockup premium for the DTMC model in the base case with five values of γ and σ.
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Figure 10: The parameters p, q and r as a function of γ in the base case for values of YG ranging from 0.05 (starting
value, denoted by S) to 0.15 (ending value, denoted by E), YS ranging from −0.15 to −0.10, and YD from −0.20 to −0.15

there is concavity in γ but convexity in σ. Also, the three-year lockup premium is relatively

insensitive to δ.

We remark that the lockup premium in the DTMC model can be approximated by a simple

functional form of three variables δ, γ, and σ with the choice of YS/σ = −1.5 and YD/σ = −2.0.

The approximation with a simple functional form is helpful to quickly estimate how the lockup
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Figure 11: The three-year lockup premium for the DTMC model with YS = −1.5σ, YD =
−2.0σ. The lockup premium does not exist if q or r becomes negative.

premium changes if the variables change.

We had success fitting the simple product form of the three variables with an exponent

for each variable for the fixed year lockup premium, denoted by ψp(δ, γ, σ) = a δbγcσd. After
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taking logarithms, we can easily apply linear regression for the lockup premium values in the

DTMC model to estimate parameters a, b, c and d. By that method, the three-year lockup

premium is approximated by ψp
(3) = 0.15 δ0.11γ0.74σ1.00 with maximum error of 0.0039 in the

base case YS/σ = −1.5 and YD/σ = −2.0. The product approximation can be extended to

different lockup periods (n) and choice of YS/σ and YD/σ. See Appendix G.4 for further

discussion.

8. Conclusion

As we explained in §1 and §3, we have defined the hedge-fund lockup premium as the average

difference (per year) between the annual returns from investments in hedge funds, where one

has a nominal one-year lockup and the other has an extended n-year lockup. (In doing so,

we pointed out that we are not considering the lost opportunity cost of other investments,

which may be very important.) We have developed DTMC models to estimate the hedge-fund

lockup premium as a function of the length n of the extended lockup period and the model

parameters. To account for immediate redemption of investment when a hedge fund fails, we

include a death state in the model. The lockup premium represents the cost of not being

able to switch from sick funds to good funds while under the lockup condition. We assume

that the investor receives the final net asset value of his investments in the dead fund when it

terminates its business, so the lockup restriction ends and the investor is now free to reinvest

in a good fund. The deleterious returns that result from having been locked into a fund that

became sick are therefore mitigated by its death.

In §6 we showed how the Markov chain model can be fit to basic hedge-fund performance

measures, notably, the persistence of relative returns, γ (also allowing different γG and γS), the

standard deviation of returns, σ, and the hedge-fund death rate δ. We then have applied the

models to estimate how the lockup premium depends on these important performance mea-

sures. The models quantify how the lockup premium increases as a function of the persistence

factor γ and the standard deviation σ, but decreases as a function of the death rate δ; this is

summarized by (1.1) for our main numerical example.

As we explained in §1, the primary basis for our analysis is the persistence hypothesis: We

postulate that there is a persistence in hedge fund performance within a particular hedge fund

strategy category. Specifically, a persistence of γ means that for every 1 percentage point you

earn above the average in the current year, you expect to earn γ percentage points above the

average in the next year.
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As reviewed in §2 and §4, we examined the literature to see what other researchers have

concluded about hedge-fund performance persistence and the other hedge-fund performance

measures, but we found varying conclusions. Indeed, the literature indicates that persistence

in hedge fund returns is highly controversial. We also performed our own statistical analysis

using the TASS hedge fund data to estimate these hedge fund performance measures. We

found strong evidence of persistence, but the specific persistence values cannot be predicted

with great confidence, as is evident from the scatter plots in Figure 2. Moreover, the most

serious challenge to our analysis is not in the statistical conclusions based on the TASS data,

which strongly support persistence, but instead in possible biases in the data, stemming from

voluntary reporting. Thus we think that we have been more successful showing how the

lockup premium depends on persistence and other the hedge-fund performance measures than

in determining the values of persistence and the other performance measures.

The model fitting requires solving equations. For the DTMC, we were able to give explicit

formulas for the three DTMC parameters p, q and r as a function of YG, YS, YD, γG and γS ,

but in order to calibrate the standard deviation of returns, σ, we needed to use an iterative

method. We developed an efficient algorithm for doing the model fitting.

We conclude that all three performance measures - δ, γ and σ - can have a significant

impact on the lockup premium, but we predict that the effect will be negligible if either γ or σ

is small. We estimated these key hedge-fund performance measures from the TASS database,

but further work needs to be done to obtain more reliable estimates.

There are a number of directions for further research. One weakness of our DTMC model

is that it takes two years for a fund to transition from good to dead. We have developed an

analogous three-state continuous-time Markov chain (CTMC) model that does not suffer from

that shortcoming. Preliminary analysis indicates that the mathematical analysis is substan-

tially more complicated, but the numerical results are not too different; we hope to report on

these results soon.

We have also shown how the persistence we have found in hedge fund relative returns can be

exploited to develop a stochastic-difference-equation model for the sequence of relative returns

(random variables) themselves in Derman et al. (2009). The discrete time feature is included

because of the infrequent reporting.

In this paper, we have considered a very specific application for our DTMC model, but it

is evident that variants of the same model may be useful in other contexts. With richer data,

it may be possible to include more states. Even for the specific hedge-fund liquidity premium
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problem we consider, one might exploit the approach here in other ways. For example, evidently

a minor variation of the same procedure would work if, instead of relative returns, we focused

on hedge fund alpha values, as in Jagannathan et al. (2006), Fung et al. (2008) and Kosowski

et al. (2007).

Acknowledgments. We thank Soonmin Ko for assistance in the early stages of this study.

Ward Whitt was partially supported by NSF grant DMI-0457095.

References

Agarwal, V., N. Y. Naik. 2000. Multi-period performance persistence analysis of hedge funds.

Journal of Financial and Quantitative Analysis 35(3) 327–342.

Agarwal, V., N. Y. Naik. 2005. Hedge funds. Foundations and Trends in Finance 1(2) 103–169.

Amihud, Y., H. Mendelson. 1986. Asset pricing and the bid-ask spread. Journal of Financial

Economics 17(2) 223–249.

Amihud, Y., H. Mendelson. 1991. Liquidity, maturity, and the yields on U.S. treasury securities.

The Journal of Finance 46(4) 1411–1425.

Aragon, G. 2007. Share restrictions and asset pricing: evidence from the hedge fund industry.

Journal of Financial Economics 83(1) 33–58.

Baquero, G., J. ter Horst, M. Verbeek. 2005. Survival, look-ahead bias, and persistence in

hedge fund performance. Journal of Financial and Quantitative Analysis 40(3) 493–517.

Boyson, N. M, M. J. Cooper. 2004. Do hedge funds exhibit performance persistence? a new

approach. Forthcoming to Financial Analysts Journal.

Brown, S. J., W. N. Goetzmann, R. G. Ibbotson. 1999. Offshore hedge funds survival and

performance 1989-1995. Journal of Business 72(1) 91–117.

Brown, S. J., W. N. Goetzmann, J. Park. 2001. Careers and survival: competition and risk in

the hedge fund and cta industry. Journal of Finance 56(5) 1869–1886.

Browne, S. J., M. A. Milevsky, T. S. Salisbury. 2003. Asset allocation and the liquidity premium

for illiquid annuities. The Journal of Risk and Insurance 70(3) 509–526.

Chordia, T., R. Roll, A. Subrahmanyam. 2001. Market liquidity and trading activity. Journal

of Finance 56(2) 501–530.

Darar, V., N. Y. Naik, R. Radcliffe. 1998. Liquidity and asset returns: An alternative test.

Journal of Financial Markets 1 203–219.

Derman, E. 2007. A simple model for the expected premium for hedge fund lockups. Journal

of Investment Management 5(3) 5–15.

Derman, E., K. S. Park, W. Whitt. 2009. A stochastic-difference-equation model for hedge-fund

relative returns. Forthcoming to Quantitative Finance.

31



Edwards, F. R., M. O. Caglayan. 2001. Hedge fund performance and manager skill. Journal

of Futures Markets 21(11) 1003–1028.

Eleswarapu, V. R., M. R. Reinganum. 1993. The seasonal behavior of liquidity premium in

asset pricing. Journal of Financial Economics 34(3) 373–386.

Fung, W., D. A. Hsieh. 2000. Performance characteristics of hedge fund and commodity funds:

Natural versus spurious biases. Journal of Financial and Quantitative Analysis 35(3) 291–

307.

Fung, W., D. A. Hsieh. 2009. Measurement biases in hedge fund performance data: an update.

Financial Analysts Journal 65(3) 36–38.

Fung, W., D. A. Hsieh, N. Y. Naik, T. Ramadorai. 2008. Hedge fund performance, risk and

capital formation. Journal of Finance 63(4) 1777–1803.

Gregoriou, G. N. 2002. Hedge fund survival lifetimes. Journal of Asset Management 3(3)

237–252.

Hasanhodzic, J., A. Lo. 2007. Can hedge-fund returns be replicated?: The linear case. Journal

of Imvestment Management 5(2) 5–45.

Hayes, B. T. 2006. Maximum drawdowns of hedge funds with serial correlation. Journal of

Alternative Investments 8(4) 26–38.

Ippolito, R. 1989. Efficiency with costly information: a study of mutual fund performance.

Quarterly Journal of Economics 104(1) 1–23.

Jagannathan, R., A. Malakhov, D. Nonikov. 2006. Do hot hands persist among hedge fund

managers. NBER Working paper, 12015.

Koh, F., W. T. H. Koh, M. Teo. 2003. Asian hedge funds: Return persistence style and fund

characteristics. Working Paper, Singapore management University.

Kosowski, R., N. Y. Naik, M. Teo. 2007. Do hedgefunds deliver alpha? a bayesian and

bootstrap analysis. Journal of Financial Economics 84(1) 229–264.

Krishnamurthy, A. 2002. The bond / old-bond spread. Journal of Financial Economics 66(2-3)

463–506.

Liang, B. 1999. On the performance of hedge fund. Financial Analyst Journal 55(4) 72–85.

Longstaff, F. A. 1995. How much can marketability affect security values ? Journal of Finance

50(5) 1767–1774.

Longstaff, F. A. 2001. Optimal portfolio choice and the valuation of illiquid securities. Review

of Financial Studies 14(2) 407–431.

Longstaff, F. A. 2004. The flight-to-liquidity premium in us treasury bond price. Journal of

Business 77(3) 511–526.

Park, H. 2006. Risk measures for hedge funds and a survival analysis. Ph.D. thesis, University

of Massachusetts.

32



Pastor, L., R. F. Stambaugh. 2003. Liquidity risk and expected stock returns. Journal of

Political Economy 111(3) 642–685.

Ross, S. M. 2003. Introduction to Probability Models. Eighth ed. Academy Press.

Rouah, F. 2006. Competing risks in hedge fund survival. Ph.D. thesis, McGill University.

ter Horst, J. R., T. Nijman, M. Verbeek. 2001. Eliminating look-ahead bias in evaluating

persistence in mutual fund performance. Journal of Empirical Finance 8(4) 345–373.

Vayanos, D. 2004. Flight to quality, flight to liquidity, and the pricing of risk. NBER working

paper No. W10327.

Warga, A. 1992. Bond returns, liquidity, and missing data. Journal of Financial and Quanti-

tative Analysis 27(4) 605–617.

APPENDIX

A. Overview

In this appendix we elaborate on several issues investigated in the main paper. We start with

statistical issues. In §B we provide additional details about our statistical analysis of the TASS

database. Specifically, we describe our estimates of the standard deviation σ. In §C we describe

an alternative ratio method for estimating the persistence of hedge fund returns.

We next turn to the DTMC models. In §D we consider the two-state DTMC model without

dying funds, which provides a link between §5 and §6 in the main paper. In §E, we investigate

if the difference between the premium pn and the linear approximation p̃n derived in §5 of

the main paper can be understood by the second term in the two-term asymptotic expansion

developed there. We show that the second term explains the difference well for relatively

short-term lockup premiums. In §F, we analyze what possible parameter values can occur in

the DTMC model. Lastly, we supplement §7 in the main paper in §G by providing additional

descriptions of the way the three-state DTMC model parameters and the lockup premium

depend on basic hedge fund performance measures. We also show how the three or four-year

lockup premium can be approximated with a simple multiplicative form of the three parameters

δ, γ and σ, as shown in (1.1) in the main paper.

B. Statistical Results

In this section we supplement our discussion of sour statistical methods provided in §4. In

particular, we describe our estimates of the standard deviations of the annual returns selected
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above. We display sample standard deviation for selected annual returns in Table 3 and observe

that they are within the range we consider in this paper: from 0.05 to 0.25. For several strategy

categories, the number of selected returns is too small to obtain meaningful estimates of the

standard deviation. Thus, merging all returns from 2000 to 2004 for each strategy category

may give better insight about the real variability of the annual returns.

Table 3: Estimated standard deviation of annual returns (%)

strategy Number of 2000 2001 2002 2003 2004 All
observation

Convertible arbitrage 244 0.07 0.07 0.08 0.10 0.06 0.08
Dedicated short bias 30 0.02 0.15 0.18 0.22 0.14 0.16
Emerging market 325 0.20 0.22 0.15 0.19 0.12 0.17
Equity macro 270 0.12 0.06 0.09 0.06 0.07 0.08
Event driven 534 0.13 0.09 0.12 0.10 0.08 0.10
Fixed income arbitrage 196 0.07 0.03 0.08 0.09 0.06 0.07
Fund of fund 982 0.12 0.08 0.05 0.06 0.03 0.06
Global macro 176 0.07 0.11 0.12 0.15 0.08 0.11
Long short equity 1654 0.19 0.17 0.15 0.14 0.09 0.14
Managed future 238 0.13 0.13 0.12 0.14 0.10 0.12
Other 167 0.15 0.06 0.07 0.10 0.07 0.09

C. Persistence from Ratios of Average Relative Returns

An alternative way to estimate the persistence factor is to consider the ratio of the next-year

average returns to the current-year average return, restricting attention to the returns that are

positive in the current year. Table 4 is the ratio of two successive average returns restricting

attention to the returns that are positive and negative in the current year, respectively.

Since the average of relative returns is zero by definition, the ratio of averages for positive

and negative returns should be identical. However, it does not hold always since we excluded

outliers of relative returns that would not make the average of relative returns zero. As can

be seen from Table 1 and 4, these persistence estimates tend to be similar to the regression

estimates.
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Table 4: Ratio of average relative returns for good states

(i) For positive current relative returns

Strategy current year next year ratio
average relative return average relative return (γ)

Convertible 6.04 2.32 0.38
Emerging market 15.31 4.70 0.31
Event driven 7.29 1.29 0.18
Fund of fund 4.26 1.56 0.37

(ii) For negative current relative returns
Strategy current year next year ratio

average relative return average relative return (γ)

Convertible -4.12 -1.55 0.38
Emerging market -12.21 -6.25 0.51
Event driven -7.33 -1.28 0.18
Fund of Fund -3.73 -0.69 0.18

D. The DTMC Model Without Death

We now return to the DTMC model and elaborate upon the analysis of the case δ = 0. If we

consider the DTMC without hedge funds dying, then we can work with a two-state DTMC,

which has the transition matrix

P =
G
S

(

p 1 − p
1 − r r

)

, (D.1)

which has only the two parameters p and r.

Let π ≡ (πG, πS) be the steady-state probability vector of the two-state DTMC with

transition matrix in (D.1). A convenient explicit expression for π is

π ≡ (πG, πS) =

(

1 − r

(1 − r) + (1 − p)
,

1 − p

(1 − r) + (1 − p)

)

=

(

1 − r

2 − r − p
,

1 − p

2 − r − p

)

. (D.2)

Since YG and YS are the assumed relative returns (deviations from the mean return), we

can express variance of the fund’s relative performance in steady state as

σ2 = πG · Y 2
G + πS · Y 2

S . (D.3)

To satisfy, (D.3), we calibrate p and r in the transition matrix P of (D.1). We do this from

two equations for persistence factor γ, expressed as a function of p and q.

γ · YG = p · YG + (1 − p) · YS and γ · YS = (1 − r) · YG + r · YS . (D.4)
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From (D.4), we derive that

p =
γ · YG − YS

YG − YS
, r =

YG − γ · YS

YG − YS
. (D.5)

From the above equations, it is straightforward to verify that (YG − YS)/σ = 1. Hence, if we

fix YS/σ = −1.5, then we YG/σ = 1/1.5 ≈ 0.67, which exactly matches the analysis without

Markov chain when δ = 0. By assuming normally distributed annual relative returns, and

letting YG be the median of the positive returns, we found that YG/σ = median {|N(0, 1)|} =

0.67.

E. Approximation of the No-death Lockup Premium

This section supplements §5 of the main paper by examining the approximation of pn by the

two-term Taylor series expansion, in order to estimate pn better than p̃n with a simple form.

From the Taylor expansion, we obtain that

log(x+ 1) ≈ x and ex ≈ 1 + x+
1

2!
x2 (E.1)

for x close to 0. Applying these approximation formulas to (3.12), we have

pn ≈
1

n
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 .(E.2)

Thus, we have the approximation pn ≈ p̃n + en for p̃n in (5.1). However, it is hard to evaluate

en analytically due to the dependence between Rj
i and Rj

i+1 in general. We thus use Monte

Carlo simulation with a large number (105) of relative returns for a fund under 1-year and

n-year lockup in order to evaluate the lockup premium from 1 to 20 years. We find that 105

samples are sufficient to produce the same lockup premium to the premium obtained from

(6.16), with negligible difference.

We compute p̃n + en, n = 1, 2, ..., 20 numerically for three different death rates (δ =

0.00, 0.03, 0.06), γ = 0.5 and the other parameter values in Table 2 of the main paper. As

usual, we assume that a fund starts with a good state at the beginning. Numerical analysis
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shows that this en explains the difference between the exact lockup premium (pn) and the

analytical approximation (p̃n) reasonably well for relatively small values of n, specifically, for

n ≤ 5. For example, for δ = 0, we find that en explains more than 70% of the difference

between pn and p̃n for less than five years; see Figure 12. However, it is also observed that

as n increases, other higher-order terms omitted in the approximation formula (E.2) become

increasingly important in the lockup premium. As n increases, it is more likely to see sample

paths of a fund that become dead and start as a 1-year lockup fund. Notice that a 1-year

lockup fund produces higher expected relative returns than n-year lockup fund. Thus, it is not

surprising to see that p̃n + en becomes less accurate as n increases.

0 5 10 15 20
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0.015
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0.035

 

 

pn

p̃n

p̃n + en

Figure 12: The DTMC lockup premium (pn), analytic approximation (p̃n), and two-term approximation (p̃n + en) for
δ = 0, γ = 0.5, YG = 0.067, YS = −0.15 and YD = −0.20.

F. Possible parameter values in the DTMC Model

In this section, we supplement §6.4 in the main paper and determine what parameter values

can occur in the DTMC model. Figure 13 shows the three parameters as a function of δ with

YG = 0.067, YS = −0.15, YD = −0.20 and γG = γS = 0.5.

From (6.8) in the main paper, we see that p is a linear function of γG with positive slope

YG/(YG − YS). If YS ≤ 0, then we necessarily have γG < p < 1. The minimum possible value

of p, attained when γG = 0, is |YS |/(YG + |YS |). For example, if YG = 0.05 > 0 > YS = −0.15,

then the minimum value of p is 0.75 (at γG = 0) and the slope is 0.25. On the other hand,

if YG > YS > 0, then we must have p ≤ γG. If, instead, YG > YS > 0, then we require that

γG · YG > YS .

From (6.8), we see that p is independent of δ. Since (6.4) implies that δ < 1 − p, there is
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Figure 13: The DTMC parameter values p, q and r as a function of δ when YG = 0.067, YS = −0.15, YD = −0.20 and
γG = γS = 0.5

an upper bound on the possible δ, consistent with Figure 6. Moreover, that inequality can be

restated as p < 1− δ. When combined with (6.8), that yields an upper bound on γG, which is

strictly less than 1: γG ≤ (1−δ)+δ(YS/YG). For YG = 0.067 and YS = −0.150, γG ≤ 1−3.23δ.

Under the general condition that YG > YS > YD, we see that q ≡ q(r) via (6.10) is a

strictly decreasing function of r. The largest possible value of q occurs for r = 0, which is

(γS ·YS −YD)/(YG−YD). In order for q to be feasible (nonnegative), we must have that largest

possible value be nonnegative. Hence to have a feasible nonnegative value of q, we must have

γS · YS ≥ YD. That is always satisfied provided that YD ≤ 0 (given that YG > YS > YD).

From (6.10) alone, we can find an upper bound on r in terms of γS , YS and YD. If

0 > YS > YD, then we must have (1 − r)|YD| ≥ (r − γS)|YS |, so that

r <
|YD/YS | + γS

|YD/YS | + 1
< 1 for 0 < γS < 1 , (F.1)

where |YD/YS | > 1. On the other hand, if YS ≥ 0 > YD, then we have

r <
(|YD|/YS) − γS

(|YD|/YS) + 1
< 1 , (F.2)

where now |YD|/YS can assume a wide range of values.

When YG > 0 ≥ YS > YD, r has the form r = (a − B)/(A − b), where a < A and b < B,

so that we always have r < 1. We then have r > 0 if and only if either a > B or A < b; r is

negative otherwise. To have r > 0, we must have

a−B ≡

(

(1 − δ)(1 − γG)YG − δ(YG − YS)

(1 − γG)YG

)

−

(

γS · YS − YD

YG − YD

)

> 0 or (F.3)

b−A ≡

(

YS − YD

YG − YD

)

−

(

(1 − γG)YG − δ(YG − YS)

(1 − γG)YG

)

> 0 . (F.4)
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Examination of (6.11) shows that there can be difficulties in r as γG ↑ 1, because the term

δ(YG − YS)/(1 − γG)YG appearing in the terms a and A diverges as γG ↑ 1.

In summary, from this analysis, we see that there is an upper limit on how high the death

rate δ and the persistence γ can be. For the other parameters we consider, the maximal

possible death rate is δ = 0.07.

G. Sensitivity Analysis for the DTMC Model

In this section we do more sensitivity analysis, expanding on the discussion in §7 in the main

paper. We first carry out the calculations for the base case, using the parameter values derived

in §6.4. Our model depends on three exogenous variables, δ, γ, σ. We at first emphasized how

the lockup premium depends on the death rate δ. It is also important to investigate how the

lockup premium depends upon γ and σ.

G.1. How the Lockup Premium Depends on γ (γG, γS) and σ

We now see how much the premium depends on the model parameters γ(γG, γS) and σ. Table 5

shows the model parameters for γ = 0.4, 0.5, and 0.6 and Figure 14 shows the lockup premium

for γ = 0.4, 0.5, and 0.6. The figure suggests that as the persistence factor γ decreases, the

n-year lockup premium decreases. The DTMC model works for persistence factor as low as

0.1. However, the n-year lockup premium decreases to the amount lower than 0.5 percentage

points for any n. Figure 14 suggests that the estimation of γ is important, especially for small

δ and large n.

We next consider two separate persistence factors, γG and γS in Table 6 and the sensitivity

of the lockup premium with respect to γG and γS . Note that in the third line of Table 6, r

is negative, which breaks down the DTMC model. Figure 15 shows the lockup premium for

parameters in Table 6.

We lastly check the sensitivity of the lockup premium with respect to σ. Our TASS database

analysis estimates σ of annual returns for each year is lower than 0.20 in most cases. We here

highlight the sensitivity of the lockup premium for σ = 0.05, 0.10, and 0.15 with γ = 0.5. Table

7 is the parameter value sets and Figure 16 is the corresponding lockup premium. We see that

the premium increases in σ.
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Table 5: Parameter value sets for γ ranging from 0.2 to 0.6

γ δ p q r YG YS YD Calculated σ

0.4 0.00 0.8147 0.4147 0.5853 0.067 -0.15 -0.20 0.1002
0.4 0.03 0.8147 0.4427 0.4360 0.067 -0.15 -0.20 0.1000
0.4 0.06 0.8147 0.4892 0.1877 0.067 -0.15 -0.20 0.0998

0.5 0.00 0.8456 0.3456 0.6544 0.067 -0.15 -0.20 0.1002
0.5 0.03 0.8432 0.3719 0.5030 0.0685 -0.15 -0.20 0.1001
0.5 0.06 0.8409 0.4207 0.2282 0.070 -0.15 -0.20 0.1001

0.6 0.00 0.8765 0.2765 0.7235 0.067 -0.15 -0.20 0.1002
0.6 0.03 0.8727 0.3029 0.5645 0.070 -0.15 -0.20 0.0997
0.6 0.06 0.8679 0.3590 0.2324 0.074 -0.15 -0.20 0.1002

0.2 0.06 0.7615 0.6298 0.0782 0.0637 -0.15 -0.20 0.1002
0.3 0.06 0.7879 0.5586 0.1374 0.0652 -0.15 -0.20 0.1000
0.4 0.06 0.8147 0.4892 0.1877 0.067 -0.15 -0.20 0.0998
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(c) With δ = 0.06 and γ = 0.4, 0.5, 0.6
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Figure 14: The lockup premium for the DTMC model for parameter values in Tables 5.
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Table 6: Parameter value sets for γG and γS

γG γS δ p q r YG YS YD Calculated σ

0.6 0.4 0.00 0.8655 0.3982 0.6018 0.076 -0.15 -0.20 0.1000
0.6 0.4 0.03 0.8643 0.4320 0.4069 0.077 -0.15 -0.20 0.1002
0.6 0.4 0.06 0.8637 0.5068 -0.0127 0.775 -0.15 -0.20 0.1000

0.55 0.45 0.00 0.8547 0.3725 0.6275 0.0715 -0.15 -0.20 0.1000
0.55 0.45 0.03 0.8527 0.4014 0.4583 0.0730 -0.15 -0.20 0.1002
0.55 0.45 0.06 0.8513 0.4603 0.1276 0.074 -0.15 -0.20 0.1001

0.5 0.5 0.00 0.8456 0.3456 0.6544 0.067 -0.15 -0.20 0.1002
0.5 0.5 0.03 0.8432 0.3719 0.5030 0.0685 -0.15 -0.20 0.1001
0.5 0.5 0.06 0.8409 0.4207 0.2282 0.070 -0.15 -0.20 0.1001
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Figure 15: The lockup premium for the DTMC with γG 6= γS . γG = 0.6, γS = 0.4, γG =
0.55γS = 0.45, and γG = γS = 0.5.

G.2. Sensitivity of p, q, and r with respect to δ, YG, YS, and YD

In this section, we observe the effect of δ to the implied transition probabilities p, q, r. Figure

6 is the implied transition probabilities for δ from 0 to 0.1. It is clear that the transition
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Table 7: Parameter value sets for σ = 0.05, 0.10, 0.15

σ δ p q r YG YS = −1.5σ YD = −2.0σ σ (calculated)

0.05 0.00 0.8461 0.3461 0.6539 0.0333 -0.075 -0.10 0.05
0.10 0.00 0.8461 0.3461 0.6539 0.0667 -0.150 -0.20 0.10
0.15 0.00 0.8461 0.3461 0.6539 0.1000 -0.225 -0.30 0.15

0.05 0.03 0.8434 0.3721 0.5025 0.0342 -0.075 -0.10 0.05
0.10 0.03 0.8434 0.3721 0.5025 0.0684 -0.150 -0.20 0.10
0.15 0.03 0.8434 0.3721 0.5025 0.1026 -0.225 -0.30 0.15

0.05 0.06 0.8410 0.4209 0.2275 0.0350 -0.075 -0.10 0.05
0.10 0.06 0.8410 0.4209 0.2275 0.0699 -0.150 -0.20 0.10
0.15 0.06 0.8410 0.4209 0.2275 0.1049 -0.225 -0.30 0.15
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Figure 16: The lockup premium for the DTMC for σ = 0.05, 0.10, and 0.15.

probability from sick to sick state, r, is the most sensitive to δ. Simple calculation of the
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partial derivative of r with respect to δ shows that

∂r

∂δ
= −

2−p−r
1−p (YG − YD)

(YG − YS) − δ
1−p(YD − YD)

. (G.1)

From (G.1), we observe that as δ increases, r decreases more rapidly. Note that the coefficient

of δ in (G.1) is (YG − YD)/(1 − p) ≈ 1 thus its impact is big. We also observe that r becomes

negative as δ increases above 0.07. Thus, the maximum allowable death rate in the DTMC

model is 0.07.

The implied transition probabilities are calculated for YG, YS , and YD in Figure 10 in §7.

The plots show that p, q, and r are sensitive to YG, but that there is even more dependence

upon γ, especially when γ > 0.75. The sensitivity of p, q, and r to YS and YD is much less,

as is shown in Figure 10. This justifies that our parameter fitting method which changes YG

while fixing YG and YD since YG has greater effect to the implied transition probabilities than

YS and YD. Notice that from (6.8) of the main paper, p is independent of YD and a linear

function of γ.

We next consider the sensitivity of the steady-state probabilities πG and πS to the model

parameters. Up until the critical point in γ, the steady-state probabilities πG and πS are less

sensitive to γ, YS , and YD, but is sensitive to YG, which can be regarded as a function of σ, as

illustrated in Figure 17.

G.3. Sensitivity of the Premium for a Fixed Lockup Period

In this section, we investigate how the lockup premium for a fixed lockup period depends on

the three variables δ, γ, and σ. We consider n = 3 with the choice of parameters YS/σ = −1.5

and YD/σ = −2.0. The result is helpful to estimate the lockup premium for a fixed lockup

period when some of the three variables change. From Figure 9 in the main paper, it is clear

that the lockup premium increases as δ decreases, γ increases, or σ increases. It turns out

that the three-year lockup premium can be approximated reasonably well by a simple linear

function of each variable separately, at least over a narrow range.

Figure 18 shows the three-year lockup premium as a function of σ, γ, and δ for the DTMC

models. In this figure, we see how the three-year lockup premium depends on two of the three

variables σ, γ, and δ while fixing the remaining one variable. For example, Figure 18 (i) shows

the change of the three-year lockup premium for δ and γ while fixing σ as 0.1. We observe

the near-perfect linearity of the three-year lockup premium for σ. We also observe that the
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Figure 17: The steady-state probabilities πG and πS as a function of γ in the base case for
values of YG ranging from 0.05 (starting value, denoted by S) to 0.15 (ending value, denoted
by E), YS ranging from −0.15 to −0.10, and YD ranging from −0.20 to −0.15.

concavity of the premium for γ increases as γ increases. Figures 18 (i) and (ii) suggest that

the three-year lockup premium is quite insensitive to δ, which implies that the effect of δ on

the lockup premium is relatively small. Figure 18 (iii) and (iv) show the three-year lockup

premium for δ = 0.03. To supplement that, Figure 19 illustrates how the three-year lockup

premium for different γ and σ changes with δ = 0.00 and 0.06. We observe that the shape of

the three-year lockup premium function does not change as δ changes.

G.4. Estimating the Functional Form of the Three-year Lockup Premium

So far, we have calculated the lockup premium for variables γ, σ, and δ with the DTMC model.

Since we have calculated the premium as a function of three variables, it is then natural to

consider a simple functional form to describe the premium. If the estimation can be done

relatively easily, it is useful to approximate the premium with a closed-form expression of

three variables, denoted by ψ(δ, γ, σ). (Again, we fix YS/σ = −1.5 and YD/σ = −2.0.) We
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For γ = 0.1 to 0.5, (iii) δ = 0.00, 0.03, 0.06, 0.07 with σ = 0.1 (iv) σ = 0.05, 0.1, 0.15, 0.2, 0.25 with δ = 0.03
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δ = 0.00
δ = 0.03
δ = 0.06
δ = 0.07

For σ = 0.05 to 0.25, (v) γ = 0.1, 0.2, 0.3, 0.4, 0.5 with δ = 0.03 (vi) δ = 0.00, 0.03, 0.06, 0.07 with γ = 0.5

Figure 18: The three-year lockup premium for the DTMC model with YS = −1.5σ, YD =
−2.0σ. The lockup premium does not exist if q or r becomes negative.

may then understand the effect of these three variables more intuitively. It is also easy to

quickly estimate how the premium changes if the variables change.

The three-year lockup period is interesting because this is the first year a fund starting in
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σ = 0.05
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For δ = 0.06, (iii) σ = 0.05, 0.1, 0.15, 0.2, 0.25 (iv) γ = 0.1, 0.2, 0.3, 0.4, 0.5

Figure 19: The three-year lockup premium for the DTMC model with YS = −1.5σ, YD =
−2.0σ.

a good state may becomes dead in the DTMC model. Thus, we can see the effect of the death

of a fund on the lockup premium. Furthermore, three years is a practical case to consider.

Thus, we consider an estimation of three-year lockup premium as a closed form expression of

γ, σ, and δ. However, the approximation also works for different lockup period and the choice

of YS/σ. (See the remark below.)

Figure 18 suggests that the three-year lockup premium is weakly concave function of γ,

linear function of σ and relatively insensitive to δ. We thus try a simple product form of

three variables with an exponent for each variable. Specifically, denoting the three-year lockup

premium as a function of δ, γ, and σ by ψ(3)(δ, γ, σ), we consider the following simple candidate

approximation:

ψ(3)(δ, γ, σ) ≈ ψp
(3)

(δ, γ, σ) ≡ a δbγcσd . (G.2)

Taking logarithms of both sides of (G.2), it is straightforward to estimate the parameters a, b, c,
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and d from the calculated three-year lockup-premium values with linear regression, because

lnψp
(3)(δ, γ, σ) = ln a+ b ln δ + c ln γ + d lnσ . (G.3)

Since limδ→0 ψ
p
(3) = ∞ when b < 0 and 0 when b > 0, which is not desirable for our estimation

purpose, we have to restrict range of δ away from 0. Thus, we restrict the range of δ to

[0.01.0.07].

It turns out that without further restricting the ranges of the variables δ, γ and σ, the

candidate function ψp
(3)(δ, γ, σ) approximates the three-year lockup premium reasonably well.

For example, for δ ∈ [0.01, 0.07], the linear regression of (G.3) approximates the three-year

lockup premium by

ψp
(3)(δ, γ, σ) = 0.047 δ−0.11γ0.69σ0.64,

with maximum error of 0.0036. Notice that the exponent to δ is −0.11, which eventually

makes limδ→0 ψ
p
(3)(δ, γ, σ) = ∞. Thus, we expect that as δ approaches 0, e.g., for δ ≪ 0.01, the

estimation function will not approximate the three-year lockup premium in DTMC model well.

Figure 20 shows the estimation of the three-year lockup premium with the function obtained

from the regression above for the selected ranges of variables. We observe that the estimation

function approximates the three-year lockup premium reasonably well. If we further restrict

the ranges of the variables such that γ ∈ [0.2, 0.4], the maximum error reduces to 0.0004, which

is only less than 11% of the three-year lockup-premium values in the DTMC model.

We remark that the approximation of the fixed-year lockup premium in the DTMC model

by a product function ψp(δ, γ, σ) = a δbγcσd works reasonably well for the other lockup periods

(n) and other choices of YS/σ. For example, the four-year lockup premium in the DTMC model

is approximated by ψp
(4)(δ, γ, σ) = 0.03 δ−0.20γ0.69σ0.64 with maximum error of 0.0043. If we

choose YS/σ = −1.0, ψp
(3)(δ, γ, σ) = 0.06 δ−0.20γ0.64σ0.72 approximates the three-year lockup

premium with maximum error of 0.0072, which can be reduced to 0.0024 if we restrict the

range of γ, requiring that it be between 0.2 and 0.4. The approximation also holds reasonably

well if we change n and YS/σ at the same time, although the maximum error increases slightly.

As before, for δ ∈ [0.01, 0.07], if we choose YS/σ = −1.0, the four-year lockup premium in the

DTMC model is approximated by ψp
(4)(δ, γ, σ) = 0.05 δ−0.26γ0.65σ0.73 with maximum error of

0.0084. Again, the error reduces to 0.0024 if we further restrict the range of γ, requiring that

it be between 0.2 and 0.4.
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For δ = 0.01 to 0.07, (i) γ = 0.1, 0.3, 0.5 with σ = 0.1 (ii) σ = 0.05, 0.15, 0.25 with γ = 0.5

For γ = 0.1 to 0.5, (iii) δ = 0.03, 0.06 with σ = 0.1 (iv) σ = 0.05, 0.15, 0.25 with δ = 0.03

For σ = 0.05 to 0.25, (v) γ = 0.1, 0.3, 0.5 with δ = 0.03 (vi) δ = 0.03, 0.06 with γ = 0.5

Figure 20: Evaluating the product approximation ψp
(3)(δ, γ, σ) = 0.15 δ−0.11γ0.74σ1.00 for the

three-year lockup premium
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