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ABSTRACT

We show how to compute the time-dependent blocking probability given an
arbitrary initial state, the distribution of the time that all servers first be-
come busy given an arbitrary initial state, the time-dependent mean number
of busy servers given an arbitrary initial state, and the stationary covariance
function for the number of busy servers over time in the Erlang loss model by
numerically inverting the Laplace transforms of these quantities with respect
to time. Algorithms for computing the transforms are available in the litera-
ture, but they do not seem to be widely known. We derive a new revealing
expression for the transform of the covariance function. We show that the
inversion algorithm is effective for large systems by doing examples with up to
10,000 servers. We also show that computations for very large systems (e.g.,
106 servers) can be done with computations for moderately sized systems (e.g.,
102-103 servers) and scaling associated with the heavy-traffic limit involving
convergence of a normalized process to the reflected Ornstein-Uhlenbeck dif-
fusion process. By the same reasoning, the Erlang model computations also
can be used to calculate corresponding transient characteristics of the limiting
reflected Ornstein-Uhlenbeck diffusion process.



1. Introduction

In this paper we consider the classical Erlang loss model, i.e., the M/M/c/0

system with Poisson arrival process, exponential service times, c servers and

no extra waiting space, where blocked calls are lost. We let the individual

service rate be 1 and the arrival rate (which coincides with the offered load)

be a. We show how to compute several transient characteristics by numerical

transform inversion. Transience arises by considering arbitrary fixed initial

states.

In particular, we develop algorithms for computing: (1) the time-dependent

blocking probability starting at an arbitrary initial state i, i.e., the transition

probability

Pic(t) ≡ P (N(t) = c|N(0) = i) , (1.1)

where N(t) is the number of busy servers at time t; (2) the complementary

cumulative distribution function (ccdf) F cic(t) of the time Tic all servers first

become busy starting at an arbitrary initial state i; i.e.,

Tic ≡ inf{t ≥ 0 : N(t) = c|N(0) = i} (1.2)

and

F cic(t) ≡ 1− Fic(t) ≡ P (Tic > t) ; (1.3)

(3) the time dependent mean

Mi(t) ≡ E(N(t)|N(0) = i) ; (1.4)

and (4) the (stationary) covariance function

R(t) ≡ Cov(Ns(u), Ns(u+ t)) (1.5)

= E(Ns(u)Ns(u+ t))− ENs(u)ENs(u+ t) ,



where {Ns(t) : t ≥ 0} is a stationary version of {N(t) : t ≥ 0}, i.e., where
Ns(u) in (1.5) is distributed according to the steady-state distribution

πj ≡ P (Ns(u) = j) =
aj/j!

∑c
k=0 a

k/k!
. (1.6)

We also show how to compute these quantities for very large systems by

performing computations for moderately sized systems and using scaling based

on the heavy-traffic limit in which (N (a)(t)− a)/√a converges to the reflected
Ornstein-Uhlenbeck (ROU) process as a→∞ with i(a)−a ∼ γ1

√
a and c(a)−

a ∼ γ2
√
a, where f(a) ∼ g(a) means that f(a)/g(a)→1 as a→∞; see p. 177

of Borovkov [6] and Srikant and Whitt [26].

For example, suppose that we want to compute P
(a)
ic (t) and c(a) = ba+

√
ac,

i(a) = ba − 2√ac and a = 108, where bxc is the greatest integer less than or
equal to x. The scaling implies that P

(a)
ic (t)/B(c, a) should be approximately

independent of a, where B(c, a) ≡ P (a)ic (∞) ≡ π(a)c is the steady-state Erlang
blocking probability, which is known to have the asymptotic relation

B(c, a) ∼ 1√
a

φ(γ)

Φ(−γ) as a→∞ , (1.7)

where φ is the density and Φ is the cdf of a standard (mean 0, variance 1)

normal distribution and γ is the limit of (a− c)/√a; see Jagerman [13], Whitt
[29], and (15) of Srikant and Whitt [26]. Hence, we can compute using a = 400

and obtain

P
(108)
ic (t) ≈ B(10

8 + 104, 108)

B(400 + 20, 400)
P
(400)
ic (t) ≈

(

20

104

)

P
(400)
ic (t) (1.8)

with i and c chosen appropriately in each case. We will show the effectiveness

of the scaling in our numerical examples.

Our algorithms are based on computing the Laplace transforms of these

quantities with respect to time. For the most part, algorithms for computing



the transforms are available in the literature. In particular, an algorithm to

calculate the Laplace transform of Pij(t) is given on pp. 81–84 of Riordan [24],

but it does not seem to be widely known. Formulas for the Laplace transform

of the mean and the covariance are given in Beneš [4], [5] and Jagerman [15],

but the formula for the covariance transform in (15) on p. 209 of [5] and (15)

on p. 136 of [4] has a sign error. We contribute to the basic theory by deriving

a new revealing formula for the covariance transform. (See Theorem 2.)

Jagerman [15] evidently first had the idea of calculating these transient

characteristics by numerical transform inversion, but the approach in [15]

tends to produce a rough approximation rather than an accurate numerical

algorithm. Also, Jagerman considered only the cases c = 4, 8 and 12 in his

numerical examples. We wanted to know if an effective algorithm could be

developed for large c. We show that it can by considering values of c up to

104.

Given the Laplace transforms, we apply the Fourier-series method of nu-

merical transform inversion, as in Abate and Whitt [2], [3], but we could also

apply other inversion algorithms, such as the Laguerre-series method in Abate,

Choudhury and Whitt [1]. To accurately compute extremely small probabili-

ties, we could use the transform scaling in Choudhury and Whitt [9] (which is

unrelated to the scaling for large systems that we do use), but for typical cases

that is not necessary, and we do not use it. Previous applications of numer-

ical transform inversion to calculate transient characteristics of single-server

queues are contained in Choudhury, Lucantoni and Whitt [7], [8] and Lucan-

toni, Choudhury and Whitt [21]. In contrast to the single-server algorithms,

which use multi-dimensional inversion, we use only one-dimensional inversion

here.

Our numerical inversion algorithm is an alternative to the spectral expan-



sion described in Beneš [4], [5] and Riordan [24]. The spectral expansion is

efficient for computing values at many time points, because the eigenvalues

and eigenvectors need only be computed once. However, the inversion algo-

rithm is also fast, and remarkably simple. The inversion program can be quite

short, less than 100 lines. (See the displayed programs in [2], [3]).

Our numerical inversion algorithm is also an alternative to the numerical

solution of a system of ordinary differential equations (ODEs), which has often

been used; e.g., see Koopman [19], Taaffe and Ong [27], Ong and Taaffe [23],

Mitra and Weiss [22], Green, Kolesar and Svoronos [12] and Davis, Massey and

Whitt [11]. Numerical solution of ODEs has the advantage that it applies to

time-dependent models as well as the transient behavior of stationary models

with nonstationary initial conditions. However, when the numerical inversion

algorithm applies, it has the advantage that it can produce calculations at

any desired t without having to compute the function over a large set of time

points in the interval [0, t]. The numerical inversion algorithm can also more

easily produce high accuracy. (To illustrate with an extreme example, using

the scaling in Choudhury and Whitt [9], we can compute probabilities of order

10−40 with relative error 10−8 using only standard double precision. This

evidently is not possible with the system of ODEs.)

Even if another algorithm is used, such as the numerical solution of a

system of ODEs, our scaling to reduce very large systems to approximately

equivalent smaller systems can play an important role. With the spectral

expansion, fewer roots need to be computed. With the ODEs, fewer ODEs

need to be considered.

Finally, asymptotic formulas can serve as alternatives to exact numerical

algorithms in the appropriate asymptotic regimes. Such asymptotic formulas

are given in Mitra and Weiss [22], Knessl [18] and Chapter 12 of Shwartz and



Weiss [25]. These asymptotic formulas are very attractive when they are both

simple and sufficiently accurate. If the asymptotic formulas are not simple,

then they properly should be viewed as alternatives to numerical algorithms.

For example, the direct numerical inversion here would seem to be prefer-

able to the refined asymptote in Theorem 2 of Mitra and Weiss [22], which

itself involves a Laplace transform that appears to be no easier to compute

than P̂ic(s) itself (because that transform is expressed as an integral). The

asymptotic expressions in Knessl [18] also seem quite complicated.

2. Time-Dependent Blocking Probabilities

As shown on pp. 81–84 of Riordan [24], the Laplace transform

P̂ij(s) ≡
∫

∞

0
e−stPij(t)dt (2.1)

is easily computed recursively, exploiting relations among the Poisson-Charlier

polynomials. (Earlier work used the related sigma functions; see Kosten, Man-

ning and Garwood [20].) Since Riordan was not developing a numerical inver-

sion algorithm, he was not interested in a numerical algorithm for computing

the transform, so it is not highlighted, but it is there. The key relation is (8)

on p. 84 of [24] using the recursions (3) and (4). the determinant |D| in (8) is
evaluated in (6).

Remark 2.1. The Laplace transform of Pij(t) in the more general GI/M/s/0

model is given in Chapter 4 of Takács [28], but that transform appears to be

more difficult to compute.

We will focus on Pij(t) only for j = c, but the general case can be computed

as well. To express the result for Pic(t), let

dn ≡ dn(s, a) = (−1)nCn(−s, a) , (2.2)



where s is a complex variable and Cn(s, a) are the Poisson-Charlier polynomi-

als; i.e.,

dn =
1

an

n
∑

k=0

(

n

k

)

s(s+ 1) . . . (s+ k − 1)an−k ; (2.3)

e.g.,

d0 = 1 , d1 =
1

a
(a + s) (2.4)

d2 =
1

a2
(a2 + (2a+ 1)s+ s2) . (2.5)

We now specify the algorithm for computing P̂ic(s) for any desired i, c and

complex s. We use the polynomials dn, but we do not compute them via

(2.3); instead we compute them recursively. Our algorithm follows from the

recursive relations in Riordan [24].

Theorem 1. The Laplace transform of the time-dependent blocking probability

is

P̂ic(s) = diP̂0c(s) , (2.6)

where

P̂0c(s) =
1

a(dc+1 − dc)
, (2.7)

d0 and d1 are given in (2.4) and

dn+1 = (1 +
n

a
+
s

a
)dn −

n

a
dn−1 , n ≥ 1 . (2.8)

Since {Ns(t) : t ≥ 0} is a stationary reversible process, e.g., see p. 26 of
Keilson [16], πiPic(t) = πcPci(t). Hence, we can also calculate Pci(t) directly

from Pic(t) by

Pci(t) = (πi/πc)Pic(t) =
aic!

aci!
Pic(t) . (2.9)

As indicated in the introduction, P
(a)
ic (t)/B(c, a) should be approximately

independent of a provided that i ≡ i(a) ≈ a+ γ1
√
a and c ≡ c(a) ≈ a+ γ2

√
a

for arbitrary constants γ1 and γ2 (which we think of as being in the interval



[−5, 5]). To calculate the Erlang blocking probability B(c, a), we use the well
known recurrence

B(c, a) =
1

1 + c
aB(c−1,a)

. (2.10)

Remark 2.2. The Erlang blocking probability B is related to the polynomial

dn by dn(1, a) = 1/B(n, a). The recurrence relation (2.10) follows directly

from another recurrence relation for dn, namely,

dn(s, a) = dn(s+ 1, a)−
n

a
dn−1(s+ 1, a) ; (2.11)

see Corollary 3 on p. 549 of Jagerman [13]. The polynomials dn are related to

the sigma functions used in Beneš [5] and other early references by σs(n) =

andn(s, a)/n!

We now illustrate the algorithm with a numerical example. We will con-

sider five cases with five different values of a, ranging from a = 100 to

a = 10, 000, where γ1 = (i(a)−a)/
√
a = −3 and γ2 = (c(a)−a)/

√
a = 2. The

five cases with steady-state performance measures are displayed in Table 1.

Let M and V be the mean and variance of the steady-state number of busy

servers, i.e., M = a(1− B) and

V =M − aB(c−M) =M − aB(c− a)− (aB)2 . (2.12)

The effectiveness of the scaling is shown there through the values of
√
aB and

V/a, which are nearly independent of a.

cases c a i B M V
√
aB V/a

I 120 100 70 .0056901 99.43 87.73 .056901 .877271
II 440 400 340 .0028060 398.88 352.72 .056120 .881806
III 960 900 810 .0018613 898.33 795.01 .055840 .883341
IV 2600 2500 2350 .0011122 2497.22 2211.45 .055608 .884579
V 10200 10000 9700 .0005543 9994.46 8855.13 .055430 .885513

Table 1. The five cases (γ1 = −3 and γ2 = 2).



Numerical values of P
(a)
ic (t)/B(c, a) for nine time points are displayed in

Table 2. The values of B are computed from (2.10), while the values of P
(a)
ic (t)

are computed by the Fourier-series method of numerical transform inversion,

using Euler summation, as in [2], [3], after computing the transform values

by the algorithm in Theorem 1. The inversion parameters were set so that

the transform was computed at 40 values of complex s in each case. For the

largest case, a = 104, the computation took about two minutes using UBASIC

on a PC. As in Table 1, the effectiveness of the scaling in Table 2 is evident.

I II III IV V
time (a = 100) (a = 400) (a = 900) (a = 2, 500) (a = 10, 000)

1.0 .038920 .040993 .041755 .042435 .042836
1.5 .220241 .225617 .227479 .227581 .230147
2.0 .459358 .464459 .466181 .467744 .468612
2.5 .657298 .660662 .661786 .662651 .663363
3.0 .792636 .794518 .795143 .795656 .796044
4.0 .928489 .928951 .929102 .929222 .929311
5.0 .976022 .976108 .976135 .976156 .976171
7.0 .9973498 .9973442 .9973420 .9973401 .9973386
10.0 .99990311 .99990208 .99990172 .99990141 .9999011

Table 2. Values of P
(a)
ic (t)/B(c, a) in the five cases.

3. First Passage Times

Let fij(t) be the probability density function (pdf) of the first passage time

Tij from state i to state j in the M/M/c/0 model. Clearly,

Pij(t) = fij(t) ∗ Pjj(t) (3.1)

for all i and j, where ∗ denotes convolution. Hence, if

f̂ij(s) ≡
∫

∞

0
e−stfij(t)dt , (3.2)

then

f̂ij(s) = P̂ij(s)/P̂jj(s) . (3.3)



Since

F̂ cij(s) =
1− f̂ij(s)
s

(3.4)

where

F̂ cij(s) ≡
∫

∞

0
e−stF cij(t)dt (3.5)

and F cij(t) is the ccdf of Tij, we can calculate F
c
ij(t) by numerical inversion too.

In particular, given the algorithm for calculating P̂ic(s) in Theorem 1, we can

calculate F̂ cic(s) and F
c
ic(t).

In fact, as is well known, it is easy to derive a recursion for the transform

f̂i,i+1(s) directly. Considering the first transition, we have

f̂i,i+1(s) =
(

a+ i

a+ i + s

) (

a

a+ i
+
(

i

a + i

)

f̂i−1,i(s)f̂i,i+1(s)
)

(3.6)

or, equivalently,

f̂i,i+1(s) =
a

a+ i + s− if̂i−1,i(s)
. (3.7)

On the other hand, we can derive (3.7) from Section 2 because

f̂i,i+1(s) =
f̂i,c(s)

f̂i+1,c(s)
=
P̂ic(s)

P̂i+1,c(s)
=
di(s, a)

di+1(s, a)
(3.8)

and

f̂0,i(s) = 1/di(s, a) . (3.9)

The recursion (3.7) also follows from (2.8) and (3.8).

By the scaling for large a, the distribution of Tic should be approximately

independent of a when c(a) = ba + γ1
√
ac and i(a) = ba + γ2

√
ac. Indeed,

as a → ∞ with c(a) − a ∼ γ1
√
a and i(a) − a ∼ γ2

√
a, Tic converges in

distribution to the first passage time τγ2,γ1 of the Ornstein-Uhlenbeck (OU)

diffusion process from γ2 to γ1; see Darling and Siegert [10] and Keilson and

Ross [17].



We now give a numerical example. We compute the cdf Fac(t) for several

values of t in the five cases given in Table 1. We let the initial state here be a

instead of i; i.e., γ1 = 0 instead of γ1 = −3. The results are shown in Table 3.

time I(a = 100) II(a = 400) III(a = 900) IV (a = 2, 500) V (a = 10, 000)

2 .1755 .1694 .1674 .1657 .1644
4 .3318 .3230 .3199 .3175 .3156
6 .4564 .4461 .4426 .4397 .4375
8 .5576 .5467 .5429 .5398 .5375
10 .6400 .6291 .6252 .6221 .6197
20 .8715 .8638 .8611 .8588 .8571
30 .9541 .9500 .9485 .9473 .9463
40 .9836 .9817 .9809 .9803 .9798
80 .9997 .9997 .9996 .9996 .9996

Table 3. Values of the first-passage-time cdf Fac(t) in the five cases (γ1 = 0

and γ2 = 2).

It is also possible to calculate the transforms and means of the first passage

times Ti,i+1 recursively; e.g., by a variant of the argument in (3.6)

ETi,i+1 =
1

a
+
i

a
ETi−1,i . (3.10)

Then, for i < j,

ETi,j = ETi,i+1 + . . .+ ETj−1,j . (3.11)

For the five cases in Table 3, the mean first passage times ETac are 9.81, 10.11,

10.21, 10.30 and 10.36.

Finally, we remark that the recursions (3.10) and (2.10) are closely related.

They can be connected using the relation

ETi,i+1 =
1

aB(i, a)
. (3.12)

Since aB(i, a) is the overflow rate in an i-server system, 1/aB(i, a) is the

mean time between overflows from the i-server system, which is easily seen to

be ETi,i+1.



4. The Time-Dependent Mean

The time-dependent mean in (1.4) has Laplace transform

M̂i(s) ≡
∫

∞

0
e−stMi(t)dt =

i

1 + s
+
a

1 + s

(

1

s
− P̂ic(s)

)

; (4.1)

see p. 215 of Beneš [5]. Clearly M̂i(s) is easily computed once we have P̂ic(s).

Since (N(t)−a)/√a converges to the ROU process as a→∞ with i(a)−a ∼
γ1
√
a and c(a)− a ∼ γ2

√
a, we should have

m
(a)
i (t) ≡

M
(a)
i (t)− a√
a

→ mi(t) as a→∞ (4.2)

provided that i(a) and c(a) are defined as above. We confirm the effectiveness

of this scaling by computing the scaled mean m
(a)
i (t) in (4.2) for several differ-

ent values of a. In particular, values of −m(a)i (t) are displayed in Table 4 for
the same five cases as in Table 2. Now we let γ1 = −3 again, as in Table 2.

I II III IV V
time (a = 100) (a = 400) (a = 900) (a = 2, 500) (a = 10, 000)

0.1 2.714512 2.714512 2.714512 2.714512 2.714512
0.5 1.819592 1.819592 1.819592 1.819592 1.819592
1.0 1.103903 1.103920 1.103925 1.103930 1.103638
1.5 .672385 .672445 .672466 .672483 .669390
2.0 .415669 .415718 .415733 .415743 .415751
3.0 .177146 .176943 .176865 .176800 .176748
5.0 .070190 .069547 .069316 .069124 .068976
7.0 .058365 .057607 .057335 .057111 .056938
10.0 .056954 .056174 .055895 .055664 .055486

Table 4. Values of the normalized mean [a−M (a)i (t)]/
√
a in the five cases

(γ1 = −3).

5. The Covariance Function

We now give two new expressions for the Laplace transform of the covari-

ance function in (1.5).



Theorem 2. The covariance function R(t) has Laplace transform

R̂(s) ≡
∫

∞

0
e−stR(t)dt

=
V

1 + s
− (M − V )
(1 + s)2

+
(aB)2

(1 + s)2

(

P̂cc(s)

B
− 1
s

)

(5.1)

=
V

1 + s
− (a−M)(M̂c(s)− (M/s))

1 + s
, (5.2)

where B ≡ B(c, a) ≡ πc in (1.6), M ≡ Mi(∞) = a(1 − B) and V ≡ R(0) is
given in (2.12).

Proof. Formula (4.1) can be obtained by taking the Laplace transform of

(15) on p. 209 of Beneš [5], after correcting a sign error (C→− C in the last
term). Formula (4.1) can also be deduced from (29) on p. 217 of [5]. However,

a more direct derivation is to combine equations (193) and (200) in Jagerman

[15]. This yields

R̂(s) =
V +M2

1 + s
+
aM

s(1 + s)
− M

2

s
− acB

(1 + s)2
(5.3)

−a
2B(1− B)
s(1 + s)2

+
(aB)2

(1 + s)2

[

P̂cc(s)

B
− 1
s

]

.

Comparing (5.3) to (4.1), we see that it suffices to show that

−(M − V )
(1 + s)2

=
M2

1 + s
+
aM

s(1 + s)
− M

2

s
− acB

(1 + s)2
− aBM

s(1 + s)2
. (5.4)

However, the first three terms on the right in (5.4) equal

M(a−M)
s(1 + s)

=
aBM

s(1 + s)
,

while the last term on the right in (5.4) equals

aBM

(1 + s)

(

1

s
− 1

1 + s

)

=
aBM

s(1 + s)
− aBM

(1 + s)2
.

Hence, the right side of (5.4) equals

−(acB − aBM)
(1 + s)2

=
−aB(c−M)
(1 + s)2

=
−(M − V )
(1 + s)2

.



Finally, equation (4.2) follows from (4.1), exploiting the formula for M̂c(s) in

(4.1), obtained by setting i = c.
�

We can apply (4.2) to obtain useful expressions in the time domain.

Corollary. The covariance can be expressed as

R(t) = V e−t − (a−M)
∫ t

0
e−(t−u)[Mc(u)−M)]du ≤ V e−t . (5.5)

Proof. The product of transforms in (4.2) corresponds to convolution. the in-

equality follows because a > M and Mc(t) ↓M , the latter because the process
{N(t) : t ≥ 0}, being a birth-and-death process is stochastically monotone.

�

The Corollary to Theorem 2 yields a bound which is approached as c→∞;
i.e., it is known that R(t) = V e−t in the M/M/∞ model. Beneš proposes a
simple approximation

R(t) ≈ V e−Mt/V , t ≥ 0 ,

which is easy to compute and reasonably accurate; see p. 188 of [5].

Since

Cov

(

Ns(u)− a√
a

,
Ns(u+ t)− a√

a

)

=
Cov(Ns(u), Ns(u+ t))

a

we conclude that C(a)(t)/a should be approximately independent of a provided

that c(a) = a+γ
√
a. We confirm this scaling in our numerical example below.

In particular, values of the normalized covariance function R(t)/a are displayed

in Table 5. We use the same five cases (values of a) and same nine time points

as in Table 4. From the evident convergence, it is clear that the values can

be used to approximate the covariance function of the limiting ROU diffusion

process as well.



I II III IV V
time (a = 100) (a = 400) (a = 900) (a = 2, 500) (a = 10, 000)

0.1 .784019 .788345 .789814 .791000 .791895
0.5 .502346 .505750 .506913 .507853 .508564
1.0 .288786 .291173 .291990 .292652 .293153
1.5 .166203 .167816 .168370 .168819 .169159
2.0 .095700 .096765 .097132 .097429 .097655
3.0 .031748 .032192 .032345 .032469 .032564
5.0 .003496 .003219 .003589 .003608 .003623
7.0 .0003850 .0003948 .0003982 .0004010 .0004032
10.0 .00001407 .00001455 .00001472 .00001486 .00001496

Table 5. Values of the normalized covariance function R(t)/a.
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