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Abstract

We establish functional central limit theorems (FCLTs) for a cumulative input process to

a fluid queue from the superposition of independent on-off sources, where the on periods and

off periods may have heavy-tailed probability distributions. Variants of these FCLTs hold

for cumulative busy time and idle time processes associated with standard queueing models.

The heavy-tailed on-period and off-period distributions can cause the limit process to have

discontinuous sample paths, e.g., to be a non-Brownian stable process or more general Lévy

process, even though the converging processes have continuous sample paths. Consequently,

we exploit the Skorohod M1 topology on the function space D of right-continuous functions

with left limits. The limits here combined with the previously established continuity of the

reflection map in the M1 topology implies both heavy-traffic and non-heavy-traffic FCLTs for

buffer-content processes in stochastic fluid networks.

Keywords: functional central limit theorems, invariance principles, heavy-traffic limit theo-

rems, stochastic fluid networks, cumulative input processes, cumulative busy-time processes,

heavy-tailed probability distributions, stable processes, Lévy processes, communication net-

works



1. Introduction

This is part of a series of papers devoted to obtaining approximations via limit theorems for

stochastic fluid queues and stochastic fluid queueing networks with bursty input. Motivated by

evolving communication networks, we represent the input at each queue (node) in the network

as the input from a superposition of mutually independent on-off sources. Each source is

alternately on and off for random periods of time. During on periods the source sends packets,

represented as deterministic fluid, at constant rate; during off periods, the source is idle, not

sending input. (We also consider the generalization in which the input during on periods is

stochastic.)

We consider the case of a single-class fluid network. We let fluid be processed at each node

in a first-come first-served (FCFS) manner at a constant rate and we stipulate that a proportion

Qij of all fluid output from node i is immediately routed to queue j, where Q ≡ (Qij) is a

substochastic matrix with Qn → 0 as n → ∞; fluid not routed to another node leaves the

network; see [18] for additional background.

Network measurements have revealed that the traffic carried on the communication net-

works is quite complex, exhibiting features such as long-range dependence, self-similarity and

heavy-tailed probability distributions (having infinite variance); e.g., see [1], [8], [43]. This

traffic complexity is evidently due, to a large extent, to the file sizes being transmitted over

the networks having heavy-tailed probability distributions. We represent this phenomenon in

our stochastic fluid network by allowing the source on periods to have heavy-tailed probability

distributions. The on period represents the time a source is active, which will tend to be long

when a large file is to be sent. Because of the fluid assumption, the cumulative input process

from each source and the aggregate cumulative input process at each node have continuous

sample paths, but the limit processes may have jumps due to the burstiness.

As a basis for developing useful approximations, we want to establish limit theorems for

the buffer-content stochastic processes in these stochastic fluid networks. The limit theorems

we have in mind are generalizations of heavy-traffic limit theorems for the same fluid models

in which the on-periods do not have heavy-tailed distributions. Since evolving communication

networks with bursty input may be required to operate far from the heavy-traffic regime, it

is significant that our limit theorems do not require that the models be in the heavy-traffic

regime. However, the heavy-traffic regime is a principal case. There are a variety of detailed

assumptions that can be made about the distribution of the on-off stochastic processes and the



scaling; e.g., see Konstantopoulos and Lin [20], Kurtz [21] and Taqqu, Willinger and Sherman

[34]. For example, the number of sources can be allowed to go to infinity in the limit. Here we

assume that there is a fixed number of sources, but we allow the individual sources to change

in the limit process.

Even though the limits are not restricted to heavy-traffic, that is a useful reference case.

Even with the usual independence condition, the heavy-tailed probability distributions have a

dramatic impact on the heavy-traffic limiting behavior, making the limit become a reflected

(non-Brownian) stable process or a more general reflected Lévy process instead of a reflected

Brownian motion (RBM) as in Reiman [25]. Reflected stable and Lévy processes have inde-

pendent increments; they arise when the on and off periods come from independent sequences

of i.i.d. random variables or, more generally, under weak dependence. Limits with depen-

dent increments, such as fractional stable processes [29], are also possible when there is more

dependence.

In comparison with the usual heavy-traffic limits, the limits that we establish involve dif-

ferent scaling and have limit processes with different distributions. The limit processes also

have sample paths with jumps, in contrast to the continuous sample paths of RBM. In order

to obtain convergence of a sequence of stochastic processes with continuous sample paths to a

limiting stochastic process with jumps, we need to replace the familiar Skorohod [30] J1 topol-

ogy on the function space D ≡ D([0,∞),
� k ) of right-continuous

� k -valued functions with left

limits with the Skorohod M1 topology; [15, p. 301].

Thus, in [41] we established basic properties of the function space D with the Skorohod M

topologies, and in [42] we showed that the multi-dimensional reflection map on D is Lipschitz

continuous provided that a metric inducing the standard M1 topology is used on the domain,

while a metric inducing the weaker productM1 topology is used on the range. We also applied

that continuity result to establish functional central theorems (FCLTs) for the buffer-content

processes in stochastic fluid networks. Those FCLTs show that a limit holds for the buffer-

content process in the stochastic fluid network with a suitable scaling if a corresponding limit

holds for the cumulative input process.

The purpose of this paper is to fill in the final step and establish FCLTs for the cumulative

input process in the M1 topology. Assuming that the different sources, at each node as well

as at different nodes, are mutually independent, it suffices to establish a FCLT for the cumu-

lative input process associated with a single source. (The sum of independent Lévy processes

will be a new Lévy process.) When we consider more than one process, we use the product
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M1 topology on the product space D × · · · × D. Convergence in the product M1 topology

extends to the standard M1 topology on D([0,∞),
� k ) when the limit has discontinuities in

only one coordinate at a time [41]. A sufficient condition is for the component processes to be

independent without any fixed discontinuities.

Since we are considering on-off sources with fluid input, the cumulative input process of

one source is essentially the same as the cumulative busy time process. Indeed, suppose that

the input rate during on periods is λ and B(t) and C(t) are the cumulative busy time and

input during the time interval [0, t]. Then C(t) = λB(t). Moreover, if I(t) is the cumulative

idle time in [0, t], then I(t) = t−B(t). Hence, FCLTs for C(t), B(t) and I(t) are all essentially

equivalent. We will focus on the cumulative busy time, B(t). The results here thus also apply

to busy-time and idle-time processes in other queueing models.

For a single queue, our results here for the case of heavy-tailed on-period distributions are

very closely related to the non-Brownian limits in [40]. However, in that paper we considered a

discrete-time model with heavy-tailed input distributions, for which it is possible to apply the

familiar Skorohod J1 topology throughout. Nevertheless, the same reflected stable processes

and reflected Lévy processes are obtained as limit processes for the buffer content in our setting

when we restrict attention to a single queue under independence conditions. The methods for

calculating the probability distributions described there apply here as well. In particular,

when the Laplace transforms can be characterized, numerical transform inversion can be used.

However, those explicit results only apply to single queues. More work is needed to obtain

explicit limiting distributions for stochastic fluid networks. For some results in this direction,

see [17], [16].

Largely motivated by the traffic measurements, there has been growing interest in queues

with heavy-tailed distributions. Thus there is a growing body of related work; see Boxma

and Cohen [4], [5], Cohen [6], Furrer, Michna and Weron [13], Konstantopoulos and Lin [20],

Kurtz [21], Resnick and Rootzén [26], Resnick and Samorodnitsky [27], Resnick and van den

Berg [28] and Tsoukatos and Makowski [35], [36], [37]. The main contribution here is showing

how to obtain results via the continuous mapping theorem exploiting the M1 topology on D.

Even though the M1 topology was defined in 1956 by Skorohod [30], it has not received much

attention.

Although our primary focus is on obtaining discontinuous limits in the M1 topology, stem-

ming from the heavy-tailed on-time distributions, we also discuss the standard case in which

the cumulative-input limit process is Brownian motion in Sections 5 and 6. Then attention
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centers on identifying the variance constant.

2. Limits for the Cumulative Busy Time

Consider a queueing system in which there are alternating (necessarily positive) periods

Ii and Bi in which the system is idle (off) and busy (on). We initially allow these random

variables to be very general. In particular, we allow them to be mutually dependent and have

infinite variance or even infinite mean. As a regularity condition, we assume that the number

of busy cycles (idle period plus following busy period) in any finite interval [0, t] is finite. We

assume that the first idle period begins at time 0.

We now show how FCLTs for partial sums of the vectors (Ii, Bi) imply corresponding FCLTs

for the cumulative busy-time process B(t). To establish the FCLTs, we exploit results about

the SkorohodM1 topology in [30], [39], [41] and [24]. Let⇒ denote convergence in distribution

and let D ≡ D[0,∞) denote the function space of right-continuous real-valued functions with

left limits, endowed with the Skorohod M1 topology. Let the σ-field on D be the Borel σ-

field, which coincides with the usual Kolmogorov σ-field generated by the projection maps.

Let Dr ≡ (D,M1)
r be the r-fold product space of D with itself, here always endowed with

the product M1 topology. Let C and C
r be the subsets of continuous functions, endowed

with the relative topology, which corresponds to uniform convergence on all closed bounded

intervals. When the limit processes belong to C r, this becomes the familiar setting. For a

random element of D, let Disc(X) be the (random) set of discontinuities of X in [0,∞). Let

d
= denote equality in distribution.

In general, we allow a sequence of models indexed by n, so that we start with a sequence

of sequences {{(Ini, Bni) : i ≥ 1} : n ≥ 1}; Ini is the i
th idle period in model n. Let Nn(t) be

the number of complete busy cycles (idle period plus the following busy period) in [0, t] and

let Bn(t) be the cumulative busy time in [0, t], both for model n. With a sequence of models it

is possible to absorb the normalization constants into the processes, but we refrain from doing

this, so that heavy-traffic limits for a single model are obtained by a direct application. We

write Xn(t) ⇒ X(t) as if we were talking about convergence of the marginal distributions in
�
, but we establish the much stronger convergence in D. Weak convergence in D is indicated

by “in D” written after the limit.

We first obtain an FCLT with time scaling by n and space scaling by cn, where ncn →∞

(e.g., cn = n−q for 0 < q < 1) and then afterwards obtain FCLTs with the space scaling by

cn where ncn 6→ ∞ (e.g., cn = n−q for q ≥ 1). The standard case involving Brownian motion
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limits is cn = n−1/2. The case n−1 < cn < n−1/2 typically arises when the distribution of Bni

or Ini has finite mean and infinite variance.

Theorem 2.1. If

cn

bntc
∑

i=1

[(Ini, Bni)− (mn,1,mn,2)]⇒ [X1(t), X2(t)] in (D,M1)
2 as n→∞ , (2.1)

where ncn →∞ and mn,i → mi as n→∞ for i = 1, 2, with 0 < m1 +m2 <∞ and

P (Disc(X1) ∩Disc(X2) 6= φ) = 0 , (2.2)

then

cn[Nn(nt)− γnnt,Bn(nt)− ξnnt]⇒ (−γ[X1(γt) +X2(γt)], (1 − ξ)X2(γt)− ξX1(γt)) (2.3)

in (D,M1)
2 as n→∞, where

ξn ≡
mn,2

mn,1 +mn,2
→ ξ and γn ≡

1

mn,1 +mn,2
→ γ > 0 . (2.4)

Proof. The idea is to repeatedly apply the continuous mapping theorem and its variants, as in

Theorem 5.1 of Billingsley [3]. In particular, we invoke the Skorohod representation theorem

[30], which allows us to replace random elements of a separable metric space converging in

distribution with corresponding random elements defined on a new sample space having the

same distributions that converge with probability one. In [41] it is shown that the space (D,M1)

is metrizable as a complete separable metric space, so that Skorohod’s [30] representation

theorem can be applied. (Even if (D,M1) were not topologically complete, the representation

would still be valid, because Dudley [9] showed that topological completeness is not needed.)

First we observe that the cumulative busy-time processes can be closely approximated by

appropriate random sums. In particular, let the centered approximating processes be

Ban(t)− ξnt ≡ (1− ξn)

NBn (t)
∑

i=1

(Bn,i −mn,1)− ξn

NIn(t)
∑

i=1

(In,i −mn,2) , (2.5)

where NBn (t) and N
I
n(t) are the numbers of complete busy periods and idle periods up to time

t in model n. Note that

Nn(t) = N
B
n (t) ≤ N

I
n(t) ≤ Nn(t) + 1 for all t . (2.6)

Also note that

Ban(τn,k) = Bn(τn,k) and Ban(τ
′
n,k) = Bn(τ

′
n,k) for all k ≥ 0 , (2.7)
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where τn,0 = 0,

τn,k = In,1 +Bn,1 + · · · In,k +Bn,k, k ≥ 1 , (2.8)

and

τ ′n,k = τn,k + In,k+1, k ≥ 0 . (2.9)

Moreover Ban(t) is piecewise constant, while Bn(t) is piecewise linear in each of the intervals

[τn,k, τ
′
n,k] and [τ

′
n,k, τn,k+1]. After appropriate scaling, the busy-period counting processes

NBn (t) and N
I
n(t) are asymptotically equivalent to inverse partial sum processes. The partial

sum processes are

Sn(btc) =

btc
∑

i=1

(Ini +Bni), t ≥ 0 , (2.10)

and the inverse map is

x−1(t) = inf{s > 0 : x(s) > t}, t ≥ 0 . (2.11)

Note that

|Nn(t)− S
−1
n (btc)| ≤ 1 , (2.12)

so that

cn([Nn(nt)− nγnt]− [S
−1
n (bntc)− nγnt])⇒ 0 (2.13)

in D as n→∞.

Starting with the assumed limit (2.1), we consider the sum to get

cn

bntc
∑

i=1

[(Ini +Bni)− (mn,1 +mn,2)]⇒ X1 +X2 (2.14)

jointly with the limits in (2.1), invoking (2.2) and the analog of Theorem 4.1 of [39] for the

M1 topology, which is contained in [41]. (Equivalently, condition (2.2) allows us to replace

convergence in the product M1 topology in (2.1) by convergence in the strong M1 topology

on D([0,∞),
� 2 ), see [41].) We next get a limit for Nn(t). To do so, we apply the Skorohod

representation theorem and replace the convergence in distribution with convergence with

probability one. We then apply the inverse map in (2.11), using (2.13) and Theorem 7.5 of

[39] with c′n ≡ n(mn,1 +mn,2)cn playing the role of cn there and

xn(t) =
1

n(mn,1 +mn,2)

bntc
∑

i=1

(Ini +Bni) = (nγ
−1
n )

−1Sn(bntc) . (2.15)

6



We first get c′n(xn − e) → x as n → ∞, where e is the identity map and x = X1 +X2. Then

we get c′n(x
−1
n − e)→ −x as n→∞, where x

−1
n = n

−1S−1n ◦ nγ
−1
n e, so that

cn(Nn(nt)− γnnt)⇒ −γ[X1(γt) +X2(γt)] , (2.16)

again jointly with the limits above. As a consequence of (2.16), we get

n−1(N I(nt), NB(nt))⇒ (γt, γt) in (D,M1)
2 (2.17)

jointly with the limits above. Applying the continuous mapping theorem with the composition

map, using (2.14), (2.5) and (2.17), we get

Ban(t) ≡ cn[B
a
n(nt)− ξnnt]⇒ L(t) ≡ (1− ξ)X2(γt)− ξX1(γt) in (D,M1) (2.18)

jointly with the previous limits. We will use (2.18) to get the desired limit

Bn(t) ≡ cn[Bn(nt)− ξnnt]⇒ L(t) in (D,M1) . (2.19)

We now apply the Skorohod representation theorem to replace the convergence in distribution

by convergence w.p.1. From the special version of Ban in (2.18) we can directly construct the

associated special version of Bn in (2.19). For each continuity point t of the limit function

L, we obtain Bn(t) → L(t) w.p.1 from (2.18). From (2.5)–(2.9), we are able to bound the

M1 oscillation function of Bn in (2.19) over any finite interval [0, T ] by the corresponding

oscillation function of Ban in (2.18). In particular,

ws(Bn, δ) ≤ ws(B
a
n, 2δ)

for all suitably large n, where

ws(x, δ) = sup
0∨(t−δ)≤t1<t2<t3≤(t+δ)∧T

{|x(t2)− [x(t1), x(t3)]|}

and [a, b] is the segment joining a and b, i.e. [a, b] = {αa + (1 − α)b : 0 ≤ α ≤ 1}. We can

thus apply Theorem 6.1(iv) in [41] to establish convergence w.p.1 of the special versions of Bn,

jointly with the other quantities. That in turn implies the convergence in distribution of the

original versions.

Remark 2.1. As a consequence of the FCLT (2.3), we obtain the functional weak law of large

numbers (FWLLN)

n−1[Nn(nt), Bn(nt)]⇒ (γt, ξt) (2.20)
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in (D,M1)
2 as n→∞. Since the limit in (2.20) is continuous, theM1 convergence is equivalent

to uniform convergence in bounded intervals. Note that the limit of n−1Bn(nt) in (2.20), ξt,

trivially increasing in ξ, as we would expect. However, when X1 = 0, from (2.3), the limit of

cn|Bn(nt) − ξnt|, (1 − ξ)|X2(γt)|, is decreasing in ξ. Upon reflection, this is consistent with

intuition as well. For example, suppose that In is a deterministic value for all n, so that

X1(t) = 0. Then, as ξ → 1, Bn(t) approaches t, and we should anticipate that the limit of

cn[Bn(nt)− ξnnt] approaches 0 as first n→∞ and then ξ → 1, as implied by (2.3).

Remark 2.2. When we can establish condition (2.1), even with a discontinuous limit, it will

typically be possible to obtain convergence in the stronger Skorohod J1 topology; e.g., by

applying results in Jacod and Shiryaev [15]. However, we cannot as a consequence obtain the

conclusion (2.3) in the J1 topology, unless the limit process has continuous paths. Since the

normalized cumulative-busy-time processes have continuous sample paths, the M1 topology

is needed in the final limit. The M1 topology is also needed to get (2.16) for the counting

processes via the inverse map. Theorem 7.4 of [39] shows that a limit does not hold in the J1

topology for limit processes with discontinuities.

Remark 2.3. The discontinuity condition P (Disc(X1) ∩Disc(X2) 6= φ) = 1 in Theorem 2.1

is obviously automatically satisfied if one of the two limit processes X1 and X2 has continuous

paths, i.e. if P (Xi ∈ C) = 1 for one i. In fact, both have continuous paths in the standard

short-range-dependence finite-variance case, in which they are Brownian motions, which we

consider in Section 3. Otherwise, the discontinuity condition is automatically satisfied if X1

and X2 are independent processes without fixed discontinuities.

Remark 2.4. If the scaling is not by cn = n−1/2, then often the busy periods will dominate

the idle periods in the sense that X1(t) = 0, t ≥ 0, in (2.1). Then the discontinuity condition

(2.2) is trivially satisfied and the limit process in (2.3) simplifies. Indeed, it is a simple time-

and-space rescaling of the limit X2 in (2.1).

Assuming that the limit process in Theorem 2.1 is continuous at t with probability one, we

obtain the associated ordinary CLT (convergence of marginal distributions) in
� 2 by applying

the continuous mapping theorem with the projection map πt : D
2 →

� 2 , defined by πt(x1, x2) =

(x1(t), x2(t)).

The limit processes in (2.1) and (2.3) will often be self-similar, i.e., the finite-dimensional
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distributions will satisfy

[X(ct1), . . . , X(ctn)]
d
= [cHX(t1, . . . , c

H(tn)] (2.21)

for all n, 0 < t1 < · · · < tn and c > 0 see [29, p. 311]. Then H is the self-similarity index.

Indeed, in the case that there is only a single model, i.e., in which {(Ii, Bi)} are not indexed

by n, the limit process is necessarily self-similar. We summarize the observation.

Theorem 2.2. If the conditions of Theorem 2.1 hold with cn = n−q for a single model

{(Ii, Bi) : i ≥ 1}, then the limit process [X1(t), X2(t)] in (2.1) is self-similar with index q

and the limit process in (2.3) is distributed as

(1− ξ)γqX2(t)− ξγ
qX1(t) . (2.22)

Proof. Consider the limits two ways, first replacing t by γt and then replacing n by γn in

the time argument nt.

We next consider the case in which the partial sums of the busy periods satisfies a FCLT

with normalization cn where ncn → c ≤ 1, which corresponds to the occurrence of exceptionally

long busy periods. When q > 1, the average busy period B̄n = (Bn1+ · · ·+Bnn)/n is diverging

to +∞ as n → ∞. We assume that the idle times satisfy a functional weak law of large

numbers (FWLLN) with the usual normalization n−1. The dual case involving large idle times

and standard busy times is covered by just changing the names. We consider the case in which

both idle and busy times are large afterwards.

Let e denote the identity map on [0,∞). Let Ckm be the subset of functions in C
k with

each coordinate function being monotone. Let D1↑ be the subset of nondecreasing nonnegative

functions in D1.

Theorem 2.3. If

n−1
bntc
∑

i=1

Ini ⇒ m1t in (D,M1) as n→∞ (2.23)

and

cn

bntc
∑

i=1

Bni ⇒ X2(t) in (D,M1) as n→∞ , (2.24)

where ncn → c ≤ 1 and P (X−12 (0) = 0) = 1, then

n−1(Nn(c
−1
n t), In(c

−1
n t), Bn(c

−1
n t)− c−1n t)⇒ (Y1(t), Y2(t),−Y2(t)) in (D,M1)

3 (2.25)
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as n→∞, where

Y1(t) =

{

X−12 , c = 0

(m1e+X2)
−1(t), c = 1

(2.26)

and

Y2(t) = m1Y1(t) . (2.27)

Proof. We modify the proof of Theorem 2.1. First, by Theorem 4.4 of Billingsley [3], since

the limit in (2.23) is deterministic, the separate convergence in (2.23) and (2.24) implies joint

convergence. We first assume that c = 0. Multiplying by ncn in (2.23), we obtain

cn

bntc
∑

i=1

(Ini, Bni)⇒ (0, X2(t)) in D
2 as n→∞ . (2.28)

Then, adding, we get

cn

bntc
∑

i=1

(Ini +Bni)⇒ X2(t) in D as n→∞ . (2.29)

joint with (2.23) and (2.24). Using (2.12) and the inverse map, from (2.29) we get

n−1Nn(cnt)⇒ X−12 (t) in D as n→∞ , (2.30)

again joint with the limits above. We use Lemma 2.1 of [24], which requires the assumed

condition P (X−12 (0) = 0) = 1. Note that X2 necessarily has nondecreasing sample paths since

Ini ≥ 0 and Bni ≥ 0 for all n and i. The processes B and I can be treated at once because

B(t) = t− I(t). We apply composition with (2.23) and (2.30) to get

n−1
Nn(c

−1
n t)

∑

i=1

Ini ⇒ m1X
−1
2 (t) in D as n→∞ (2.31)

jointly with (2.30), using Theorem 9.1 of [41] with the limit (x, y) ∈ C km × D1↑ there, i.e.,

exploiting the fact that m1e is continuous and monotone. Next note that
∣

∣

∣

∣

∣

∣

n−1In(c
−1
n t)− n−1

Nn(c
−1
n t)

∑

i=1

In,i

∣

∣

∣

∣

∣

∣

≤ n−1In,Nn(c−1n t)+1 . (2.32)

By (2.23), n−1In,bntc ⇒ 0 in (D,M1). That with (2.30) implies that

n−1In,Nn(c−1n t)+1 ⇒ 0 in (D,M1) . (2.33)

Hence, we have established (2.25) in the case c = 0. When c = 1, (2.28) and (2.29) hold with

the limits changed to (m1t,X2(t)) and m1(t) + X2(t), respectively. Thus, (2.30) holds with

the limit changed to (m1e +X2)
−1(t). Similarly, (2.31) holds with the limit process changed

to m1(m1e+X2)
−1(t), so that we have (2.25)–(2.27) when q = 1.
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Remark 2.5. Just as noted in Remark 2.2 about Theorem 2.1, we typically will be able

to obtain convergence in the stronger J1 topology in condition (2.24). However, we use the

M1 topology when we work with the inverse map. The inverse map is continuous in the J1

topology if the limit is strictly increasing; see Theorem 7.2 of [39]. Since the processes in (2.24)

are nondecreasing, the M1 topology is equivalent to pointwise convergence on a dense subset.

The following lemma helps to apply Theorem 2.3.

Lemma 2.4. Let X be an element of D1↑. For all s, t > 0 such that P (X(s) = t) = 0,

P (X−1(t) ≤ s) = P (X(s) > t) .

Proof. From (2.11),

{X(s) > t} ⊆ {X−1(t) ≤ s} ⊆ {X(s) ≥ t} ,

so that

P (X(s) > t) ≤ P (X−1(t) ≤ s) ≤ P (X(s) ≥ t)

for all s, t. Under the extra condition, the two outer probabilities are equal.

Now we consider the case in which both the partial sums of Ini and Bni both have a

nondegenerate limits without translation terms. In general, we have difficulty if the limit

process X1 has discontinuities. Hence the following theorem seems less useful.

Let C↑↑ be the subset of strictly increasing nonnegative functions in C.

Theorem 2.5. Suppose that

cn

bntc
∑

i=1

(Ini, Bni)⇒ (X1(t), X2(t)) in (D,M1)
2 as n→∞ (2.34)

where cn → 0 as n → ∞. (a) If X1 and X2 are independent processes without fixed disconti-

nuities and (X1 +X2)
−1(0) = 0, then

n−1Nn(c
−1
n t)⇒ (X1 +X2)

−1(t) in (D,M1) as n→∞ . (2.35)

(b) If, in addition,

P ((X2, (X1 +X2)
−1) ∈ (Cm ×D

1
↑) ∪ (D × C↑↑)) = 1 , (2.36)

then

(n−1Nn(cn
−1t), cnIn(c

−1
n t))⇒ ((X1 +X2)

−1(t) , X2 ◦ (X1 +X2)
−1)(t) in (D,M1)

2 (2.37)

as n→∞.
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Proof. The argument is similar to that for Theorems 2.1 and 2.3. For both parts, the

conditions on the limit processes X1 and X2 allow us to apply the continuous mapping theorem

with addition to get

cn

bntc
∑

i=1

(Ini +Bni)⇒ X1(t) +X2(t) (2.38)

joint with (2.34). Using (2.12) and the inverse map (2.11), from (2.38) we get (2.35), again

joint with the limits above. We again use Lemma 2.1 of [24]. Note that the limit processes

Xi in (2.34) necessarily have nondecreasing nonnegative sample paths because Ini ≥ 0 and

Bni ≥ 0 for all n and i. Turning to (2.37) in part (b), we use the extra condition to justify

applying the continuous mapping theorem with composition, using Theorem 9.1 of [41]. We

use the argument in the proof of Theorem 2.1 to relate the cumulative busy time process to

the random sum.

3. Random Input During On Periods

We have indicated that the limits for the cumulative busy time B(t) in Section 2 translate

immediately into corresponding limits for the cumulative input C(t) for an on-off source when

the input during the on periods is always at a constant rate λ; then C(t) = λB(t). In this

section we consider the more general situation in which the input during on periods occurs

randomly according to a stochastic process {Λ(t) : t ≥ 0} with nondecreasing sample paths.

Now we assume that Λ(0) = 0 and

C(t) = Λ(B(t)), t ≥ 0 . (3.1)

Definition (3.1) means that input for the source is generated from the stochastic process {Λ(t) :

t ≥ 0} whenever the process is on, with successive increments from the same stochastic process

{Λ(t) : t ≥ 0} being used whenever the source turns on. A simple case naturally covered

by (3.1) is when {Λ(t) : t ≥ 0} and {B(t) : t ≥ 0} are independent stochastic processes

with {Λ(t) : t ≥ 0} having stationary and independent increments. However, (3.1) can apply

usefully in much more general situations.

A first general result is a direct consequence of the M1 limit under a random time change

in Theorem 11.2 of [41]. We use the M1 topology in the condition because that is the mode of

convergence obtained from Theorem 2.1. Note that the condition below for Bn(t) corresponds

to the conclusion of Theorem 2.1 here, in the situation considered there.
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Theorem 3.1. If

cn[Bn(nt)− ξnnt,Λn(nt)− λnnt]⇒ [X1(t), X2(t)] in (D,M1)
2 as n→∞ , (3.2)

where ncn →∞, ξn → ξ and λn → λ as n→∞ and

P (Disc(X2 ◦ ξe) ∩Disc(X1) = φ) = 1 , (3.3)

then

cn[Cn(nt)− λnξnnt]⇒ X2(ξt) + λX1(t) in (D,M1) as n→∞ . (3.4)

Proof. Note that

cn[Cn(nt)− λnξnt] = cn[(Λn(nt)− λnnt) ◦ n
−1Bn(nt) + λn(Bn(nt)− ξnnt)]

⇒ X2(ξt) + λX1(t)

by Theorem 11.2 of [41].

There are two sources of variability in Theorem 3.1: the two processes Λn and Bn. When

the nonstandard scaling with cn 6= n−1/2 occurs in condition (3.2) of Theorem 3.1, we should

anticipate that the processes Bn and Λn typically will require different normalizations in order

to have nondegenerate limits. Thus, we regard the case in which either X1 or X2 in (3.2) is the

zero process as the common case with cn 6= n−1/2. That is fortunate because the limit (3.2)

will then typically be easier to verify.

Moreover, Theorem 3.1 invites us to compare the two sources of variability in applications

and determine which dominates, which could conceivably vary from situation to situation.

However, if burstiness is primarily due to exceptionally long on periods, then we should an-

ticipate that X2 will be the zero process; i.e., the fluctuations in Λn should be asymptotically

negligible compared to the fluctuations in Bn, so that P (X2(t) = 0) = 1 in (3.2). Then we

can treat the two components in (3.2) separately, applying Theorem 4.4 of Billingsley [3].

Moreover, it is not necessary to identify a nondegenerate limit for Λn, which necessarily must

involve a different scaling. We may well be able to deduce that

cn[Λn(nt)− λnnt]⇒ 0 in (D,M1) as n→∞ (3.5)

for quite general processes Λn (without requiring independent increments). Finally, in this

case the limit process is the same as if Λ(t) = λt, as assumed in Section 2.

We can combine Theorems 2.1 and 3.1 to show that the limit for the cumulative input

processes Cn after appropriate normalization is just a deterministic scaling of the limit process
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X2 for the partial sums of the busy times when the idle times and the processes Λn are

asymptotically negligible compared to the busy times.

Corollary 3.2. If condition (2.1) in Theorem 2.1 holds with P (X1(t) = 0) = 1 for all t, and

if

cn[Λn(nt)− λnnt]⇒ 0 in (D,M1) as n→∞ ,

where λn → λ as n→∞, then

cn[Cn(nt)− ξnλnnt]⇒ λ(1− ξ)X2(γt) in (D,M1) as n→∞,

where X2, γ and ξ are as in Theorem 2.1.

4. Sufficient Conditions

The main remaining problem is to provide useful sufficient conditions for the conditions

in the theorems in Sections 2 and 3, especially condition (2.1) in Theorem 2.1. As noted in

Remark 2.2, this condition requires convergence in the M1 topology, but we typically will be

able to establish the required convergence in (2.1) in the stronger J1 topology, even with heavy-

tailed probability distributions and discontinuous sample paths. Indeed, Jacod and Shiryaev

[15] give numerous sufficient conditions for convergence of the form (2.1), to processes with

discontinuous sample paths, all in the J1 topology.

The theorems in Sections 2 and 3 do not require any independence for the underlying

random variables Bni and Ini, but that is an important special case. In particular, if we

assume that the pairs (Ini, Bni) for i ≥ 1 are i.i.d. for each n, then condition (2.1) falls into the

classical setting of limits for triangular arrays of partial sums of i.i.d. random vectors, for which

the limits are known to be Lévy processes. Such limits, with applications to the single-server

queue are discussed in [40]. (However, there the summands have a different interpretation than

busy and idle periods.)

The standard framework for heavy-traffic limit theorems for queues involves a sequence of

queueing processes associated with a sequence of queueing models, which we take to be indexed

by n. The condition of heavy-traffic is achieved by having the associated traffic intensities ρn

approach 1, the critical level for stability, from below as n → ∞. The queueing models can

change quite generally with n, but it often suffices to consider essentially a single model, letting

the nth arrival (cumulative input) process be a simple time-scaling of a single reference arrival

process. We can achieve the same simple scaling in our idle-busy cycles by letting the idle and
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busy periods in model n be obtained by simply scaling the idle and busy periods in a single

reference system. In particular, suppose that Ini and Bni are defined in terms of Ii and Bi by

letting

Ini = αnIi and Bni = βnBi (4.1)

where αn → α and βn → β as n→∞.

With the framework (4.1), we can easily establish the conditions in the theorems in Section

2 using limits for the single sequence {(Ii, Bi) : i ≥ 1}. We state the elementary result for

Theorem 2.1.

Theorem 4.1. Suppose that (4.1) holds with α+ β > 0,

cn





bntc
∑

i=1

(Ii, Bi)− (m̂1, m̂2)



⇒ (Y1, Y2) in (D,M1)
2 as n→∞, (4.2)

where ncn →∞ as n→∞, m̂1 + m̂2 > 0 and

P (Disc(Y1) ∩Disc(Y2) 6= φ) = 0 . (4.3)

Then the conditions and conclusions of Theorem 2.1 hold with X1 = αY1, X2 = βY2, mn1 =

αnm̂1, mn2 = βnm̂2, m1 = αm̂1, m2 = βm̂2 and γ = (m1 +m2)
−1 > 0.

For the single-model framework in (4.1), it suffices to establish condition (4.2). If, as

above, we assume that the pairs (Ii, Bi) for i ≥ 1 are i.i.d., then we are in the restricted

classical setting of limiting stable processes. We will elaborate since this seems to be the most

relevant for treating heavy-tailed on periods.

We now discuss non-standard limits when there is essentially a single model with i.i.d. busy

cycles, where the busy-period cdf has a heavy tail but the idle-period cdf does not. In that

setting, it turns out that a nonstandard limit in one of Theorem 2.1 or 2.3 holds with cn = n
−1/α

if and only if the busy-period cdf has a power tail with decay rate x−α for 0 < α < 2. (If

we allow more general normalization constants, then the busy-period cdf tail can be regularly

varying.) Under that condition, the limit process X2(t) becomes a stable Lévy motion (totally

skewed to the right and centered), by which we mean that X2(0) = 0, {X2(t) : t ≥ 0}

has stationary and independent increments, and X(t) − X(s)
d
= Sα(σ(t − s)

1/α, 1, 0), where

Sα(σ, β, µ) denotes a stable probability law on
�
with index α (0 < α ≤ 2), scale parameter σ,

skewness parameter β (−1 ≤ β ≤ 1) and location (or shift) parameter µ as in Samorodnitsky

and Taqqu [29], to which we refer for background. In particular, the logarithmic characteristic
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function of an Sα(σ, β, µ) variable X is

logEeiθX =

{

−σα|θ|α(1− iβ(sign θ) tan(πα/2) + iµθ, α 6= 1

−σ|θ|(1 + iβ 2π (sign θ)ln(|θ|) + iµθ, α = 1 ,
(4.4)

where sign θ = +1, 0 or −1 for θ > 0, θ = 0 and θ < 0. The stable law is skewed totally to the

right when β = 1 and skewed totally to the left when β = −1; we are interested in the case

β = 1. It is centered when µ = 0.

A random variable X distributed as Sα(σ, 1, 0) for α < 2 has a cdf with power upper tail

decaying as x−α; in particular,

lim
x→∞

xαP (X > x) = Kασ
α , (4.5)

where

Kα =

(
∫ ∞

0
x−α sinxdx

)−1

=

{ 1−α
Γ(2−α) cos(πα/2) α 6= 1

2
π , α = 1

(4.6)

and Γ(x) is the gamma function. For 0 < α < 1, the stable law Sα(σ, 1, 0) is concentrated on

the positive half line, and the associated stable process has nonnegative nondecreasing sample

paths. In that case, the positively skewed stable Lévy motion is called a stable subordinator.

For 1 ≤ α < 2, the skewed stable law Sα(σ, 1, 0) has support on the entire line, but it decays

faster than exponentially. If X has the Sα(σ, 1, 0) law, then the logarithm of its Laplace

transform (defined only for real positive s for α ≥ 1) is

logEe−sX =

{

−σαsα/ cos(πα/2) if α 6= 1

2σs ln (s)/π if α = 1 ,
(4.7)

for Re(s) > 0. Closed-form representations for stable pdf’s and cdf’s are available in only a

very few cases, but numerical calculations can be done exploiting finite-interval integral rep-

resentations in Section 2.2 of Zolotarev [44]. These integral representations have been applied

to generate tables of pdf, cdf and factile values, as indicated in Section 1.6 of Samorodnitsky

and Taqqu [29].

With this background, we can state the basic limit theorem. We omit the somewhat patho-

logical boundary case of α = 1. Note that our assumptions are about I1 and B1 separately;

we need not make any assumption about the joint distribution of I1 and B1.

Theorem 4.2. Consider a single model with i.i.d. busy cycles in which EI 21 <∞.

(a) The conditions of Theorem 2.1 (or Theorem 4.1) with normalization constants cn = n
−1/α

hold for 1 < α < 2 if and only if there is a constant K for which

lim
x→∞

xαP (B1 > x) = K , (4.8)
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in which case m1 = EI1, m2 = EB1 < ∞ and the limit process [X1(t), X2(t)] has

X1(t) = 0 and X2(t) stable Lévy motion with marginals distributed as Sα(σt
1/α, 1, 0)

for σ = (K/Kα)
1/α with K in (4.8) and Kα in (4.5). The limit process (1 − ξ)X2(γt)

in (2.3) has one-dimensional marginals at t distributed as Sα(σt
1/α, 1, 0), where σ =

(1 − ξ)(Kγ/Kα)
1/α for ξ = ρ = EB1/(EB1 + EI1) and γ in (2.4) and K and Kα as

above.

(b) The conditions of Theorem 2.3 with normalization constants cn = n
−1/α hold for 0 < α <

1 if and only if (4.8) holds, in which case X2(t) is the stable subordinator, with marginals

distributed as Sα(σt
1/α, 1, 0) for σ = (K/Kα)

1/α with K in (4.8) and Kα in (4.5). The

limit process −m1X
−1
2 (t) in (2.26) and (2.27) has marginal distribution

P (−m1X
−1
2 (t) ≥ −x) = P (m1X

−1
2 (t) ≤ x) = P (X2(x/m1) > t) (4.9)

with X2(x/m1) being distributed as Sα(σ(x/m1)
1/α, 1, 0).

We omit the proof of Theorem 4.2 because it is contained in Theorems 3.3 and 3.8 of [40],

which draws on Feller [12] and Jacod and Shiryaev [15]. See [40] for further discussion.

5. Limits for a Single Queue

We now combine the previous results to obtain FCLTs for a single-server fluid queue fed by

the superposition of k independent on-off sources with heavy-tailed on periods. We construct

a sequence of models indexed by n, letting ρn be the traffic intensity for model n.

As in [40], we consider a single-server queue with finite waiting space, which is defined by

the two-sided reflection map R. The reflection map R takes elements x ∈ D ≡ D([0, T ],
�
)

with 0 ≤ x(0) ≤ C into (z, l, u) ≡ (φ(x), ψl(x), ψu(x)) in D
3, where

z(t) = x(t) + l(t)− u(t), t ≥ 0 , (5.1)

l and u have nondecreasing sample paths with l(0) = u(0) = 0, l(t) increases only when z(t) = 0

and u(t) increases only when z(t) = C, i.e.,

∫ ∞

0
z(t)dl(t) =

∫ ∞

0
[C − z(t)]du(t) = 0 . (5.2)

As shown in [42], the reflection map on D([0,∞),
�
) into D([0,∞),

� 3) is continuous provided

the productM1 (PM1) topology is used on the range. If we focus on the one-dimensional buffer

content process z, the topologies on the domain and range become just M1 on D([0,∞),
� 1).
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We first establish a general limit in the setting of Section 2. Let {Zn(t) : t ≥ 0} be the

buffer-content stochastic process in model n with buffer capacity Cn and fluid processing rate

rn. Let e be the identity map on [0,∞). We obtain the following from Theorem 2.1 by applying

the continuous mapping theorem with the reflection map above.

Theorem 5.1. If the conditions of Theorem 2.1 hold with Cn = c−1n C, cnZn(0) ⇒ Z(0) as

n→∞ in
�
and

ncn(λξn − rn)→ c (5.3)

as n→∞, then

Zn ⇒ φ(λ(1− ξ)X2 ◦ γe− λξX1 ◦ γe+ ce) in (D,M1) as n→∞ , (5.4)

where φ is the first (content) component of the reflection map.

Proof. By (5.3),

cnZn(nt) = φ({cn[λB(nt)− rnnt]})

= φ({cn[λB(nt)− λξnnt] + (λξn − rn)n
1−qt})

→ φ({λ(1 − ξ)X2(γt)− λξX1(γt) + ct})

by the continuity of the reflection map. This two-sided reflection map with the M1 topology

is discussed in Section 10 of [42].

In the standard heavy-traffic applications of Theorem 5.1, ξn → ξ > 0 and rn → r > 0, so

that λξn− rn → 0 and ρn ≡ λξn/rn → 1. However, we can have non-heavy-traffic applications

by having ncnλξn → a > 0 and ncnrn → b > 0, so that c = a − b and ρn ≡ λξn/rn → a/b,

where a/b can be any positive value. Then ξ = 0 and the limit in (5.4) simplifies.

Corollary 5.2. If, in addition to conditions of Theorem 5.1, ncnλξn → a > 0 and ncnrn →

b > 0 as n→∞. Then

Zn ⇒ φ(λX2 ◦ γe+ ce) in (D,M1) as n→∞ ,

where X2 has nondecreasing sample paths, but λX2 ◦ γe+ ce need not.

It is natural to treat the non-heavy-traffic case in Corollary 5.2 without using the scaling

in Theorem 2.1. We can then consider fixed capacity C and fluid processing rate r. The

idea is to define the sequence of models so that {Bn(t) : t ≥ 0} directly converges to a
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limiting process, say {B(t) : t ≥ 0}. (The limit B corresponds to λX2 ◦ γe in Corollary 5.2.)

By the continuity of the reflection map, the associated buffer-content stochastic processes

{Zn(t) : t ≥ 0} converge to φ(B − re), where φ is the first component of the reflection map.

If the sequence {(Bni, Ini) : i ≥ 1} is i.i.d. for each n, then the limit process X2 in Theorem

2.1 can be a general Lévy process with nondecreasing sample paths (subordinator), so that

φ(B−ce) is a reflected Lévy process. If we work in the single-model framework of Theorem 4.1,

we still do not need to be in heavy traffic, but the possible limit processes are more restricted;

then the limit processes B and φ(B − ce) become a stable process with nondecreasing sample

paths (stable subordinator) and a reflected stable process, respectively.

We now describe the standard heavy-traffic limit in more detail, allowing stochastic input

during on periods as in Section 3. We now choose measuring units so that the constant fluid

processing rate is 1 for all n. The net-input process in model n is

Xn(t) = Cn(t)− t , (5.5)

with the cumulative input process being

Cn(t) =
k
∑

i=1

Λin(B
i
n(t)), t ≥ 0 , (5.6)

corresponding to the superposition of k independent on-off sources, where the ith source submits

fluid according to the stochastic process Λin(t) when it is on.

As in Corollary 3.2, we will assume that

cn[Λ
i
n(nt)− λ

i
nnt]⇒ 0 in (D,M1) as n→∞ (5.7)

for 1 ≤ i ≤ k, where λin → λi > 0 as n → ∞. where n−1/α is the final normalization we will

use to obtain a nondegenerate limit.

For source i in model n, Bin(t) is the cumulative busy time in [0, t]. It is determined by on

periods Binj and off periods I
i
nj. As in Section 4, we assume that we have essentially a single

model, i.e.,

Binj = β
i
nB
i
j and I inj = α

i
nI
i
j (5.8)

for 1 ≤ i ≤ k, j ≥ 1 and n ≥ 1, where β in and α
i
n are constants satisfying β

i
n → βi and αin → αi

as n→∞, where αi + βi > 0. Without loss of generality, we assume that EB ij = EI ij = 1, so

that EBinj = βin and EI
i
nj = αin. We assume that {B

i
j : j ≥ 1} and {I

i
j : j ≥ 1} for 1 ≤ i ≤ k

are 2k mutually independent sequences of i.i.d. random variables.
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We will consider the case in which the first j of the k on periods have power tails with

exponent x−α, while the rest are asymptotically negligible. Let Zn(t) be the buffer content at

time t in model n.

Theorem 5.3. Consider the fluid queue model with k independent on-off sources, each with

independent sequences of i.i.d. on periods and off periods as specified by (5.6)–(5.8), where

αi + βi > 0 for 1 ≤ i ≤ k. Suppose that E[(I i1)
2] <∞ for 1 ≤ i ≤ k,

lim
x→∞

xαP (Bi1 > x) = K i (5.9)

for 1 ≤ i ≤ j and

lim
x→∞

xαP (Bi1 > x) = 0 (5.10)

for j + 1 ≤ i ≤ k and 1 < α < 2. Then

n−1/α[Cn(nt)− ζnnt]⇒ Sα(t) in (D,M1) as n→∞ , (5.11)

where

ζn =

k
∑

i=1

λinξ
i
n (5.12)

with λin determined by (5.7),

ξin =
βin

αin + β
i
n

→ ξi as n→∞ (5.13)

as determined by (5.8), Sα(t) is a Stable Lévy motion with marginal distribution Sα(σt
1/α, 1, 0)

and

σ =

(

j
∑

i=1

(λi(1− ξi)βi)αγi
Ki
Kα

)1/α

, (5.14)

with Ki in (5.9), Kα in (4.6), λ
i
n → λi, βin → βi and

γin =
1

αin + β
i
n

→
1

αi + βi
= γi > 0 as n→∞ . (5.15)

If, in addition,

n1−α
−1

(ζn − 1)→ c as n→∞, −∞ < c <∞ ,

then the net-input processes satisfy

n−1/αXn(nt)⇒ ct+ Sα(t) in (D,M1) as n→∞ . (5.16)

If, in addition, the capacity in model n is n1/αC and n−1/αZn(0)⇒ Z(0), then

n−1/αZn(nt)⇒ Z(t) in (D,M1) as n→∞ , (5.17)
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where Z = φ(Sα + ce) for Sα in (5.11) and e is the identity map. Then

lim
t→∞

P (R(Sα + ce)(t) ≤ x) =
H(x)

H(C)
, 0 ≤ x ≤ C , (5.18)

where H is a cdf with pdf h with Laplace transform

ĥ(s) ≡

∫ ∞

0
e−sxh(x)dx =

1

1 + (vs)α−1
(5.19)

and scaling constant ν defined by

vα−1 =
−σα

c cos(πα/2)
> 0 (5.20)

for σ in (5.14).

Proof. By previous results, the cumulative input process from the ith source, 1 ≤ i ≤ j, has

the limit

n−1/α[Cin(nt)− λ
i
nξ
i
nnt]⇒ λi(1− ξi)γ

1/α
i βiXi2(t) , (5.21)

as n → ∞, where D is endowed with the M1 topology, X
i
2 is stable Lévy motion with X

i
2(t)

having marginal distribution Sα(σt
1/α, 1, 0) and σ = (K/Kα)

1/α forK in (4.8) andKα in (4.6).

Thus the limit has marginal distribution Sα(σit
1/α, 1, 0), where

σi = λ
i(1− ξi)γ

1/α
i βi

(

K

Kα

)1/α

(5.22)

see (1.2.3) on p. 11 of [29]. Since the k sources are mutually independent and the last k − j

are asymptotically negligible, we can add over the first j sources, using (5.22) and 1.2.1 of

[29], to obtain the limit (5.11) with σ in (5.14). The net-input limit in (5.16) differs only

by a deterministic translation. Finally, we obtain (5.17) by applying the continuous mapping

theorem with the reflection map. The steady-state distribution of R(Sα + ce) is classic; see

[40] and references therein.

Remark 5.1. As illustrated in [40], numerical values of the steady-state distribution of the

limiting reflected stable process is Theorem 5.3 are easily obtained by numerical transform

inversion.

6. The Standard Case: Brownian Limits

The standard case involves a single model with short-range dependence and finite variances

for the variables Ii and Bi. Then the basic limit process [X1(t), X2(t)] in Theorem 2.1 should
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be the Wiener process or Brownian motion, here denoted by W (t) to distinguish it from the

cumulative busy process B(t). Since the Wiener process has continuous sample paths, the M1

convergence in the Theorems of Section 2 is equivalent to uniform convergence on compact

intervals. In this section we give further results for this case.

Theorem 6.1. If

n−1/2
bntc
∑

i=1

[(Ii, Bi)− (m1,m2)]⇒ [W1(t),W2(t)] in D2 as n→∞ , (6.1)

where [W1(t),W2(t)] is a centered (0-drift) two-dimensional Brownian motion or Wiener pro-

cess with covariance matrix

Σ =

(

σ21 σ212
σ212 σ22

)

, (6.2)

then

n−1/2[B(nt)− ξnt]⇒ σW (t) , (6.3)

where ξ and γ are as in (2.4), W (t) is a centered Wiener process and

σ2 = γ[ξ2σ21 + (1− ξ)
2σ22 − 2ξ(1 − ξ)σ

2
12] . (6.4)

Proof. We apply Theorem 2.1 with cn = n
−1/2 to obtain the limit process

(1− ξ)γ1/2X2(t)− ξγ
1/2X1(t) (6.5)

where Xi(t) = Wi(t). Next note that this linear combination of centered Wiener processes is

again a centered Wiener process with variance parameter σ2 in (6.4).

To apply Theorem 6.1, we need to verify that the assumed FCLT in (6.1) holds and identify

the five parameters m1, m2, σ
2
1 , σ

2
2 , σ

2
12. We now consider additional assumptions under which

the conditions of Theorem 6.1 are satisfied and we can identify the parameters.

Theorem 6.2. If the successive pairs (Ii, Bi) are iid, and in addition have finite second mo-

ments, then the condition of Theorem 6.1 holds and the parameters in (2.4) and (6.4) can be

identified as

m1 = EI, m2 = EB (6.6)

σ21 = V ar I, σ22 = V ar B and σ212 = Cov(I,B) . (6.7)
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Proof. The limit (6.1) holds with the parameters as in (6.6) and (6.7) by the two-dimensional

version of Donsker’s FCLT; see Chapter 7 of Ethier and Kurtz [11].

In the setting of Theorem 6.2, if Ii and Bi are also mutually independent, then σ
2
12 =

Cov(I,B) = 0. Then we can characterize variability in terms of the squared coefficient of

variation (SCV, variance divided by the square of the mean) of the individual variables I and

B. The variance parameter in (6.4) becomes

σ2 = λ[(1− ξ)2σ21 + ξ
2σ22 ]

=
1

(m1 +m2)3
[m22σ

2
1 +m

2
1σ
2
2 ]

=
m21m

2
2

(m1 +m2)3
[c21 + c

2
2] (6.8)

where c21 and c
2
2 are the SCV’s of I and B.

We now consider special cases in which the busy and idle periods are associated with a

queueing system. It is possible that the environment of the fluid model could involve a queue,

but now we are thinking of simply developing limits for the cumulative busy time in the interval

[0, t] in a queueing model. Many queueing systems have Poisson arrival processes. Then I is

exponentially distributed and independent of B. If, as in the M/GI/s/r queueing model with

finite waiting room, I is exponentially distributed and independent of B, then σ21 = m21 and

the variance parameter in (6.8) becomes

σ2 =
m21m

2
2

(m1 +m2)3
[1 + c22] . (6.9)

From (6.9), we see that for the M/G/s/r model there are only two unspecified parameters

— the mean and SCV of the busy period. Of course, these are well known for the M/GI/1

queue; e.g., see [6, p. 251]. The result in this case has a long history; see [31, Theorem 4 on p.

115].

Theorem 6.3. For the M/GI/1/∞ model where the service time has mean 1 and SCV c2s,

m1 =
1

ρ
, m2 =

1

1− ρ
,

1

m1 +m2
= ρ(1− ρ) , (6.10)

σ22 =
c2s + ρ

(1− ρ)3
, c22 =

c2s + ρ

1− ρ
, (6.11)

and the variance parameter in (6.9) becomes

σ2 = ρ(c2s + 1) . (6.12)
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We now consider the M/M/1/r model with r extra waiting spaces. For the M/M/1/r queue,

we can apply results for its busy period in Section 3 of [2]. For this model, we can have any

traffic intensity ρ.

Theorem 6.4. For the M/M/1/r model with service rate 1 and arrival rate ρ,

m2 ≡ E[B] =







r + 1 if ρ = 1

1−ρr+1

1−ρ if ρ 6= 1
(6.13)

(c22 + 1)m
2
2 = E[B

2] =







[8r2 + 46r + 39]/48 if ρ = 1

2
(1−ρ)3

{1− (2r + 3)ρr+1(1− ρ)− ρ2r+3} if ρ 6= 1 .
(6.14)

Another relatively elementary example is the M/M/∞ queue. The following comes from

Dupius and Guillemin [10].

Theorem 6.5. For the M/M/∞ queue with individual service rate 1 and arrival rate λ,

m2 ≡ EB = (e
λ − 1)/λ (6.15)

and

(c22 + 1)m
2
2 ≡ E[B

2] = 2eλ
∞
∑

n=1

λn−1/n(n!) . (6.16)

Proof. From p. 61 of Dupius and Guillemin [10], the Laplace transform of the busy period

(at least one server is busy) is

b̂(s) ≡ Ee−sB =
λ+ s

λ
−

eλs

λ(1 + sα̂(s))
, (6.17)

where

α̂(s) =

∞
∑

n=1

λn/(s+ n)n! . (6.18)

A generalization of Theorems 6.4 and 6.5 arises whenever the queue-content process evolves

as a Markov chain (MC). Then the idle period and busy period are independent, and the idle

period has an exponential (geometric) distribution if the MC evolves in continuous (discrete)

time, so that we are in the setting of Theorem 6.3. The busy period then is a first passage

time, whose moments can be readily computed; e.g., see Chapter III of Kemeny and Snell

[19], especially p. 51. For larger state spaces, care needs to be given in the computation; see

Heyman and O’Leary [14].

For extensions to M/G/1/r systems with finite waiting room, see Chapter 5 of Takagi [33].

For busy-period results in corresponding finite-population M/G/1 queues, see Chapter 4 of

[33].
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7. Busy and Idle Periods from the G/G/1/∞ Queue

In this section we consider the special case in which the successive busy and idle periods

are associated with the general infinite-capacity single-server queue. For the G/G/1/∞ queue,

we can apply asymptotics associated with the one-dimensional reflection map; as in [38] and

Section 6 of [39]. For this purpose we assume that the interarrival times Ti and service times

Si satisfy a joint FCLT. When the busy and idle periods are associated with a queueing model,

it is natural to regard the sequence {(Ti, Si) : i ≥ 1} as the basic model data instead of the

sequence {(Ii, Bi) : i ≥ 1} considered in Sections 2 and 3.

Let A(t) count the number of arrivals in [0, t]. In this setting the cumulative busy time

B(t) is closely related to the total input of work, X(t), where

X(t) =

A(t)
∑

i=1

Si, t ≥ 0 . (7.1)

Indeed, the two processes are identical whenever the system is empty. Hence it should come as

no surprise that their limit processes are identical. With Brownian limits, they have the same

distribution and thus the same variance parameters. Let Z(t) be the buffer content (workload)

in the queue. The following is a generalization of results in [38].

As in Theorem 2.1, we consider a sequence of models indexed by n. Let {Tni, Sni : i ≥ 1}

be the sequence for model n. We scale time so that the mean service time is 1.

Theorem 7.1. If

cn





bntc
∑

i=1

Tni − ρ
−1
n nt,

bntc
∑

i=1

Sni − nt



 = [Y1(t), Y2(t)] in (D,M1)
2 as n→∞ (7.2)

where ncn →∞ and ρn → ρ as n→∞, 0 < ρ ≤ 1 and P (Disc(Y1) ∩Disc(Y2) 6= φ) = 1, then

cn



An(nt)− ρnnt,

An(nt)
∑

i=1

Sni − ρnnt



⇒ [−ρY1(ρt), Y2(ρt)− ρY1(ρt)] (7.3)

in (D,M1)
2 as n→∞. If, in addition, ρ < 1, then

cn[Zn(nt), Bn(nt)− (ρn)nt]⇒ (0, Y2(ρt)− ρY1(ρt)) in (D,M1)
2 as n→∞ . (7.4)

If, instead, ρ = 1 and ncn(1− ρn)→ c, then

cn[Zn(nt), In(nt)]⇒ (Z(t),− inf{Z(s) : 0 ≤ s ≤ t}) (7.5)

in (D,M1)
2 as n → ∞, where Z = φ(Y ) for the first component φ of the reflection map in

(5.1) and (5.2) without upper barrier and Y (t) = Y2(ρt)− ρY1(ρt), t ≥ 0.

25



Proof. The proof of (7.3) is a minor modification of the proof of Theorem 2.1. We apply

the inverse map to the arrival process to get the first component of (7.3). We then apply

composition with addition to get the second component of (7.3). Then (7.4) follows from

Theorem 6.3(ii) of [39]. The limit (7.5) is the heavy-traffic limit, as in [38]. We apply the

continuous mapping theorem with the reflection and supremum maps; see Whitt (1999b).

Remark 7.1. The general triangular-array limit in Theorem 7.1 is used by Kurtz [21] to

obtain a FCLT for the total input process with a fractional Brownian motion (FBM) limit

process. He has scaling exponent q = 1/2, but general self-similarity index H. See Willinger,

Taqqu, Sherman and Wilson [43] for another FBM limit. Fractional Brownian motion has

continuous sample paths, which implies that the discontinuity condition in Theorem 2.1 is

automatically satisfied; see [29, Exercise 10.1, pp. 490, 551].

We now consider the special case of a Brownian motion limit. The next result follows from

Theorem 7.1 just like Theorem 6.1 follows from Theorem 2.1.

Theorem 7.2. If the condition of Theorem 7.1 holds with cn = n−1/2 and [Y1(t), Y2(t)] two-

dimensional zero-drift Brownian motion with covariance matrix

Σ =

(

σ2a σ2as

σ2as σ2s

)

, (7.6)

then the limit in the second term of (7.4) is distributed as σW (t), where

σ2 = ρ[ρ2σ2a − 2ρσ
2
as + σ

2
s ] (7.7)

where W (t) is standard (drift 0, diffusion 1) Brownian motion.

We next consider the GI/GI/1 queue, which combines conditions for (Tn, Sn) assumed for

(In, Bn) in Theorem 6.2 and (6.8). The next result follows by the same reasoning. The ordinary

CLT version is an early result; again see Takàcs [31, 32].

Theorem 7.3. In the standard GI/GI/1 queue if Sn and Tn have means ESn = 1, ETn = ρ
−1

and finite second moments, then the conditions of Theorem 7.2 hold with σ2a = V ar(Tn),

σ2s = V ar(Sn) and σ
2
as = 0. Moreover, the variance parameter in (7.7) is

σ2 = ρ[c2a + c
2
s]|, (7.8)

where c2a and c
2
s are the SCV’s of an interarrival time T and a service time S, respectively.
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Note that the GI/GI/1 result in Theorem 7.3 is consistent with the M/GI/1 result in

Theorem 6.3. It remains to relate the GI/GI/1 results in Theorems 7.3 and 6.2.

We next observe that for more general G/G/1 models than GI/GI/1 we can further identify

some of the parameters, but it remains to relate the GI/GI/1 results in Sections 6 and 7.

Theorem 7.4. Assume that (Sni, Tni) is a stationary ergodic sequence. Then

EBn1
EIn1 +EBn1

= ρn and EIn1 =

(

ρn
1− ρn

)

EBn1 . (7.9)

If, in addition, condition (2.1) of Theorem 2.1 holds, then

cn[Bn(nt)− ρnnt]⇒ (1− ρ)X2(γt)− ρX1(γt) in (D,M1) (7.10)

as n → ∞. If in addition the conditions of Theorem 6.2 hold, then the variability parameter

σ2 there can also be expressed as

σ2 = γ[ρ2σ21 + (1− ρ)
2σ22 − 2ρ(1 − ρ)σ

2
12] . (7.11)

Remark 7.2. Combining (7.8) and (7.11), we see that in the GI/GI/1 queue there are two

expressions for the variability parameter σ2, which provides a relationship among the param-

eters:

σ2 = ρ[c2a + c
2
s] =

(

1

EI +EB

)

(

ρ2σ2I + (1− ρ)
2σ2B − 2ρ(1− ρ)σ

2
I,B

)

(7.12)

Given (7.9), it suffices to learn one of EI and EB. Given ρ, c2a, c
2
s and (7.12), it suffices to

learn two of σ2I , σ
2
B and σ

2
I,B.

Remark 7.3. Expressions for the variability parameter of the total input processes are avail-

able in the literature. For example, the asymptotic variance of the batch Markovian arrival

process (BMAP), also known as the versatile Markovian point process, is given in Theorem

5.4.1 on p. 284 of Neuts [23].

Remark 7.4. It may also be useful to consider non-normal approximations when the basic

variables (Tn, Sn) are iid. For example, we may want to allow for infinite variances. That case

is discussed in [40].

8. Conclusions

We have obtained FCLTs for a cumulative input process associated with on-off sources

feeding a fluid queue. Since the cumulative input process is closely related to cumulative
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busy-time and idle-time processes, we also obtained results for those processes. Since the limit

involves a sequence of processes with continuous sample paths converging to a limiting process

that may have jumps, we used the Skorohod (1956) M1 topology on D, using recent results

about the inverse and composition maps in [24], [41]. As shown in [42] the limits here combined

with the reflection map yield FCLTs for buffer-content processes in single-class stochastic

fluid networks, where the on-off sources may have heavy-tailed on-period distributions. Under

independence assumptions, the limiting processes are reflected-stable-processes or more general

reflected Lévy processes. However, the general limiting results apply without the independence

assumptions. We illustrated the heavy-traffic FCLTs in Section 5 by establishing a reflected

stable process limit for a single fluid queue with finite waiting space in which the on-period

distributions have power tails. The results in that one-dimensional case are more tractable

than for the multidimensional stochastic fluid networks, because we can explicitly calculate the

steady-state distribution of the limiting reflected stable process, exploiting numerical transform

inversion.

Our main focus was on the case in which the busy periods have heavy-tailed probability

distributions. However, in Sections 6 and 7 we also obtained results for the standard case in

which the normalized cumulative input processes converge to Brownian motion. Then the goal

is to identify the variance constant.
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