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1 Introduction and Summary

This work is motivated by an open stochastic fluid network model in which the exter-

nal inputs are random but all internal flows are deterministic and linear (when the buffers

are nonempty). Stochastic fluid networks are natural models when the random fluctuations

within the network occur in a shorter time scale than the random fluctuations in the external

inputs. Possible applications are to the emerging high-speed communication networks. The

deterministic linear internal flows provide sufficient structure that there is hope for obtaining

explicit results. Indeed, in Kella and Whitt (1992a) we derived an explicit expression for the

steady-state distribution of a two-buffer tandem stochastic fluid network with Lévy external

input process (which is never product form).

Further results for more general stochastic fluid networks with Lévy input, all of which

are feedforward, are contained in Kella (1993) and Kaspi and Kella (1996). Here we obtain

stability and structural results for the general case in which feedback is allowed. We also

consider more general input than Lévy processes.

We are primarily interested in the vector content (also known as the workload process

or virtual-waiting-time process), which is easily defined in terms of the multi-dimensional

reflection map, as in Harrison and Reiman (1981), Chen and Mandelbaum (1989) and Chen and

Whitt (1993). Let the n-dimensional net input process (driving process) be X ≡ {X(t)|t ≥ 0}.

Let P be a substochastic n× n matrix with P n → 0, so that (I − P )−1 =
∑∞
n=0 P

n is a finite

nonnegative matrix, and P ′ is the transpose of P . Let X have sample paths that are right

continuous with left limits (cádlág). Then the content process W is the n-dimensional reflected

process

W (t) = Ψ(X)(t) = X(t) + (I − P ′)L(t) , (1.1)

where Ψ is the reflection map and L ≡ {L(t)|t ≥ 0} is the minimal nondecreasing nonnegative

cádlág process satisfying W (t) ≥ 0 for all t ≥ 0. The previous works show that the reflection

map taking X into (L,W ) is well defined, Lipschitz continuous, and measurable on the function

space D ≡ D([0, T ],
� n) of

� n -valued cádlág functions with the standard topologies. As a

consequence of the direct construction of the content process as the image of the reflection map,

limits and rates of convergence for sequences of net input processes (e.g., functional central

limit theorems and functional laws of large numbers) translate immediately into corresponding

limits and rates for associated sequences of content processes. We will not discuss such limits
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and rates here.

In this paper, we obtain most results in the general setting of (1.1), where X is a general

net input process with extra conditions, such as X having stationary increments, but we also

obtain some results in the more restrictive setting of a stochastic fluid network, which is the

model that motivated this work. The stochastic fluid model has the special net input process

defined by

X(t) = X(0) + J(t)− (I − P ′)rt , (1.2)

where J is an n-dimensional nondecreasing nonnegative stochastic process, r is a vector of

positive constants. In this case we can think of a proportion Pij of all output from buffer i

being routed to buffer j, while a proportion 1−
∑n
j=1 Pij leaves the network. For the following

discussion, consider the fluid model setting of (1.2).

A natural first question is stability. There recently has been great interest and progress on

stability results for queueing networks and related models; e.g. see Baccelli and Foss (1994),

Dai (1993) and Dai and Weiss (1994), Kumar (1993) and Kumar and Meyn (1994). Here

we ask under what conditions do the average inputs over intervals at each buffer converge to

appropriate limits? Under what conditions is {W (t)|t ≥ 0} tight, i.e., when is it true that for

any ε > 0 there exists Kε ∈
� n
+ such that P (W (t) ≤ Kε) ≥ 1− ε for all t ≥ 0? Moreover, under

what conditions is it true that W (t) =⇒ W as t → ∞, where W is a proper random vector

and =⇒ denotes convergence of distribution?

To consider steady-state limits, we will assume that the net input process X has stationary

increments with X(0) = 0, i.e., Xs ≡ {X(t + s)−X(s)|t ≥ 0} has a distribution independent

of s. Under the additional conditions that (i) the n components Ji ≡ {Ji(t)|t ≥ 0} of J ≡

(J1, . . . , Jn) are mutually independent and (ii) J has independent increments, Kaspi and Kella

(1996) proved in the feedforward case that W (t) converges to a proper limit, independent of

the initial conditions, if

R(E[X(1) −X(0)]) = R(EJ(1)) − r < 0 (1.3)

where R ≡ (I − P ′)−1 or, equivalently, if λ ≡ R(EJ(1)) < r.

Condition (1.3) is to be contrasted with the stronger condition

E[X(1) −X(0)] = EJ(1) − (I − P ′)r < 0 . (1.4)

It is clear that (1.4) implies (1.3), but not conversely; to go from (1.4) to (1.3), we can simply
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premultiply by the matrix R, but we cannot go the other way. (Note that Rx is strictly positive

for each strictly positive x.)

In this paper we show for the general case of (1.1) where X has stationary-increments that

(1.3) is a sufficient condition for stability, i.e., tightness of the content process for all proper

initial distribution. We also establish convergence when the process starts at the origin. In

addition, for an appropriate metric, the distance between two processes with two ordered initial

conditions is nonincreasing. Nevertheless, convergence with general initial conditions remains

a conjecture. Kella (1994) establishes the conjecture for the general initial-conditions case

in which the net input process is a Lévy process, and in fact establish convergence in total

variation.

Condition (1.3) is the natural stability condition, because RJ(t) represents the total re-

quired work at each station for all time generated by the input over the interval [0, t]. That is,

it includes the direct input J(t), the first-routed flow P ′J(t), the second-routed flow (P ′)2J(t)

and so forth. Thus λ ≡ R(EJ(1)) in (1.3) should be the vector of input rates of work to each

station. We now prove that it is.

It is not difficult to see that (1.3) is essentially necessary and sufficient (except for cases of

equality) for Wj(t)/t→ 0 as t→∞ w.p.1 for all j, even in the general setting of (1.1) without

any stationary or independence assumptions. In particular, it is easy to establish the following

result. We give all proofs in Section 2.

Theorem 1. In the setting of (1.1) with a general net input process X, suppose that X(t)/t→

α as t→∞ w.p.1. If Rα ≤ 0, then

W (t)/t→ 0 as t→∞ w.p.1 . (1.5)

On the other hand, if (Rα)j > 0 for some j, then

lim inf
t→∞

n
∑

j=1

Wj(t)/t > 0 . (1.6)

We now apply Theorem 1 to deduce that the total (internal plus external) input rates in

the fluid network are well defined under the natural generalization of (1.3). Let Ij(t) and Dj(t)

be the total input to buffer j and departure (output) from buffer j in the interval [0, t]. Let

I and D be the associated vectors. Note that I and D are not well defined in the setting of

(1.1) with a general X; here we are exploiting the special structure of the fluid model.

Theorem 2. Consider the stochastic fluid model in (1.1) and (1.2). If J(t)/t→ α as t→∞
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w.p.1 and Rα < r, then

lim
t→∞

I(t)

t
= lim
t→∞

D(t)

t
= Rα as t→∞ w.p.1.

Condition (1.4) is interesting because it not only is a weaker sufficient condition for the

usual notion of stability, but it yields a stronger form of stability. Condition (1.4) states that

the net flow rate is negative even when all buffers are simultaneously nonempty. In other words,

the flow rate is towards the origin in the interior of the n-dimensional positive orthant. For

the stochastic fluid networks, under (1.4) we can stochastically bound the content process by

considering each component separately with the one-dimensional reflection map. This means

that we can conclude that one buffer is stable without directly imposing conditions on the net

input to other buffers; i.e., we impose condition (1.4) only for one coordinate i. Note that this

result depends on the stochastic fluid network structure in (1.2). Also note that we do not

need the independent increments condition with (1.4).

Theorem 3. Consider the stochastic fluid setting of (1.2). If Ji has stationary increments, if

Ji(t)/t→ EJi(1) as t→∞ w.p.1 and if EJi(1) < ((I − P
′)r)i, then {Wi(t)|t ≥ 0} is tight.

We can treat the general stationary net input case in (1.1) if all coordinates are simultane-

ously controlled. For this purpose, we establish an upper bound on a positive linear function of

the content process. In fact, we bound the positive linear function of the content process both

above and below by content processes whose components evolve as one-dimensional content

processes.

Theorem 4. In the general setting of (1.1),

W∗(t) ≤ RW (t) ≤ RW
∗(t) ,

where W ∗
i (t) is the one-dimensional content process with net input process Xi(t) and W∗i(t) is

the one-dimensional content process with net input process (RX(t))i.

Now if we impose an additional condition, which essentially corresponds to (1.4), then we

can establish a stability result. Henceforth we always consider the general setting (1.1) unless

we stipulate otherwise.

Theorem 5. If X has stationary increments, if Xi(t)→ −∞ as t→∞ w.p.1 for all i, and if

X(0) is proper, then {W (t)|t ≥ 0} is tight.

To establish convergence, we exploit monotonicity, in the spirit of Loynes (1962). It is easy

to see that W is not monotone in X, but it turns out that W is monotone in the increments

4



of X. The following result formalizes this notion.

Theorem 6. Consider W i = Xi+(I−P ′)Li, i = 1, 2, 3. Assume that X2−X1 is nonnegative

and nondecreasing and that X3 = X1 + (I − P ′)L2. Let e = (1, . . . , 1)′. Then

(i) W 2(t) ≥W 1(t) for all t,

(ii) L1 − L2 is nonnegative, nondecreasing and is dominated above by R(X 2 −X1),

(iii) L3 = L1 − L2,

(iv) R(W 2 −W 1) (resp., e′W 2 − e′W 1) is nonnegative and dominated above by R(X2 −X1)

(resp., e′X2−e′X1). When X2−X1 is a nonnegative constant, then R(W 2−W 1) (resp.,

e′W 2 − e′W 1) is also nonincreasing.

We say that a process {Y (t)|t ≥ 0} is stochastically increasing (SI) if

Ef(Y (s)) ≤ Ef(Y (s+ t)) (1.7)

for all positive s and t, and for all nondecreasing real-valued functions f for which the expecta-

tions are well defined. We now apply Theorem 6 to deduce the following monotonicity result.

Theorem 7. If X has stationary increments with X(0) = 0 (so that W (0) = 0), then

{W (t)|t ≥ 0} is SI.

We can apply Theorems 5 and 7 to establish conditions for convergence under these initial

conditions. Let ⇒ denote convergence in distribution.

Theorem 8. Under the assumptions of both Theorems 5 and 7,

W (t)⇒ W (∞) as t→∞ ,

where W (∞) is a proper random vector.

We now want to say something about other initial conditions. Theorems 6 and 7 allow us

to deduce a solidarity result about tightness.

Theorem 9. Let Y have stationary increments and let X(t) = Y (t) +X(0). Then {W (t)|t ≥

0} is tight for all proper distributions of X(0) if and only if it is tight for any one.

We now establish our main tightness result.

Theorem 10. If X has stationary increments with R(EX(1)) < 0 and X(0) is proper, then

{W (t)|t ≥ 0} is tight.
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We can combine Theorems 7 and 10 to obtain a condition for convergence.

Corollary. If X has stationary increments with R(EX(1)) < 0 and X(0) = 0, then

{W (t)|t ≥ 0} converges in distribution to a proper limit.

We now deduce additional structural properties of the content process. We can apply

Theorem 6 to deduce a concavity result for the mean which extends the one-dimensional

results in Kella (1992) and Kella and Sverchkov (1994).

Theorem 11. Under the conditions of Theorem 7, (R(EW (t)))i and ELi(t) are concave

functions of t for each i. In particular, e′EW (t) is a concave function.

We say that {Y (t)|t ≥ 0} is stochastically increasing and subadditive (SIS) if

Ef(Y (s+ t)) < Ef(Y (s)) +Ef(Y (t)) (1.8)

for all positive s and t, and for all nondecreasing subadditive real-valued functions f for which

the expectations are well defined. (Recall that f is subadditive if f(x + y) ≤ f(x) + f(y).)

Theorem 12. If X has stationary increments with X(0) = 0, then RW (t) is SI and SIS.

We do not use the concavity and SIS results further. The SIS result implies that Ef(RW (t))/t

converges to a finite limit as t→∞ for each subadditive function f . For instance, R(EW (t))/t

thus converges to a finite limit as t→∞. (The subadditivity could also be used as t→ 0.)

We now consider establishing convergence under general initial conditions. Given Theo-

rems 6 and 7, it suffices to show that {W (t)|t ≥ 0} will hit the origin w.p.1. It will then couple

with the process that starts at the origin, which is known to converge (to a possibly infinite

limit). However in general {W (t)|t ≥ 0} need not ever visit a neighborhood of the origin.

Example 1. To see that it is possible to have W (t) 6= (0, . . . , 0) for all t ≥ 0 under the

conditions of Theorem 7, consider a two dimensional case in which either X1(t+ ε)−X1(t) >

δε or X2(t+ ε)−X2(t) > δ ε for all t, where ε and δ are small positive constants. For example,

let

Y1(t) =











δ , 3k ≤ t < 3k + 2

−1 , 3k + 2 ≤ t < 3k + 3
(1.9)

and

Y2(t) =











δ , 3k + 1 ≤ t < 3k + 3

−1 , 3k ≤ t < 3k + 1
(1.10)

for all nonnegative integers k. Let U be uniformly distributed on [0, 3]. Then {Y (t)|t ≥

0} ≡ {(Y1(t + U), Y2(t + U))|t ≥ 0} is a stationary process on the positive half line, so
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that X(t) ≡
∫ t
0
Y (u)du is a net input process with stationary increments. It is easy to see

that the content process associated with P ′ = 0 never hits the origin after time 0,and yet

for δ < 1/2 it has a proper steady-state distribution. Indeed, eventually W (t) follows the

deterministic trajectory shown in Figure 1 with W (3k − U) = (2δ, 0),W (3k + 1− U) = (0, δ)

and W (3k + 2− U) = (δ, 2δ). This steady-state trajectory is reached for

t ≥ 3

(

1 +
max{W1(0),W2(0)}

1− 2δ

)

.

By an appropriate choice of units, the limiting trajectory falls outside any neighborhood of the

origin.
�

We can also modify Example 1 to construct two stable content processes which differ only

in their initial conditions but do not couple in finite time.

Example 2. We modify Example 1 by letting P12 = P21 = ε for 0 < ε < δ. The content process

now approaches the deterministic trajectory withW (3k−U) = (2δ−ε+ε′, 0), W (3k+1−U) =

(0, δ−ε+ε′) andW (3k+2−U) = (δ, 2δ−ε+ε′), where ε′ = (2δ2−εδ)/(1+δ). However, unlike

Example 1, the content process typically does not reach this cycle in finite time. Suppose one

of two content processes starts above another, where they have the same net input process

X. They move together until they hit a boundary. However, when the lower process is on

a boundary and the other is not, the other coordinate of the two processes moves away from

each other at rate ε. Hence the processes cannot couple on any boundary, although they do

get closer in an appropriate metric as they hit the boundaries.
�

When X is a Lévy process in the setting of (1.2), it is possible to show that {W (t)|t ≥ 0}

does hit the origin; see Kella (1994).

2 Proofs

Proof of Theorem 1. The assumed convergence X(t)/t → α as t → ∞ w.p.1 is equivalent

to the functional strong law of large numbers (FSLLN) X(nt)/n → αt as n → ∞ uniformly

on compact sets (u.o.c.) w.p.1.; see Theorem 4 of Glynn and Whitt (1988). By the continuous

mapping theorem,
W (nt)

n
→ Ψ(α)(t) u.o.c. as n→∞ w.p.1 ,

where Ψ is the multi-dimensional reflection map and α ≡ {αt|t ≥ 0}. However, using L(t) =

−Rαt, we see that Ψ(α)(t) = 0 under the condition Rα < 0. The FSLLN forW in turn implies

that W (t)/t→ 0 as t→∞ w.p.1.
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Turning to the transient result, note from (1.1) that

RW (t) ≥ RX(t), t ≥ 0 .

Hence, if one coordinate of RX(t) grows linearly, so does at least one coordinate of W (t).

Proof of Theorem 2. Note that we have the conservation equation

Ii(t) = Ji(t) +
n
∑

j=1

Dj(t)Pji , t ≥ 0 . (2.1)

Since I(t) = D(t) +W (t),

I(t) = (I − P ′)−1(J(t)−W (t)) .

Divide by t, let t→∞ and apply Theorem 1.

Proof of Theorem 3. Note that Wi is bounded above by the case in which all other buffers

are assumed to be always nonempty. More formally, note that

W (t) = minY {J(t) − (I − P
′)rt+ (I − P ′)Y (t)}

≤ W ∗(t) ≡ minY {J(t)− (I − P
′)rt+ Y (t)} ,

(2.2)

where the minimum in each case is over all nondecreasing nonnegative cádlág functions Y

satisfying W (t) ≥ 0. However, since the prefactor (I − P ′) of Y is removed in W ∗(t), we can

do the minimization in each coordinate separately, getting W ∗(t) = X(t) + L∗(t), where

L∗i (t) = − inf
0≤s≤t

{Xi(s)
−}, t ≥ 0 , (2.3)

where a− = min{a, 0}. The familiar one-dimensional results, e.g., Theorems 11 and 13, p. 24,

of Borovkov (1976), then imply the conclusion.

Proof of Theorem 4. Let W ∗(t) = X(t) + L∗(t) where L∗i (t) is defined as in (2.2). Since

W ∗(t) = X(t) + (I − P ′)(I − P ′)−1L∗(t) ≥ 0 for every t , (2.4)

it follows form the minimality of L that

L(t) ≤ (I − P ′)−1L∗(t), t ≥ 0 . (2.5)

Therefore,

W̃ (t) ≡ RW (t) ≤ RW ∗(t), t ≥ 0 . (2.6)

Similarly, let W̃∗ = X̃ + L̃∗, where X̃ = RX and L̃∗i = − inf0≤s≤t X̃i(s), and conclude that

L̃∗ ≤ L̃. Hence, we have the lower bound as well.
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Proof of Theorem 5. Under the extra condition, we can apply the familiar one-dimensional

result, see Theorems 11 and 13, p. 24, of Borovkov (1976), to deduce that W ∗
i (t) ⇒ W ∗

i (∞)

as t → ∞ for each i. Hence, {(RW (t))i|t ≥ 0} is tight for each i, which in turn implies

that the vector-valued process {RW (t)|t ≥ 0} is tight. This means that every sequence

{RW (tk) : k ≥ 1} has a convergent subsequence to a proper limit. By the continuous mapping

theorem with the map I −P ′, the same is true for {W (t)|t ≥ 0}. Hence, {W (t)|t ≥ 0} itself is

tight.

Proof of Theorem 6. (i) It suffices to consider a single step in a discrete-time approxi-

mation. This is so because the sample path of a cádlág net input process X can be rep-

resented as the limit of discrete-time net input processes. The nth approximation can be

Xn(t) = X(bntc/n), t ≥ 0, where bxc is the integer part of x, which is constant except for

jumps at times k/n. If X is not continuous, then Xn need not converge to X in the topology of

uniform convergence on compact intervals, but Xn will converge to X in the usual topologies

for cádlág functions, see Chapter 3 of Billingsley (1968). The same will be true for the content

processes because the reflection map is continuous in these other topologies, see Sections 2 of

Chen and Whitt (1993). Convergence in these topologies for cádlág functions implies point-

wise convergence at all continuity points, which in turn implies preservation of the inequalities.

Since X2 −X1 is nonnegative and nondecreasing, so is X2n −X1n.

For the discrete-time processes, we proceed by induction. Thus, it suffices to consider a

single step in a discrete-time process. However, even a single step is somewhat complicated to

analyze. For any w ∈
� n , the single-step reflection map is defined by

ψ(w) = w + (I − P ′)l , (2.7)

where l is the minimum nonnegative vector such that ψ(w) is nonnegative. We now show how

to represent ψ as the limit of a sequence of operators. Let

T (w) = w+ + P ′w− (2.8)

and let T n be the n-fold iteration of the operator T .

Lemma 1. The one-step reflection operator Ψ in (2.7) satisfies

ψ(w) = lim
n→∞

T n(w) (2.9)

with

l = −
∞
∑

k=0

(T k(w))− = (P ′l − w)+ . (2.10)
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Proof of Lemma 1. Let wn = T
n(w) with w0 = w. Clearly wn −wn−1 = −(I −P

′)w−n−1, so

that

wn = w0 − (I − P
′)
n−1
∑

k=0

w−k .

Since wn = w+n−1 + P ′w−n−1, P
′w−n−1 ≤ wn ≤ w+n−1, which in turn implies that P

′w−n−1 ≤

w−n−1 ≤ 0 and w
+
n ≤ w

+
n−1. Hence, 0 ≥ w

−
n ≥ (P

′)nw−0 → 0 as n→∞, so that wn → w∞ ≥ 0.

To show that l = (P ′l − w)+, recall that −P ′w−k = w
+

k − wk+1 and write

(P ′l − w)+ = limn→∞(P
′
∑n−1
k=0(−w

−
k )− w0)

+

= limn→∞(
∑n−1
k=0 w

+
k −

∑n
k=1wk − w0)

+

= limn→∞(−w
+
n −

∑n
k=0w

−
k )
+

= (−w+ + l)+ = (−w + l)+ .

For i such that wi = 0, (−w+ l)
+
i = li. For i such that wi > 0, we have from w+n ≤ w

+
n−1 that

w+ni > 0 for all i, which implies that li = 0. Then (−w + l)
+
i = 0. We thus see that l in (2.10)

is the l in (2.7).

We now return to the proof of Theorem 6. From (2.8), it is elementary that the operator

T is monotone in w. By (2.9), we see that ψ is also monotone in w.

(ii) We start by establishing some properties of the regulator process L. For a cádlág

process Y , denote U t(Y ) = (U ti (Y )), where U
t
i (Y ) = sup0≤s≤t Yi(s)

+ with a+ = max(a, 0).

We note that U t(Y ) is nondecreasing in both Y and t and that for every constant vector

c, U t(Y +c) ≤ U t(Y )+c+ where c+ = (c+i ). For a given cádlág K, let T
YK(t) = U t(P ′K−Y ).

Then it is well known and easy to check that (T Y )N is a contraction for some large enough N

(on the space of cádlág functions with the uniform topology). Hence there is a unique LY such

that LY = T Y LY for every cádlág K, (T Y )nK → LY as n→∞. In fact, when Y (0) ≥ 0, LY is

also the minimal nondecreasing process satisfying W Y (t) ≡ Y (t)+(I−P ′)LY (t) ≥ 0 for which

LY (0) = 0. It also satisfies
∫∞

0
W Y
i (t)dL

Y
i (t) = 0 for all i. For an excellent in depth study

of this material and for further references, see Chen and Mandelbaum (1989). The following

extends (2.9) of Chen and Whitt (1993).

Lemma 2. Let X and Y be cádlág. Then, for every t ≥ 0,

−RU t(X − Y ) ≤ LX(t)− LY (t) ≤ RU t(Y −X). (2.11)

In particular, if Y (t) = w +X(t) for some w ≥ 0, then

LY (t) ≤ LX(t) ≤ LY (t) +Rw . (2.12)
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Proof. Set LY,n ≡ (T Y )nLX and note that LY,n → LY as n→∞. ((T Y )0 being the identity).

Then, assuming that LX ≤ LY,n(t) +
∑n−1
i=0 (P

′)iU t(Y −X),

LX(t) = TXLX(t) = U t(P ′LX −X)

≤ U t(P ′LY,n − Y + P ′
∑n−1
i=0 (P

′)iU t(Y −X) + (Y −X))

≤ U t(P ′LY,n − Y +
∑n
i=0(P

′)iU t(Y −X))

≤ U t(P ′LY,n − Y ) +
∑n
i=0(P

′)iU t(Y −X)

= LY,n+1(t) +
∑n
i=0(P

′)iU t(Y −X) ,

(2.13)

where the last equality follows from LY,n+1(t) = T Y LY,n(t) = U t(P ′LY,n − Y ). Letting n →

∞ establishes the right inequality in (2.11). The left inequality follows by symmetry. The

inequalities in (2.12) follow from (2.11).

Now, returning to the proof of (ii), 0 ≤ L1 − L2 ≤ R(X2 − X1) follows from (2.11). To

show that L1 − L2 is nondecreasing, it suffices to argue that for every nonnegative s, t we

have that L1(t + s)− L1(s) ≥ L2(t + s) − L2(s). Note that Li(t+ s)− Li(s) is the regulator

process when the net input process is {W i(s) + X i(s + t) − X i(s)| t ≥ 0}. By assumption,

X2(s+ t)−X2(s) ≥ X1(s+ t)−X1(s) for every t and, from (i), W 2(s) ≥ W 1(s). Therefore,

the result once again follows from the left side of (2.11) (which is zero in this case).

(iii) We note that

0 ≤W 3 = X1 + (I − P ′)(L2 + L3)

0 ≤W 1 = X3 + (I − P ′)(L1 − L2) .

The fact that L2 + L3 ≥ L1 follows by minimality and holds for any choice of X 1 and X2.

From (ii), L1 − L2 is nonnegative and nondecreasing, hence L1 − L2 ≥ L3 by minimality as

well, and the result follows.

(iv) This final result follows from RW i = RX i + Li, (ii) and the fact that e′(I − P ′) ≥ 0,

as P is substochastic.

Proof of Theorem 7. Note that W (s+ t) is equal to W s(t), which we define as the content

at time t with initial content W (s) and net input process Xs(t) = X(t + s)−X(s). Since X

has stationary increments, Xs is distributed the same as X. Also W (t) has the same law as the

content Ws(t) which we define as the content with initial condition 0 and net input process Xs.

By Theorem 6, Ws(t) ≤W
s(t) for all t. Hence, W (t) is stochastically smaller than W (t+ s).

11



Proof of Theorem 9. Note that {W (t)|t ≥ 0} is tight if and only if {RW (t)|t ≥ 0} is tight.

Use Theorem 6 to show that the processes RW (t) starting at X(0) and 0 differ by at most

RX(0). Hence they either are both tight or both nontight.

Proof of Theorem 10. Let X have stationary increments with Rx < 0, where x = EX(1).

Let y > x be such that Ry < 0. Set X ′(t) = X(t) − yt, then X ′ has stationary increments

with EX ′(1) = x− y < 0. Let

W (t) = W (0) +X(t) + (I − P ′)L(t)

W ′(t) = W (0) +X ′(t) + L′(t)

W ′′(t) = yt+ (I − P ′)L′′(t) ,

where (W,L), (W ′, L′) and (W ′′, L′′) satisfy the dynamic complementarity conditions, as in

(1.2). Since (I − P ′)−1y < 0, W ′′(t) = 0 for all t ≥ 0. From

0 ≤W ′(t) =W ′(t) +W ′′(t) =W (0) +X(t) + L′(t) + (I − P ′)L′′(t) ,

we have by minimality that (I − P ′)−1L′(t) + L′′(t) ≥ L(t). Therefore, (I − P ′)−1W (t) ≤

(I − P ′)−1W ′(t) for every t. By Theorem 5, W ′ is tight. Hence, so is W .

Proof of Theorem 11. We want to show that

R(EW (t+ s))−R(EW (s))

is nonincreasing in s for all t. This follows from Theorem 9, because W (s + t) = W s(t), the

content at t with initial condition W (s) and net input process Xs(t) = X(s+ t)−X(s), while

Ws(t) is distributed the same as the content process with initial condition 0 and net input

process Xs (because the distribution of Xs is independent of s).

Proof of Theorem 12. The SI property follows immediately from Theorem 7, but it can also

be easily deduced directly. Let W̃s(t) = RWs(t), where Ws(t) is the content at t with initial

condition W (s) and net input process Xs(t) = X(s + t) −X(s). Then, from Theorem 6 (iv),

we see that

W̃s(t) ≤ W̃0(s+ t) ≤ W̃0(s) + W̃s(t) , (2.14)

so that for nondecreasing functions Ef(W̃0(t)) = Ef(W̃s(t)) ≤ Ef(W̃0(s+ t)) and for nonde-

creasing subadditive functions

Ef(W̃0(s+ t)) ≤ Ef(W̃0(s) + W̃s(t)) ≤ Ef(W̃0(s)) +Ef(W̃s(t))

= Ef(W̃0(s)) +Ef(W̃0(t)) ,

(2.15)
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and the proof is complete.
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Figure 1. The limiting cycle for Example 1.


