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We identify conditions under which relatively large buffers will be
required in broadband communication networks. For this purpose,
we analyze an infinite-capacity stochastic fluid model with a general
stationary environment process (without the usual independence or
Markov assumptions). With that level of generality, we are unable
to establish asymptotic results, but by a very simple argument
we are able to obtain a revealing lower bound on the steady-state
buffer-content tail probability. The bounding argument shows that
the steady-state buffer content will have a long-tail distribution
when the sojourn time in a set of states with positive net input rate
itself has a long-tail distribution. If a set of independent sources,
each with a general stationary environment process, produces a
positive net flow when all are in high activity states, and if each of
these sources has a high-activity sojourn-time distribution with a
long tail, then the steady-state buffer-content distribution will have
a long tail, but possibly one that decays faster than the tail for any
single component source. The full buffer-content distribution can
be derived in the special case of a two-state fluid model with general
high and low activity time distributions, assuming that successive
high and low activity times come from independent sequences of
i.i.d. random variables. In that case the buffer-content distribution
will have a long tail when the high-activity-time distribution has
a long tail. We illustrate by giving numerical examples of the two-
state model based on numerical transform inversion.
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1 Introduction

It has now become common to use infinite-capacity stochastic fluid models to
represent the buffer content in broadband communication networks, e.g., see
Anick, Mitra and Sondhi [7] and Roberts [30]. Typically the buffer receives
input from several access lines and is emptied by a single high-speed backbone
communication link. A realistic fluid model can be based on a countable-state
environment process {Z(t) : t ≥ 0}. When Z(t) = i, there is constant net fluid
flow into or out of the buffer at rate ri, with there being no decrease in buffer
content when the buffer is empty. Each environment state can correspond to
a set of activity levels for the sources. In a simple model for one source there
may be just two activity levels: high and low (which may be on and off, but
need not be). However, the general fluid model framework allows any number
of levels for each source. Even though the fluid model is an idealization, the
possibility of many levels for each source makes it a fairly believable model for
a wide variety of sources, including video; e.g., see Sen, Maglaris, Rikli and
Anastassiou [31].

There is growing concern that traffic burstiness may make large buffer contents
relatively likely. In particular, it is thought that, with realistic models of traffic,
the distribution of the buffer content in the infinite-capacity model may have
a long tail, e.g., it may decay as a power instead of exponentially; i.e., if B is
the steady-state buffer content, then we may have

P (B > x) ∼ αx−η as x→∞ (1)

instead of

P (B > x) ∼ αe−ηx as x→∞ , (2)

where α and η are positive constants and f(x) ∼ g(x) means that f(x)/g(x)→
1 as x→∞. Alternatively, the buffer-content distribution may have a Weibull-
like tail (which we also regard as a long tail)

P (B > x) ∼ αe−ηx
b

as x→∞ (3)

for 0 < b < 1, as suggested by analysis of fractional Brownian motion input
by Norros [27] and Duffield and O’Connell [16].

The main difficulty with the long-tail asymptotic forms (1) and (3) is that
larger buffers will be required in order to provide the desired quality of service.
In addition, the less familiar asymptotic forms (1) and (3) make network
management more difficult. For example, an intuitively appealing notion of
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effective bandwidths has been developed based on the exponential asymptotic
form (2), e.g., see Chang and Thomas [13], deVeciana, Kesidis and Walrand
[32] and Whitt [33]. Unfortunately, the asymptotic theory supporting the nice
additive effective bandwidths breaks down when (1) or (3) holds instead of
(2); e.g., see Duffield and O’Connell [16] and Duffield [15].

The possibility of long-tail buffer-content distributions such as in (1) and (3)
is indicated by extensive traffic measurements in recent years; e.g. see Meier-
Hellstern, Wirth, Yan and Hoeflin [26], Leland, Taqqu, Willinger and Wilson
[25], Paxson and Floyd [29], Willinger [34] and Willinger, Taqqu, Leland and
Wilson [35]. In traffic data, the observed long-tail distributions are for high and
low activity periods. The observed long-range dependence is the observation
that the variance of the number of packets or bytes arriving in an interval of
length t grows faster than O(t) as t→∞.

As indicated in the papers discussing traffic measurements, the data tend to be
inconsistent with the familiar traffic models. This has led to the development
of new traffic models, e.g., involving fractals; see [18]. Within the context of
existing models, an important question is: How can the models better reflect
the data? Toward that end, we ask: When will a stochastic fluid model have
a long-tail buffer-content distribution as in (1) or (3)?

The purpose of this paper is to show that long-tail distributions such as in (1)
and (3) arise quite naturally in stochastic fluid models when a sojourn time of
the environment process Z(t) in a set of high-activity states itself has a long-
tail distribution. We do not contend that long-tail buffer-content distributions
necessarily will prevail. Instead, we present conditions under which they will
occur, and other conditions under which they will not occur. Hopefully these
results will help to interpret traffic data and prospective network controls.

A major goal here is to treat quite general models. In particular, since con-
siderable dependence has been found in traffic data, we want to avoid the
usual Markov and independence assumptions. Hence, here the underlying
environment process {Z(t) : t ≥ 0} is assumed to be a general stationary
process, by which we mean (as usual) that the joint distribution of the vec-
tor (Z(t1 + s), . . . , Z(tn + s)) is independent of s for all n and all n-tuples
(t1, . . . , tn) with 0 < t1 < . . . < tn.

With that generality (without extra conditions), we are unable to establish
asymptotic results of the form (1)–(3), but we are able to establish a lower
bound for the buffer-content tail probabilities, which enables us to provide
conditions under which the steady-state buffer-content distribution necessarily
has a long tail. The proofs here are remarkably short, but their brevity is
deceptive. The proofs rely on the (deep) theory of stationary point processes,
as in Baccelli and Brémaud [9], Brandt, Franken and Lisek [12] and Franken,
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König, Arndt and Schmidt [20].

Moreover, we show that in one special case (a two-state fluid model with
high and low activity times that are independent sequences of i.i.d. random
variables) the buffer-content distribution can be fully analyzed; i.e., we can
compute the exact buffer-content distribution and asymptotic approximations.
We also indicate that this special case can arise in practice.

However, the cases of primary interest are more complicated, involving the
superposition of input from many different sources (statistical multiplexing).
In such more complicated settings, we establish bounds on the buffer-content
tail probabilities. We show that multiplexing may soften or even remove the
long-tail effect. However, more work is needed here, since our results are only
in terms of lower bounds.

Our bounding results complement recent more detailed limit theorems by As-
mussen, Henriksen and Kluppelberg [8], Boxma [11], Duffield [15], Duffield
and O’Connell [16] and Jeleković and Lazar [21], [22] (some of which have
been established at the time or after the results here.) (Earlier related results
are by Cohen [14] and Pakes [28]; see [2].) As illustrated by our results for the
model with a two-state environment process in Section 3, stronger results of
the form (1) and (3) tend to require additional independence and Markov as-
sumptions. Establishing full convergence is clearly much more challenging, but
our analysis is appealing because, we are able to quickly address an important
engineering problem.

Before leaving the introduction, we point out that even if there is long-tailed
behavior in individual uncontrolled sources, that does not necessarily mean
that it will show up in buffer-content distributions. It may disappear either
due to multiplexing (as we will discuss in Section 4) or due to individual
connection controls (e.g., finite window sizes allowed by end-to-end protocols),
or congestion controls imposed by the network (e.g., leaky-bucket-type controls
limiting short-term and long-term data rates). On the other hand, long-tail
buffer-content distributions may occur even in the presence of controls if each
source can choose its high activity rates such that the controls allow them to
be sustained for arbitrarily long durations.

2 A Lower Bound for Fluid Models

We initially only assume that the environment process {Z(t) : t ≥ 0} is a sta-
tionary stochastic process. We thus initially do not impose any independence
conditions. As mentioned in the introduction, our model thus allows the super-
position of many sources, each with many different activity levels. Moreover,
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the activity durations may have general (including long-tail) distributions.

Divide the environment states into two subsets: U ≡ {i : ri ≥ λ > 0} and
D ≡ {i : ri < λ}. Let −µ = min{ri}. We assume that U and D are nonempty
and that µ > 0. It is elementary that the fluid content process is bounded
below, for each sample path, by the fluid content process with the two-state
environment process with net flow rate λ in U and net flow rate −µ in D.

Let Xn and Yn be the successive holding times in sets U and D, respectively.
(We assume that these holding times are well defined, which will always be
the case if Z(t) is countably valued with only finitely many jumps in any
bounded interval w.p.1.) Since {Z(t) : t ≥ 0} is a general stationary process,
these random variable are in general not independent. However, in the Palm
version (which corresponds to conditioning upon the time Z(t) enters U and
making that the origin), {(Xn, Yn) : n ≥ 1} is itself a stationary sequence; see
Franken, König, Arndt and Schmidt [20], Brandt, Franken and Lisek [12] or
Baccelli and Brémaud [9]. Let (X, Y ) be generic random variables distributed
as (Xn, Yn) in the Palm version. Assume that EX < ∞ and EY < ∞. Let
F c(x) = 1− F (x) for any cumulative distribution function (cdf) F .
Theorem 1. Assume that a proper steady-state distribution exists for the
buffer content in the general stationary model above. Then

P (B > x) ≥ F c(x) ≡
1

(EX + EY )

∞
∫

x/λ

P (X > u)du . (4)

Proof. A lower bound on the buffer content is obtained by assuming that the
buffer content is 0 whenever Z(t) ∈ D. Let T (t) be the time interval since the
last transition to or from the set U before time t. This leads to the bound

P (B > x) ≥ P (Z(0) ∈ U, T (0) > x/λ) (5)

Let {(Xn, Yn)} be the stationary sequence in the Palm version. Stationary
point process theory implies that

P (Z(t) ∈ U) =
EX

EX + EY
(6)

and

P (Z(t) ∈ U, T (t) > x) =
1

EX + EY

∞
∫

x

P (X > u)du ; (7)

e.g., see Section 4.3.3 of Brandt et al. [12]. Combining (5) and (7) yields (4).
�
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To apply Theorem 1 to establish asymptotic relations, we exploit the following
elementary lemma; see p. 17 of Erdélyi [17].
Lemma 1. If f(x) ∼ g(x) as x→∞, then

∫∞
x f(y)dy ∼

∫∞
x g(y)dy as x→∞.

We apply Lemma 1 to obtain the following corollary to Theorem 1 for the
case of a power law.
Corollary 1. In the setting of Theorem 1, if P (X > x) ∼ βx−(η+1) as x→∞,
where η > 0, then the lower bound tail probability in (4) satisfies

F c(x) ∼
βλη

η(EX + EY )
x−η as x→∞ . (8)

Theorem 1 indicates that we can detect conditions in source activity leading
to a long-tail buffer-content distribution by estimating the tail behavior of the
random variable X. We can estimate the distribution of X in the usual way by
forming a histogram. It is significant that the successive variables Xn need not
be mutually independent in such estimation and in the setting of Theorem 1.
It is also significant that the distribution of Y plays no role.

In applying Theorem 1 there are many ways to choose the sets U and D. To
make it most likely that the high-activity time X has a long tail, we should
let λ be as small as possible, while still being positive, so that U includes all
states with positive rates.

Even though Corollary 1 to Theorem 1 only yields a lower bound on the
asymptotic tail behavior of P (B > x) when P (X > x) ∼ βx−(η+1) as x→∞,
it lends support to the notion that (1) may hold, with the asymptotic decay
rate η determined but the asymptotic constant α yet to be specified (with
α > βλη/η(EX + EY )). Additional support for this notion is provided by
Section 3.

Corollary 1 extends to the setting of distributions with regularly varying tails,
see p. 275 of Feller [19] and Bingham, Goldie and Teugels [10]. A real-valued
function L(x) is said to be slowly varying if it is a positive function such that
L(cx)/L(x) → 1 as x → ∞ for each c > 0. A simple example is log x. The
following corollary can be proved by applying Theorem 1 on p. 281 of Feller
[19].
Corollary 2. In the setting of Theorem 1, if P (X > x) = x−(η+1)L(x) as
x → ∞, where η > 0 and L(x) is slowly varying, then the lower bound tail
probability in (8) satisfies.

F c(x) ∼
λη

η(EX + EY )
x−ηL(x) as x→∞ .

We can further extend Corollary 2 to the setting of subexponential distri-
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butions. Let G2 be the convolution of a cdf G with itself. A cdf G on the
nonnegative real line is said to be subexponential, denoted by G ∈ S if

Gc2(x)

Gc(x)
∼ 2 as x→∞ ; (9)

e.g., see Appendix 4 of [10] and references there. Condition (9) can be un-
derstood as relating the distribution of the sum of two random variables to
the distribution of the maximum; i.e., if X1 and X2 are independent random
variables with common cdf G, then (9) is equivalent to

P (X1 +X2 > x) ∼ P (max{X1, X2} > x) as x→∞ . (10)

In order to treat integrals of tail probabilities, it is useful to consider another
class of cdf’s. The cdf G is said to belong to the class S∗ (a subset of S) if G
has finite expectation m and

x
∫

0

F c(x− y)

F c(x)
F c(y)dy ∼ 2m as x→∞ ; (11)

see Klüppelberg [24]. The cdf’s in S can be thought of as long tailed, because
if G ∈ S, then

eηxGc(x)→∞ as x→∞ for each η > 0 . (12)

Klüppelberg [24] showed that if G ∈ S∗, then Ge ∈ S, where Ge is the associ-
ated stationary-excess cdf associated with G, i.e.,

Ge(x) =
1

m

x
∫

0

Gc(u)du , x ≥ 0 . (13)

Hence we have the following corollary, further showing how the long-tail char-
acter of the cdf of X is inherited by the buffer-content cdf.
Corollary 3. In the setting of Theorem 1, if the cdf of X belongs to S∗, where
S∗ is defined in (11), then F ∈ S, where is S defined in (9) and F is the lower
bound cdf in (4).

We conclude this section by pointing out that Theorem 1 does not cover
all the cases. There are other ways in which the steady-state buffer content
B could have a long-tail distribution. Since we have made no independence
assumptions, it is possible to have many successive low-activity times be very
short. To take an extreme case, suppose that they are so short that they can be
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regarded as having zero length. If the random number of these successive short
low-activity periods has a long-tail, then even if the associated high-activity
times are of constant length, the whole period will be like one high-activity
period with a long-tail distribution. In summary, a long-tail buffer-content
distribution can also be caused by periods with a long-tail distribution in
which there are many high-activity subintervals, none of which is long, but
nevertheless almost all of the time during that period the environment is in
the high-activity state.

Consistent with this observation, we note that it can be difficult to fit an
environment process to traffic data. If activity is measured in a very small
time scale, the environment process can fluctuate very rapidly, producing very
short high and low activity times, masking the effect Theorem 1 is intended
to capture. Nevertheless, we believe that with judicious definitions Theorem 1
and its corollaries can help detect the need for large buffers.

3 A Two-State Fluid Model

The fluid model in Section 2 is very general, but for it we are only able to com-
pute a lower bound on the tail of the steady-state buffer-content distribution.
In this section we consider a restricted fluid model with a two-state environ-
ment process for which we can exactly compute the buffer-content distribution
and derive asymptotics for its tail.

We assume that there is constant positive flow in at rate λ in the high-activity
state and constant positive flow out at rate µ in the low-activity state. In
addition, we assume that the successive high and low-activity times Xn and Yn
come from independent sequence of i.i.d. random variables. To have stability,
we also assume that λEX < µEY . As a technical regularity condition for
getting a proper steady-state buffer-content distribution, we assume that X
and Y have nonlattice distributions. (A lattice distribution concentrates on a
countable periodic subset, e.g., {kδ : k ≥ 0} for some δ.)

A fluid model with just two states may seem simplistic, but it can appear in
practice. One example is a single access line with high and low rates, where
the high access line rate is higher than the data rate on the backbone. This
may happen in the context of a PC and modem, where the maximum data
rate from the PC to the modem is higher than the modem output data rate.

A second example is a superposition of several constant-bit-rate (CBR) sources
and one two-state variable-bit-rate (VBR) source, such that the combined
data rates of the CBR sources and the low-activity data rate of the VBR
source is below the backbone data rate, while the combined data rates of
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the CBR sources and the high-activity data rate of the VBR source is above
the backbone data rate. More generally, the two-state fluid model may serve
as a rough approximation, which is worth studying because it can be fully
analyzed.

With the extra conditions on the fluid model, we are able to calculate the
steady-state buffer content distribution and its asymptote exactly. We draw
on Kella and Whitt [23], where it is shown that the steady-state buffer-content
distribution in this fluid model can be simply related to the steady-state virtual
waiting-time distribution in the GI/G/1 queue with service times λXn and
interarrival times µYn. (Also see [23] for previous related work.) As can be
seen from Section 2, we will be interested in the case in which X has a long-
tail distribution, but Y could be anything. For example, if Y is exponential,
then the buffer-content distribution can be obtained by solving the M/G/1
queue. However, we are also able to solve the general GI/G/1 case.

By Corollary 3 of [23],

P (B > 0) =
(

EY

EY + EX

)

(

λ+ µ

λ

)(

λEX

µEY

)

(14)

and the conditional buffer content given that it is nonempty satisfies

(B|B > 0)
d
= (V |V > 0)

d
= W + S , (15)

where
d
= denotes equality in distribution, V is the steady-state virtual waiting

time and W is the steady-state actual waiting time in the GI/G/1 queue, and
S is independent of W with the stationary-excess distribution of the service-
time distribution, i.e.,

P (S > x)=
1

λEX

∞
∫

x

P (λX > u)du

=
1

EX

∞
∫

x/λ

P (X > u)du . (16)

By (15), the Laplace transform of (B|B > 0) is the product of the Laplace
transforms of W and S, i.e.,

Ee−s(B|B>0) = (Ee−sW )(Ee−sS) . (17)
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By (11),

Ee−sS = (1− Ee−sλX)/sλEX . (18)

Since the Laplace transform of W can be calculated and exactly inverted
numerically [1], [2], so can the Laplace transform of (B|B > 0), to yield
P (B > x|B > 0) for any desired x. Combining this with (14) yields the tail
probabilities P (B > x) themselves.

Abate, Choudhury and Whitt [4] already gave sufficient conditions for P (V >
x) to have an exponential tail and determined the asymptotic parameters,
which applies to P (B > x) by (17). (This extends the classical Cramér-
Lundberg approximation forW discussed in [3].) Now we establish the precise
power tail asymptotics for B assuming power tail asymptotics for the high
activity times Xn.
Theorem 2. For the two-state fluid model, if P (X > x) ∼ βx−(η+1) as
x→∞, then

P (B > x) ∼
(

EY

EY + EX

)

(

λ+ µ

λ

)(

ρ

1− ρ

)

βληx−η

ηEX
as x→∞ ,

where ρ ≡ λEX/µEY .
Proof. First, from (11), Lemma 1 and the assumed asymptotics for X,

P (S > x) ∼
βληx−η

ηEX
as x→∞ .

Second, by the Corollary to Theorem 1 of [2] (due to Cohen [14] and Pakes
[28]),

P (W > x) ∼

(

ρ

1− ρ

)

βλη

ηEX
x−η as x→∞ .

Hence, by (15) and Proposition (8.14) on p. 278 of Feller [19], which gives the
asymptotic behavior of the convolution of two distributions with power tails,

P (B > x|B > 0) ∼
βληx−η

(1− ρ)ηEX
as x→∞ .

Combining this with (14) completes the proof.
�
.

Note that Theorem 2 is consistent with Theorem 1, yielding the same asymp-
totic decay rate η but a larger asymptotic constant. Theorems 1 and 2 together
support the power-tail approximation P (B > x) ≈ αx−η when a high activity
time X has power tail approximation P (X > x) ≈ βx−(η+1). Theorems 1 and
2 yield the asymptotic decay rate η and provide guidance concerning approx-
imations of the asymptotic constant α.
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The power tail asymptote may well yield a satisfactory approximation, but
we would suggest caution. Experience in [2] indicates that power tail asymp-
totics often do not provide especially good approximations. As support for
this conclusion, note that the asymptote for P (B > x) in Theorem 2 depends
on the off-time distribution only through its mean, but the tail probability
depends on the entire distribution. Thus, when we actually have the two-state
fluid model, it is desirable to calculate the steady-state buffer content distri-
bution exactly using numerical transform inversion, given the transforms of
the high-activity and low-activity distributions, using the methods of [1], [2].

We conclude this section by giving some illustrative numerical examples. With-
out loss of generality, we assume that EX = λ = 1, which implies that the
mean service time in the associated GI/G/1 queue is 1. We let X have a
Pareto mixture of exponential (PME) distribution, as in [2]. (For other ways
to construct long-tail distributions, see Abate and Whitt [6].) In particular,
we consider the two cases

Gc2(x) ≡ P (X > x) =
1

2x2
(1− (1 + 2x)e−2x), x > 0 , (19)

and

Gc4(x) ≡ P (X > x) =
243

32x4

(

1−

(

1 +
4x

3
+
8x2

9
+
32x3

81

)

e−4x/3
)

, x > 0 ,(20)

with associated Laplace-Stieltjes transforms

ĝ2(s) ≡

∞
∫

0

e−stdG2(t) = 1− s+
s2

2
ln
(

1 +
2

s

)

(21)

and

ĝ4(s) = 1− s+
4

3
s2 −

27

16
s3 +

81

64
s4ln

(

1 +
4

3s

)

. (22)

From (19) and (20), we see that

Gc2(x) ∼
1

2x2
and Gc4(x) ∼

243

32x4
as x→∞ . (23)

From (22) and Theorem 2, we see that P (B > x) is asymptotic to α2x
−1 and

α4x
−3 as x→∞ for appropriate constants α2 and α4 in the two cases.

For the rest of the model, we let the distribution of the low activity time Y be
exponential. This leaves two parameters: (1) the mean low activity time, EY ,
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and (2) ρ = 1/µEY . Since Y has an exponential distribution, the associated
queueing model is M/G/1. Hence we can apply the numerical transform in-
version algorithm in Abate and Whitt [6] to the transform in (12), using the
classical Pollaczek-Khintchine expression for the transform Ee−sW . However,
we could also allow the distribution of Y to be nonexponential (e.g., long-tail)
by using an expression for Ee−sW in the GI/G/1 setting, as in [1], [2].

We give three examples for G2(x) in Table 1: (ρ = 0.8, EY = 1), (ρ = 0.8,
EY = 1000) and (ρ = 0.3, EY = 1). We give two examples for G4(x) in
Table 2: (ρ = 0.8, EY = 1) and (ρ = 0.3, EY = 1). In all cases we give
the power tail asymptotic approximation provided by Theorem 2 as well as
the exact value computed by numerical transform inversion. In both cases,
P (B > x) ∼ αx−η as x →∞, but η = 1 for Gc2(x) while η = 3 for G

c
4(x). We

display the asymptotic constant α in each case in Tables 1 and 2 too. The exact
probability P (B > 0) is given for x = 0; the asymptotic approximation for
x = 0 is infinity. As in [2], we see that the asymptote underestimates the exact
tail probabilities for x suitably large, i.e., for x ≥ 10. The tail probabilities
clearly decay more rapidly with Gc4(x) than with G

c
2(x). The asymptote is not

a good approximation until x becomes large, but if interest is in very small
tail probabilities, then the asymptotic approximation can be very useful.

For the current model, it is easy to compute both the asymptotic parameters
α and η. However, in a more general setting, η is easier to determine than α
(η is just one less than the η for the associated on-time distribution). Hence,
a more elementary approximation would be to use the true value of η and
set α = 1. For our examples, the quality of this cruder approximation can be
ascertained by looking at how the actual value of α differs from 1.

4 The Effect of Multiplexing

In Section 2 we saw that the holding time X in the set U having a long-
tail distribution implies that the steady-state buffer-content distribution is
bounded below by a long-tail distribution. We now want to identify sufficient
conditions in terms of individual sources for the buffer content distribution to
have a long-tail distribution when there is statistical multiplexing.

We assume that the input comes from the superposition of independent sources
and that there is a fixed output rate (the bandwidth). Paralleling our assump-
tion for Theorem 1, we assume that the sequence of successive high and low
activity times for each source is well defined, so that we can focus on the sta-
tionary sequence by looking at the Palm version. Let X (j) and Y (j) be generic
high activity and low activity times for source j.
Theorem 3. In the multi-source setting above, with the sources being inde-
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pendent, suppose that there are m sources such that the environment process
Z(t) ∈ U whenever all m sources are simultaneously in high activity states. If
a proper steady-state distribution exists for the buffer content, then

P (B > x) ≥ F c(x) ≡
m
∏

j=1

1

(EX (j) + EY (j))

∞
∫

x/λ

P (X(j) > u)du . (24)

Proof. Let j index the m sources. Let Uj denote a high activity subset of
states for source j; let Zj(t) be the environment process for source j; and let
Tj(t) be the time interval since the last transition to the set Uj before time t.
Let U now denote the set of states in which all m designated sources are in
high activity states and let T (t) be the time before t since the last transition
into a high activity state by any one of the m sources. Then, by the proof of
Theorem 1,

P (B > x) ≥ P (Z(0) ∈ U, T (0) > (x/λ)) , (25)

just as in (5). However,

{Z(0) ∈ U , T (0) > x/λ} =
m
⋂

j=1

{Zj(0) ∈ Uj , Tj(0) > x/λ} (26)

and, by the assumed independence among sources,

P





m
⋂

j=1

{Zj(0) ∈ Uj , Tj(0) > x/λ



 =
m
∏

j=1

P (Zj(0) ∈ Uj , Tj(0) > x/λ) ,(27)

which coincides with (24) by Theorem 1.
�

We now state a corollary to Theorem 3 paralleling Corollary 1 to Theorem 1.
(Analogs of Corollaries 2 and 3 to Theorem 1 also hold.)
Corollary. In the setting of Theorem 3, if

P (X(j) > x) ∼ βjx
−(ηj+1) as x→∞ , (28)

where βj > 0 and ηj > 0 for 1 ≤ j ≤ m, then the lower bound tail probability
in (24) satisfies

F c(x) ∼ λη





∞
∏

j=1

βj
ηj(EX (j) + EY (j))



x−η as x→∞ . (29)
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where η =
∑m
j=1 ηj.

Theorem 3 has some important consequences. Note that η =
∑m
j=1 ηj. The

special case with m = 1 implies that if one source can yield positive net input,
then a long-tail distribution for the high activity time of that one source will
be inherited by the entire system; i.e., then multiplexing cannot remove the
long-tail effect.

On the other hand, if a positive net input rate requires high activity from many
sources simultaneously (as we expect in most applications), then the buffer-
content tail probability may decay much faster than the tail probability of the
high-activity period for one source; i.e., there may be significant statistical
multiplexing gains, even in the setting of power tails. Indeed it is also possi-
ble that there are a few access lines (sources) with long-tailed high-activity-
time distributions but their combined high-activity rates do not exceed the
backbone rate, thereby not showing any long-tail effect on the buffer-content
distribution. In this case, statistical multiplexing (and providing the higher
backbone rate for multiple sources) would greatly improve performance.

5 Upper Bounds for Fluid Models

We can modify the procedure in Section 2 to obtain upper bounds for multi-
state fluid models, under extra assumptions. We start by dividing the envi-
ronment states into two subsets: U ≡ {i : −µ < ri ≤ λ} and D ≡ {i : ri <
−µ < 0}. Again, it is elementary that the fluid content process is bounded,
this time above, for each sample path, by the fluid content process with the
two-state environment process with net flow rate λ in U and net flow −µ in
D.

As in Section 2, let Xn and Yn be the successive holding times in the sets U
and D, respectively. As before, in the Palm version {(Xn, Yn)} is a stationary
sequence. Now, however, we need to assume more. In particular, we assume
that {Xn} and {Yn} are independent sequences of i.i.d. random variables.

Under these strong independence conditions, the upper bound process has
the structure of the GI/G/1 queue, just as in Section 3. If, in addition,
λEX < µEY , then the bounding buffer-content process is stable. Moreover,
assumptions on X will yield upper bounds on the buffer-content-distribution
tail.
Theorem 4. Suppose that the independence conditions above hold, λEX <
µEY , and that X and Y have nonlattice distributions. Then the bounding
buffer content has a proper steady-state distribution.

14



(a) If

Eeη(λX−µY ) = 1 and Ee(η+ε)(λX−µY ) <∞ (30)

for some η > 0 and ε > 0, then

P (B > x) ≤ αe−ηx for all x > 0

for positive constants α and η, with η satisfying (30).

(b) If P (X > x) ∼ βx−(η+1) as x→∞ ,

for positive constants β and η, then

P (B > x) ≤ αx−η for all x

for η and positive constant α.
Proof. As before, we apply Kella and Whitt [23] to relate the bounding pro-
cess to the virtual waiting time in the GI/G/1 queue. For part (a), we then
apply Theorem 2 of Abate, Choudhury and Whitt [4]. Thus, asymptotics for
the bounding process corresponds to the classical Cramér-Lundberg approxi-
mation; see [3] and references therein. For part (b), we apply Theorem 2 here.

�

It should be noted that the conditions in Theorem 4 are quite restrictive. First,
the independence assumption in this section is a strong requirement. It would
be satisfied by many Markov-modulated fluid models, but it is a restriction.
Also, the bounding model might well be unstable (λEX ≥ µEY ) even though
the original model is stable.

6 Conclusion

The results here can be summarized by saying that long-tail sojourn-time dis-
tributions of individual source high-activity regions or in system high-activity
regions lead to a long-tail distribution in the steady-state buffer content. The
sojourn-time distributions in low-activity regions do not play any role in de-
termining whether there is a long-time buffer-content distribution. This con-
clusion is intuitively reasonable, but worth careful analysis. The result is not
surprising given previous results for classical queueing models: Long-tail dis-
tributions for service times lead to long-tail distributions for delays; see [2]
and references cited there. For the case of a two-state fluid model with in-
dependent high and low activity times, we exploit a connection between the
queueing models and fluid models established previously in [23] to derive the

15



asymptotic behavior of the tail probabilities and calculate them exactly. We
obtain important insights about the effect of statistical multiplexing, but more
work needs to be done on that topic.
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ρ = 0.8, EY = 1 ρ = 0.8, EY = 1000 ρ = 0.3, EY = 1

level α = 2.25, η = 1 α = 2.001, η = 1 α = 0.464, η = 1

x exact approx. exact approx. exact approx.

0 .900 ∞ .800 ∞ .650 ∞

10 .315 .225 .280 .200 .0513 .0464

20 .175 .113 .156 .100 .0249 .0232

30 .115 .0750 .102 .0667 .0163 .0155

40 .0825 .0563 .0734 .0500 .0121 .0116

50 .0634 .0450 .0564 .0400 .00963 .00929

100 .0278 .0225 .0247 .0200 .00474 .00464

200 .0127 .0113 .0113 .0100 .00235 .00232

300 .00816 .00750 .00725 .00667 .00156 .00155

400 .00600 .00563 .00534 .00500 .00117 .00116

500 .00475 .00450 .00422 .00400 .000934 .000929

1000 .00232 .00225 .00206 .00200 .000466 .000464

2000 .00114 .00113 .00102 .00100 .000233 .000232

3000 .000758 .000750 .000674 .000667 .000155 .000155

4000 .000567 .000563 .000504 .000500 .000116 .000116

5000 .000453 .000450 .000403 .000400 .0000929 .0000929

Table 1. A comparison of exact buffer-content tail probabilities P (B > x) with
the asymptotic approximations αx−η for the single-source model with on-time
distribution G2(x) in (19).
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ρ = 0.8, EY = 1 ρ = 0.3, EY = 1

level α = 11.39, η = 3 α = 2.35, η = 3

x exact approx. exact approx.

0 .900 ∞ .650 ∞

10 .153 .114e-01 .405e-02 .235e-02

20 .295e-01 .142e-02 .370e-03 .294e-04

30 .616e-02 .422e-03 .992e-04 .871e-04

40 .144e-02 .178e-03 .402e-04 .367e-04

50 .405e-03 .911e-04 .201e-04 .188e-04

100 .163e-04 .114e-04 .243e-05 .235e-05

200 .166e-05 .142e-05 .298e-06 .294e-06

300 .465e-06 .422e-06 .879e-07 .871e-07

400 .191e-06 .178e-06 .370e-07 .367e-07

500 .964e-07 .911e-07 .189e-07 .188e-07

1000 .117e-07 .114e-07 .236e-08 .235e-08

2000 .144e-08 .142e-08 .294e-09 .294e-09

Table 2. A comparison of exact buffer-content tail probabilities P (B > x) with
the asymptotic approximation αx−η for the single-source model with on-time
distribution G4(x) in (20).
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