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By exploiting an infinite-server-model lower bound, we show that the tails of the steady-
state and transient waiting-time distributions in the M/GI/s queue with unlimited waiting
room and the first-come first-served discipline are bounded below by tails of Poisson distri-
butions. As a consequence, the tail of the steady-state waiting-time distribution is bounded
below by a constant times the sth power of the tail of the service-time stationary-excess
distribution. We apply that bound to show that the steady-state waiting-time distribution
has a heavy tail (with appropriate definition) whenever the service-time distribution does.
We also establish additional results that enable us to nearly capture the full asymptotics in
both light and heavy traffic. The difference between the asymptotic behavior in these two
regions shows that the actual asymptotic form must be quite complicated.
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1. Introduction

There recently has been great interest in the performance of queues with heavy-
tailed (or long-tailed) service-time distributions. Asymptotic results for the tail of the
steady-state waiting-time distribution in the single-server queue with unlimited waiting
room and the first-come first-served (FCFS) service discipline were first obtained by
Borovkov [9, section 22], Cohen [13] and Pakes [26]. For recent extensions, see [6,22
and references therein].

The purpose of this paper is to obtain some corresponding partial results for
the challenging multi-server queue, also with unlimited waiting room and the FCFS
discipline. In particular, we derive a lower bound on the waiting-time tail probability
in the M/GI/s model that allows us to conclude that the waiting-time distribution
has a heavy-tailed distribution (with appropriate definition) whenever the service-time
distribution does. This conclusion deduced from a lower bound parallels the conclusion
deduced for general single-server fluid models in [12]. The bounding arguments have
the appeal of quite simply determining the main qualitative behavior, even though they
do not determine the full asymptotic behavior.
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We also establish a second, very different, lower bound for the waiting-time tail
probability in a heavy-traffic regime. Since the second lower bound leads to a much
larger asymptote, it is natural to suspect that there must be a large gap between the
first lower-bound asymptote and the true asymptote. However, we show that is not
always the case, by showing that the first lower bound is asymptotically correct in
light traffic. We also establish an upper bound that shows that the second lower bound
is at least nearly correct in heavy traffic. Together, these results demonstrate that the
actual asymptotic behavior must be quite complicated. We make a conjecture about
the actual asymptotic behavior.

We state and discuss the main results in section 2 and provide proofs and addi-
tional details in the following sections. We conclude with a discussion of the transient
waiting-time distribution. It turns out that an infinite-server lower bound also applies
to the transient waiting-time distribution. That is important because steady state is
approached very slowly with heavy-tailed service-time distributions. Indeed, steady
state is approached so slowly that it may be preferable to use transient distributions
in applications. The infinite-server lower bound is useful because it provides both a
simple quantitative description of the rate of convergence to steady state and an ap-
proximation for the transient waiting-time distribution. Since these descriptions are
for the infinite-server lower bound, they do not yield exact descriptions for M/G/s
models, but they can serve as useful approximations when s is not too small.

We conclude this introduction by mentioning papers by Boxma et al. [10] and
Korshunov [24] that came to our attention (and were evidently done) after this paper
was completed. They contain asymptotic results that tend to support the conjectures
here.

2. Main results

To specify the model, let G be the service-time cumulative distribution function
(cdf) and let Gc(t) ≡ 1 − G(t) be the associated complementary cdf (ccdf). We
assume that G has finite mean m1. Let Ge be the stationary-excess (or equilibrium
residual-lifetime) cdf associated with G, defined by

Ge(t) = m−1
1

∫ t

0
Gc(u) du, t > 0, (2.1)

and let Gc
e be its ccdf. Let the interarrival time have finite mean λ−1 and let the traffic

intensity be ρ ≡ λm1/s. To ensure model stability, we assume that ρ < 1. Let W
be the steady-state waiting time until beginning service and let W c be its ccdf; i.e.,
W c(t) ≡ P (W > t), t > 0.

The lower bound for W c(t) here is obtained by approximating the M/GI/s model
by the associated infinite-server M/GI/∞ model. Such infinite-server models have
proven very useful for approximating Mt/GI/s/r models with time-dependent Poisson
arrival processes; see section 8 below and [15,25 and references therein]. It is well
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known that the steady-state number of customers in the M/GI/s model is bounded
below by the steady-state number of customers in the associated M/GI/∞ model.
Of course there is no waiting before beginning service in the M/GI/∞ model, but
it is easy to see that the steady-state waiting time ccdf W c(t) in the M/G/s model
is bounded below by the ccdf F c(t) of the first passage time, starting in steady state,
to a level with s − 1 or fewer busy servers in the M/G/∞ model, assuming that all
future arrivals are neglected. Somewhat surprisingly, perhaps, this first-passage-time
ccdf F c has a relatively simple form, being the ccdf of a Poisson distribution with
mean ρsGc

e(t), where Gc
e is the ccdf associated with the service-time stationary-excess

cdf Ge in (2.1).
To state the result, let Πc(k;λ) be the ccdf of a Poisson distribution with mean

λ; i.e., if X has the Poisson distribution, then Πc(k;λ) ≡ P (X > k). We say that f
is asymptotically equivalent to g as t → ∞, and write f (t) ∼ g(t), if f (t)/g(t) → 1
as t→∞.

Theorem 1. In the M/GI/s model, for all ρ, 0 < ρ < 1, and t > 0,

W c(t) > F c(t) ≡ Πc(s− 1; ρsGc
e(t)
)
≡ e−ρsG

c
e(t)

∞∑
m=s

(ρsGc
e(t))m

m!
, (2.2)

where

F c(t)∼ (ρs)s

s!
Gc

e(t)s as t→∞, (2.3)

F c(t)∼ eρsG
e
c(t)(eρGc

e(t))s

(1− ρGc
e(t))
√

2πs
as s→∞, (2.4)

and

F c(t) ∼ (eρGc
e(t))s√

2πs
as s→∞ and then t→∞. (2.5)

Remark. Note that we can also establish the same lower bound asymptote in (2.3) by
keeping only the term corresponding to m = s in (2.2). Then

W c(t) > F c(t) > Hc
1(t) ≡ e−ρsG

c
e(t) (ρsGc

e(t))s

s!
∼ (ρs)s

s!
Gc

e(t)s (2.6)

as t→∞. Also note that

W c(t) > Hc
1(t) > AGc

e(t)s for A =
e−ρs(ρs)s

s!
. (2.7)

Our primary goal is to apply this lower bound F c in theorem 1 to deduce that
in the M/G/s model the waiting-time ccdf W c inherits a heavy-tail property from
the service-time ccdf Gc, with appropriate definitions. However, we also point out
that the lower bound may serve as a useful reference point and sometimes even a
useful approximation, because it is remarkably tractable, because it applies for all t
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and because the M/G/s model with a heavy-tailed service-time distribution is very
difficult to analyze. A heavy-tailed service-time distribution also makes it difficult to
accurately estimate the waiting-time distribution with simulation; see [4].

One approach to carrying out numerical calculations with a heavy-tailed service-
time distribution is to first approximate the heavy-tailed distribution by a hyperex-
ponential distribution as in [17], or a more general phase-type distribution as in [5],
and then solve the resulting M/Hk/s or M/PH/s queue, using algorithms such as
in [7,28,29]. Of course, those approximations fail to capture the asymptotics as t→∞,
but the approximations can be good for arbitrarily large t. For the GI/GI/1 queue,
the calculations can be done directly as in [1].

Since F c in (2.2) has a Poisson distribution, it can be computed. The normal
approximation

Πc(s− 1, ρsGc
e(t)
)
≈ Φc

(
s− 0.5− ρsGc

e(t)√
ρsGc

e(t)

)
(2.8)

should be a good approximation for F c(t) if the argument

α(s, t) ≡ s− 0.5− ρsGc
e(t)√

ρsGc
e(t)

(2.9)

is not too large.
It is significant that both the lower-bound ccdfs F c in (2.2) and Hc

1 in (2.6) are
asymptotically exact in light traffic.

Theorem 2. In the setting of theorem 1,

lim
λ→0

W c(t)
Hc

1(t)
= lim

λ→0

W c(t)
F c(t)

= 1 for each t > 0

for Hc
1 in (2.6) and F c in (2.3).

The basis for theorem 2 is a light-traffic result proved by Burman and Smith [11],
which was reviewed Whitt in [35, section 2].

The tractable infinite-server lower bound can be a useful reference point, but it
can grossly underestimate the true tail probabilities at higher traffic intensities, as we
demonstrate by establishing a second lower bound for higher traffic intensities.

Theorem 3. In the M/GI/s model, if 1− s−1 < ρ < 1, then

W c(t) > Hc
2(t) ≡ pGc

e(t)p1(t)p2(t), (2.10)

where p, p1(t) and p2(t) are positive probabilities with pi(t)→ 1 as t→∞ for i = 1, 2,
so that

Hc
2(t) ∼ pGc

e(t) as t→∞. (2.11)
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Notice that (2.11) differs significantly from (2.3) and (2.7) when s > 1, because
Gc

e(t) appears on the right in (2.11) instead of Gc
e(t)s.

We also apply an increasing-convex-order upper bound by Wolff [36] to show
that this second lower-bound asymptote in theorem 3 is close to the true asymptote in
this heavy-traffic regime. To state the result, we make a definition. We say that a cdf
G is subexponential and belongs to class S if

(G ∗G)c(t) ∼ 2Gc(t) as t→∞, (2.12)

where (G ∗G)c is the ccdf of the two-fold convolution of G with itself. The subexpo-
nential distributions are a large subclass of the heavy-tailed distributions; see [19].

Theorem 4. In an M/GI/s model with ρ < 1 and service-time cdf G, if Ge ∈ S, then

lim inf
t→∞

P (W > t)
Gc

e(t)
6 ρ

1− ρ. (2.13)

We now focus on the asymptotic behavior as t→∞. For the special case s = 1,
the lower-bound asymptote in (2.3) and (2.6) underestimates the known limit in the
heavy-tailed case (when Gc

e ∈ S) only by the constant factor (1 − ρ)−1. Thus, for
s = 1 the bound is sharp in the sense that is asymptotically correct in light traffic.

We are able to apply theorem 1 to deduce that the waiting-time ccdf is heavy
tailed whenever the service-time ccdf is, with appropriate definitions. For that purpose,
we introduce a new definition of a heavy-tailed distribution. Recall that a ccdf Hc

is stochastically greater than or equal to another ccdf Gc if Hc(t) > Gc(t) for all t.
A ccdf Gc on [0,∞) is said to belong to the class L if Gc(t) > 0 for all t > 0 and

Gc(t− u) ∼ Gc(t) as t→∞ for all u > 0. (2.14)

A ccdf Hc is heavy tailed, and we write Hc ∈ H, if there is a ccdf Gc ∈ L such
that

Hc(t) > Gc(t) for all t.

It is known that S ⊆ L, so that S ⊆ H. An important subset of S is the set P
of power-tail ccdfs; Gc ∈ P if

Gc(t) ∼ βt−α, as t→∞, (2.15)

where α and β are positive constants.
The standard heavy-tail notions embody regularity properties for asymptotics as

well as relatively large probabilities of large values. Hence, if G has a heavy tail
by one of the standard definitions and if H is stochastically larger than G, i.e., if
Hc(t) > Gc(t) for all t, then it does not follow that H too has a heavy tail by the
same definition. Hence, there is motivation for our introduction of the class H.
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Here is our main result.

Theorem 5. For an M/GI/s model with ρ < 1 and service-time ccdf Gc, if Gc ∈ H,
then W c ∈ H.

It is intuitively clear that having more servers reduces the impact of a heavy-
tailed service-time distribution, but that is not shown in theorem 5. We now obtain a
result for a smaller class of heavy-tailed distributions that reveals this property. For
that purpose, we say that a ccdf Gc on [0,∞) is regularly varying of index α, and
write Gc ∈ R(α), if Gc(t) > 0 for all t > 0 and

Gc(ut) ∼ uαGc(t) as t→∞ (2.16)

for all u > 0; see [8]. Paralleling the class H defined above, we define a class T (−α).
A ccdf Hc is said to be dominated by a regularly varying tail of index-α, and we write
Hc ∈ T (−α), if there exists a ccdf Gc in R(−α) such that

Hc(t) > Gc(t) for all t.

Theorem 6. For an M/GI/s models with ρ < 1 and service-time ccdf Gc, if Gc ∈
T (−α) for α > 1, then W c ∈ T (−s(α− 1)).

Unfortunately, we have been unable to determine the full asymptotic behavior of
W c(t) as t→∞, but theorems 1, 3 and 4 lead us to make a conjecture about the true
asymptotic form.

Conjecture. In the stable M/GI/s model with service-time cdf G, if Ge ∈ S, where
Gc

e is the service-time stationary-excess ccdf in (2.1), and if

s− k < ρs < s− k + 1 for some k, 1 6 k 6 s, (2.17)

then

W c(t) ∼ γGc
e(ηt)k as t→∞, (2.18)

where γ and η are positive constants (as functions of t).

As indicated above, for s = 1, (2.18) is known to hold with γ = ρ/(1−ρ), η = 1
and k = 1. For s > 1, conjecture (2.18) is consistent with theorems 1, 3 and 4. Here
is some additional intuition behind (2.18) and (2.17) for s > 1: First, by (2.17), k is
the minimum number of servers that can be removed (occupied by exceptionally long
service times), so that the temporary traffic intensity without these servers exceeds 1,
causing the workload to grow at positive rate. Second, the completed service times of
the customers at k servers at an arbitrary time in steady state should be approximately
distributed as k i.i.d. random variables with cdf Ge. (For example, that would be the
case if the s servers were continuously busy; assuming that the cdf G is nonlattice.)
Thus, the probability that there are k customers present who have all been in service
for at least time ηt should be of order γGc

e(ηt)k for constants γ and η. The scaling
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constant η in (2.18) is introduced because the workload grows at rate δ ≡ ρs− (s−k)
during this period of length ηt, so that the waiting time should be of order t for
appropriate choice of the constant η.

If the conjecture is correct, then it seems evident that the asymptotic behavior
will be quite complicated when the traffic intensity is at a boundary point, i.e., when
ρs = s − k for some k, 1 6 k 6 s − 1. When (2.17) does hold, we also make
the stronger conjecture that (2.18) holds for the more general GI/GI/s model with a
nonlattice interarrival-time distribution. (That is consistent with the known GI/GI/1
result.)

Here is how the rest of this paper is organized: We establish the two lower bounds
in theorems 1 and 3 in sections 3 and 4. We then discuss heavy-tailed distributions
and prove theorem 5 in section 5. We prove theorem 4 establishing the upper bound
in section 6. We discuss the existence of finite moments in section 7. In particular, the
lower-bound asymptote in (2.3) leads us to conjecture that, for s > 1, unlike for s = 1,
the existence of the mean EW or other higher waiting-time moment EW r depends
upon more than the traffic intensity and the existence of service-time moments. Finally,
we discuss a lower bound for the transient waiting-time distribution in section 8.

3. The infinite-server lower bound

In this section we prove theorem 1. We start by considering a general A/A/s
model with unlimited waiting room, the FCFS discipline and arbitrary arrival and
service processes. It is easy to see that, for each sample path of arrival times and
service times, the remaining service times of all customers in the system at any time
are bounded below by the remaining service times in the corresponding A/A/∞ system
with the same arrival times and service times but infinitely many servers. Thus the
waiting time for any arrival (or potential arrival) at any time t in the A/A/s system
is bounded below by the first passage time to the state of s− 1 or fewer busy servers
in the A/A/∞ system starting at time t, with future arrivals shut off.

As a consequence, if steady-state distributions exist, then the steady-state waiting-
time distribution in the A/A/s model is bounded below, in the sense of stochastic order,
by the steady-state first passage time to level s − 1 or below in the A/A/∞ model;
i.e.,

W c(t) > F c(t) for all t, (3.1)

where F c is the ccdf of the steady-state first passage time to s − 1 or fewer busy
servers in the A/A/∞ model, assuming that future arrivals are neglected.

We are able to usefully exploit the ordering (3.1) for the M/GI/s model, because
there is a convenient exact characterization of the cdf F in the associated M/GI/∞
model. In particular, for the M/GI/∞ model, it is known that the steady-state number
of busy servers has a Poisson distribution with mean ρs, independent of the service-
time cdf G beyond its mean. Moreover, conditional on there being n busy servers in
steady state, the n residual service times are distributed as n i.i.d. random variables
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with the service-time stationary-excess cdf Ge; see [31, p. 161]. (This M/GI/∞
property is also applied in [14,21].)

Moreover, it is elementary to see that the ccdf F c in (3.1) is the tail of a Poisson
distribution, because each of the Poisson random number of customers initially in the
system at time 0 is still there t time units later with probability Gc

e(t), independent of
the other customers. Hence, we have an independent thinning of the original Poisson
population, which is again Poisson. The associated analytic derivation is

F c(t) =
∞∑
n=s

e−ρs(ρs)n

n!

n∑
k=s

(
n

k

)
Gc

e(t)kGe(t)n−k

=
e−ρs(ρs)s

s!

∞∑
n=0

(ρs)n

(s+ n)!

n∑
l=0

(
s+ n

s+ l

)
Gc

e(t)s+lGe(t)n−l

=
e−ρs(ρs)s

s!

∞∑
l=0

(ρsGc
e(t))l

(s+ l)!

∞∑
n=l

(ρsGe(t))n−l

(n− l)!

= e−sρG
c
e(t)

∞∑
n=s

(ρsGc
e(t))n

n!
= Πc(s− 1; ρsGc

e(t)
)
. (3.2)

It thus remains to establish the asymptotic relations for this special Poisson distribution,
which of course is classic. First, recall that the ccdf of a Poisson distribution can
always be expressed as the cdf of an Erlang distribution, using the familiar inverse
relation between partial sums of nonnegative random variables and counting processes.
Equivalently, we can express F c in terms of special functions. In particular,

F c(t) =
γ(s, ρsGc

e(t))
Γ(s)

= e−ρsG
c
e(t) (ρsGc

e(t))s

s!
M
(
1, s+ 1, ρsGc

e(t)
)

∼ (ρsGc
e(t))s

s!
as t→∞, (3.3)

where γ is the incomplete gamma function, Γ is the gamma function and M is the
confluent hypergeometric function, which satisfies M (1, s + 1, 0) = 1; see [3, 6.5.2,
6.5.12, 13.1.2 and 13.5.5]. As noted in the remark, we can get the same asymptote as
t→∞ by keeping only the terms with Gc

e(t)s in (3.2), i.e.,

F c(t)>Hc
1(t) ≡

∞∑
n=s

e−ρs(ρs)n

n!

(
n

s

)
Gc

e(t)sGe(t)n−s

=
(ρs)s e−ρsGc

e(t)s

s!

∞∑
n=s

(ρs)n−s

(n− s)! Ge(t)n−s

=
(ρs)s

s!
e−ρsG

c
e(t)Gc

e(t)s ∼ (ρs)s

s!
Gc

e(t)s as t→∞. (3.4)
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Moreover, from [3, 13.1.2], it follows that for any x

M (1, 1 + s, ρsx)→ 1 + ρx+ (ρx)2 + · · · = (1− ρx)−1, (3.5)

so that

F c(t) ∼ e−ρsG
c
e(t)

(1− ρGc
e(t))

(ρsGc
e(t))s

s!
as s→∞. (3.6)

Applying Stirling’s formula to (3.6), we obtain (2.4).

4. The minimal-stability lower bound

In this section we prove theorem 3, which holds under the condition that (2.17)
holds for k = 1, i.e., 1− s−1 < ρ < 1. Following Scheller-Wolf and Sigman [27], we
refer to this case as the minimal-stability case.

In order to consider the virtual waiting time of a potential arrival at time 0 in
steady state, we look at the system at time −Bt, which is also in steady state. By the
Poisson-Arrivals-See-Time-Averages (PASTA) property, see [37], the waiting time of
an actual arrival has the same distribution.

We assume that the servers are numbered and that new arrivals and waiting
customers are always assigned to the lowest-numbered free server. We then focus on
server number 1. Server 1 experiences an alternating series of idle and busy periods,
with the busy periods made up of a succession of service times. (Since we have a
Poisson arrival process, the empty state is a regeneration point for the model; e.g.,
see [32].) If we look at this server at an arbitrary time in steady-state, which we
have set as −Bt, with probability p, 0 < p < 1, this server is busy and, conditional
on this server being busy, the remaining service time exceeds Bt with probability
Gc

e(Bt), where Ge is the service-time stationary excess cdf. (See [20] for more on this
property.)

Let A(t,u) count the Poisson number of arrivals in the interval (t,u] and let Vk
denote the kth service time. By the Poisson, i.i.d. and finite-mean assumptions, we
have the laws of large numbers (LLNs)

u−1A(t, t+ u)→ λ w.p. 1 as u→∞ (4.1)

and

n−1(V1 + · · ·+ Vn)→ m1 ≡ EV1 w.p. 1 as n→∞. (4.2)

Because the arrival process is assumed to be Poisson, the arrival process after time
−Bt is independent of the remaining service time observed for the customer being
served by server 1 at time −Bt. By (4.1), for any ε > 0,

P
(
A(−Bt, 0) > λB

(
(1− ε)t

))
→ 1 as t→∞. (4.3)

Given n arrivals in (−Bt, 0], the waiting time of an arrival at time 0 is bounded
below by the case in which all of these n arrivals occur together at time −Bt. Since
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server 1 is occupied during (−Bt, 0], work is cleared by at most rate s − 1 during
(−Bt, 0] and then afterwards at rate s. The waiting time of the potential customer
at time 0 will exceed t if the sum of the (n − s + 1) smallest of the n service times
exceed (s − 1)Bt+ t. (All but s− 1 of the original customers in the system at time
−Bt must have been served.) This sum in turn is greater than or equal to the overall
sum, say Sn, minus (s− 1) times the maximum Mn.

Combining these features, we obtain

P (W > t) > Hc
2(t)≡ pGc

e(Bt)P
(
A(−Bt, 0) > λB(1− ε)t

)
× P

(
Sn − (s− 1)Mn > (s− 1)Bt+ st

)
, (4.4)

where n = bλB(1− ε)tc.
However, n−1Mn → 0 as n → ∞ by lemma 7 below and n−1Sn → m1 as

n→∞ by (4.2), so that, for any ε > 0,

P
(
Sn − (s− 1)Mn > m1(1− ε)n

)
→ 1 as n→∞. (4.5)

Hence, in order to show that

Hc
2(t) ∼ pGc

e(Bt) as t→∞ (4.6)

for Hc
2(t) in (4.4), it suffices to choose B suitably large and ε suitably small so that

λB(1− ε)2m1 > (s− 1)B + s (4.7)

or, equivalently,

B
(
ρs(1− ε)2 − (s− 1)

)
> s. (4.8)

However, by (2.17), we can achieve (4.8); in particular, by choosing ε suitably small,
B can be any number larger than s/δ, where δ ≡ ρs− (s− 1) > 0.

One would expect that this argument also extends to cover the more general
GI/GI/s, G/GI/s and G/G/s models, exploiting assumed LLNs as in (4.1) and (4.2),
but there is some dependence, conditioning on the state of server 1 at time −Bt, that
needs to be controlled.

We need the following to complete the proof above.

Lemma 7. If EV1 = m1 <∞, then n−1Mn ⇒ 0 as n→∞.

Proof. Note that

P (Mn 6 nx) = G(nx)n =

(
1− nGc(nx)

n

)n
.

However, since EV1 < ∞, Gc(x) is integrable, which implies that nGc(nx) → 0 as
n→∞. Since (1−n−1cn)n → e−c as n→∞ if cn → c, P (Mn 6 nx)→ e0 = 1. �
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5. Properties of heavy-tailed distributions

We now elaborate on the heavy-tail property and prove theorems 5 and 6. In
addition to the classes of cdfs Gc on [0,∞) with Gc(t) > 0 for all t defined in section 2,
we define two more. We say that Gc ∈ S∗ if G has finite mean m1 and∫ t

0
Gc(t− u)Gc(u) du ∼ 2m1G

c(t) as t→∞. (5.1)

We say that Gc ∈ C3, i.e., class III according to [1], if for all ε > 0∫ ∞
0

eεt dG(t) =∞. (5.2)

The following orderings are known or easy to establish.

Proposition 8. The classes are ordered by

S∗ ⊆ S ⊆ L ⊆ H ⊆ C3 and R(−α) ⊆ T (−α) ⊆ H.
For α > 1, R(−α) ⊆ S∗. For α > 0, R(−α) ⊆ S.

We now consider how properties of G induce corresponding properties in its
stationary-excess cdf Ge.

Proposition 9. Let G have finite mean.

(i) If G ∈ R(−α) for α > 1, then Ge ∈ R(−(α− 1)).

(ii) If G ∈ S∗, then Ge ∈ S.

(iii) If G ∈ L, then Ge ∈ L.

(iv) If G ∈ H, then Ge ∈ H.

(v) If Gc ∈ T (−α) for α > 1, then Gc
e ∈ T (−(α− 1)).

(vi) If G ∈ C3, then Ge ∈ C3.

Proof. (i) See [18, VIII.9]. The case α = 1 follows from the fact that if L(t) is
slowly varying and L(t)/t is integrable, then

∫∞
x (L(u)/u) du is slowly varying.

(ii) See [23].
(iii) Write

Gc
e(t− u) = m−1

1

∫ ∞
t

Gc(v − u) dv

and recall that integration preserves tail equivalence; see [16, p. 17].
(iv) Suppose that Gc(t) > Hc(t) for all t > 0 where H ∈ L. By (iii), Hc

e ∈ L,
but

Gc
e(t) =

1
m1(G)

∫ ∞
t

Gc(u) du > 1
m1(G)

∫ ∞
t

Hc(u) du > m1(H)
m1(G)

Hc
e (t), (5.3)
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where m1(G) > m1(H), so that the right side of (5.3) can itself be regarded as a lower
bound ccdf in L.

(v) Use part (i) and the proof of (iv).
(vi) See [2, lemma 3.2]. �

For our application to theorems 5 and 6, it is also important to consider how the
properties apply to the ccdf Gc

1(t)Gc
2(t) associated with the minimum of two indepen-

dent random variables with ccdf’s Gc
1 and Gc

2. The following is immediate.

Proposition 10. Let Gc
1 and Gc

2 be two ccdf’s on [0,∞) with Gc
i (t) > 0 for all t > 0

and let Gc(t) = Gc
1(t)Gc

2(t).

(i) If Gi ∈ R(−αi) for αi > 0 and i = 1, 2, then G ∈ R(−(α1 + α2)).

(ii) If Gc
i ∈ L for i = 1, 2, then Gc ∈ L.

(iii) If Gc
i ∈ H for i = 1, 2, then Gc ∈ H.

(iv) If Gc
i ∈ T (−αi) for αi > 0 and i = 1, 2, then Gc ∈ T (−(α1 + α2)).

We are motivated to introduce the class H because the standard heavy-tail notions
embody regularity properties for asymptotics as well as large tails.

Example. To illustrate, we give an example of a ccdf in H but not in L. First, the
ccdf

Gc(t) = e−
∫ t

1
z−1 dz , t > 1, (5.4)

is in L. Let

α(t) = 2n, 2n 6 t < 2n+1

for n > 0. Since α(t) 6 t for all t > 0, we have the ordering

Hc(t) ≡ Gc(α(t)
)
> Gc(t) for all t > 0.

Hence, the ccdf Hc is in H. However, Hc is not in L, because

1 = lim inf
t→∞

Hc(t− u)
Hc(t)

< lim sup
t→∞

Hc(t− u)
Hc(t)

= lim sup
n→∞

e+
∫ 2n+1

2n
z−1 dz

= exp
(
ln
(
2n+1)− ln(2n)) = 2. (5.5)

Proof of theorem 5. Now we prove theorem 5, using theorem 1. Suppose that
Gc ∈ H. Then there exists Hc ∈ L such that Gc(t) > Hc(t) for all t. That or-
dering implies that a steady-state waiting time in the system with service-time cdf H ,
say W (H), exists and, in addition, by making a sample path comparison, as in [34,
theorem 4],

P
(
W (G) > t

)
> P

(
W (H) > t

)
for all t. (5.6)
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Now, considering the M/GI/s system with service-time cdf H , we first have He ∈ L
by proposition 9(iii). Then by (2.3) and proposition 10(ii), it follows that F c(H) ∈ L
too, for F c defined in (2.2). (If Gc

1 ∈ L and Gc
1 ∼ Gc

2, then Gc
2 ∈ L.) Thus, by (2.2),

W c(H) ∈ H. Finally, by (5.6), W c(G) ∈ H, as claimed. �

Proof of theorem 6. Let Hc be a ccdf in R(−α) with Gc(t) > Hc(t) for all t > 0.
Just as in the proof of theorem 5, (5.6) holds. By proposition 9(i), He ∈ R(−(α− 1)).
Then, by (2.3) and proposition 10(i), F c(H) ∈ R(−s(α − 1)) for F c in (2.2). (If
Gc

1 ∈ R(−α) and Gc
1 ∼ Gc

2, then Gc
2 ∈ R(−α).) Hence, first, W c(H) ∈ T (−s(α−1))

by (2.2) and, second, W c(G) ∈ T (−s(α− 1)) by (5.6). �

6. Upper bounds

In this section we prove theorem 4. The proof is based on a stochastic comparison
between multi-server and single-server queues. Given a GI/GI/s model, let W1 be the
steady-state waiting time in the associated single-server queue obtained by assigning
successive arrivals cyclically to the s servers, i.e., the GI/GI/1 system in which the
interarrival-time distribution is the s-fold convolution of the interarrival-time in the
original s-server system. Wolff [36] showed that W is bounded above by W1 in
increasing convex stochastic order, i.e.,

Ef (W ) 6 Ef (W1) (6.1)

for all nondecreasing convex real-valued functions f or, equivalently (see [30, p. 9]),∫ ∞
t

P (W > u) du 6
∫ ∞
t

P (W1 > u) du for all t. (6.2)

However, the ordering cannot be extended to ordinary stochastic order, i.e., (6.1) need
not hold for all nondecreasing f or, equivalently, we need not have

P (W > t) 6 P (W1 > t) for all t; (6.3)

see [33]. Nevertheless, we can apply (6.2) to deduce that

lim inf
t→∞

P (W > t)
P (W1 > t)

6 1. (6.4)

When Ge is subexponential, we have

lim
t→∞

P (W1 > t)
Gc

e(t)
=

ρ

1− ρ. (6.5)

Hence, we can combine (6.4) and (6.5) to obtain theorem 4.
Scheller-Wolf and Sigman [27] have established conditions for W to have finite

moments that also support the conjecture when s = 2 and ρ < 1/2. They show that
(i) EW < ∞ if EV 3/2 < ∞ and (ii) EW 2 < ∞ if EV 2 < ∞. We can apply
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Chebychev’s inequality to convert finite moments into tail-probability upper bounds;
i.e., if EW r <∞, then

P (W > t) 6 EW r

tr
. (6.6)

To illustrate, suppose that s = 2 and Gc(t) ∼ At−(ε+3/2) for small positive ε.
The infinite-server lower bound yields

W c(t) > F c(t) ∼ A1G
c
e(t)2 ∼ A2t

−(1+2ε), (6.7)

while EV 3/2 <∞, so that EW <∞ by Scheller-Wolf and Sigman [27], and

P (W > t) 6 EW

t
. (6.8)

Inequalities (6.7) and (6.8) show that the exponents in the two power-tail bounding
ccdfs differ by only 2ε, where ε was arbitrary.

7. Moments

Bounds on the waiting-time tail probabilities allow us to determine whether mo-
ments are finite or not. For this purpose, recall that a nonnegative random variable V
with cdf G satisfies EV r <∞ if and only if tr−1Gc(t) is integrable over (0,∞); see
[18, p. 151].

First notice that our minimal-stability lower bound in theorem 3 allows us to
deduce that EW r = ∞ whenever EV r+1 = ∞ and k = 1 in (2.17), which is one
side of an equivalence established by Scheller-Wolf and Sigman [27].

Next we assume that the service-time ccdf Gc has a power tail, i.e., (2.15) holds.
Then EV r = ∞ for r > 0 if and only if α 6 r, where α is the exponent of the
power tail. Hence we can apply the infinite-server lower bound theorem 1 to deduce
the following.

Theorem 11. Suppose that the service-time ccdf Gc has a power tail as in (2.15).

(i) If EV r =∞ for r > 0, then EW s(r−1) =∞.

(ii) When s = 2, EV 3/2 <∞ if and only if EW <∞.

(iii) When s = 2, EV 2 <∞ if and only if EW 2 <∞.

Proof. (i) Since Gc has a power tail with exponent α, Gc
e and the ccdf Hc

2 in (2.10),
which is a lower bound for W c(t), have power tails with exponents α−1 and s(α−1),
respectively. If EV r = ∞, then the exponent α of the power tail of Gc must satisfy
α 6 r. Since α 6 r, s(α− 1) 6 s(r − 1), so that we must have EW s(r−1) =∞.

(ii) and (iii) Apply part (i) together with upper bounds of [27, proposition 4.1]. �
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We now point out that our infinite-server lower bound does not support part (i)
of theorem 11 in general, i.e., without the power-tail condition. Suppose that the
service-time ccdf satisfies

Gc(t) ∼ A

tα(log t)β
as t→∞, (7.1)

so that EV α < ∞ if and only if β > 1. Let β = 3/4, so that EV α = ∞. It is easy
to see that

Gc
e(t) ∼ A′

tα−1(log t)β
as t→∞, (7.2)

so that

Hc
1(t) ∼ A′′

ts(α−1)(log t)sβ
as t→∞ (7.3)

for Hc
1 in (2.6), which implies that∫ ∞

0
ts(α−1) dH1(t) <∞ for all s > 2, (7.4)

making it impossible to deduce that EW s(α−1) =∞. We conjecture that EW s(α−1) <
∞ in this example, but that is yet to be proved because H1 in (7.4) is only a lower
bound.

8. The transient waiting-time distribution

An infinite-server lower bound also applies with time-dependent non-Poisson
arrival processes. As a special case, it applies to the transient distribution in the
M/GI/s model.

Of course the transient waiting-time distribution depends on the initial conditions.
To have a relatively simple description, we assume that the M/G/s system starts off
empty at time 0. We are then interested in the time-dependent waiting-time ccdf. Let
W (t) be the waiting time before beginning service for a customer arriving at time t.
(Since the arrival process in Poisson, the distribution is unaffected by the presence of
an arrival at time t; i.e., the virtual and actual waiting-time distributions coincide.) Let
W c(u; t) ≡ P (W (t) > u) be the transient ccdf at time t. Then, paralleling (2.2), we
have

W c(u; t) > F c(u; t) for all u > 0, (8.1)

where F c(·; t) is the ccdf of the first passage time to s − 1 or fewer busy servers in
the infinite-server model, starting off with the transient M/G/∞ distribution at time t
and neglecting all subsequent arrivals. As a consequence, we have the following
result.
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Theorem 12. In the M/G/s model starting out empty at time 0, for all positive λ, u
and t,

W c(u; t) > F c(u; t) = Π
(
s− 1;λm1

[
Gc

e(u)−Gc
e(t+ u)

])
, (8.2)

where

F c(u; t) ∼ (λm1)s

s!

[
Gc

e(u)−Gc
3(t+ u)

]s
as u→∞. (8.3)

Proof. The number N (t) of customers in the M/G/∞ model at time t has a Poisson
distribution with mean

EN (t) = λm1Ge(t), (8.4)

where λ is the arrival rate, m1 is the mean service time and Ge is the service-time
stationary-excess cdf in (2.1); see [15, (20), p. 740]. Moreover, the number of cus-
tomers arriving in [0, t] that are still present at time u has a Poisson distribution with
mean

EN (t,u) = λ

∫ t

0
Gc(u+ s) ds = λ

∫ u+t

u
Gc(s) ds = λm1

[
Gc

e(u)−Gc
e(t+ u)

]
(8.5)

by the Poisson-random measure argument in the proof of Eick et al. [15, theorem 1]. �

From theorem 12, we can see the approach to steady state as t→∞. From (8.4)
we see that EN (t) approaches the steady-state mean EN (∞) = λm1. Moreover, we
obtain an explicit expression for the rate of convergence:

EN (∞)−EN (t)
EN (∞)

= Gc
e(t), t > 0. (8.6)

So, for heavy-tailed ccdfs Gc, the convergence of EN (t) to EN (∞) is relatively slow.
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