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Abstract—The notion of effective bandwidths has provided
a useful practical framework for connection admission con-
trol and capacity planning in high-speed communication net-
works. The associated admissible set with a single linear
boundary makes it possible to apply stochastic-loss-network
(generalized-Erlang) models for capacity planning. In this
paper we consider the case of network nodes that use a
priority-service discipline to support multiple classes of ser-
vice, and we wish to determine an appropriate notion of
effective bandwidths. Just as was done previously for the
first-in first-out discipline, we use large-buffer asymptotics
(large deviations principles) for workload tail probabilities
as a theoretical basis. We let each priority class have its own
buffer and its own constraint on the probability of buffer
overflow. Unfortunately, however, this leads to a constraint
for each priority class. Moreover, the large-buffer asymp-
totic theory with priority classes does not produce an ad-
missible set with linear boundaries, but we show that it
nearly does and that a natural bound on the admissible set
does have this property. We propose it as an approxima-
tion for priority classes. Then there is one linear constraint
for each priority class. This linear-admissible-set structure
implies a new notion of effective bandwidths, where a given
connection is associated with multiple effective bandwidths:
one for the priority level of the given connection and one for each
lower priority level. This structure can be used regardless of
whether the individual effective bandwidths are determined
by large-buffer asymptotics or by some other method.

1 Introduction and Summary

The desire to provide different quality-of-service (QoS) guar-
antees to different classes of customers using emerging com-
munication networks is leading to the use of priorities in the
allocation of network resources. In particular, asynchronous-
transfer-mode (ATM) switches are being built with the
capability of supporting multiple priority classes. Also,
priority queueing can be used in internet-protocol (IP)
routers to support real-time services along with best-effort
service. Thus, it is natural to consider admission-control
and dimensioning procedures that take account of the pri-
ority structure. In this paper we discuss extensions of
the effective-bandwidth concept when there are priority
classes, allowing any number of priority classes. For ac-
counts of previous work on effective (or equivalent) band-
width (or capacity) with the first-in first-out (FIFO) disci-
pline, see Chang and Thomas [8], de Veciana, Kesidis and
Walrand [17], Guerin, Ahmadi and Naghshineh [23], Kelly
[26], Whitt [36] and references therein.
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Researchers have begun to examine the impact of non-
FIFO queueing on bandwidth allocation and admission con-
trol in high-speed networks. First, Elwalid and Mitra [18]
analyzed a loss-priority model where each ATM connec-
tion has some cells designated high priority and others des-
ignated low priority, and all cells are buffered in a single
FIFO queue, with lower-priority cells being discarded when
the queue length exceeds a threshold. A generalization of
this model with two or more loss-priorities per connection
was analyzed by Kulkarni, Gun and Chimento [28].
Zhang [37] and Elwalid and Mitra [20] considered mod-
els with Markov-modulated rate process (MMRP) sources,
each belonging to a priority class with its own buffer. In
particular, Zhang [37] considered an MMRP model where
the state of the underlying Markov chain determines the
rate of two or more MMRP sources. Zhang found the ex-
act solution for the joint distribution of the amount of fluid
in each queue. Elwalid and Mitra [20] provided an approx-
imate solution to the important special case of Zhang’s
model in which independent Markov chains determine the
arrival rates to two delay-priority queues. With their ap-
proximation, they could apply their previous MMRP algo-
rithms to calculate the (approximate) admissible set.
Here we focus on developing an appropriate notion of
effective bandwidths for the same model (where each pri-
ority class has its own queue and buffer), allowing more
general sources (not necessarily MMRPs). Our main con-
clusion is that the notion of effective bandwidths needs to
be modified. With priorities, the admissible set should be
determined by a constraint for each priority class, because
there is a separate (typically quite different) performance
constraint for each priority class. Under appropriate as-
sumptions or approximations, these constraints can be re-
garded as linear. Then there is one linear constraint for
each priority class, which implies a new notion of effective
bandwidths: A given connection should have multiple ef-
fective bandwidths, one for the priority level of the given
connection and one for each lower level.
The linear-admissible-set structure is important for ap-
plying stochastic-loss-network models to do capacity plan-
ning. For capacity planning, it is natural to specify the
blocking probabilities for each type of connection request
instead of the resource capacities, and solve the loss net-
work model to determine the required network capacities.
An example of the loss-network-model approach to capac-
ity planning is the design tool developed for the FIFO dis-
cipline by Mitra, Morrison and Ramakrishnan [30]. Our
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analysis provides a basis for extending such tools to prior-
ity classes.
With priorities, the loss network model can be solved
using numerical transform inversion, as in Choudhury, Le-
ung and Whitt [10], [11], [12]. The loss network model can
be solved repeatedly using a search procedure as in [12] to
determine appropriate resource capacities. As indicated in
[11], [12], it is also possible to consider alternative shar-
ing schemes besides the complete sharing. Upper limit and
guaranteed minimum constraints are proposed as a way to
provide multiple grades of service and protect one type of
source from overloads from other types of sources. These
constraints are appealing because, with them, it is still
possible to calculate the blocking probabilities using the
numerical transform inversion algorithm [11], [12].
Our contribution is to show how an admissible set with a
linear constraint for each priority class can be derived, and
to point out the implications for effective bandwidths. To
do so, we start by applying large deviations theory to de-
rive the exact admissible set associated with priority classes
using large-buffer asymptotics. However, that is only the
first step, because unlike for FIFO queues the exact large-
buffer asymptotic admissible set with priorities does not
have linear boundaries. We show that natural approxima-
tions and bounds for that admissible set do have linear
boundaries. We also examine numerical examples to see
how these approximations perform.
We establish the exact large-buffer-asymptotic admissi-
ble set for priorities in a companion paper [4]. In support
of that work, we have derived new large deviation princi-
ples (LDPs) for departure processes from a FIFO queue in
[32], extending earlier work by de Veciana, Courcoubetis
and Walrand [15], Chang [7], and Chang and Zajic [9].
Those authors found that an LDP for the departure pro-
cess could be obtained from a stronger sample-path LDP
for the input process. However, the sample-path LDP for
input processes used applies only to discrete-time processes
whose increments have moment generating functions that
are finite everywhere, which naturally occurs if the input
increments are bounded. This requirement is not too re-
strictive from an engineering perspective, but it is from
the modeling perspective, because many natural models
do not have this property. We obtain a more general LDP
for departure processes in [32] by requiring that the input
process satisfy a sample-path LDP in the function space
D of right-continuous real-valued functions with left lim-
its, with an appropriate non-uniform topology, which al-
lows the rate functions to be finite on sample paths with
jumps. This extension is needed even to establish an LDP
for the departure process from the elementary M/D/1 and
M/M/1 fluid queues. The new work shows that the same
large-deviation behavior for departure processes originally
established in [15] holds more generally. (See (2.12) below.)
We show the application to the low-priority workload in
Section 2.
Important related work includes LDPs for priorities es-
tablished by Kulkarni and Gautam [27] and Zhang [38] in
papers that appeared after this paper and [4] were sub-

mitted. Kulkarni and Gautam [27] obtain the same exact
asymptotic admissible set obtained here, but extra condi-
tions as provided in [32] are needed in their supporting LDP
for departure processes. Zhang [38] establishes an LDP for
the two-queue generalized processor sharing (GPS) disci-
pline, which contains the two-priority model as a special
case. Zhang’s LDP is based on the same sample-path LDP
for departure processes used in [15], [7], [9], and so it too
does not apply to the examples considered here. Addi-
tional LDPs for GPS are contained in Paschalidis [31] and
Bertsimas, Paschalidis and Tsitsiklis [6].
We consider two priority classes, because the key points
can be made with just two. However, the results extend
immediately to any number of priority classes, because for
any priority class under consideration, all higher classes can
be lumped together and all lower classes can be ignored.
Since the large-buffer asymptotics with priorities typically
produces an admissible set with nonlinear boundaries, we
develop two approximations for the low-priority steady-
state workload. These approximations cause the nonlin-
ear admissible set (i.e., with nonlinear boundaries) to be
replaced by a linear admissible set (i.e., with linear bound-
aries), thereby making it possible to define the new notion
of effective bandwidths. The two approximations produce
upper and lower bounds on the admissible set. The lower
bound is appealing because it is conservative and because
it tends to be close to the admissible set based on large-
buffer asymptotics. The two approximations both reduce
the low-priority steady-state workload to an appropriate
FIFO workload. Since the two approximations are general,
they also can be used to approximate the full low-priority
workload probability distribution and to produce other no-
tions of effective bandwidths besides the notion based on
large-buffer asymptotics, e.g. see Kelly [26].
Others have also proposed our lower-bound approximat-
ing admissible set with linear boundaries. First, a lower
bound for the GPS large-buffer-asymptotic admissible set
established by de Veciana and Kesidis [16] reduces to our
proposed admissible set when the GPS discipline is spe-
cialized to the two-priority case. Kulkarni and Gautam [27]
also introduce this approximating admissible set. However,
none of these other papers on large-buffer-asymptotics for
priorities explore the implications for effective bandwidths.
Also none discuss other methods besides large-buffer asymp-
totics.
Unfortunately, the effective-bandwidth approach based
completely on large-buffer asymptotics is often not a very
accurate approximation; e.g., see [13]. Moreover, it can be
difficult to find tractable source traffic models that accu-
rately fit traffic data. Nevertheless, we believe that our
results can be very useful because they identify an appro-
priate structure for the admissible set. Once we decide to
use an admissible set with linear boundaries, which corre-
sponds to multiple effective bandwidths for each priority
class, the actual effective bandwidths used can be defined
in various ways. We illustrate by specifying alternative
measurement-based procedures for obtaining appropriate
effective bandwidths, which are based on the linear struc-
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ture, and which are easy for practitioners to apply. We
provide an informal development of effective bandwidths
with priorities not based on large-buffer asymptotics in [5].
Related brief informal discussion appears on p. 609 of Ah-
madi et al. [3] and in Section 3.7 of Kelly [26]. Additional
support for our conclusions is provided by Elwalid and Mi-
tra [20], who found for the case of two priorities that the
approximate admissible sets they calculated often had this
linear structure.
Here is how the rest of this paper is organized. In Sec-
tion 2 we develop the large-buffer asymptotics for prior-
ities and present the two bounds on the admissible set,
referring to [4] and [32] for technical details. In Section 3
we give the asymptotic-decay-rate functions for standard
input processes. There we relate the MMRP to conven-
tional queueing input processes. Choudhury, Mandelbaum,
Reiman and Whitt [14] showed that any MMRP can be
represented as a limit of Markov-modulated Poisson pro-
cesses (MMPPs); here we show that this limit applies to
the asymptotic-decay-rate functions.
Sections 4 and 5 and are devoted to numerical examples
evaluating the performance of the effective-bandwidth ap-
proach with priorities, using the large-buffer asymptotics to
generate the effective bandwidths. In Section 6 we present
alternative ways to generate effective bandwidths, not based
on large-buffer asymptotics, that exploit the linear-
admissible-set structure. In Section 7 we give an exam-
ple illustrating how the priority structure might be applied
in practice. Finally, in Section 8 we draw conclusions based
on both the theory and our numerical examples.

2 Large-Buffer Asymptotics

With two priority classes, let class 1 be the high priority
class. Our model has input from multiple sources from
each of the two priority classes. Let Aij(t) denote the in-
put of work in the interval [0, t] from a type-j source of
priority i. Let there be Ji source types of priority i. We let
{Aij(t) : t ≥ 0} be a general stationary process. It could be
an MMRP, but it could also be more general. We assume
that the processes Aij(t) are mutually independent. We
assume that work is processed continuously at a constant
rate c whenever work is present. As in previous work on
effective bandwidths with the FIFO discipline, e.g., [36],
in our mathematical analysis we assume that there is an
infinite buffer. The tail probability thus serves as an ap-
proximation for the overflow probability.
The notion of effective bandwidth is based on perfor-
mance criteria on the tail probability of the priority-i steady-
state workload Vi for i = 1, 2, namely,

Prob(Vi > bi) ≤ pi i = 1, 2 , (2.1)

and on the exponential approximation:

Prob(Vi > bi) ≈ e−ηibi i = 1, 2 , (2.2)

which is asymptotically correct as bi →∞ under regularity
conditions, i.e., the large-buffer asymptotics. (We refer

to [4], [36] for more details, including technical conditions
needed for the results below.)
Note that, with priorities, the steady-state low-priority
delay is different from the steady-state low-priority work-
load. The low-priority delay can be much bigger than the
low-priority workload, because it may be necessary for low-
priority work to wait for high-priority work that arrives
after the low-priority work. We use workload here to fo-
cus on loss criteria. We intend to treat delay criteria in
subsequent work.
The effective bandwidth of a type-j source at priority-i
is defined to be

eij = ψAij (η
∗
i )/η

∗
i , where η∗i = −(log pi)/bi , (2.3)

and ψAij (θ) is the asymptotic-decay-rate function for a
type-j source at priority i,

ψAij (θ) = limt→∞
t−1 logEeθAij(t) (2.4)

andAij(t) is the input of work of a type-j source at priority-
i during the interval [0, t].
Assuming that the system starts with initial workload

Vi(0) for class i at time 0, the workload for class i at time
t can be defined by

Vi(t) = Vi(0)+Xi(t)− inf
0≤s≤t

{min{0, Vi(0)+Xi(s)}} , t ≥ 0 ,
(2.5)

where

Ai(t) = Ai1(t) + . . .+AiJi(t) , (2.6)

Xi(t) = Ai(t)− Si(t) , (2.7)

S1(t) = ct , (2.8)

S2(t) = ct−D1(t) , (2.9)

Di(t) = Ai(t) + Vi(0)− Vi(t) , (2.10)

with Ai(0) = 0 for all i. The processes {Si(t) : t ≥ 0}
in (2.8) and (2.9) are the server-availability processes; i.e.,
Si(t) is the total potential processing that can be done for
class i in the interval [0, t]. The maximum server processing
rate is the capacity or available bandwidth c. Clearly, (2.8)
holds for the high priority class. The processes {Di(t) : t ≥
0} are the departure (output) processes; i.e., the output
in completed work during the interval [0, t]. The output
Di(t) is clearly the input over [0, t], plus the initial work,
minus what is present at time t, as indicated in (2.10). For
i = 2, the server-availability process can clearly be defined
in terms of the departure process of the high priority class
by (2.9). Finally, the process {Xi(t) : t ≥ 0} in (2.7) is the
net input process for class i, in terms of which the workload
process is defined by the usual one-dimensional reflection
map in (2.5).
In this context, the tail-probability asymptotic decay
rate ηi in (2.2) is determined as the root θ of the equa-
tion

ψAi(θi) + ψSi(−θi) = 0 , (2.11)

where ψAi and ψSi are defined as in (2.4); see Theorem 10
of [36]. Under extra regularity conditions, the high-priority
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departure-process asymptotic decay rate function is

ψD1(θ) =

{

ψA1(θ) , θ < θ̂

ψA1(θ̂) + c(θ − θ̂) , θ ≥ θ̂ , (2.12)

where θ̂ is determined by the equation ψ′A1(θ̂) = c; see [15],
[7], [9], and [32].
Using the effective-bandwidth approximation, the set of
connections that satisfy the performance criteria (2.1), called
the admissible set, is the set of nij for which

Ji
∑

j=1

eijnij ≤ Ci , i = 1, 2 , (2.13)

where nij is the number of type-j priority-i sources and
Ci is the “effective capacity,” which depends on the server
availability process for priority-i. For priority 1, the effec-
tive capacity C1 is simply the speed of the server, c, but for
priority 2 the effective capacity depends on the departure
process of the aggregate of priority-1 connections.
For the desired simplicity in network planning models,
we make further approximations so that the priority-2 con-
straint in (2.13) is a linear combination of the priority-1 and
priority-2 sources. A natural choice would be an admissible
set of the form:

J1
∑

j=1

e1jn1j ≤ c (2.14)

J1
∑

j=1

e1jn1j +

J2
∑

j=1

e2jn2j ≤ c . (2.15)

However we claim that (2.15) is needlessly conservative and
significant improvement is obtained if (2.15) is replaced
with

J1
∑

j=1

e21jn1j +

J2
∑

j=1

e2jn2j ≤ c (2.16)

where e21j is the effective bandwidth of a type-j priority-i
source as seen by priority 2;

e21j = ψA1j (η
∗
2)/η

∗
2 . (2.17)

Equations (2.14), (2.16) and (2.17) immediately generalize
to an arbitrary number I of priorities:

k
∑

i=1

Ji
∑

j=1

ekijnij ≤ c for k = 1, . . . , I , (2.18)

where
ekij = ψAij (η

∗
k)/η

∗
k . (2.19)

To obtain the desired linear structure in (2.16), two ap-
proximations are suggested: The empty-buffer approxima-
tion provides a lower bound on the true admissible set,
while the reduced-service-rate (RSR) approximation pro-
vides an upper bound. (The bounding properties are intu-
itive; see [4] for proofs.) The empty-buffer approximation
for priority class 2 makes the simplifying assumption that

the amount of priority-1 work that queues in the buffer
is negligible and thus the priority-1 departure process is
approximated by its arrival process. In particular, the
empty buffer approximation makes S2(t) ≈ ct − A1(t),
so that X2(t) ≈ A1(t) + A2(t) − ct and V2(t) is approx-
imated by the total workload V1(t) + V2(t). In terms of
asymptotic-decay-rate functions, the empty-buffer approx-
imation implies that ψD1(θ) ≈ ψA1(θ) in (2.12), which is

correct if θ ≤ θ̂ (which is often the case), and ψS2(θ) ≈
cθ − ψA1(θ). Applying the effective bandwidth approxi-
mation to the empty-buffer system yields the empty-buffer
effective-bandwidth (EBEB) admissible set (2.14), (2.16)
and (2.17). As mentioned earlier, the EBEB approximation
is also developed as an approximation to the exact large-
buffer-asymptotic admissible set by Kulkarni and Gautam
[27]; see their (17) on p. 87. The lower bound on the GPS
large-buffer-asymptotic admissible set derived by de Ve-
ciana and Kesidis [16] when specialized to priorities also
reduces to the EBEB approximation. Note, however, that
our empty-buffer bound applies much more generally (be-
yond large-buffer asymptotics).
The RSR approximation assumes that the server is con-
tinuously available to the lower priority class but at a re-
duced rate, where the reduction is the long-run average
usage of the high priority class. In particular, the RSR
approximation makes S2(t) ≈ (1−ρ1)ct and ψS2(θ) ≈ (1−
ρ1)cθ. Applying the effective bandwidth approximation to
the RSR system, yields the RSR-effective-bandwidth ad-
missible set (2.14) and (2.16) with

e21j = cρ1j , (2.20)

where ρ1j is the occupancy of a type-j priority-1 source.
Although both (2.17) and (2.20) are useful to bound the
admissible set, for a single estimate of e21j we recommend
(2.17), because the empty buffer approximation yields the
exact effective capacity C2 (2.13) for a relevant range of η

∗
2 ,

and is conservative, while the RSR approximation is not.

3 Computing Decay-Rate Functions

In [36] and other papers, explicit formulas are given for
arrival-process asymptotic-decay-rate functions for many
specific models, which can be used to generate effective
bandwidths based on large-buffer asymptotics, as in (2.3)
and (2.17). For example, a very general arrival count-
ing process for queueing models is the Markovian arrival
process (MAP); e.g., see Lucantoni [29]. For a MAP, the
arrival-process asymptotic-decay-rate function is

ψA(θ) = pf(D0 +D1e
θ) , (3.1)

where D0 and D1 are square submatrices of the specially
structured MAP infinitesimal generator matrix and pf is
the Perron-Frobenius eigenvalue; see Section 6 of [36]. The
Perron-Frobenius eigenvalue of a square matrix A with this
structure is a real eigenvalue greater than the real part of
any other eigenvalue; see Theorem 2.6, p. 46, of Seneta [33].
The Perron-Frobenius eigenvalue of the matrix A can be
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calculated by solving the characteristic equation det(zI −
A) = 0 and finding the root with maximum real part.
A Markov modulated Poisson process (MMPP) is the
special cases of a MAP in which D0 =M −Λ and D1 = Λ,
whereM is the infinitesimal generator of the Markovian en-
vironment process and Λ is the associated diagonal matrix
of Poisson arrival rates in the environment states. Hence,
for an MMPP characterized by the pair (M,Λ), (3.1) be-
comes

ψA(θ) = pf(M − Λ+ Λeθ) . (3.2)

Given that we are focusing on workloads, in a queueing
model we should consider the total input in required service
time. If we consider the total input stemming from an ar-
rival counting process with asymptotic-decay-rate function
ψC(θ) bringing i.i.d. service requirements, with a generic
service requirement Z, where

ψZ(θ) = logEe
θZ , (3.3)

then the overall arrival process is

A(t) =

C(t)
∑

i=1

Zi , t ≥ 0 , (3.4)

and the overall arrival-process asymptotic-decay-rate func-
tion becomes

ψA(θ) = ψC(ψZ(θ)) ; (3.5)

e.g., see Theorem 5 of [36].
Alternatively, it is natural to considerMarkov-modulated
rate process (MMRP) input, as in Elwalid andMitra [19]. If
the infinitesimal generator of the Markovian environment
process is M and Λ is the associated diagonal matrix of
deterministic arrival rates in the environment states, then
the arrival-process asymptotic-decay-rate function is

ψA(θ) = pf(M +Λθ) . (3.6)

We now show how to relate the MMPP and MMRP de-
cay rate functions in (3.2) and (3.6). Choudhury, Mandel-
baum, Reiman and Whitt [14] showed that any MMRP can
be represented as a limit of MMPPs. Consider a common
Markovian environment process with infinitesimal genera-
tor M . Let Λ be the diagonal rate matrix for the MMRP,
where all entries are positive (not representing flow out).
Then the asymptotic-decay-rate function is (3.6). We can
obtain equation (3.6) by considering a limit of MMPP in-
puts. For each ε > 0, we define an MMPP arrival process
model. For each ε, let the Markovian environment infinites-
imal generator be M , the arrival rate matrix be the diago-
nal matrix Λ/ε, the service times be deterministic of size ε,
and the processing rate be c. Then, by (3.2) and (3.5), the
asymptotic-decay-rate function of the MMPP/D/1 input
process is

ψA,ε(θ) = pf

(

M − Λ
ε
+
Λ

ε
eεθ
)

. (3.7)

If we expand the exponential, letting eεθ = 1+εθ+o(ε2) in
(3.7), then we see that (3.7) approaches (3.6) as ε→ 0.

4 Examples with M/M/1 Inputs

In this section we consider examples in which the source
arrival processes are batch Poisson processes. If A(t) is a
compound Poisson process with Poisson rate λ and com-
ponent i.i.d. jumps having moment generating functions
mJ(θ), then the asymptotic-decay-rate function is

ψA(θ) = λ(mJ (θ) − 1) . (4.1)

If the jumps are size 1, then mj(θ) = eθ and ψA(θ) =
λ(eθ − 1). In this section we shall consider the special case
in which the jumps are exponential with mean µ−1, as in
the M/M/1 workload process, Then mJ (θ) = µ/(µ − θ)
and ψA(θ) = λθ/(µ− θ).
Now suppose that all sources are M/M/1 workload sources
with mean service times µ−1i for class i. Thus, the model
is equivalent to the M/M/1 two-priority queue. The goal
is to determine the feasible arrival rates λ1 and λ2 or,
equivalently, the feasible offered loads ρ1 and ρ2 where
ρi = λi/(µic). The M/M/1 model nicely illustrates the
results since many quantities of interest can be determined
analytically. One can view the model as representing (not
necessarily accurately) the traffic on an ATM network as
Poisson arrivals of bursts of cells.
We compare six cases for the admissible set associated
with the M/M/1 two-priority queue:

(1) the exact admissible set,
(2) the admissible set given the RSR approximation,
(3) the admissible set given the empty-buffer approxima-
tion,

and, paired with each of the above, the corresponding ef-
fective bandwidth approximations:

(4) the admissible set (2.13) with the exact calculation for
the effective capacity of Ci,

(5) the admissible set (2.14), (2.16) and (2.20), based on
the effective-bandwidth approximation and the RSR
approximation,

(6) the admissible set (2.14), (2.16) and (2.17), based on
the effective-bandwidth approximation and the empty-
buffer approximation.

We computed the exact admissible set by numerically
inverting the Laplace transform of the class-2 steady-state
workload, using the transform inversion algorithm in [1].
For the M/G/1 priority queue, this transform is given in
Kella [25]:

E[e−sV2 ] =
ẑ1(ĥ2(s))(1− ρ1 − ρ2)s
ĥ2(s)(s− ẑ1(ĥ2(s))

, (4.2)

where Vi is the priority-i steady-state workload, ĥ2(s) =
λ2(1−ĝ2(s)), and ĝi(s) is the Laplace-Stieltjes transform of
the priority-i service-time distribution (i.e., distribution of

work added by a priority-i arrival), ẑ1(s) = s+ρ1−ρ1b̂1(s),
and b̂1(s) is the Laplace-Stieltjes transform of the priority-
1 busy-period distribution, which is given by the Kendall
functional equation b̂1(s) = ĝ1(s+ ρ1 − ρ1b̂1(s)). Values of
the transform b̂1(s) can be calculated iteratively; see [2].
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The corresponding effective-bandwidth approximation has
a simple closed form when the batches are exponentially
distributed. Then the asymptotic decay rate function for
the priority-1 departure process ψD1(θ) is

ψD1(θ) =







λ1θ

µ1 − θ
, θ ≤ θ̂

λ1(ρ
−1/2
1 − 1) + c(θ − θ̂) , θ > θ̂ ,

(4.3)

where θ̂ = µ1(1−
√
ρ1), by (2.12). Thus the admissible set

based on effective bandwidths is:

ρ1

1− µ−11 η∗1
≤ 1 (4.4)

ρ2

1− µ−12 η∗1
≤











1− ρ1

1− µ−11 η∗2
, ρ1 ≤ (1− µ−11 η∗2)

2

µ1(1−
√
ρ1)
2/η∗2 , ρ1 > (1− µ−11 η∗2)

2 .
(4.5)

The empty-buffer approximation (2.16) and (2.17) will
coincide with (4.5) when the maximum admissible ρ1 is less
than (1−µ−11 η∗2)

2, or equivalently η∗1/η
∗
2 > 2−µ−11 η∗2 , which

holds when η∗1 is at least twice η
∗
2 . This typically would be

the case, as for example when the priority-2 threshold b2
is at least twice priority-1’s, b1, and p1 ≤ p2.
With the RSR approximation (and M/M/1 input), the
class-2 steady-state workload, V a2 , is distributed as the
workload in an associated standard M/M/1 queue, if we
rescale time so that the processing rate is 1. For the high-
priority class, the workload with parameters (λ1, µ1, c) is
equivalent to the workload in a model with parameters
(λ/c, µ1, 1), which corresponds to a standardM/M/1model.
(We do not scale the service requirements, which are not
time but work.) Thus,

P (V a1 > t) = P (V1 > t) = ρ1e
−(µ1−(λ1/c))t . (4.6)

For the low-priority class, the RSR approximation yields
M/M/1 input with parameters (λ2, µ2, c(1 − ρ1)). The
steady-state workload is the same as for the parameter
triple (λ2/c(1− ρ1), µ2, 1). Thus,

P (V a2 > t) =
ρ2
1− ρ1

e−(µ2−(λ2/c(1−ρ1))t , t ≥ 0 . (4.7)

Thus, the class-2 steady-state workload, V 12 , for the RSR
approximation with M/M/1 input, the admissible set is
given by

ρ1 ≤ ρmax1 (4.8)

ρ2 ≤ ρmax2 (1− ρ1) (4.9)

where ρmaxi is the value of z that solves

ze−µi(1−z)bi = pi i = 1, 2 (4.10)

The effective bandwidths with M/M/1 input are

ψAi(η
∗
i )/η

∗
i =

λi
µi − η∗i

i = 1, 2 (4.11)

and the RSR effective-bandwidth admissible set ((2.14),
(2.16) and (2.20)) becomes

λ1
µ1 − η∗1

≤ c (4.12)

λ2
µ2 − η∗2

≤ c(1− ρ1) , (4.13)

where η∗i < µi. Expressed in terms of ρ1 and ρ2, the ad-
missible set is

ρ1

1− µ−11 η∗1
≤ 1 (4.14)

ρ1 +
ρ2

1− µ−12 η∗2
≤ 1 . (4.15)

Even when ρ1 equals the maximum admissible value, ρ
max
1

in (4.8) or 1 − µ−11 η∗1 in (4.14), the maximum admissible
value of ρ2, in (4.9) or (4.15) respectively, is still positive.
Hence the admissible set is convex.
In the general M/G/1 setting, with the empty-buffer ap-
proximation the priority-2 steady-state workload, V e2 , is
distributed as the waiting time in an M/G/1 FIFO queue
with arrival rate (λ1+λ2)/c and service distribution (λ1G1+
λ2G2)/(λ1+λ2), where Gi is the batch-size distribution of
priority i. When the distributions are exponential with the
same mean, µ−1, for both priorities, the aggregate work-
load is that in a model with M/M/1 input having param-
eters (λ1 + λ2, µ, c). The workload is the same as for the
parameter triple ((λ1 + λ2)/c, µ, 1) and

P (V e2 > t) = ρe−(µ−(λ1+λ2)/c)t , t ≥ 0 . (4.16)

The rate here, µ− (λ1 + λ2)/c = µ(1− ρ1 − ρ2) is smaller
than the RSR rate µ− λ2/c(1− ρ1) = µ(1− ρ2/(1− ρ1)])
in (4.7). The admissible set is

ρ1 ≤ ρmax1 (4.17)

ρ2 ≤ ρmax2 − ρ1 (4.18)

where ρmax1 and ρmax2 are the same as in the RSR approx-
imation, (4.10). If b2 ≥ b1 and p2 ≥ p1, which is the
meaningful case, then ρmax2 ≥ ρmax1 and the admissible set
is convex.
Note that the empty-buffer admissible set, (4.17) and
(4.18), is a subset of the RSR admissible set (4.8) and (4.9)
and that they approach each other as ρmax2 → 1. The upper
limit ρmax2 is close to one when the priority-2 performance
criterion is loose, i.e. b2 and p2 are relatively large and
hence η∗2 is small.
If the two batch-size distributions are exponential with
different means, µ−11 and µ

−1
2 , then the aggregate input is

an M/H2/1 queue. The effective bandwidths are given by
(4.11) and the effective bandwidth of priority 1 as seen by
priority 2, ψA1(η

∗
2)/η

∗
2 , is λ1/(µ1− η∗2). The admissible set

((2.14), (2.16) and (2.17)) becomes

λ1
µ1 − η∗1

≤ c (4.19)

λ1
µ1 − η∗2

+
λ2

µ2 − η∗2
≤ c , (4.20)
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where η∗1 < µ1 and η
∗
2 < min{µ1, µ2}. In terms of ρ1 and

ρ2, the admissible set is:

ρ1

1− µ−11 η∗1
≤ 1 (4.21)

ρ1

1− µ−11 η∗2
+

ρ2

1− µ−12 η∗2
≤ 1 . (4.22)

Note that criterion (4.21) is more stringent than ρ1 < 1,
while criterion (4.22) is more stringent than ρ1 + ρ2 <
1. Also note that the criterion in (4.22) is more stringent
than the low-priority constraint with the RSR effective-
bandwidth approximation in (4.15),
When λ1 = c(µ1 − η∗1) and thus priority 1 is at its max-
imum admissible load, (4.19), then (4.20) becomes

λ2 ≤
(

µ2 − η∗2
µ1 − η∗2

)

(η∗1 − η∗2) . (4.23)

Provided that η∗1 > η∗2 , which is the usual case, we can
always admit some priority-2 work after priority 1 has
reached its capacity. Consequently the admissible set is
convex.
However, if η∗1 < η∗2 , then the admissible set is not con-
vex. If any priority-2 input is present, then the priority-2
constraint is binding, but if no priority-2 input is present,
then only the priority-1 constraint is relevant, and more
priority-1 input is allowed.
For a numerical example, consider the case where both
classes have Poisson arrivals and exponential batch sizes
with mean 1. The performance criterion parameters are:
b1 = 20, b2 = 200 and p1 = p2 = 10

−6. Hence η∗1 is 0.691
and is ten times bigger than η∗2 . Here ρ

max
1 in (4.10) is 0.36,

which is 16% bigger than the maximum admissible ρ1 given
the effective-bandwidth approximation: 1− µ−11 η∗1 = 0.31.
This illustrates the well-known conservatism that occurs
with effective bandwidths, apart from any priorities [13].
However, for class 2 (which has a loose performance cri-
terion), the maximum admissible ρ2 given the effective-
bandwidth approximation matches ρmax2 to three signifi-
cant figures, 0.931. Table 1 shows some sample points on
the frontier of the six admissible sets. The six cases listed
earlier are presented in the order: 6, 4, 5, 3, 1, 2. In Table
1, emp. stands for empty buffer; emp with (without) effec-
tive bandwidths corresponds to equations (4.21) and (4.22)
((4.17) and (4.18)). The exact values with (without) effec-
tive bandwidths are based on (4.4) and (4.5) ((4.2) with
numerical inversion). The RSR values with (without) ef-
fective bandwidths are based on (4.14) and (4.15) ((4.8)
and (4.9)).

Since η∗2 is less than θ̂ in (4.3) even for ρ1 equal to
ρmax1 , the empty-buffer-effective-bandwidth and the effec-
tive bandwidth admissible sets coincide. Although the
empty-buffer admissible set does not equal the exact ad-
missible set, they coincide to three significant figures over
the range of feasible ρ1 given the effective-bandwidth ap-
proximation for priority 1. However, if we had not used
the effective bandwidth of priority 1 as seen by priority 2,
ψA1(η

∗
2)/η

∗
2 , but rather had used the (unadjusted) priority-

1 effective bandwidth ψA1(η
∗
1)/η

∗
1 in (4.22), then when ρ1 =

maximum admissible ρ2
eff. bndwths. no eff. bndwths.

ρ1 emp. exact RSR emp. exact RSR
.00 .931 .931 .931 .931 .931 .931
.05 .881 .881 .884 .881 .881 .885
.10 .831 .831 .838 .831 .831 .838
.15 .781 .781 .791 .781 .781 .792
.20 .731 .731 .745 .731 .731 .745
.25 .681 .681 .698 .681 .681 .698
.30 .631 .631 .652 .631 .631 .652
.35 – – – .581 .581 .605

Table 1: M/M/1 example; performance criterion parame-
ters: b1 = 20, b2 = 200, p1 = p2 = 10

−6.

0.30 we would have thought the maximum admissible ρ2
would be 0.027 which is 23 times smaller than correct value
of 0.631.
Similar results occur for other parameter values, as long
as η∗1 � η∗2 , which is the most meaningful case. The con-
dition η∗1 � η∗2 along with the feasibility condition on
η∗1 , η

∗
1 < µ1, ensures that η

∗
2 is relatively small. This

increases the region where the exact effective-bandwidth
constraint for priority 2, (4.5), is linear in (ρ1, ρ2), and
also helps to reduce the conservatism of the empty-buffer
effective-bandwidth approximation for the priority-2 con-
straint (4.22). If η∗1 is also small, then the priority-1 effective-
bandwidth constraint is less conservative; i.e., the right-
hand edge of the admissible set based on effective band-
widths is closer to the exact. For instance, suppose b1 in the
previous example is increased from 20 to 150 and thus η∗1 is
decreased to 1.33η∗2 = 0.092. Now the maximum admissible
ρ1 given the effective bandwidth approximation matches to
three significant figures the true maximum, ρmax1 in (4.10),
which is now 0.908. Note that changing η∗1 changes e1 and
ρmax1 , but for a given feasible ρ1, the maximum feasible
ρ2 does not change for the exact calculation nor for the
approximations including the effective bandwidths.

5 Examples with MMPP Inputs

We now we consider more realistic traffic models. As in
Section 4, we consider only two priority classes. Now at
least one class has MMPP input. With this more com-
plex input, we no longer calculate the exact admissible set,
but we numerically calculate the exact admissible sets as-
sociated with the RSR and empty-buffer approximations.
To illustrate a range of behavior, we present three exam-
ples. In the first example the RSR and empty-buffer ap-
proximations and their associated effective bandwidths all
yield essentially the same admissible set. Since the ap-
proximations serve as upper and lower bounds for the true
system, we thus indirectly calculate the exact admissible
set. In the second example the RSR and empty-buffer ap-
proximations yield common admissible sets, but the associ-
ated effective-bandwidth approximations (though compa-
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rable to each other) are qualitatively more conservative, as
can occur in non-priority FIFO queues [13]. The third ex-
ample considers a larger number of connections. All three
examples are inspired from ATM networks. An arrival rep-
resents a cell and adds one unit of work. The processing
rate c equals 1 cell/cell-time.
For the first example, suppose that the priority-1 connec-
tions support a constant-bit-rate service and have equally
spaced cells. Their superposition is conservatively modeled
as a Poisson process. A priority-2 connection represents
more bursty traffic and is the popular two-state MMPP
where one state is ON while the other state is OFF, and
hence the process is equivalent to an interrupted Poisson
process (IPP). The MMPP has rate matrix

Λ =

(

λ1 0
0 0

)

and infinitesimal generator

M =

(

−r1 r1
r2 −r2

)

.

The parameters λ1, r1, r2 are determined as follows: Let
the mean arrival rate of a class-2 connection be λ1r2/(r1+
r2) = 0.02 cells/cell-time, let the fraction of time the con-
nection is in the ON state be r2/(r1 + r2) = 0.1, and
let the mean number of arrivals during an ON period be
λ1/r1 = 20, corresponding to roughly 1 Kbyte. Let the
performance-criteria parameter values be b1 = 100, b2 =
1, 000, p1 = 10

−9 and p2 = 10
−6. These performance pa-

rameters correspond to the ATM context where the priority-
1 queue length should be kept relatively short to satisfy
a quality of service commitment on cell delay variation
and where the priority-2 connections have access to a non-
negligible, “moderate,” buffer space. For these parame-
ters, η∗1 = 15η

∗
2 = 0.2072. The effective bandwidth of the

priority-1 Poisson arrival process is:

e11 ≡ ψA1(η∗1)/η∗1 = ρ1(eη
∗

1 − 1)/η∗1 = 1.1111ρ1 , (5.1)

which is only 10% bigger than the class-1 effective band-
width as seen by priority 2, (2.14),

e21 ≡ ψA1(η∗2)/η∗2 = 1.0069ρ1 . (5.2)

Thus, when priority 1 is at its maximum admissible value,
there is relatively little spare capacity for priority-2 connec-
tions. From (3.2), the effective bandwidth of a priority-2
connection is

e2 = ψA2(η
∗
2)/η

∗
2 =

(

−α+
√

α2 + 4λ1r2(eη
∗

2 − 1)
)

/2η∗2 ,

(5.3)
where α = r1 + r2 − λ1(eη

∗

2 − 1). For the given param-
eter values, e2 = 0.0258, which is only 30% greater than
the mean rate of 0.02. Note that the priority-2 performance
criterion is relatively loose: the threshold b2 is 50 times the
mean burst size of 20 cells. This is a regime where effective
bandwidths based on (2.2) are more likely to be accurate.

The maximum admissible ρ1 based on the effective band-
width approximation (5.1) is 0.89996, which almost equals
the exact value from the M/D/1 model of 0.90027. Like-
wise, the maximum admissible number of priority-2 con-
nections, based on the effective-bandwidth approximation
(5.3) is bc/e2c = b1/0.0258c= 38, whereas the exact value
is 39, obtained from computing the workload distribution
of the

∑

i MMPPi/D/1 queue. As in [13], this computa-
tion is done by numerically inverting the Laplace-Stieltjes
Transform (LST) of the virtual waiting time distribution
of the MAP/G/1 queue, given by

ŵ(s) = s(1− ρ)g[sI +D0 +D1ĥ(s)]−1e , (5.4)

where D0 and D1 are the infinitesimal rate matrices of the
MAP, ĥ(s) is LST of the service-time distribution H(t), e
is a column vector of all 1’s, ρ is traffic intensity (overall
arrival rate times mean service time) and the row vector g
is the solution to gG = g, ge = 1, where the matrix G is
given by:

G =

∫ ∞

0

e(D0+D1G)xdH(x) . (5.5)

The priority-2 admissible-set constraint for the RSR ef-
fective bandwidth approximation, (2.16) with (2.20), is

ρ1 + 0.0258n2 ≤ 1 , (5.6)

which is almost the same as the corresponding empty-buffer
effective-bandwidth constraint, (2.16) with (2.17),

1.0069ρ1 + 0.0258n2 ≤ 1 . (5.7)

The admissible sets for the (non-effective-bandwidth) RSR
and empty-buffer approximations are computed numeri-
cally [13]. Table 2 shows the admissible sets of the four
cases. The effective bandwidths are slightly conservative
compared to the “exact” RSR and EB approximations, but
the four regions are essentially the same. Since effective-
bandwidth approximations do not always work so well, it is
heartening to note that the present example does mirror a
relevant case in ATM: We can think of the higher-priority
queue carrying constant-bit-rate connections, whose super-
position can be conservatively modeled by the relatively
nice Poisson or batch-Poisson process, while the second-
priority queue has buffer space on the order of 1,000 to
10,000 cells, allowing η∗2 to be relatively small.
In the second example, the connections of both prior-
ity classes are two-state ON/OFF MMPPs. A priority-1
connection has a mean arrival rate of 0.02 cells/cell-time,
the fraction of time ON is 0.1, and the mean number of
arrivals during an ON period is 10. For a priority-2 con-
nection the parameters are respectively 0.04 cells/cell-time,
0.1, and 50. The performance criterion parameter values
are b1 = 100, b2 = 500, p1 = 10

−9, p2 = 10
−6, and hence

η∗1 = 7.5η
∗
2 = 0.207. The effective bandwidth of a priority-

1 connection, e1, is 0.133 and is about 5 times bigger than
the effective bandwidth as seen by class 2, e21 = 0.026.
Thus if one were to use (2.15) for the admissible set, then
one would significantly overestimate the class-1 effective
bandwidth as seen by class 2 (in the priority-2 constraint).
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max. no. priority 2
pr.-1 eff. bndwths. no eff. bndwths.
ρ1 emp. RSR emp. RSR
0.0 38 38 39 39
0.1 34 34 35 35
0.2 30 31 31 31
0.3 27 27 27 27
0.4 23 23 23 23
0.5 19 19 19 19
0.6 15 15 15 15
0.7 11 11 11 11
0.8 7 7 7 7
0.9 3 3 3 3

Table 2: First MMPP example: Priority-1 is Poisson,
priority-2 connections are two-state MMPPs, η∗1 = 15η

∗
2 =

0.207.

According to the effective-bandwidth approximation, the
maximum number of priority-1 connections is b1/e1c = 7;
while the true value is 13, obtained from numerically com-
puting the workload distribution in the

∑

i MMPPi/D/1
queue. This is an example of the well-known phenomenon
that in non-priority FIFO queues effective bandwidths based
on (2.2) can be very conservative [13], particularly when
the performance parameters (b1, p1) are relatively tight for
the arrival processes. Our approximations for priorities are
still subject to the accuracy of the effective bandwidths in
FIFO queues which is evident on the axes of the admis-
sible set where only one class is present. Herein we use
effective bandwidths based on (2.2) to have the desired
linearity property in (2.16). One could apply our approx-
imations for priorities to alternative concepts of effective
bandwidths; see Section 6.
Table 3 shows the admissible sets for this second exam-
ple. (See the next paragraph for an explanation of the last
column “int.eb,” which stands for intercept effective band-
width.) The main point of the table is that the approxima-
tions for the priority queueing have added little additional
inaccuracy beyond what was inherent from effective band-
widths based on (2.2). That is, the exact admissible set,
which has not been computed, is closely bounded by the
RSR and empty-buffer approximations. And the admissi-
ble set based on effective bandwidths with the exact effec-
tive capacity (2.13) (also not computed) is closely bounded
by the RSR and empty-buffer effective-bandwidth approx-
imations. For the empty-buffer effective bandwidths, if we
had not used the effective bandwidth of class 1 as seen by
priority 2, e21, but rather had kept the effective bandwidth
as e1 in the priority-2 constraint, then instead of the vec-
tor (6, 5, 5, 5, 5, 5, 5, 4) of admissible priority-2 connections
we would have obtained the needlessly conservative vector
(6, 5, 4, 3, 2, 2, 1, 0).
This second example also illustrates the usefulness of an-
other approximation, given one wanted to avoid the conser-
vatism of the effective bandwidths based on (2.2) but still
retain the linearity of (2.16). Define the effective band-

max. no. priority 2
no. eff. bndwths. no eff. bndwths. int.
pr.-1 emp. RSR emp. RSR eb
0 6 6 8 8 8
1 5 5 8 8 7
2 5 5 8 8 7
3 5 5 8 8 7
4 5 5 7 8 7
5 5 5 7 7 6
6 5 5 7 7 6
7 4 5 7 7 6
8 – – 6 7 6
9 – – 6 7 6
10 – – 6 6 5
11 – – 6 6 5
12 – – 5 6 5
13 – – 5 6 5

Table 3: Second MMPP example: Priority-1 and priority-2
connections are two-state MMPPs, η∗1 = 7.5η

∗
2 = 0.207.

width to be the reciprocal of the number of admissible
connections given each priority alone, including the case
of priority-1 connections subject to the priority-2 perfor-
mance criterion (the latter corresponds to the empty-buffer
priority-2 constraint Prob(V1 + V2 > b2) < ρ2 where only
priority-1 connections are present). For the present ex-
ample e1 = 13

−1, e2 = 8
−1 and e21 = 39

−1, where 39
is the maximum number of admissible priority-1 connec-
tions given the priority-2 performance criterion. We call
this approximation “intercept effective bandwidths,” and
the last column of Table 3 shows the resulting admissible
set. Although for this example the admissible set from the
intercept effective bandwidth approximation is a subset of
that from the empty-buffer approximation and thus is con-
servative relative to the true admissible set, this need not
hold in general.
Note that the intercept-effective-bandwidth overcomes
the conservatism of the effective-bandwidths based on (2.2)
but at the expense of greater computational complexity.
Unlike the RSR and empty-buffer effective bandwidths, the
computational complexity of the intercept-effective band-
widths increases with the number of connections, but not
as quickly as the (exact) empty-buffer approximation. For
example, the number of states in the Markov process for the
superposition of Ni homogeneous 2-state MMPPs, i = 1, 2,
is (N1 + 1)(N2 + 1), [13]. Thus, if one can numerically
solve systems of 100 states, then the empty-buffer approxi-
mation can be used for systems with about 10 connections
in each priority, whereas the intercept-effective-bandwidth
approximation can be used in systems with a 100 connec-
tions since only one priority is considered at a time. In
the special case where the per-connection arrival process
of work (ATM cells) is the same for both priorities, the
numerical computation of the empty-buffer approximation
simplifies and the approximation becomes identical to the
intercept-effective-bandwidth approximation.
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In the third example we consider a larger number of con-
nections. Suppose that the connections of both priorities
are ON/OFF MMPPs with the same parameter values:
mean rate 0.01, fraction of time ON 0.1, and mean burst
size 20. Let b1 = 500, b2 = 5, 000, and p1 = p2 = 10

−6.
Here η∗1 = 10

∗η∗2 = 0.028, and e1 is 1.7 times the mean
rate while e21 and e2 are only 5% greater than the mean
rate. The admissible sets are given in Figure 1. The effec-
tive bandwidth approximations again give a low estimate
for the number of admissible priority-1 connections, 57,
whereas the correct value is 66. Otherwise the approxima-
tions are rather tight. Also shown is the case of effective
bandwidths where FIFO service is used and all connec-
tions are subject to the class-1 criterion; here since the
connections of each class are stochastically equivalent, the
upper edge of the admissible set is a line with slope minus
one. Last, Figure 1 shows the case where the unadjusted
priority-1 effective bandwidth, e1, is used in the priority-2
constraint, as in equation (2.15), as opposed to e21, (2.16).
Note that half of the potential gain (measured in terms of
area of the admissible set) from using priorities instead of
FIFO is not realized if equation (2.15) is used.

6 Alternative Approaches

The results in this paper can be used without invoking
large-buffer asymptotics. First, any notion of effective band-
width previously developed for the FIFO discipline can be
directly applied together with the empty-buffer or RSR
approximation, because those approximations reduce the
problem to the FIFO case. The most important conclusion
in this paper is the appropriate new structure for effective
bandwidths with priorities, i.e., that there should be mul-
tiple effective bandwidths associated with a connection of
a given priority class. We now specify two practical en-

gineering methods for the FIFO discipline and show how
they can be extended to priorities, exploiting the linearity
of the admissible set.

6.1 A Boundary-Point Method

The first method is based on measurements at boundary
points of the admissible set. In particular, suppose that
the FIFO-service method is based on determining the max-
imum number of admissible connections of a given type
when no other connection types are present, using mea-
surements from a simulation, testbed network or an actual
network. To determine eiij , consider only priority-i type-j
connections for one fixed j. Find the upper limit n̄ij for
each connection type alone to obtain parameter specifica-
tion.

eiij = c/n̄ij , (6.1)

which corresponds to the constraint

eiijnij ≤ c . (6.2)

(In using (6.1) we ignore integrality constraints, i.e., the
requirement that the number of connections must be some
integer. Assuming that the capacity c is relatively large,
this effect should be minor.)
So far we have determined the effective bandwidths ekij
for k = i. Now we determine ekij for k > i. First fix i and
k with k > i. We consider a feasible number of priority-i
type-j connections established on the link, say noij . This
number might be the maximum number admissible given
the priority-i criterion, n̄ij , or it might be a lower value
that corresponds to a designed engineering point. Given
noij , we then see how many priority-k type-` connections
can be admitted for any fixed `, considering the priority-k
performance criterion. Suppose that this number is mok`.
We then let

ekij = (c− ekk`mok`)/noij . (6.3)

Equation (6.3) corresponds to the constraint

ekijnij + e
k
k`nk` ≤ c . (6.4)

In (6.4), we first determine a value for nij , n
o
ij . Then, with

that value noij in place, we determine the upper limit on
nk`, m

o
k`. Since the inequality (6.4) should be an equality

at the upper limit (again ignoring integrality problems) and
since ekk` has previously been determined, we can solve for
the single missing parameter ekij , obtaining the equation
(6.3).
In the case where noij is chosen to be the maximum
number admissible, n̄ij , then m

o
k` is a natural measure of

the benefit from using per-priority effective bandwidths,
since mok` would be zero with effective bandwidths based
on FIFO service. Moreover, when noij equals n̄ij , equation
(6.3) can be expressed as:

ekij = e
i
ij

(

1− ekk`m
o
k`

c

)

. (6.5)
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In (6.5) ekij equals e
i
ij times a factor that is between zero

and one. The larger the value of mok`, the smaller is the
value of ekij relative to e

i
ij . Thus, another measure of the

benefit of per-priority effective bandwidths is how much
smaller ekij is relative to e

i
ij . In cases when e

k
ij is close to

eiij , the complexity of using distinct effective-bandwidths
probably outweighs the potential efficiency gains.
From equations (6.1) and (6.3), we obtain all the effective-
bandwidth parameters ekij with i ≤ k. We have obtained
these parameters by exploiting the linearity of the con-
straint set. Given this linearity, it suffices to consider
only priority-i type-j connections when we determine the
effective-bandwidth parameters eiij via (6.1). Similarly, for
i < k, it suffices to consider only priority-i type-j con-
nections and priority-k type-` connections for any ` when
we determine the effective-bandwidth parameters ekij via
(6.3). A significant point is that we need consider only two
connection types in this calculation. To determine ekij , we
consider priority-i type-j connections and priority-k type-`
connections for some (any) `.
Since the linear admissible set is only an approximation,
we might not actually want to fit the parameters by consid-
ering connections at their upper and lower limits. Instead,
we might want to exploit knowledge of the typical operat-
ing region and determine a linear approximation to a more
accurate admissible set by constructing a linear hyperplane
tangent to the boundary for each priority class. This ob-
servation applies to the determination of both eiij and e

k
ij

for k > i. For example, the more accurate admissible set
might be determined by simulation, perhaps using source
traces, or by system measurements.

6.2 A Traffic-Descriptor Method

A second practical measurement-based approach can be
based on a standardized traffic descriptor. Consider Variable-
Bit-Rate (VBR) ATM connections for which the Sustainable-
Cell-Rate (SCR) traffic descriptor is specified [21]. The
SCR constitutes an upper bound on the mean rate of the
connection. Suppose that in the FIFO context the effective
bandwidth for these connections is chosen to be some fac-
tor times the connection’s SCR. Thus, for this subsection
let en represent the effective bandwidth of the n

th connec-
tion established on the link, and let SCRn denote the SCR
for this connection. Then

en = α · SCRn (6.6)

and, given that there are N connections established on the
link, the FIFO admissible set would now have the form:

N
∑

n=1

en =
N
∑

n=1

α · SCRn ≤ c . (6.7)

Note that in this case connections are not grouped in “types.”
A theoretical determination of the parameter α in (6.6)
and (6.7) would depend on many factors including addi-
tional characteristics of individual connections besides the
SCR. However, a more heuristic approach could be based

on historical measurements of realized connections and net-
work performance. In fact, for some years now, various
network operators have been using this approach for frame
relay networks, wherein the Committed Information Rate
(CIR) is analogous to the SCR. A conservative value for α
might be picked initially, and then subsequently reduced as
long as the performance commitment for the connections
continues to be met. From a conservative, worst-case per-
spective, since the realized mean rate could be as big as the
SCR (or CIR), α would need to be greater than one. How-
ever, in frame relay networks, measurements have shown
the mean rate to be significantly less than the CIR, and
values of α of 1/2 or even 1/4 have been used. Of course,
the service provider should gather measurements on an on-
going basis to track changes in overall load and connection
characteristics during network busy periods. For example,
as frame relay networks include switched connections as
well as semi-permanent ones, and as the applications using
the frame relay networks begin to include voice and video,
we expect that the value of α will need to be increased.
To extend the traffic-descriptor method to account for
priorities, multiple factors α are determined. Again for
this subsection, let ekin represent the effective bandwidth
of the nth connection established at priority i, as seen by
priority k, where

ekin = α
k
i · SCRn , (6.8)

for chosen factors αki , with α
k+1
i > αki . Likewise, given Ni

connections are established on the link at priority i, the
admissible set has the form:

k
∑

i=1

Ni
∑

n=1

ekin =

k
∑

i=1

Ni
∑

n=1

αki ·SCRn ≤ c, k = 1, . . . , I . (6.9)

It is more difficult to select the multiple correction factors
αki needed in (6.8) and (6.9) than it is to select the sin-
gle correction factor α needed in (6.7). The large-buffer
asymptotics and the EBEB approximation could be used
to generate candidate relative values ᾱki ; then we can set
αki = βᾱki for a single parameter β, and adjust the sin-
gle parameter β based on experience. It is important to
recognize that more work needs to be done to develop a
complete engineering solution, but we have identified an
appropriate framework with (6.8) and (6.9).

7 Example Engineering Application

In this section we apply the general principles of the previ-
ous sections to a particular engineering example. Consider
an ATM network that is being designed as an infrastruc-
ture to support the services of a network operator. Suppose
the network nodes have four priorities. In the highest pri-
ority are placed the ATM connections that support circuit
emulation. In the second priority are connections carry-
ing Variable-Bit-Rate (VBR) speech, i.e., speech where si-
lence has been eliminated. In the third priority are VBR
non-real-time connections supporting Frame Relay, and in
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the lowest priority are Unspecified-Bit-Rate (UBR) connec-
tions, with no minimum rate guarantees, supporting best
effort, elastic, data traffic. As part of the network design,
suppose the network operator is using effective bandwidths
for dimensioning link capacities via loss-network models.
(When effective bandwidths are used for dimensioning, as
opposed to connection admission control, rougher approx-
imations are appropriate, consistent with the uncertainty
of the future traffic demands.)
We wish to specialize equation (2.18) to the present ex-
ample of four priorities, I = 4. For brevity in this section,
the phrase “circuit-emulation connection” means an ATM
connection that supports circuit emulation, and likewise
for the other services. Since circuit-emulation connections
encounter cell-scale congestion within the highest priority
queue, one should use an effective bandwidth somewhat
higher than the peak cell rate in order to meet a tight cell-
delay-variation commitment. This then gives some poten-
tial to use a lower effective bandwidth for these connections
in the lower priority constraints. However, as illustrated in
the first example of Section 5, the potential gain is modest,
and thus, for simplicity, we will use the same effective band-
width in all of the priority constraints. As a consequence,
the priority-1 constraint is subsumed within the other con-
straints and thus can be ignored. Also for simplicity, we use
peak cell rate without a multiplicative factor as the effec-
tive bandwidth. We can group the circuit-emulation con-
nections into types, based on the rate, which is appropriate
if we wish to apply loss-network models. Thus, for priority
1, we have ek1j equal to the peak cell rate for connections
of bandwidth category j, independent of k = 1, . . . , 4.
For the VBR speech connections, we assume the traffic
entering the operator’s network is non-ATM, pulse-code-
modulation 64Kbps circuits, and the operator has chosen
an encoding algorithm that eliminates the silences, and
packages the resulting bit stream into ATM cells. We can
use a stochastic model for the characteristics of this VBR
flow and estimate the number of such connections that can
be supported for a given bandwidth; e.g., see Sriram and
Whitt [35] and Heffes and Lucantoni [24]. Thus, we can use
the boundary-point method of Section 6.1 to obtain effec-
tive bandwidths for these connections at priority 2. Note
that here we have a dependency, that frequently occurs,
where the effective bandwidth depends on the capacity
which in turn is the object to be determined. Thus in prin-
ciple, an iteration is necessary, though, for given a range of
interest, the effective bandwidth for the VBR speech con-
nections may vary only slightly and to further simplify the
calculation a constant value could be used. For example,
if the speech encoding algorithm is 32 Kbps adaptive dif-
ferential pulse code modulation with silence elimination,
if ATM adaptation layer 2 is used, and if the bandwidth
for the non-circuit-emulation connections will be at least
the speed of a T1, 1.5 Mbps, then from Sriram, Lyons and
Wang [34] one can assume an effective bandwidth of 21.9
Kbps.
For the effective bandwidths of the VBR speech con-
nections as seen by the third-priority Frame-Relay con-

nections, the large-buffer asymptotic-decay-rate approxi-
mation of Section 2 should be appropriate, given a rel-
atively large buffer threshold in the performance criteria
for the Frame-Relay connections. Likewise, for the effec-
tive bandwidth of the VBR speech connections as seen by
the fourth-priority UBR connections, where there is a very
loose, if any, performance criterion, the large-buffer asymp-
totic approximation would again be appropriate, and more-
over, the asymptotic approximation may be close enough
to the mean rate, that the mean rate itself can be used as
the effective bandwidth; see the third example in Section 5.
In summary, for the priority-2 speech connections there is
just one category, thus no dependence on subscript j, and
e2 > e32 ≥ e42, where e

4
2 or both e

4
2 and e

3
2 could be the

mean rate.
For the effective bandwidth of the Frame-Relay connec-
tions, it would be reasonable to use the standardized-traffic-
descriptor method of Section 6.2, as this is already being
used in existing Frame-Relay networks. As with the rates
for circuit-emulation connections, the sustainable-cell-rates
(SCRs) can be grouped into categories. To reduce complex-
ity, the multiplicative factor α (see Section 6.2) could be
picked to be the same for all SCRs; alternatively, it could
be different for different rate categories, or be dependent
on whether the connection is switched or semi-permanent,
as one could expect the former to have a higher occupancy
than the latter. (More work should be done to determine
good choices.) As for the effective bandwidth of the Frame-
Relay connections as seen by the fourth-priority UBR con-
nections, one could again use the standardized traffic de-
scriptors with a reduced value of α, or, as we will choose
here, one might simply use the historical, measured mean
rate. Thus, for the Frame-Relay connections, e3j would
be greater than e43j , where the type j could depend on a
rate category and/or switched versus semi-permanent con-
nection, and where e3j is given by the traffic descriptor
method, and e43j , for simplicity, is the mean rate.
For the fourth priority, UBR connections with no mini-
mum rate guarantee, the simplest policy would be to assign
an effective bandwidth of zero, in which case the fourth-
priority constraint would be subsumed into the third. How-
ever, given that the network operator wishes to engineer
some capacity for the fourth priority connections, a simple
policy would be to dimension a given amount of bandwidth,
or a given fraction, say β, of the total capacity, for the ag-
gregate of all fourth priority connections.
In summary, for this example of dimensioning an ATM
infrastructure to support four different services, equation
(2.18) would specialize to:

J1
∑

j=1

e1jn1j + e2n2 ≤ c (7.1)

J1
∑

j=1

e1jn1j + e
3
2n2 +

J3
∑

j=1

e3jn3j ≤ c (7.2)
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J1
∑

j=1

e1jn1j + e
4
2n2 +

J3
∑

j=1

e43jn3j + βc ≤ c , (7.3)

where the effective bandwidths ekij are determined by the
methods discussed above.

8 Conclusions

We have considered the problems of connection admission
control and dimensioning when there are priority classes
and the performance criteria are expressed in terms of
buffer overflow probabilities, which translate into steady-
state workload tail probabilities in an infinite-buffer model,
i.e., P (Vi > bi) ≤ pi as in (2.1). For all priority classes
except the highest, the steady-state workload is different
from the steady-state delay. The steady-state workload is
the appropriate quantity when the concern is buffer over-
flow. We have focused on the special case of two priority
classes, but our analysis extends directly to any number of
priority classes.
An important general observation about effective band-
widths with priorities is that there needs to be a constraint
in the admissible set for each priority class. In the con-
straint for priority class i, all higher priority classes play
a role (but no lower priority classes). This implies that
a connection at priority level i is associated with multi-
ple effective bandwidths, one for the priority level of the
given connection and one for each lower priority level. For
two priority classes, this means that there are two effective
bandwidths for priority class 1: one as seen by priority 1
and another as seen by priority 2, i.e., e11j and e

2
1j . It is im-

portant that e21j be used in the constraint associated with

priority class 2 instead of e11j . Often e
1
1j is significantly

larger than e21j , so that using e
1
1j instead of e

2
1j produces

a serious error, significantly underestimating the capacity
available to priority 2.
If large-buffer asymptotics are used to compute individ-
ual effective bandwidths, then we propose the empty-buffer
effective-bandwidth (EBEB) approximation, (2.17), (2.19)
– where the effective bandwidth of a type-j source of pri-
ority i seen by class k where i < k, is ekij = ψAij (η

∗
k)/η

∗
k

– as a relatively simple approximation for the admissible
set with priorities. The effective-bandwidth approxima-
tions considered in Sections 2–5 are based on large-buffer
asymptotics, under assumptions yielding exponential tail
probabilities. The complex structure found in many traffic
measurements on existing communication networks indi-
cates that the suitability of these assumptions needs to be
carefully checked in applications. Thus alternative heuris-
tic ways to define effective bandwidths were described in
Section 6. They make strong use of the linear-admissible-
set structure.
With large-buffer asymptotics, we propose the EBEB ap-
proximation instead of the exact effective-bandwidth ap-
proximation primarily because the EBEB approximation

produces a linear admissible set, i.e., an admissible set con-
structed from linear constraints, whereas the exact effective-
bandwidth approximation does not. The reduced-service-
rate (RSR) effective bandwidth approximation, (2.14),
(2.16), (2.20) also produces a linear admissible set, but it
tends to be less accurate as well as not conservative. A lin-
ear admissible set greatly helps for doing capacity planning
using loss network models.
We have noted that the EBEB approximation is a con-
servative approximation to the exact effective-bandwidth
approximation. Hence, when the exact effective-bandwidth
approximation is conservative (which is usually, but not al-
ways the case [13]), the overall EBEB approximation is it-
self conservative. Our experience with numerical examples
is that the EBEB approximation is often very close to the
exact effective-bandwidth approximation. The most likely
source of error, if there is significant error, is the gap be-
tween the exact effective-bandwidth approximation based
on large-buffer asymptotics, and the exact admissible set.
The effective-bandwidth analysis also dramatically shows
when it makes good engineering sense to introduce priority
classes. (There can also be other reasons to introduce prior-
ities.) Consistent with intuition, it is appropriate to make
class 2 a low-priority class when the performance require-
ments for class 2 are much less stringent than the perfor-
mance requirements for class 1. The effective-bandwidth
analysis characterizes the performance requirements via
the effective performance criteria η∗i ≡ − log pi/bi in (2.3),
associated with the constraint P (Vi > bi) ≤ pi. Hence,
when η∗1 � η∗2 , it makes sense for class 2 to be the low-
priority class.
The class-i effective performance criterion η∗i ≡ log pi/bi
is clearly more strongly affected by the buffer size bi than
the overflow probability pi because of the logarithm. Thus,
the strong ordering η∗1 � η∗2 is likely to occur when b1 � b2.
In turn, the ordering b1 � b2 is likely to occur, not so much
because buffer sizes are different, but because b1 is kept
small in order to meet more stringent delay requirements
for the high-priority class. (The steady-state delay and
workload are identical for the high priority class.) For pa-
rameter values that we deemed reasonable, it often seemed
appropriate to have η∗1/η

∗
2 ≈ 10. For ratios in this range,

we found the two-priority structure to be effective.
In addition to providing the EBEB approximation, we
have provided ways to check its accuracy. The empty-
buffer and RSR approximations produce convenient upper
and lower bounds on both the exact effective-bandwidth
approximation and the full low-priority steady-state work-
load tail probabilities. When the admissible sets based on
the empty-buffer and RSR effective-bandwidth approxima-
tions are close, we can conclude that the EBEB approxi-
mation must be close to the exact effective-bandwidth ap-
proximation. It is our experience in examples with η∗1 � η∗2
that the EBEB approximation could essentially be identi-
fied with the exact effective-bandwidth approximation.
The most difficult challenge is validating the effective-
bandwidth approximation or producing a more accurate
admissible set, if necessary. The empty-buffer and RSR
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approximations reduce the exact calculation of the steady-
state low-priority workload tail probability to an exact cal-
culation with the FIFO discipline. When the four approx-
imations – all combinations of empty-buffer and RSR, ef-
fective bandwidth and exact – are close, then we know that
the EBEB approximation is accurate. Indeed, since the ad-
missible sets tend to be ordered, it suffices to compare only
the EBEB approximation to the RSR exact calculation.
A partial check on the accuracy of the effective-bandwidth
approximation is provided by considering each priority class
alone and computing the maximum admissible number of
connections for the FIFO case. This determines the dispar-
ity on the axes of the admissible set in the priority case.
Sometimes one can get a useful bound without doing this
computation: the maximum admissible number of connec-
tions is upper bounded by the link rate divided by the mean
rate of a connection, and sometimes the empty-buffer ef-
fective bandwidth is not much bigger than the mean rate.
Indeed, for some relevant cases the effective bandwidths e21j
and e2j were within 20% of the mean rate, and that the
effective-bandwidth constraint for the lower-priority class
could be shown to be very accurate. As a consequence, the
effective-bandwidth approximations tended to work bet-
ter for the lower-priority class than for the higher-priority
class. A natural approach, then, is to use the EBEB ap-
proximation only for the lower-priority constraint, and use
a more refined analysis to generate the higher-priority con-
straint(s).
To numerically calculate empty-buffer and RSR exact
admissible sets with MMPP input, we used the numeri-
cal transform inversion algorithm in [13]. As indicate in
[13], that algorithm is only effective for up to about 100
environment states. That means we can treat 100 iden-
tical sources of one type but only 10 sources each of two
types. Thus, the inversion algorithm is far from being able
to treat examples with many sources of many types.
A promising approximation strategy – intercept effective
bandwidth – is to characterize the admissible set only on
the axes and connect the points by lines. On each axis
only one of the two classes is present, so that the model
is simplified. Our examples based on large-buffer asymp-
totics indicate that the empty-buffer exact and overall ex-
act admissible sets tend to be slightly concave, so that the
intercept-effective-bandwidth approximation is not neces-
sarily conservative, but it is often quite close to the full
empty-buffer exact admissible set.
Finally, the RSR and empty-buffer approximations for
the low-priority workload process open the way for other
approaches to determine an appropriate admissible set, in-
cluding approaches that are not based on large-buffer ex-
ponential asymptotics. Promising practical measurement-
based approaches that exploit the linear admissible-set struc-
ture were presented in Section 6.

Acknowledgment

We thank Gagan Choudhury for his generous assistance
with the numerical calculations. We thank Roch Guerin for

encouraging us to be clear about the engineering relevance
and the relationship to prior work.

References

[1] J. Abate and W. Whitt, “The Fourier-series method
for inverting transforms of probability distributions,”
Queueing systems, vol. 10, pp. 5–88, 1992.

[2] J. Abate and W. Whitt, “Solving probability trans-
form probability transform functional equations for
numerical inversion,” Opns. Res. Letters, vol. 12, pp.
275–281, 1992.

[3] H. Ahmadi, P. F. Chimento, R. A. Guerin, L. Gün,
B. Lin, R. O. Onvural and T. E. Tedijanto, “NBBS
traffic management overview,” IBM Systems J., vol.
34, pp. 604–628, 1995.

[4] A. W. Berger andW. Whitt, “A general framework for
effective bandwidths with priorities and loss criteria,”
AT&T Labs, 1997.

[5] A. W. Berger and W. Whitt, “Extending the effective-
bandwidth concept to networks with priority classes,”
IEEE Communications Magazine, 1998, to appear.

[6] D. Bertsimas, I. Ch. Paschalidis and J. N. Tsitsik-
lis, “Asymptotic buffer overflow probabilities in mul-
ticlass multiplexers: an optimal control approach,”
IEEE Trans. Aut. Control, vol. 43, pp. 315–337, 1998.

[7] C. S. Chang, “Sample path large deviations and intree
networks,” Queueing Systems, vol. 20, pp. 7–36, 1995.

[8] C. S. Chang and J. A. Thomas, “Effective bandwidths
in high-speed digital networks,” IEEE J. Sel. Areas
Commun., vol. 13, pp. 1091–1100, 1995.

[9] C. S. Chang and T. Zajic, “Effective bandwidths of
departure processes from queues with time varying ca-
pacities,” Proc. IEEE Infocom ‘95, pp. 1101–1009.

[10] G. L. Choudhury, K. K. Leung and W. Whitt, “An
algorithm to compute blocking probabilities in multi-
rate multi-class multi-resource loss models,” Adv.
Appl. Prob., vol. 27, pp. 1104-1143, 1995.

[11] G. L. Choudhury, K. K. Leung and W. Whitt, “An
inversion algorithm to compute blocking probabil-
ities in loss networks with state-dependent rates,”
IEEE/ACM Trans. Networking, vol. 3, pp. 585–601,
1995.

[12] G. L. Choudhury, K. K. Leung and W. Whitt, “Effi-
ciently providing multiple grades of service with pro-
tection against overloads in shared resources,” AT&T
Technical Journal, vol. 74, pp. 50–63, 1995.

[13] G. L. Choudhury, D. M. Lucantoni and W. Whitt,
“Squeezing the most out of ATM,” IEEE Trans. Com-
mun., vol. 44, pp. 203–217, 1996.

[14] G. L. Choudhury, A. Mandelbaum, M. I. Reiman
and W. Whitt, “Fluid and diffusion limits for queues
in slowly changing environments,” Stochastic Models,
vol. 13, pp. 121–146, 1997.

[15] G. de Veciana, C. Courcoubetis and J. Walrand, “De-
coupling bandwidths for networks, a decomposition
approach for networks,” Proc. IEEE Infocom ‘94,
vol. 2, pp. 466–474, 1994.

14



[16] G. de Veciana and G. Kesidis, “Bandwidth allocation
for multiple qualities of service using generalized pro-
cessor sharing,” IEEE Trans. on Information Theory,
vol. 42, pp. 268–272, 1996.

[17] G. de Veciana, G. Kesidis and J. Walrand, “Resource
management in wide-area ATM networks using effec-
tive bandwidths,” IEEE J. Sel. Areas Commun., vol.
13, pp. 1081–1090, 1995.

[18] A. I. Elwalid and D. Mitra, “Fluid models for the anal-
ysis and design of statistical multiplexing with loss
priorities on multiple classes of brusty traffic,” Proc.
IEEE Infocom ’92, pp. 415–425, 1992.

[19] A. I. Elwalid and D. Mitra, “Effective bandwidths of
general Markovian traffic sources and admission con-
trol of high speed networks,” IEEE/ACM Trans. Net-
working, vol. 1, pp. 329–343, 1993.

[20] A. I. Elwalid and D. Mitra, “Analysis, approximations
and admission control of a multi-service multiplex-
ing system with priorities,” Proc. IEEE Infocom ’95,
pp. 463–472, 1995.

[21] International Telecommunications Union (ITU),
“Traffic control and congestion control in B-ISDN,”
ITU-T Recommendation I.371, Geneva, May, 1996.

[22] K. W. Fendick, V. R. Saksena and W. Whitt, “De-
pendence in packet queues,” IEEE Trans. Commun.,
vol. 37, pp. 1173–1183, 1989.

[23] R. Guerin, H. Ahmadi and M. Naghshineh, “Equiv-
alent capacity and its application to bandwidth allo-
cation in high-speed networks,” IEEE J. Sel. Areas
Commun. Vol. 9, pp. 968–981, 1991.

[24] H. Heffes and D. M. Lucantoni, “A Markov modulated
characterization of packetized voice and data traf-
fic and related statistical multiplexer performance,”
IEEE J. Sel. Areas Commun., vol. SAC-4, pp. 856–
868, 1986.

[25] O. Kella, “Parallel and tandem fluid networks with
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