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Abstract—We extend our recently developed algorithm for
computing (exact) steady-state blocking probabilities for
each class in product-form loss networks to cover general
state-dependent arrival and service rates. This generaliza-
tion allows us to consider, for the first time, a wide variety of
buffered and unbuffered resource-sharing models with non-
Poisson traffic, as may arise with overflows in the context of
alternative routing. As before, we consider non-complete-
sharing policies involving upper-limit and guaranteed-mini-
mum bounds for the different classes, but here we con-
sider both bounds simultaneously. These bounds are impor-
tant for providing different grades of service with protection
against overloads by other classes. Our algorithm is based
on numerically inverting the generating function of the nor-
malization constant, which we derive here. Major features
of the algorithm are: dimension reduction by elimination
of non-binding resources and by conditional decomposition
based on special structure, an effective scaling algorithm to
control errors in the inversion, efficient treatment of multi-
ple classes with identical parameters and truncation of large
sums. We show that the computational complexity of our
inversion approach is usually significantly lower than the
alternative recursive approach.

1 Introduction

In [6, 8] we developed a new algorithm for solving product-
form models based on numerically inverting the generating
function of the normalization constant. Here we extend the
algorithm to cover loss networks (or resource-sharing mod-
els) with general state-dependent arrival and service rates.
The model has multiple resources, each containing multiple
resource units which provide service to multiple job classes.
Each job requires a number of units from each resource,
which may be zero, one or greater than one. In a circuit-
switched telecommunications network, the resources may
be links, the resource units may be circuits on these links,
and the jobs may be calls.
In the standard loss network model [3, 6, 10, 11, 12,
15, 21, 23, 28, 31, 32], the job arrival processes are inde-
pendent Poisson processes and the job holding times are
assumed to be independent with exponential distributions
having a mean depending on the job class. (The exponen-
tial assumption can be relaxed by virtue of insensitivity
[3].) Here, however, we consider a more general model
with state-dependent arrival and service rates, which still
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has a product-form steady-state distribution. In particu-
lar, we assume that the vector representing the numbers of
jobs in service of each class evolves as a continuous-time
Markov chain, with the arrival and service rates of each
class depending on the number of jobs from that class al-
ready in service. The state-dependent arrival rates may be
used in two ways: First, the arrival rate may truly be state-
dependent, as when there are only finitely many sources or
when the arrival rate is controlled based on the number of
jobs in service. Second, the state-dependent arrival rate
may be introduced to approximate non-state-dependent
non-Poisson traffic (explained in Section 5), generalizing
Delbrouck’s [13, 14] treatment of a more elementary model.
The state-dependent service rate includes as a special
case the standard unbuffered model in which each job goes
into service immediately upon entering the system, and
hence the service rate for a class is proportional to the
number of jobs of that class in service. However, the main
attraction of the state-dependent service rate is that it al-
lows us to model the rich class of buffered resource-sharing
models in which a job is buffered upon entering the system
and starts service only after other jobs of its class have fin-
ished their service. The number of servers per class may be
one or more. In contrast to the unbuffered variant, where
the resource units are servers, in the buffered variant the
resource units are buffer spaces. In the special case of un-
limited servers per class the buffered variant is identical to
the unbuffered variant.
The standard loss model has a complete-sharing (CS)
policy, in which jobs are admitted whenever all the re-
quired resource units are free. Here, however, we con-
sider more general resource-sharing policies involving ex-
tra linear constraints (which make the state space coor-
dinate convex [17]). We pay particular attention to the
case in which upper-limit (UL) and guaranteed-minimum
(GM) bounds are assigned to each class. The UL bounds
limit the number of jobs from each class that can be in
service. The GM bound guarantees that there is always
space for a specified number of jobs from each class. A
set of GM bounds is equivalent to an upper limit on the
resource units used by each subset of the classes. The UL
and GM bounds are equivalent for two classes, but not for
more than two classes. We focus on combined UL and GM
bounds (which cannot be reduced to either one alone). The
UL and GM bounds are very useful for providing protec-
tion against overloads and for providing different grades of
service to different job classes.
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If all requirements under the sharing policy in use can be
met upon arrival of a new job, then the new job is admit-
ted, and all required resource units are held throughout
the job holding time. Otherwise, the job is blocked and
lost. The primary measures of performance are the block-
ing probabilities of the different classes.
The basic model we consider assumes fixed routing. How-
ever, we can also treat alternative routing approximately,
extending [14, 15], by using state-dependent arrival rates
represent overflow traffic associated with alternative rout-
ing. Networks of moderate size or with special structure
allowing dimension reduction (see [6, 8]) can be treated
by our method exactly. Large networks without special
structure can be analyzed approximately by extending the
reduced-load fixed-point approximations [21].
The fact that the generalizations we introduce have
product-form is easy to show. So our main contribution is
to provide an effective algorithm for computing the normal-
ization constants in these models. We also show that block-
ing probabilities and other steady-state characteristics have
simple expressions in terms of normalization constants. In
general, a steady-state performance measure (e.g., a mo-
ment) may involve computation of a very large number
of normalization constants, but we show in Section 5 that
it is always possible to express the quantity of interest in
terms of a small number of modified normalization con-
stants, which are as easy to compute by our method as the
standard normalization constant.
As in [6, 8], our algorithm is based on deriving a conve-
nient expression for the generating function of the normal-
ization constant and then numerically inverting the gener-
ating function. We use the Fourier-series method for invert-
ing generating functions [1, 2, 9]. Since the basic algorithm
is already described in [1, 2, 6, 8, 7, 9], we will be brief here,
concentrating on new features. It is well known that com-
puting the normalization constant is a challenging problem
when the model is large. Through numerical examples we
show that the numerical inversion approach is remarkably
effective.
The numerical inversion algorithm has a number of com-
putational advantages: First, large finite sums may be effi-
ciently computed through judicious truncation or through
acceleration methods. Second, for large models with a
high-dimensional generating function, it is often possible
to reduce the effective dimension by first, eliminating non-
binding resources and, second, by performing conditional
decomposition, i.e., by inverting the variables in a good or-
der. For example, dimension reduction enables us to solve
models with UL and GM resource-sharing policies nearly as
quickly as the standard model with the CS sharing policy.
Similar approaches to dimension reduction (but with quite
different algorithms) have been used by Lam and Lien [24]
for closed queueing networks and by Conway, Pinsky and
Tripandapani [11, 12, 28] for special cases of the loss net-
works considered here. It is also possible to reduce the com-
putations by exploiting multiplicities, i.e., multiple classes
with identical parameters. We can make our models much
larger by increasing multiplicities at negligible computa-

tional cost. In models for large systems the multiplicities
occur very naturally.
In addition to developing the inversion algorithm, we also
derive a new convolution-based recursive algorithm for the
most general model considered in this paper. However, we
also show that the recursive algorithms are much slower
than our inversion-based algorithms, and so their primary
use here is in verifying the inversion-based computations
for small models. In the past, recursive algorithms have
been derived from generating functions (for different mod-
els) by Reiser and Kobayashi [29], Delbrouck [14], Kogan
and Shenfild [22], Mitra and Morrison [26] and Morrison
[27].
We now discuss the unbuffered and buffered variants sep-
arately in more detail.

1.1 The Unbuffered Variant

The unbuffered variant has become widely recognized as
a fundamental model for communication networks. For
instance, it is now being considered to analyze the perfor-
mance of wireless networks [34] and emerging high-speed
communication networks employing the asynchronous trans-
fer mode (ATM) technology [26]. For ATM systems, the
unbuffered variant of loss models has possible applications
at both the call level and the burst level. In the basic ap-
plication, the resources are the bandwidth available at the
network facilities. This model applies at the call level if we
can assign an effective bandwidth requirement to each call
(on each link). The loss network applies at the burst level
if we can assign an effective bandwidth requirement to each
burst within an established connection. The possibility of
assigning such effective bandwidths and ways to do so are
actively being studied, e.g., see [36].
In the standard loss network model each arrival pro-
cess is a Poisson process, but it is desirable to general-
ize the model in order to represent arrival processes that
are significantly more or less bursty than the Poisson pro-
cess. For this purpose, Delbrouck [13, 14] and Dziong and
Roberts [15] considered linear state-dependent arrivals, the
so-called
Bernoulli-Poisson-Pascal (BPP) model. The less bursty
binomial case is also directly of interest because it corre-
sponds to arrivals from finitely many sources. For practi-
cal applications, it is important that the two parameters
αj and βj in the state-dependent arrival-rate function for
class j, λj(k) ≡ αj + βjk, where k class-j jobs are in ser-
vice, can be conveniently expressed in terms of the overall
arrival rate and peakedness. (The peakedness is a famil-
iar partial characterization of burstiness.) Hence, the BPP
model is relatively easy to apply to represent non-Poisson
arrival processes, as arise in overflow processes occurring
with alternative routing; see Section 5.
One of our contributions here is to develop faster algo-
rithms (see Section 8). However, a more important con-
tribution is to be able to solve the model when there are
the non-CS resource-sharing policies involving UL and GM
parameters. Previous algorithms for non-CS resource shar-
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ing have been very limited. A recursive algorithm for the
UL policy with one or two resources was developed by
Chuah [10]. For a single resource, the UL policy is equiva-
lent to the tree networks considered by Tsang and Ross [31]
(for the case of Poisson arrivals).

1.2 The Buffered Variant

The buffered variant with a single constant-rate server per
class and a single resource was considered by Kamoun and
Kleinrock [16] to analyze a node of a store-and-forward
computer network, where the outgoing channels of the node
share a certain number of buffers. Each job class cor-
responds to the traffic destined to a particular outgoing
channel. The resource here is the buffer space. As before,
the job holding time is the period the job occupies the re-
source. In this case it is the waiting time plus the service
time.
Unlike the unbuffered variant where almost all prior work
considers only the CS policy, Kamoun and Kleinrock did
consider the UL, GM and combined UL and GM policies.
However, we generalize their work in several ways: First,
we allow multiple servers per class. Second, they assumed
a single resource, while we consider multiple resources.
The multiple resources could either be multiple nodes of
a computer network or more than one resource at a single
node (e.g., several types of storage elements). Kamoun and
Kleinrock assumed that each job holds a single buffer ele-
ment but we can allow each job to hold multiple and pos-
sibly different numbers of buffer elements. Kamoun and
Kleinrock required the different job classes to have either
all identical traffic intensities or all different traffic intensi-
ties. We do not have this restriction. For the more complex
UL, GM and combined UL and GM policies, Kamoun and
Kleinrock had further restrictions on the system parame-
ters. Also in some cases it appears that the computational
complexity of their algorithm grows exponentially with r,
the number of job classes. (Their numerical examples are
only for 2 classes.) By contrast, we do not have any re-
strictions on the system parameters and our computational
complexity grows linearly with the number of different job
classes and does not grow at all if the parameters of a new
job class are identical to those of one of the existing classes,
thereby allowing us to consider a very large number of job
classes. With all these generalizations, we believe that we
have made an important contribution to analyzing buffered
resource-sharing models, which are important for modeling
high-speed network buffers.

1.3 Organization of the Paper

Here is how the rest of this paper is organized. In Section 2
we specify the model and derive the generating function of
the normalization constants with the complete-sharing pol-
icy. In Section 3 we consider non-complete-sharing policies.
In Section 4 we discuss how to compute blocking probabil-
ities. In Section 5 we show how to compute probability
distributions and moments for each class. In Section 6

we discuss modeling with BPP arrival processes (the con-
nection to peakedness). In Section 7 we introduce a new
method for reducing the dimension of the generating func-
tion by eliminating very lightly loaded resources from the
model before doing the inversion. In Section 8 we describe
a new scaling algorithm that allows accurate inversion of
all generating functions considered in this paper. In Sec-
tion 9 we discuss multiplicities. In Section 10 we discuss
the computational complexity of our algorithm. In Sec-
tion 11 we show how the generating functions can be used
to derive recursive algorithms. Finally, in Sections 12–14
we present illustrative numerical examples.
To save space, some material in the conference version of
this paper [7] has been omitted here. In Section 8 of [7] we
show how to calculate derivatives of the blocking probabil-
ities with respect to model parameters by inversion. The
single-source examples in Sections 9 and 10 of [7] are differ-
ent from the examples here. The example in Section 9 of
[7] is the classical resource-sharing model (single resource)
with the CS policy and a finite-source input. We imple-
mented the recursive algorithm of Delbrouck [14] and the
uniform asymptotic approximation (UAA) of Mitra and
Morrison [26] and used them to validate the inversion al-
gorithm. (A variant of UAA was also developed by Kogan
and Shenfild [22].) The example in Section 10 of [7] con-
tains all the model variations considered in this paper in
the context of a single resource. In particular, it has four
types of classes, both buffered and unbuffered, with state-
dependent arrival rates and non-CS policies. Up to 4000
classes share up to 100,000 resource units. Exploiting mul-
tiplicities and truncation, we are able to solve the largest
case in only a few seconds on a SUN SPARC-2 workstation.
After completing this paper, we extended the algorithm
here in [5] to cover the case of state-dependent arrival of
batches. Previous work on batches was done by van Doorn
and Panken [33], Kaufman and Rege [18] and Morrison
[27].

2 Complete Sharing

2.1 The General Case

Consider a loss network with p resources and r classes of
jobs. Let the resources be indexed by i and the job classes
by j. Let resource i have Ki units, 1 ≤ i ≤ p, and let
K ≡ (K1, . . . ,Kp) be the capacity vector. (We let vectors
be either row vectors or column vectors; it will be clear from
the context.) Each class j job requires aij units on resource
i, where aij is a (deterministic) nonnegative integer. Let
A be the p× r requirements matrix with elements aij .
Let the system state vector be n ≡ (n1, . . . , nr), where
nj is the number of class j jobs currently in process. Let
SP (K) be the set of allowable states, which depends on
the capacity vector K and the sharing policy P . The state
space SP (K) is a subset of Z

r
+, the r-fold product of the

nonnegative integers. With non-complete-sharing policies,
the set of allowable states will typically depend on other
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parameters besides K. For the complete-sharing policy,

SCS(K) = {n ∈ Zr+ : An ≤ K} . (2.1)

The stochastic process {N(t) : t ≥ 0}, where N(t) gives
the system state at time t, is an irreducible finite-state
continuous-time Markov chain (CTMC) with a unique
steady-state probability vector π. If there are k class-j
jobs in the network, then the arrival rate of class-j jobs
is λj(k). Let µj(k) be the rate of class-j service comple-
tion when there are k class-j jobs in the system. In the
unbuffered variant µj(k) = kµj and in the buffered vari-
ant with sj servers for class j, µj(k) = kµj for k ≤ sj
and µj(k) = sjµj for k > sj . Each job is admitted if all
desired resource units can be provided; otherwise the job
is blocked and lost (without affecting future arrivals). All
resource units used by a job are released at the end of the
job holding time.
The steady-state probability vector has the simple prod-
uct form

π(n) = g(K)−1f(n), (2.2)

where

f(n) =

r
∏

j=1

fj(nj), fj(nj) = Λj(nj)/Mj(nj) (2.3)

Λj(nj) =

nj−1
∏

k=0

λj(k), Mj(nj) =

nj
∏

k=1

µj(k), (2.4)

and the normalization constant (or partition function) is

g(K) ≡ gP (K) =
∑

n∈SP (K)

f(n). (2.5)

In the unrestricted case (without capacity constraints),N(t)
is a vector of independent birth-and-death processes and
thus a reversible Markov process. Thus, the restricted pro-
cess is also a reversible Markov process with a steady-state
distribution that is simply a truncation and renormaliza-
tion of the distribution in the unrestricted case; see Sec-
tion 1.6 of [19].
We now obtain the generating function of g(K) in the
case of a CS-policy. By definition

G(z) =

∞
∑

K1=0

· · ·
∞
∑

Kp=0

g(K)zK11 · · · zKpp (2.6)

for a vector of complex variables z = (z1, . . . , zp). We
obtain a more compact expression by changing the order
of summation. For this purpose, let K i =

∑r
j=1 aijnj .

Then

G(z) =

∞
∑

n1=0

· · ·
∞
∑

nr=0

∞
∑

K1=K1

· · ·
∞
∑

Kp=Kp

f(n)zK11 · · · zKpp

=

p
∏

i=1

(1− zi)−1
∞
∑

n1=0

· · ·
∞
∑

nr=0

r
∏

j=1

(

fj(nj)

p
∏

i=1

z
aijnj
i

)

=

p
∏

i=1

(1− zi)−1
r
∏

j=1

Gj(z), (2.7)

where

Gj(z) =
∞
∑

nj=0

fj(nj)

p
∏

i=1

z
aijnj
i . (2.8)

From (2.7), we see that the transform factors into r
terms, one for each class. However, in general, the fac-
tors Gj(z) in (2.8) will have common zi variables. In this
section we do not make any further assumption on the ar-
rival and service rates; hence no simplification of (2.8) is
possible. However, the infinite series in (2.8) may always
be truncated by realizing that nj ≤ min

i
bKi/aijc ≡ Nj .

So we can set λj(nj) = 0 for nj ≥ Nj which also implies
fj(nj) = 0 for nj ≥ Nj . This gives

Gj(z) =

Nj
∑

nj=0

fj(nj)

p
∏

i=1

z
aijnj
i . (2.9)

Using (2.9) we can do computations for arbitrary state-
dependent arrival and service rates. This is more general
than the models to be considered in Sections 2.2 and 2.3
where (2.8) has a closed-form expression.

2.2 The Unbuffered Variant With BPP Ar-

rivals

In this caseMj(nj) = µ
nj
j nj !. For Poisson arrivals, λj(k) =

λj . Here

fj(nj) =

(

λj
µj

)nj

· 1
nj !
=
ρ
nj
j

nj !
(2.10)

where ρj = λj/µj . Combining (2.8) and (2.10) yields

Gj(z) = exp

[

ρj

p
∏

i=1

z
aij
i

]

, (2.11)

which is the same as (2.12) of [6].
If, instead, λj(k) = αj + βjk where βj 6= 0, as in the
binomial and Pascal (negative binomial) cases of the BPP
model of [13, 14, 15], then

fj(nj) =

(

rj + nj − 1
rj − 1

) (

βj
µj

)nj

(2.12)

where rj = αj/βj . Combining (2.8) and (2.12) yields

Gj(z) =

∞
∑

nj=0

(

rj + nj − 1
rj − 1

)

(

βj
µj

p
∏

i=1

z
aij
i

)nj

=

(

1− βj
µj

p
∏

i=1

z
aij
i

)−rj

. (2.13)

With infinite state spaces, we would need to assume that
βj < µj in order to have a proper steady-state distribution,
but we can allow βj ≥ µj because we have a finite state
space.
In (2.13) we can allow βj to be negative provided that
λj(k) ≡ αj + βjk = 0 for some k. The case of βj negative
includes the finite-source input case. When there are Nj
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sources for class j, each with arrival rate λ′j , αj = Njλ
′
j ,

βj = −λ′j and rj ≡ αj/βj = −Nj . Further, defining pj =
λ′j/(λ

′
j + µj), (2.13) becomes

Gj(z) =

(

1− pj + pj
p
∏

i=1

z
aij
i

)Nj

(1− pj)Nj . (2.14)

2.3 The Buffered VariantWith Poisson Ar-

rivals

Let sj represent the number of servers for class j, µj the
service rate per server, and λj the arrival rate. Let ρj =
λj/µj . Then

fj(nj) =

{

ρ
nj
j /nj ! for nj < sj

ρ
sj
j /sj !(ρj/sj)

nj−sj for nj ≥ sj .
(2.15)

Combining (2.8) with (2.15), we get

Gj(z) =

sj−1
∑

nj=0

(

ρj
∏p
i=1 z

aij
i

)nj

nj

+

(

ρj
∏p
i=1 z

aij
i

)sj

sj

(

1− ρj
p
∏

i=1

z
aij
i /sj

)−1

. (2.16)

As sj approaches infinitely, (2.16) approaches (2.11). For
sj = 1,

Gj(z) =

(

1− ρj
p
∏

i=1

z
aij
i

)−1

. (2.17)

It is interesting to note that the buffered variant with single
server per class and Poisson arrivals is the same as the
unbuffered variant with BPP arrivals, rj = 1 and βj/µj =
ρj .

3 Other Sharing Policies

We can introduce other sharing policies by imposing addi-
tional constraints on the set of feasible states. As noted
in [6], each additional linear constraint is equivalent to
adding another resource. Resource i results in the con-
straint

∑r
j=1 aijnj ≤ Ki where Ki and aij are nonnegative

integers. Assuming that a new constraint is expressed in
terms of rational numbers, it can be re-expressed in terms
of integers.
Hence, we can add linear constraints without changing
the general form of the model, but the computational com-
plexity is exponential in the number of resources. There-
fore, it is significant that certain special extra sets of linear
constraints can be treated efficiently. As shown in [6], this
is true for the upper limit (UL) and guaranteed minimum
(GM) sharing policies. (For GM, we require special struc-
ture.) In both cases an extra linear constraint is added for
each class, but the effective dimension of the generating
function after dimension reduction increases by at most 1.
In this paper we show that we can consider the combined
UL and GM policy with only slightly more computation

than the CS policy. (Clearly the individual UL and GM
policies are special cases.) As in [6], we impose an addi-
tional condition to treat the GM policy. (This condition
can be removed for the pure UL policy.) In particular, we
assume that aij is either bj or 0 for all i. We let δij = 1 if
aij > 0 and δij = 0 otherwise. Let Nj be the number of
resource units guaranteed for class j jobs (which must be
the same for each resource type) and letN = (N1, . . . , Nr).
Let Lij be the upper limit on the number of resource
units of type i that class j jobs are allowed to use simulta-
neously. Let Mj be the minimum value of bLij/aijc over
all i, where bxc is the greatest integer less than or equal to
x. Let M = (M1, . . . ,Mr).
The state space for sharing with both UL and GM bounds,
which we denote by UG, is the intersection of the two sep-
arate state spaces, i.e.,

SUG(K,M,N) = SUL(K,M) ∩ SGM (K,N), (3.1)

where

SUL(K,M) = {n ∈ Zr+ : An ≤K, n ≤M} (3.2)

and

SGM (K,N) =






n ∈ Zr+ :
r
∑

j=1

(aijnj ∨ δijNj) ≤ Ki, 1 ≤ i ≤ p







(3.3)

with x ∨ y = max{x, y}. From (3.3), we see that GM
bounds for r classes corresponds to 2r linear constraints,
one of which is the CS constraint and another of which is
the GM consistency condition

∑r
j=1Nj ≤ Ki. In other

words, there is a linear constraint corresponding to each
nonempty subset of classes.
In the general case, the generating function of the nor-
malization constant g(K,M,N) is

G(z,y,x) =
∞
∑

K1=0

· · ·
∞
∑

Nr=0

g(K,M,N)
[

zK11 · · · zKpp

× yM11 · · · yMrr xN11 · · ·xNrr
]

. (3.4)

After changing the order of summation, we obtain

G(z,y,x) =
∞
∑

n1=0

· · ·
∞
∑

nr=0

∞
∑

N1=0

· · ·
∞
∑

Nr=0

∞
∑

M1=n1

· · ·
∞
∑

Mr=nr

∞
∑

K1=K1(n,N)

· · ·
∞
∑

Kp=Kp(n,N)





r
∏

j=1

fj(nj)

x
Nj
j y

Mj
y

(

p
∏

i=1

zKii

)]

(3.5)

for Ki(n,N) =
∑r
j=1(aijnj ∨ δijNj). Hence,

G(z,y,x) =

p
∏

i=1

(1− zi)−1
r
∏

j=1

Gj(z,y,x), (3.6)
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where

Gj(z,y,x) =

(1− yj)−1




(

1− xj
p
∏

i=1

z
δij
i

)−1

Fj

(

yjx
bj
j

p
∏

i=1

z
δijbj
i

)

+ (1− xj)−1Fj
(

yj

p
∏

i=1

z
aij
i

)

− (1− xj)−1Fj
(

yjx
bj
j

p
∏

i=1

z
aij
i

)]

(3.7)

and

Fj(x) ≡
∞
∑

j=0

fj(nj)x
nj . (3.8)

Since Gj(z,y,x) in (3.7) contains only the variables z,
yj and xj , the effective dimension in (3.6) can always be
reduced from p+2r to p+2. However, we can do even better
by explicit inversion, as we now show. Explicit inversion
with respect to xj yields

Gj(z, yj , Nj) =

(1− yj)−1




(

p
∏

i=1

z
δij
i

)Nj bNj/bjc
∑

nj=0

fj(nj)y
nj
j

+
∞
∑

nj=bNj/bjc+1

fj(nj)

(

yj

p
∏

i=1

z
aij
i

)nj


 . (3.9)

Now doing explicit inversion of (3.9) with respect to yj and
remembering that Mj ≥ bNj/bjc, yields

Gj(z,Mj , Nj) =
(

p
∏

i=1

z
δij
i

)Nj bNj/bjc
∑

nj=0

fj(nj)

+

Mj
∑

nj=bNj/bjc+1

fj(nj)

(

p
∏

i=1

z
δij
i

)njbj

. (3.10)

Note the remarkably simple form of (3.10). Assuming Nj
to be an integral multiple of bj , we can rewrite (3.10) as

Gj(z,Mj , Nj) =

(

p
∏

i=1

z
δij
i

)Nj




bNj/bjc
∑

l=0

fj(l)

+

Mj−bNj/bjc
∑

l=1

fj (bNj/bjc+ l)
(

p
∏

i=1

z
δij
i

)lbj


 . (3.11)

The overall remaining generating function is

G(z,M,N) =

p
∏

i=1

(1− zi)−1
r
∏

j=1

Gj(z,Mj , Nj), (3.12)

where Gj(z,Mj , Nj) is given by (3.10) or (3.11). If we

use (3.11), then there is a leading term
∏p
i=1 z

∑

r

j=1
Njδij

i

which can be explicitly taken out, and we can consider a
smaller problem with Ki replaced by Ki −

∑r
j=1 δijNj for

i = 1, 2, . . . , p. This step will be especially effective if K ≈
∑r
j=1 δijNj . As an extreme case, if Ki =

∑r
j=1 δijNj , 1 ≤

i ≤ p, then we get complete partitioning. Then (3.11) and
(3.12) provide an explicit expression for the normalization
constant as

g(K,M,N) =
r
∏

j=1

bNj/bjc
∑

nj=0

fj(nj). (3.13)

Using (3.12) and (3.10) or (3.11), we have effectively re-
duced the effective dimension of inversion from p + 2r to
p. However, since there are Mj terms in (3.10) and (3.11),
the computational complexity is about Mj times that of a
closed form p-dimensional inversion. In general, Mj could
increase with the Ki, but if there are many classes, Mj
may remain small even with large Ki. If, however, Mj is
indeed very large, then it will be advantageous to work with
Gj(z, yj , Nj) and do one more level of inversion. If bNj/bjc
is large, then it may even be advantageous to work with
Gj(z, yj , xj).
All the unbuffered and buffered versions considered in
Section 2 are easily obtained by inserting in the corre-
sponding expressions for fj(nj) in (3.7), (3.9), (3.10) and
(3.11). For the buffered variant (with Poisson arrivals), the
sums in (3.10) and (3.11) may be expressed in closed form.
Specifically, (3.11) becomes

Gj(z,Mj , Nj) =

(

p
∏

i=1

z
δij
i

)Nj [

1− ρbNj/bjc+1j

1− ρj

+



1− ρj
(

p
∏

i=1

z
δij
i

)bj




−1

ρ
bNj/bjc+1
j

(

p
∏

i=1

z
δij
i

)bj

− ρMj+1j

(

p
∏

i=1

z
δij
i

)Mjbj−Nj+bj






 . (3.14)

Thus, remarkably, for the buffered variant (with Poisson ar-
rivals), the computation for the combined UL/GMmodel is
just as fast as for the simple CS model. Note that the over-
all generating function, (2.7) or (3.6), is always a product
of factors, with one factor from each class. This property
allows us to combine several different types of arrival pro-
cesses (e.g., from the BPP family), model variants (buffered
and unbuffered) and sharing policies (CS and UL/GM) in
the same model. We illustrate this capability in our exam-
ple in Section 10 of [7].

4 Blocking Probabilities

It is important to distinguish between call (job) blocking
and time blocking. Call blocking refers to the blocking ex-
perienced by arrivals (which depends on the state at ar-
rival epochs), while time blocking refers to the blocking
that would take place at an arbitrary time if there were
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an arrival at that time (as in the virtual waiting time).
Since the steady-state distribution π refers to an arbitrary
time, blocking probabilities computed directly from it in-
volve time blocking, but it is not difficult to treat call block-
ing as well as time blocking. With Poisson arrivals, the two
probability distributions at arrival epochs and at an arbi-
trary time agree, but not more generally; see [25].
The probability that a class-j job would not be admit-
ted at an arbitrary time (time blocking) with a combined
UL/GM policy is easily seen to be

B
(t)
j = 1−

g(K−Aej , M− ej , N−Aej)
g(K,M,N)

, (4.1)

where aj ≡ (a1j , . . . , apj) is the requirements vector for
class j and ej is a vector with a 1 in the j

th place and 0’s
elsewhere.
If the blocking probability is very small, then formula
(4.1) presents a numerical difficulty, since we are taking
the difference of two quantities both much larger than the
final answer. Specifically, if we compute in double precision
arithmetic with a precision of around 10−14, then large
roundoff error will be introduced whenever the blocking
probability is near or below 10−14. However, this difficulty
may be removed by rewriting (4.1) as

B
(t)
j =

h(K,M,N)

g(K,M,N)
, (4.2)

where

h(K,M,N) = g(K,M,N)

− g(K−Aej ,M− ej ,N−Aej). (4.3)

Let

H(z,M,N) =

∞
∑

K1=0

· · ·
∞
∑

Kp=0

h(K,M,N)

p
∏

i=1

zKii . (4.4)

To get a closed-form expression for H(z,M,N), define
g(K,M,N) to be 0 whenever Ki < 0 for any i in the range
1 ≤ i ≤ p. It can be shown that

H(z,M,N) =

p
∏

i=1

(1− zi)−1
r
∏

k=1
k 6=j

Gk(z,Mk, Nk)

×
[

Gj(z,Mj , Nj)−
p
∏

i=1

z
aij
i Gj(z,Mj − 1, Nj − bj)

]

(4.5)

where Gj(z,Mj , Nj) is as in (3.14). The numerical diffi-
culty disappears if, instead of computing h(K,M,N) via
(4.3), we compute it by transform inversion of the gener-
ating function expression (4.5). The inversion procedure
and scaling are identical to those used for the standard
generating function G(z,M,N).
As noted above, if class-j jobs arrive in a Poisson process,
then (4.1) also yields the call blocking, but not more gen-
erally. However, the call blocking always can be obtained

by calculating the time blocking in a modified model. Let
Bj be the class-j blocking probability (call blocking).
For notational simplicity only, consider the CS policy.
Let A ≡ (aij) be the requirements matrix. Then

Bj =1−
∑

n:An≤K−aj
λj(nj)π(n)

∑

n:An≤K λj(nj)π(n)

= 1−
∑

n:An≤K−aj
λj(nj)f(n)

∑

n:An≤K λj(nj)f(n)
(4.6)

for f(n) in (2.3). However, we can rewrite λj(nj)f(n) as
λj(0)f(n) and thus (4.6) as

Bj = 1−
∑

n:An≤K−aj
f(n)

∑

n:An≤K f(n)
= 1− g(K− aj)

g(K)
, (4.7)

where f(n) is the analog of f(n) with λj(m) replaced by
λj(m) ≡ λj(m + 1), and g(K) is the analog of g(K) with
f(n) replaced by f(n). The same argument clearly holds
for non-CS policies. We summarize this result for the com-
bined UL/GM policy as follows.

Theorem 4.1 With the combined UL/GM policy, the class-
j blocking probability Bj coincides with the time-blocking
quantities Btj in (4.1) for the modified model in which the
class-j arrival-rate function is changed from λj(m) to
λj(m) ≡ λj(m+ 1).
For the special case in which λj(m) = αj + βjm,

λj(m) = λj(m+ 1) = αj + βj(m+ 1)

= (αj + βj) + βjm, (4.8)

so that the modified model is a model of the same general
form. For the BPP model, this approach to computing
call blocking was pointed out by Dziong and Roberts [15],
p. 273. Note that λj coincides with λj when there are Pois-
son arrivals and λj reduces to the arrival rate with one less
class-j source when class j has a finite source input, agree-
ing with known properties. Van de Vlag and Awater [32]
have recently developed an efficient procedure for comput-
ing call blocking probabilities for many classes. However,
both of these papers only consider the CS policy.

5 Other Performance Measures

Let Xj represent the steady-state number of class-j jobs
in service at an arbitrary time. The primary performance
measures other than the probability of blocking are the
marginal distribution P (Xj ≤ l) and the kth factorial mo-
ment, defined as

E[X
(k)
j ] = E[Xj(Xj − 1) · · · (Xj − k + 1)] for k ≥ 1.

From (2.2)–(2.5), it is easy to see that these quantities are
given by

P (Xj ≤ l) =
g
(j,l)
d (K)

g(K)
(5.1)
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and

E[X
(k)
j ] =

g
(j,k)
m (K)

g(K)
, (5.2)

where
g
(j,l)
d (K) =

∑

n∈Sp(K)
nj≤lj

f(n) (5.3)

and

g(j,k)m (K) =
∑

n∈Sp(K)

nj(nj − 1) · · · (nj − k + 1)f(n). (5.4)

Note that the performance measures in (5.1) and (5.2)
are ratios of a modified normalization constant and the
standard normalization constant. We show that it is pos-
sible to construct the generating function of each type of
modified normalization constant, and that it has an expres-
sion similar to G(z), so that it may be directly inverted.
Hence, each performance measure requires the inversion of

just two generating functions. Specifically, let G
(j,l)
d (z) and

G
(j,k)
m (z) represent the generating functions of g

(j,l)
d (K) and

g
(j,k)
m (K), respectively. We can get expressions in the CS
case if we work with (2.8) and the UG (combined UL/GM)
case if we work with (3.10). To save space, we only con-
sider the UG case. As in Section 3, we includeM andN as
arguments of normalization constants and their generating
functions. (Note that the CS case is a special case of the
UG case with Nj = 0 and Mj = ∞, but it does not have
the restriction aij = δijbj).
It is easy to see that

G
(j,l)
d (z,M,N) =
p
∏

i=1

(1− zi)−1G(l)dj (z,Mj , Nj)
r
∏

q=1
q 6=j

Gq(z,Mq , Nq) (5.5)

and

G(j,k)m (z,M,N) =
p
∏

i=1

(1− zi)−1G(k)mj(z,Mj , Nj)
r
∏

q=1
q 6=j

Gq(z,Mq , Nq), (5.6)

where Gq(z,Mq , Nq) is as in (3.10),

G
(l)
dj (z,Mj , Nj)

= y
Nj/bj
j

l
∑

nj=0

fj(nj) for l ≤ bNj/bjc, and

= y
Nj/bj
j

bNj/bjc
∑

nj=0

fj(nj) +
l
∑

nj=bNj/bjc+1

fj(nj)y
nj
j (5.7)

for Mj ≥ l > bNj/bjc,

G
(k)
mj(z,Mj , Nj)

= y
Nj/bj
j

bNj/bjc
∑

nj=k

fj(nj)nj(nj − 1) · · · (nj − k + 1)

+

mj
∑

nj=bNj/bjc+1

fj(nj)nj(nj − 1) · · · (nj − k + 1)ynjj

for k ≤ bNj/bjc, and

=

Mj
∑

nj=k

fj(nj)nj(nj − 1) · · · (nj − k + 1)ynjj (5.8)

for Mj ≥ k > bNj/bjc, and

yj =

p
∏

i=1

z
δijbj
i =

p
∏

i=1

z
aij
i . (5.9)

Note that G
(j,l)
d (z,M,N) and G

(j,k)
m (z,M,N) are just

as easy to compute and then invert (see Section 8) as
G(z,M,N). Also, typically, whenever there is a simple
closed-form expression forG(z,M,N) (as for the unbuffered
CS policy with BPP arrivals in (2.13) or the buffered CS/UG
policy with Poisson arrivals in (3.14))) there will be a simi-

lar one for G
(j,l)
d (z,M,N) and G

(j,k)
m (z,M,N) as well. For

the unbuffered model with UG policy and BPP arrivals,
using the expression for fj(nj) from (2.12), it is easy to
show that

E[X
(k)
j ] =

αj(αj + βj) · · · (αj + (k − 1)βj)
µkj

× g(K− kAej , M− kej , N− kAej)
g(K,M,N)

, (5.10)

where g in the numerator implies that we have to consider
a system with αj replaced by αj + kβj .

6 Modeling and Preliminary Anal-

ysis for the Unbuffered Variant

with BPP Arrivals

In Section 4 we assumed that the sources really are of type
BPP, e.g., because they are in finite-source models or in
models with controlled arrival rates. However, another im-
portant use of the BPP model is represent non-Poisson
traffic, which occurs in overflow traffic associated with al-
ternative routing. Non-Poisson traffic can be characterized
approximately via a peakedness parameter [13, 14, 15, 37].
Peakedness is defined as the ratio of the variance to the
mean of the number of jobs in service in the associated
infinite-capacity system. For Poisson arrivals, the steady-
state distribution in the infinite-capacity system is Poisson,
so that the peakedness is 1. For more bursty arrival pro-
cesses, the peakedness is greater than 1; for less bursty
arrival processes, the peakedness is less than 1.
A way to approximately represent non-Poisson traffic in
our product-form model is to approximate the actual ar-
rival process by a BPP arrival process with the same ar-
rival rate and peakedness. For an unbuffered model with
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µj(k) = kµj and BPP arrival processes with state-dependent
rates λj(k) = αj + kβj , the means and variances in the
infinite-capacity system are

mj = αj/(µj − βj) and vj = µjαj/(µj − βj)2. (6.1)

From (6.1), we see that the two BPP parameters for each
class can be expressed as

αj = mjµj/zj and βj = µj(zj − 1)/zj (6.2)

where zj ≡ vj/mj is the peakedness. (This traditional
peakedness notation overlaps with our convention for com-
plex variables, but the context makes it clear which is in-
tended.)
Having obtained αj and βj , we wish to compute the
blocking probabilities. This could be done directly by ap-
plying Section 4, but as noted by Delbrouck [13], a bet-
ter approximation is obtained if we calculate the blocking
probability indirectly via the mean number of active jobs
in the finite-capacity system with the BPP arrival process.
Hence, the next step is to compute the mean number of
class-j jobs in service in the actual system with capac-
ity constraints, which we denote by m̃j . Note that Del-
brouck [13] computed m̃j in a much simpler system with
single rate, single resource and CS policy. However, we
have shown in Section 5 (equation (5.10)) that simple ex-
pressions for m̃j exist even in our much more general model.
Specifically, with combined UL/GM policy,

m̃j =E[X
(1)
j ]

=
αjg(K−Aej , M− ej , N−Aej)

µjg(K,M,N)
, (6.3)

where the symbol g in the numerator of (6.3) indicates that
we have to consider a system with αj replaced by αj + βj .
Note that this replacement is only done in the numerator.
Finally, the expression for call blocking is

Bj =1−
m̃j
mj
= 1−

(

1− βj
µj

)

× g(K−Aej , M− ej , N−Aej)
g(K,M,N)

. (6.4)

7 Eliminating Very Lightly Loaded

Resources

We now show how reduce the dimension of the generat-
ing function before performing the inversion by eliminat-
ing very lightly loaded resources. This step is done before
doing conditional decomposition in Section 3.1 of [6].
For this purpose, we can use the infinite-server means
mj and variances vj in (6.1) to estimate the load on each
resource. If there were no capacity constraints, then the
mean and variance of the number of resource units in use
on resource i would be

Mi =

r
∑

j=1

mjaij and Vi =

r
∑

j=1

vja
2
ij (7.1)

for 1 ≤ i ≤ p. We call Mi the resource-i offered load and
Vi the resource-i variance.
The resource-i offered load and variance are very im-
portant for recognizing when the analysis of large multi-
resource problems can be simplified before doing any com-
putation. If Mi is much smaller than Ki, then we can
simply ignore the constraint imposed by resource i. This
reduces the dimension of the generating function.
We can better estimate the importance of the constraint
imposed by resource i by approximating the distribution
of the number of required circuits by a normal distribution
with mean Mi and variance Vi in (7.1). The normal distri-
bution tends to be appropriate because, without capacity
constraints, the resource-i occupancy is the convolution of
the r occupancy distributions for each class. The normal
approximation will tend to be more accurate when r is
large, by virtue of the central limit theorem.
Let N(m,σ2) represent a normally distributed random
variable with mean m and variance σ2. Let φ(x) and
Φ(x) be the density and cdf of N(0, 1), respectively; i.e.,
φ(x) = (2π)−1/2 exp(−x2/2) and Φ(x) = P (N(0, 1) ≤ x).
Let Φc(x) = 1 − Φ(x). Let Xi be the steady-state num-
ber of occupied resource units in resource i. The simple
normal approximation without capacity constraints has Xi
approximately distributed as N(Mi, Vi) for Mi and Vi in
(7.1). This means that (Xi −Mi)/

√
Vi is distributed ap-

proximately as N(0, 1).
Thus, to approximately quantify the importance of the
various resource constraints, we can solve the equations

Mi + γi
√

Vi = Ki, (7.2)

where γi is called the resource-i binding parameter. Re-
sources with larger binding parameters γi values will tend
to be less binding, and thus less important. If γi is suit-
ably large, then we can delete resource i from the model
before performing the computation. For previous work on
normal approximations, see [14, 35] and references there.
We are now suggesting these approximations as an initial
step before applying our algorithm.
We have calculated the means and variances in this sec-
tion under the simplifying assumption that there are no
capacity constraints. However, when we use the UL and
GM bounds, the individual class means and variances mj
and vj may change dramatically. For instance, if the GM
bound is significantly bigger than mj , then the new mean
is approximately the GM bound itself and the new vari-
ance is approximately 0. More generally, we can calculate
approximate adjusted means and variances for each class
using properties of conditioned normal distributions, as we
now show.
We assume that the occupancy for the class in question
is approximately distributed as the conditional normal ran-
dom variable (N(m,σ2) | N(m,σ2) ≤ U) where U is the
upper limit parameter. (We omit the j subscript.) When
we consider the number of resource units used, we need to
multiply m by b and σ2 by b2, where b = aij for resource i
and class j.
The key to our analysis is the following property of
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conditioned normal distributions.

Lemma 7.1 For −∞ < L < U ≤∞,

E[N(m,σ2) | L ≤ N(m,σ2) ≤ U ]

=m+ σ
φ((L−m)/σ)− φ((U −m)/σ)
Φ((U −m)/σ)− Φ((L−m)/σ) (7.3)

and

E[N(m,σ2)2 | L ≤ N(m,σ2) ≤ U ]

=m2 + σ2 + 2mσ

(

φ((L−m)/σ)− φ((U −m)/σ))
Φ((U −m)/σ)− Φ((L−m)/σ)

)

+ σ
((L−m)φ((L−m)/σ)− (U −m)φ((U −m)/σ))

Φ((U −m)/σ)− Φ((L−m)/σ)) .

(7.4)

Proof. For the mean, note that xφ(x) = −φ′(x) for all
x, so that

E[N(0, 1) | L ≤ N(0, 1) ≤ U ] = φ(L)− φ(U)
Φ(U)− Φ(L)

from which (7.3) follows easily. Similarly, for the second
moment, note that x2φ(x) = φ(x) + φ′′(x), so that

E[N(0, 1)2 | L ≤ N(0, 1) ≤ U ] = 1 + Lφ(L)− Uφ(U)
Φ(U)− Φ(L) ,

from which (7.4) follows easily.

We now apply Lemma 7.1 to calculate the (approximate)
first two moments of the capacity used by a single class, in
the presence of guaranteed minimum and an upper limit
parameters.

Theorem 7.1 Let L and U be guaranteed minimum and
an upper limit parameters. Assuming that the occupancy
for some customer can be approximated by the conditional
normal variable (N(m,σ2) | N(m,σ2) ≤ U), the first two
moments of the capacity used at any time are

EC(L,U) = bLP (N(m,σ2) ≤ L | N(m,σ2) ≤ U)

+
[

bE(N(m,σ2) | L ≤ N(m,σ2) ≤ U)

× P (L ≤ N(m,σ2) | N(m,σ2) ≤ U)
]

= bL
Φ((L−m)/σ)
Φ((U −m)/σ)

+ bX

(

Φ((U −m)/σ)− Φ((L−m)/σ)
Φ((U −m)/σ)

)

, (7.5)

where

X = m+ σ
φ((L−m)/σ)− φ((U −m)/σ)
Φ((U −m)/σ)− Φ((L−m)/σ) (7.6)

and

E[C(L,U)2] = b2L2P (N(m,σ2) ≤ L | N(m,σ2) ≤ U)

+
[

b2E[N(m,σ2)2 | L ≤ N(m,σ2) ≤ U)

× P (L ≤ N(m,σ2) | N(m,σ2) ≤ U)
]

= b2L2
Φ((L−m)/σ)
Φ((U −m)/σ)

+ b2Y

(

Φ((U −m)/σ)− Φ((L−m)/σ)
Φ((U −m)/σ)

)

, (7.7)

where

Y =m2 + σ2

+2mσ

(

φ((L−m)/σ)− Φ((U −m)/σ)
Φ((U −m)/σ)− Φ((L−m)/σ)

)

+ σ

(

(L−m)φ((L−m)/σ)− (U −m)φ((U −m)/σ)
Φ((U −m)/σ)− Φ((L−m)/σ)

)

.

(7.8)

If, in addition, Φ((U −m)/σ) ≈ 1 and φ((U −m)/σ) ≈ 0,
then

EC(L,U)≈ bm− b(m− L)Φ((L−m)/σ)
+ bσφ((L−m)/σ) (7.9)

and

E[C(L,U)2] ≈ b2L2Φ((L−m)/σ)

+ b2(m2 + σ2)Φc((L−m)/σ)

+ b2[2mσ + (L−m)]φ((L−m)/σ)). (7.10)

Note that when we guarantee the average rate, i.e., when
L = m, (7.9) reduces to

EC(L,U) =mb+ σbφ(0)

=mb+
σb√
2π
≈ (m+ 0.4σ)b, (7.11)

while the variance is

VarC(L,U) = σ2b2(π − 1)/2π ≈ 0.34σ2b2. (7.12)

In summary, the idea is to apply Theorem 7.1 to com-
pute the approximate mean and variance of the capacity
used by each class j. Next we add these means and vari-
ances, as in (7.1), to compute the mean and variance of the
capacity needed for each resource i. We then apply (7.2) to
identify resources that can be deleted from the model. We
evaluate the binding parameters using the standard nor-
mal tail probabilities Φc(γi). (Recall that Φ

c(2) = 0.023,
Φc(3) = 0.0014, Φc(4) = 0.000032 and Φc(5) ≈ 3× 10−7.)
Hence, we can often remove resource i if γi ≥ 5. We
should also make adjustments for requirements of multiple
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resource units. The blocking probability for a class that
requires b resource units is roughly b times the blocking
probability of a class that requires only 1 resource unit.
Finally, with the resulting reduced model, we can ap-
ply dimension reduction using conditional decomposition
to further reduce the required computation [6, 8].

8 Scaling in the Inversion Algorithm

Most of the algorithm is as in [6, 8], so we will be brief.
Given a p-dimensional generating function G(z), we first do
the dimension reduction to determine the order in which
the variables should be inverted. We then perform (up to) p
one-dimensional inversions recursively, using the algorithm
in [9] which is based on the Fourier-series method.
An important component of the algorithm is an appro-
priate scaling of the generating function in each step of
the inversion. The primary purpose of the scaling is to
effectively control the aliasing error of the inversion proce-
dure. (This is done in conjunction with geometric damp-
ing as described in [6] and [9]). The scaling also effectively
avoids the floating point exception problem commonly en-
countered in computing very large or small normalization
constants.
Let the innermost level of inversion be with respect to
z1 and successive outer levels of inversion be done with
respect to z2, z3, . . . , zp. At the j

th level, the inversion is
with respect to zj and let the generating function involved
at this stage be defined as G(j)(zj). Instead of inverting it
as is, we invert the scaled generating function

G
(j)
(zj) = α0jG

(j)
(αjzj). (8.1)

Our main concern is to find an appropriate α = (α1,
α2, . . . , αp) and α0 = (α01, α02, . . . , α0p). In [6] we did
this for Poisson arrivals and unbuffered resource-sharing
models. We develop the following unified heuristic scaling
algorithm to treat all the generating functions in the pa-
per. All generating functions (including the modified ones
considered in Section 5) have the generic form

G(z) =

p
∏

i=1

(1− zi)−1
r
∏

j=1

Gj(z). (8.2)

The scale vector α should be a maximal vector satisfying
0 < αi ≤ 1 for i = 1, 2, . . . , p and

r
∑

j=1

(

i−1
∏

k=1

r
akj
k

)

zi
∂

∂zi
lnGj(z)

∣

∣

∣

∣

z=α

≤ Ki (8.3)

for i = 1, 2, . . . , p, where

rk = 10
−(γk/2lkKk)

as in Section 3.2 of [6]. “Maximal” means that (8.3) should
be satisfied with equality for at least one i unless α =
(1, 1, . . . , 1). The remaining scale parameters α0i, 1 ≤ i ≤

p, are obtained recursively starting with i = p by

p
∏

k=1

α0k =





r
∏

j=1

Gj(α1r1, α2r2, . . . , αi−1ri−1,

αi, αi+1, . . . , αp)

]−1

. (8.4)

The scaling, although heuristic, has been tested extensively
over a wide range of parameter values for all generating
functions in this paper and elsewhere (e.g., [8]) and in all
cases it performed well. Also, in the special case of Poisson
arrivals and unbuffered resource-sharing model, the scaling
becomes identical to that developed in [6].
Recently it has been shown [4] that there is an asymp-
totic justification of the heuristic scaling in the one-dimen-
sional case based on the theory of the saddle point method.
Since the value of integrand falls off very fast away from the
saddle point, this theory also gives further justification for
why we can have great computational saving by judicious
truncation in the inversion formula.

9 Multiplicities

If two or more classes have the same parameters (traffic pa-
rameters, resource requirements, UL and GM parameters),
then we say that there is a multiplicity. We can exploit
multiplicities to significantly reduce the required computa-
tion.
Let r be the number of different types of job classes and
let the jth type have multiplicity mj . Then the total num-
ber of job classes is

r =

r
∑

j=1

mj . (9.1)

If the generating function of interest can be written as

G(z) =

p
∏

i=1

(1− zi)−1
r
∏

j=1

Gj(z), (9.2)

then it can be rewritten as

G(z) =

p
∏

i=1

(1− zi)−1
r
∏

j=1

Gj(z)
mj . (9.3)

The computational complexity in evaluating (9.2) is O(r),
while the computational complexity in evaluating (9.3) is
O(r).
For the unbuffered variant with Poisson arrivals and the
CS policy, we can obviously replace all classes of type j
by a single class with traffic intensity mjρj and hence the
benefit of multiplicity can be trivially achieved by any algo-
rithm. However, in other cases it is not straightforward for
other algorithms (e.g., recursive algorithms) to benefit from
multiplicities. In some cases a general multiplicity is not
even allowed in other algorithms. For example, Kamoun
and Kleinrock [16] allow either r = 1 or mj = 1 for all j in
their algorithm for the buffered variant.
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10 Computational Complexity

We now roughly analyze the computational complexity of
the inversion algorithm. For simplicity, assume that the
capacity of each resource is K. Let CP represent the com-
putational complexity for sharing policy P , where P may
be CS, UL, GM or UG (combined UL/GM). For the inver-
sion algorithm, the computational complexity is the same
for state-dependent inputs as for Poisson arrivals, so we do
not focus on that aspect. The main computational burden
is carrying out the p-fold nested inversion in (3.3)–(3.5)
of [6]. Other work, such as finding the scale parameters
is insignificant compared to that. A straightforward ap-
plication of our algorithm in the CS case to compute one
normalization constant would require O(Kp) evaluations of
the generating function, each of which would involve O(r)
work. In order to compute the blocking probability for
each class, we need to compute r + 1 or 2r normalization
constants, but in Section 5.2 of [6] we have shown that all
this work can be done in time O(1) by sharing the bulk of
the computation (requiring storage only of O(r)). Without
further enhancements, this yields CCS = O(rK

p).
However, in Section 5.1 of [6] we have shown that we
can use truncation to reduce K to K = O(

√
K) and, with

special structure (see Section 3.1 of [6]), we can reduce p
to p � p. Moreover, with multiplicities, we can reduce r
to r. So, finally, we get

CCS = O(rK
p
), (10.1)

where K ≤ K, p ≤ p, r ≤ r, and

K = O(
√
K) for large K,

p� p with special structure, and
r � r for large r and large multiplicities. (10.2)

By contrast, for the Delbrouck [14] recursion for a single
resource (p = 1),

CCS = O(rK
2), (10.3)

and so we are much faster even for a moderateK. Recently
van de Vlag and Awater [32] improved the Delbrouck re-
cursion to have a computational complexity O(rK). Their
improvement also extends to multiple resources in which
case they get

CCS = O(rK
p). (10.4)

Comparing (10.1) and (10.4), we see that we are faster
when we can replace K, p or r by K, p or r in (10.2),
respectively.
For general state-dependent arrival and service rates, we
compute using (2.9). Assuming Ki = K for all i and aij =
a for all i and j, we get the computational complexity

CCS = O((K/a)rK
p
) (10.5)

for K, p and r in (10.2). For the combined UL and GM
policy (UG), the computational complexity is

CUG = O(MrK
p
), (10.6)

where we have assumed the class upper limit Mj =M for
all j. For the case of the buffered variant with Poisson
arrivals, CUG = CCS ; see (3.14).
For state-dependent rates or with UL/GM policies, there
are no previous algorithms to compare with except for
Kamoun and Kleinrock [16] which applies only to a spe-
cial case. We do not do any elaborate comparison with
[16], but it appears that with UL/GM policy and many
classes, our algorithm would be much faster than theirs.
In the next section we develop a new convolution-based re-
cursion to treat the most general model in this paper. Its
computational complexity is

CCON = O(rK
2p). (10.7)

Comparing (10.7) with (10.5) and (10.6) we see that our
inversion algorithm is much faster than the convolution
algorithm.

11 Recursive Algorithms from the

Generating Functions

In this section we show that the generating functions we
have derived can be used to derive recursions for the nor-
malization constants. This method for obtaining recursions
was first proposed by Reiser and Kobayashi [29] for closed
queueing networks, but it has not been widely used since;
e.g., the method is not used by Kaufman [17], Roberts [30]
or Dziong and Roberts [15] to derive their recursions. How-
ever, generating functions have been used to derive recur-
sions for loss models by Delbrouck [14], Mitra and Morrison
[26] and Morrison [27], Appendix A.
As noted in [29], a starting point for the recursions is
the fact that the coefficients of a generating function that
is a product of two generating functions is the convolu-
tion of the coefficients from the two component generating
functions. This remains true with vectors using multidi-
mensional convolution. To express the result, let

Gη(z) =

∞
∑

K1=0

· · ·
∞
∑

Kp=0

gη(K)z
K1
1 · · · zKpp , (11.1)

where K = (K1, . . . ,Kp), z = (z1, . . . , zp) and η is an in-
dex, which may be an integer or a vector of integers.

Lemma 11.1 If G1,2(z) = G1(z)G2(z) for generating func-
tions defined in (11.1), then

g1,2(K) =

K1
∑

k1=0

· · ·
Kp
∑

kp=0

g1(k)g2(K− k), (11.2)

where k = (k1, . . . , kp).

It is straightforward to apply Lemma 11.1 repeatedly
to our generating functions in (2.7) because they are ex-
pressed as products of r + 1 generating functions. (Note
that

∏p
i=1(1 − zi)−1 can be regarded as a single factor.)

However, in general the computational complexity is quite
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high. In particular, for each value of K, O(
∏p
i=1Ki) op-

erations are needed. However, since we need repeat this
operation, we need to compute g1,2(K) for the O(

∏p
i=1Ki)

possible values of K. Thus, the computational complexity
of (11.1) is really O(

∏p
i=1K

2
i ), assuming that each factor

can be inverted separately.
We can also exploit the special structure of our generat-
ing functions. For example, we have the factor

∏p
i=1(1 −

zi)
−1 in each case.

Lemma 11.2 If the condition of Lemma 11.1 holds with
G2(z) =

∏p
i=1(1− zi)−1, then

g1,2(K) =

K1
∑

k1=0

· · ·
Kp
∑

kp=0

g1(k). (11.3)

for Ki = ki, so that (using the method of inclusion and
exclusion)

g1,2(K) = g1(K)

+

p
∑

i=1

g1,2(K− ei)−
p
∑

i=1

p
∑

j=1
i6=j

g1,2(K− ei − ej)

+
p
∑

i=1

p
∑

j=1

p
∑

k=1
i6=j, i6=k, j 6=k

g1,2(K− ei − ej − ek)

− · · · ± g1,2
(

K−
p
∑

i=1

ei

)

. (11.4)

Proof. For (11.3), apply Lemma 11.1 noting that g2(k) =
1 for all k.

Formula (11.4) does not appear to be especially helpful
for computation, because it involves subtraction of large,
nearly equal quantities.
The computation required for (11.3) is O(

∏p
i=1Ki) if

done for only one value of K. This is possible if (11.3) is
applied only in the last step. From (2.7), we see that we
use (11.3) once and (11.2) r − 1 times. If we use (11.3) in
the last step, then the computational complexity of (11.3)
is dominated by that of (11.2). Hence the overall compu-
tational complexity is O((r − 1)

∏p
i=1K

2
i ) ≈ O(rK2p) for

Ki ≈ K, 1 ≤ i ≤ p.
In order to determine the components gj(k) needed in
the convolution algorithm, we apply (2.9). Given (2.9) and

Gj(z) =
∞
∑

k1=0

· · ·
∞
∑

kp=0

gj(k)

p
∏

i=1

zkii , (11.5)

we obtain

gj(la1j , ..., lapj) = fj(l) (11.6)

for l = 0, 1, . . . , Lj , where

Lj ≡ min
i
{Ki/aij} (11.7)

and gj(k) = 0 for all other k. Hence, we can compute gj(k)
for each j and k using (11.6) and (2.3).
Note that the algorithm we have derived is very gen-
eral. It allows arbitrary state-dependent arrival and ser-
vice rates. We have just shown how to treat the CS policy
using (2.9), but it also applies in essentially the same way
to treat the combined UL and GM policy using (3.10) or
(3.11). (We illustrate the convolution algorithm with the
UL policy in the example of Section 14.)
It is to be noted that with special structure alternative
faster recursive algorithms can be developed. In particu-
lar, the generalized Kaufman [17] – Roberts [30] recursion
has complexity O(rKp). The same is true for the improved
algorithm for the unbuffered variant with BPP arrivals by
van de Vlag and Awater [32]. We now show how the gen-
eralized Kaufman-Roberts algorithm (the Poisson case of
[14]) can be derived from the generating function.

Theorem 11.1 If

G(z) = exp





r
∑

j=1

ρj

p
∏

i=1

z
aij
i



 , (11.8)

for positive constants ρj and nonnegative integers aij , then

Kig(K) =

r
∑

j=1

ρjaijg(K− aj), 1 ≤ i ≤ p, (11.9)

where aj = (a1j , . . . , apj).

Proof. Let G(i)(z) be the partial derivative of G(z) with
respect to zi. By taking the logarithm of (11.8) and then
the partial derivative with respect to zi, we get

G(i)(z)

G(z)
=

r
∑

j=1

ρjaij

(

p
∏

i=1

z
aij
i

)

z−1i . (11.10)

On the one hand,

G(i)(z) =

∞
∑

K1=0

· · ·
∞
∑

Kp=0

Kig(K)z
K1
1 · · · zKpp z−1i , (11.11)

while on the other hand, by (11.10),

G(i)(z) =

r
∑

j=1

ρjaij

(

p
∏

i=1

z
aij
i

)

z−1i G(z)

=

r
∑

j=1

ρjaij

∞
∑

K1=0

· · ·
∞
∑

Kp=0

[

g(K)z
K1+aij
1

· · · zKi+aij−1i · · · zKp+apjp

]

. (11.12)

Matching coefficients of (zK11 · · · zKi−1i · · · zKpp ) in (11.11)
and (11.12) yields (11.9).

If we at first do (11.9) and then do (11.3) in the last
step, then we have a required computation of O(

∏p
i=1Ki)+
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O(r
∏p
i=1Ki) = O((r + 1)

∏p
i=1Ki) and a storage require-

ment of O(2
∏p
i=1Ki).

We now treat the two non-Poisson BPP cases in Sec-
tion 2.2. The following theorem applies to each of the r
factors. The overall algorithm has computational complex-
ity O(rK2p), but it can effectively handle multiplicities.

Theorem 11.2 If

G(z) =

(

1 + ρ

p
∏

i=1

zaii

)c

(11.13)

for constants c and ρ, and nonnegative integers ai, as in
(2.13), then

g(K) = ρ

(

cai −Ki + ai
Ki

)

g(K− a) (11.14)

if ai > 0, 1 ≤ i ≤ p, for a = (a1, . . . , ap).

Proof. Differentiate the generating function with respect
to zi and get

Gi(z) = c

(

1 + ρ

p
∏

i=1

zaii

)c−1

ρaiz
−1
i

p
∏

k=1

zakk ,

so that

G(i)(z)

(

1 + ρ

p
∏

i=1

zaii

)

= cρG(z)aiz
−1
i

p
∏

i=1

zaii . (11.15)

Then identify the coefficients of zK11 · · · zKi−1i · · · zKpp on
both sides of (11.15), exploiting (11.11), to obtain

Kig(K) + ρ(Ki − ai)g(K− a) = cρaig(K− a) (11.16)

from which (11.14) follows.

As a simple check on (11.14), note that when p = 1 and
ai = a1 = 1, (11.14) should reduce to the well known recur-
sion for the binomial and negative binomial distributions,
namely,

g(K)

g(K − 1) = ρ
(c−K + 1)

K
. (11.17)

12 The Kelly Example

We now give examples illustrating the numerical inversion
algorithm. Two single-resource examples not discussed
here appear in [7]. All computations were done on a SUN
SPARC-2 workstation.
We first consider the Kelly example used in Sections 1
and 9 of [6], which originally came from [20]. It has five re-
sources. The resources are five links connecting five nodes,
as shown in Figure 1. (The nodes themselves play no role.)

Figure 1: The Kelly example.

In this example we consider the 6 routes {1}, {2}, {1, 2},
{3, 5}, {4, 5}, {1, 3, 5}. The standard example has the CS
policy, Poisson arrivals and single circuit requirements. We
keep the CS policy, but consider finite sources as well as
Poisson sources, and the multi-rate generalization. Fur-
thermore, we allow multiple classes with different multi-
rate requirements. We considered this example for Poisson
arrivals in Section 9 of [6]. Now we consider the effect of
finite sources.
The r traffic classes are divided among the six routes as
follows: Define nonnegative integers ri for i = 0, 1, . . . , 6
such that 1 ≡ r0 < r1 < r2 · · · < r6 ≡ r. Class j goes
over route l if rl−1 + 1 ≤ j ≤ rl for 1 ≤ l ≤ 6. For this
generalized Kelly example, the generating function in the
finite-source case is given by

G(z) =
1

6
∏

i=1

(1− zi)

r1
∏

j=1

(1− pj + pjza1j1 )Nj

×
r2
∏

j=r1+1

(1− pj + pjza2j2 )Nj

×
r3
∏

j=r2+1

(1− pj + pjza1j1 z
a2j
2 )

Nj

×
r4
∏

j=r3+1

(1− pj + pjza3j3 z
a5j
5 )

Nj

×
r5
∏

j=r4+1

(1− pj + pjza4j4 z
a5j
5 )

Nj

×
r
∏

j=r5+1

(1− pj + pjza1j1 z
a3j
3 z

a5j
5 )

Nj . (12.1)

As in [6], the dimension can be reduced from 5 to 3 by
designating z1 and z5 as initial variables to invert. For any
given (z1, z5), the generating function G(z) can be written
as the product of three factors, each involving only one of
the remaining variables; i.e., the optimal order of inversion
is z1, z5, z2, z3 and z4. Thus, the inversion dimension is
reduced from 5 to 3. For the optimal inversion order, we use
the roundoff-error-control lj parameter vectors (1, 2, 3, 3, 3)
and (1, 3, 3, 3, 3) in the inversion. (See Section 3.2 of [6].)
The specific example we consider has capacities Ki = 15
for each i, 1 ≤ i ≤ 5. There are 12 classes, with two
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classes using each of the 6 routes. We use this example to
show how the finite sources approach Poisson sources as
Nj gets large and pj decreases with Njpj = ρj (constant)
for each j. We consider Poisson arrivals and two cases of
finite sources, one with pj = 10

−3 for all j and the other
with pj = 10

−1 for all j. We choose Nj so that the given
Poisson model is the natural Poisson approximation for the
finite-source models. The specific offered loads are given in
Table 1. We let the requirements be either 1 or 2 for each
request, with each request having the same requirements
on each link. The specific requirements are also given in
Table 1.
The blocking probabilities for each class in these three
cases are given in Table 1. As anticipated, the finite-source
blocking probabilities are quite close to the Poisson block-
ing probabilities, especially when p = 10−3. The compu-
tation of the blocking probabilities in Table 4 took about
1 minute. For this specific example, we could allow some
of the resource capacities to be much larger through the
use of truncation. However, the inversion algorithm will
encounter difficulties for even larger networks without spe-
cial structure.

13 An Example Illustrating Elim-

ination of Very Lightly Loaded

Resources

The Kelly example above illustrates dimension reduction
by conditional decomposition of the generating function,
i.e., by inverting the variables in a good order. Now we
illustrate dimension reduction by initially eliminating re-
sources that are so lightly loaded that they impose essen-
tially no constraint, as proposed in Section 7. In some
cases, it is obvious that resources impose essentially no
constraint, but in other cases it is not. Here it is not so
obvious. In general, it seems desirable to systematically
exploit the normal approximations in Section 7 for this
purpose, as we do here. Afterwards, we would look for
further dimension reduction by conditional decomposition.
Our example starts with 8 resources serving 8 types of
job classes, but it turns out that only 3 of the 8 resources
actually need to be considered. Moreover, each type uses
at most 1 of these 3 remaining resources, so that all final
required inversions are only 1-dimensional. Thus, this is a
best-case scenario, but it seems realistic.
The initial 8× 8 requirements matrix is given in Table 2
and the remaining model parameters are given in Table 3.
The positive entries in each column of the requirements
matrix are identical, as required by our assumptions for
efficiently treating guaranteed minimum parameters; see
Section 3.
Each type has multiplicities, so that there are more than
8 classes. Indeed, there are 490 classes in all. We con-
sider the unbuffered variant with BPP arrivals, where the
arrival process is specified by the (average) arrival rate
λj ≡ αj + βjmj and peakedness zj ≡ vj/mj , using (6.1).

The associated BPP parameters are given by (6.2). For
simplicity, we let the mean job holding time for each class
be 1.
Each type has upper limit and guaranteed minimum
bounds. Class 1 has a premium grade of service with a
guaranteed minimum twice the specified rate. Hence, the
mean capacity used for class 1 is (approximately) this guar-
anteed minimum bound itself and the variance is approxi-
mately 0.
Class 4 and 5 have the next highest grades of service.
Their GM parameters are set equal to their arrival rates.
We thus apply Theorem 7.1 to determine the means and
variances of the capacity used by each class. In particular,
we apply (7.11) and (7.12).
The remaining classes have sufficiently low GM param-
eters and sufficiently high UL parameters that they have
negligible effect on the capacity used (assuming that these
classes send traffic according to the specified parameters).
Thus, for these classes, the means and variances are given
by mj = λj and vj ≡ mjzj . The last two rows of Table 3
give the means and variances of the capacity used by all
the classes of each type (in the resources they require).
The capacities of the resources are given in Table 4. Also
given are the means, variances and standard deviations of
the capacity needed in each resource. The means and vari-
ances are obtained by adding the values in the last two
rows of Table 3 for all classes that use the resource.
For each resource, Table 4 also displays the binding pa-
rameter, as specified in (7.2). For comparison, we also dis-
play the percentage of the total capacity that is expected
to be needed. These percentages range from 78%–100%.
The two highest percentages, 95% and 100%, correspond
to two of the three resources that are not negligible, but
the third relevant resource (resource 4) actually ranks sixth
in percentage. This can be explained by the fact that it
has smaller capacity. A rough estimate for the thresh-
old of mean capacity needed is Ki − 3

√
Ki. The fraction

(Ki − 3
√
Ki)/Ki = 1− 3/

√
Ki is larger for larger Ki.

When we eliminate the negligible resources and consider
only resources 3, 4 and 8, we see that no type needs more
than one of these resources. Thus, we can analyze these
three resources separately. Moreover, types 5 and 8 do not
need any of these resources. Hence, they should experience
essentially no blocking.
We thus can compute all the blocking probabilities using
three separate one-dimensional inversions, i.e. we consider
types 1, 3 and 7 on resource 3, types 2 and 4 on resource
4, and type 6 on resource 8. These remaining problems are
not nearly trivial though. For example, resource 3 with
capacity K3 = 9, 500 serves 350 classes (of 3 types). Nev-
ertheless, our algorithm requires only a few seconds for
each of the three separate problems. The blocking proba-
bilities for each class are given in Table 5. (No calculation
is performed for types 5 and 8.)
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14 An Example with General State-

Dependent Service Rates

We now give an example showing that we can treat gen-
eral service rates; i.e., showing that the algorithm is not
restricted to the unbuffered and single-server buffered vari-
ants. Earlier recursions developed for the unbuffered vari-
ants no longer apply, but our recursion based on convolu-
tion developed in Section 11 does apply. We apply both
the inversion and convolution algorithms to this example.
Our example has a single resource with three types of
classes, each with Poisson arrivals, an upper limit sharing
policy and multiple servers. Multiple servers means that
the service rate is proportional to the number of jobs up to
a threshold and thereafter it is constant, as in the multi-
server M/M/s queue. Here are the parameters:
Class type 1 has 2 servers, offered load ρ1 = 1.5, resource-
unit requirement a11 = 3 and an upper limit of 10 jobs (30
resource units).
Class type 2 has 10 servers, offered load ρ2 = 10.0,
resource-unit requirement a12 = 2 and an upper limit of
50 jobs (100 resource units).
Class type 3 has 40 servers, offered load ρ3 = 42, resource-
unit requirement a13 = 1 and an upper limit of 100 jobs
(100 resource units).
In Table 6 we show the results for 4 cases with different
multiplicities and capacities.
Note that the computational complexity of the inversion
algorithm is O(r

√
K) and that of the recursive algorithm

is O(rK2) where K is the number of resource units, r is
the number of classes, and r is the number of types (3
in the above example). For any two consecutive cases, r
and K grow by a factor of 10, while r remains constant.
So the computational complexity of the inversion algorithm
grows by a factor of

√
10 ' 3.16, while that of the recursive

algorithm grows by a factor of 103 = 1000. In fact the
recursive algorithm can only compute the first two cases
in reasonable time, taking about a minute for the second
case. For those two cases, the two algorithms agree closely
(more than the displayed 8 digits). We did not apply the
recursive algorithm in the last 3 cases since it would have
taken about 103, 106 and 109 minutes, respectively. By
contrast, the inversion algorithm was applied to all cases
and even in the challenging last case took less than half a
minute.
Accuracy in the last three cases was verified by doing the
inversion twice with inversion parameters l1 = 1 and l1 = 2
(see Section 3.2 of [6]) and the agreement was more than
the displayed 8 digits. The high accuracy of this example
supports the heuristic scaling in Section 8.
Next we compute derivatives of the blocking probabilities
with respect to the offered-load parameters using equations
(8.2) and (8.4) of [7]. Due to many possible combinations
of derivatives, we show them only for the first case of this
example.
The accuracy of these derivative calculations was veri-
fied in two ways. First, as usual, we compared the results
with inversion parameters l1 = 1 and l1 = 2. Second, we

computed finite differences of blocking probabilities and
observed that they approach the derivative value as the
granularity of the finite difference decreases.
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class parameters blocking probabilities for each class
Poisson finite source finite source

j ρj route rqmts. arrivals pj = 10
−3 pj = 10

−1

1 2 1 1 0.069930 0.069934 0.070243
2 1 1 2 0.155912 0.155892 0.153620
3 2 2 1 0.011306 0.011285 0.009104
4 1 2 2 0.030032 0.029961 0.022803
5 2 1,2 1 0.079276 0.079265 0.077959
6 1 1,2 2 0.176021 0.175969 0.170178
7 2 3,5 1 0.071961 0.071961 0.071908
8 1 3,5 2 0.159575 0.159550 0.156668
9 2 4,5 1 0.071961 0.071961 0.071908
10 1 4,5 2 0.159575 0.159550 0.156668
11 2 1,3,5 1 0.134236 0.134246 0.135156
12 1 1,3,5 2 0.280670 0.280668 0.279973

Table 1: Blocking probabilities in the Kelly example with the CS policy.



job type
resource 1 2 3 4 5 6 7 8
1 20 10 10 5 5 2 1 1
2 20 10 0 0 5 2 1 0
3 20 0 10 0 0 0 1 0
4 0 10 0 5 0 0 0 0
5 0 10 0 0 5 2 0 1
6 20 0 10 5 0 0 1 1
7 0 0 0 0 5 0 0 1
8 0 0 0 0 0 2 0 0

Table 2: The initial requirements matrix.



job type
parameters
for each type 1 2 3 4 5 6 7 8
multiplicity 10 10 40 10 10 100 300 10
arrival rate 10.0 20.0 5.0 10.0 100.0 10.0 10.0 100.0
peakedness 1.0 2.0 1.0 0.8 1.0 1.0 3.0 0.7
mean holding time 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
upper limit 30 40 15 30 150 30 30 180
guaranteed minimum 20 10 1 10 100 0 5 50
mean capacity used
for each class 400. 200. 50. 55.7 520. 20. 10. 100.
variance of capacity
used for each class 0. 4000. 500. 68.1 851.9 40. 30. 70.
mean capacity used
for each type 4000 2000 2000 557 5200 2000 3000 1000
variance of capacity
used for each type 0 40,000 20,000 681 8519 4000 9000 700

Table 3: Parameters for the job types.



resource
1 2 3 4 5 6 7 8

capacity Ki 23,000 18,500 9,500 3,000 12,500 13,500 7,000 2,000
mean capacity
needed Mi 19,757 16,200 9,000 2,557 10,200 10,557 6,200 2,000
variance of capacity
needed Vi 82,900 61,519 29,000 40,681 53,219 30,381 9,219 4,000
standard deviation of
capacity needed

√
Vi 288. 248.0 170. 202. 231. 174. 96. 63.

binding
parameter γi 11.3 9.3 2.9 2.2 10.0 16.9 8.3 0.0
percentage of capacity
expected to be needed 86% 88% 95% 85% 82% 78% 89% 100%

Table 4: The capacity of the resources and an initial analysis of the demand.



type blocking probability type blocking probability
1 2.489e-6 5 0.0
2 3.615e-3 6 2.496e-2
3 3.591e-4 7 1.827e-5
4 4.701e-4 8 0.0

Table 5: Blocking probabilities for the eight customer types. The algorithm has been applied to the three relevant
resources separately.



multiplicity number of blocking probabilities
number of of each resource
classes type units type 1 type 2 type 3

3 1 100 0.17755446 0.11995594 0.06159283
30 10 1000 0.15486823 0.10372589 0.06354832
300 100 10,000 0.15098952 0.10117050 0.06341047
3000 1000 100,000 0.15056962 0.10089765 0.06339184
30,000 10,000 1,000,000 0.15052725 0.10087015 0.06338993

Table 6: Blocking probabilities for the multi-server example.



dBi
dρj

i = 1 i = 2 i = 3

j = 1 0.027234283 0.010284699 0.005366907
j = 2 0.0212418781 0.015484701 0.008190657
j = 3 0.036043304 0.026384510 0.014137514

Table 7: Derivatives for the first case of the multi-server example.
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