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Abstract

We establish heavy-traffic stochastic-process limits for queue-length, waiting-time and over-

flow stochastic processes in a class of G/GI/n/m queueing models with n servers and m extra

waiting spaces. We let the arrival process be general, only requiring that it satisfy a functional

central limit theorem. In order to capture the impact of the service-time distribution beyond

its mean within a Markovian framework, we consider a special class of service-time distribu-

tions, denoted by H∗
2 , which are mixtures of an exponential distribution with probability p

and a unit point mass at 0 with probability 1 − p. These service-time distributions exhibit

relatively high variability, having squared coefficients of variation greater than or equal to one.

As in Halfin and Whitt (1981), Puhalskii and Reiman (2000) and Garnett, Mandelbaum and

Reiman (2000), we consider a sequence of queueing models indexed by the number of servers,

n, and let n tend to infinity along with the traffic intensities ρn so that
√

n(1 − ρn) → β for

−∞ < β < ∞. To treat finite waiting rooms, we let mn/
√

n → κ for 0 < κ ≤ ∞. With the

special H∗
2 service-time distribution, the limit processes are one-dimensional Markov processes,

behaving like diffusion processes with different drift and diffusion functions in two different re-

gions, above and below zero. We also establish a limit for the G/M/n/m + M model, having

exponential customer abandonments.
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1. Introduction

Our goal in this paper is to establish new heavy-traffic stochastic-process limits for multi-

server queues in which the number of servers is allowed to increase along with the traffic in-

tensity. Such limits were established for the GI/M/n/∞ queueing model (with renewal arrival

process, exponential service times, n servers, unlimited waiting room and first-come first-served

service discipline) by Halfin and Whitt (1981), for the more general GI/PH/n/∞ model (with

phase-type service times) by Puhalskii and Reiman (2000) and for the M/M/n/∞+M model

with exponential customer abandonment by Garnett, Mandelbaum and Reiman (2000). They

considered a sequence of models indexed by the number of servers, n, and let n →∞ with the

traffic intensities ρn converging to 1, the critical value for stability. Interesting nondegenerate

limits occur when
√

n(1− ρn) → β for −∞ < β < ∞ . (1.1)

(The systems without customer abandonment are stable with proper steady-state distributions

only when β > 0.)

We obtain more general results by allowing a non-renewal arrival process and a finite

waiting room, but we only consider a special class of GI service-time distributions: The non-

exponential service-time distribution we consider is the mixture of an exponential distribution

with probability p and a unit point mass at 0 with probability 1 − p. This special service-

time distribution is mathematically appealing because, just like the exponential service-time

distribution, it makes appropriate queue-length processes Markov processes in the renewal-

arrival case, and because it leads to a one-dimensional limiting Markov process in the stochastic-

process limit. Interestingly, the limit process is not directly a diffusion process, because of

anomalous behavior at an interior boundary point, but it is a convex piecewise-linear function

of a diffusion process, which is quite tractable.

We want to analyze the G/GI/n/m model with the special H∗
2 service-time distribution

because, even though the service-time distribution is special, it may provide insight into the

way performance depends on the service-time distribution beyond its mean. Indeed, we exploit

the heavy-traffic stochastic-process limits here in a companion paper, Whitt (2004), to support

a heuristic approximation for the queue-length process and its steady-state distribution in the

more general G/GI/n/m model with general service-time distribution. That approximation

is asymptotically correct in the regime (1.1) for the G/H∗
2/n/m special case. Whitt (2004)

examines the quality of approximations for basic steady-state performance measures, using
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results from simulations and numerical algorithms.

Since the special service-time distribution is an extremal distribution among the class of

hyperexponential (H2, mixtures of two exponentials) distributions, see Whitt (1984b), we de-

note this class by H∗
2 . Whitt (1983) observed that H∗

2 service-time distributions are convenient

for developing explicit closed-form expressions for performance measures in the M/GI/n/∞
model. For example, he showed that the steady-state delay probability with the H∗

2 service-

time distribution is independent of the parameter p, provided that the mean service time is

held fixed.

Puhalskii and Reiman (2000) already established many-server heavy-traffic limits for the

GI/PH/n/∞ model with phase-type service-time distributions, but the limit process there is

a complicated multidimensional diffusion process, whose steady-state distribution remains to

be determined. The standard H2 distributions are a subclass of the PH distributions, and so

are covered by the results in Puhalskii and Reiman (2000), but the case H∗
2 is not covered,

because their analysis makes use of the fact that the component exponential distributions have

positive mean (and thus finite rate). Indeed, going from H2 to H∗
2 lowers the dimension of the

limiting Markov process from two-dimensional to one-dimensional.

To treat a finite waiting room in the heavy-traffic regime (1.1), it is necessary to let mn →∞
as n →∞ so that

mn/
√

n → κ for 0 < κ ≤ ∞ . (1.2)

The case of a finite waiting room is not discussed in Halfin and Whitt (1981). Even for

GI/M/n/m, a different proof is required for the heavy-traffic limit, because the finite waiting

room introduces a reflecting upper barrier in the diffusion process, which cannot be represented

simply as a reflection map applied to an unreflected free process. For the M/M/n/m model,

related heavy-traffic limits have been established by Massey and Wallace (2002).

Motivated by Garnett, Mandelbaum and Reiman (2003) and Ward and Glynn (2001), in

this paper we also establish a stochastic-process limit for the G/M/n/m model with exponential

customer abandonment (the G/M/n/m + M model): each customer that must wait in queue

before beginning service abandons after an exponential time with mean θ−1 if service has not

begun by that time. (The extension to H∗
2 service times remains an open problem.) The

stochastic-process limit is similar to the previous G/M/n/m limit: The exponential customer

abandonment only changes the drift for x > 0 from constant to linear.

Here is how the rest of the present paper is organized: We state the stochastic-process

limits for the G/H∗
2/n/m model in Section 2 and the extension to allow exponential customer
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abandonment in Section 3. We provide proofs in Sections 4–6.

2. The Stochastic-Process Limit with H∗
2 Service Times

In this section we formulate the heavy-traffic stochastic-process limits for the G/H∗
2/n/m

model. We construct a sequence of these G/H∗
2/n/m models indexed by the number of servers,

n, and let n →∞. We let the associated sequence of traffic intensities {ρn : n ≥ 1} approach

1 and the associated sequence of waiting-room sizes {mn : n ≥ 1} approach infinity so that

(1.1) and (1.2) hold.

We start with a rate-1 arrival counting process C ≡ {C(t) : t ≥ 0} with associated interar-

rival times {Uk : k ≥ 1}. Our key assumption about C is that it satisfies a functional central

limit theorem (FCLT). To state the assumed limit, let ⇒ denote convergence in distribution

and let D ≡ D([0,∞),R) be the function space of right-continuous real-valued functions on

the positive halfline with left limits, endowed with the customary Skorohod (J1) topology; see

Billingsley (1999) and Whitt (2002). Since we frequently refer to Whitt (2002), we refer to it

by its title initials “SPL”.

Let Cn be the random element of D defined by

Cn(t) ≡ [C(nt)− nt]/
√

n, t ≥ 0. (2.1)

We assume that

Cn ⇒ C ≡
√

c2
aB in (D,J1) (2.2)

for some nonnegative scaling constant c2
a, where B is standard (zero drift, unit diffusion coef-

ficient) Brownian motion. When the arrival process is a renewal process, the limit (2.2) holds

with c2
a being the squared coefficient of variation (SCV, variance divided by the square of the

mean) of an interarrival time (then assumed to be finite), but the limit (2.2) holds much more

generally; see Corollary 7.3.1 of SPL.

When the number of servers is n, we scale time in the arrival process, letting the arrival

process be

Cn(t) ≡ C(λnt), t ≥ 0 , (2.3)

where λn is the arrival rate in model n (with n servers). Equivalently, the interarrival times

in model n are Un,k ≡ Uk/λn. As a consequence, assuming that λn/nµ → 1, we have the

associated limit

C′
n ⇒ C′ ≡

√
µc2

aB in (D, J1) (2.4)
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where

C′
n(t) ≡ Cn(t)− λnt√

n
, t ≥ 0 . (2.5)

Let the H∗
2 service-time distribution be independent of n. With probability p, it is an

exponential with mean ν−1; with probability 1 − p it is 0. It has mean µ−1 = pν−1, so that

the traffic intensity as a function of n is ρn = λn/µn. The second moment of a service time is

thus 2pν−2, so that the SCV is c2
s = (2/p) − 1. Equivalently, p−1 = (c2

s + 1)/2. The SCV c2
s

ranges from 1 to ∞ as p decreases from 1 to 0. Hence, the variability of the H2 distribution is

greater than or equal to that of an exponential distribution.

Let Qn(t) be the queue length at time t, by which we mean the number in system, including

both waiting and in service. We assume that the stochastic process Qn almost surely has

sample paths in the function space D; in particular, the process Qn provides no record of an

arrival with zero service time that can enter service upon arrival and depart immediately. Let

Qa
n(k) be the queue length just before the kth (potential) arrival, including all arrivals up to

number k−1 if there are batch arrivals. The arrival is a potential arrival, because it may leave

immediately upon arrival if it has a zero service time and there is a free server or if the system

has finite capacity and is full at that arrival epoch, in which case the customer is blocked and

lost (without affecting future arrivals). Customers with zero service times are all counted by

the discrete-time process Qa
n.

For the stochastic-process limit, we construct scaled random elements of D by letting

Qn(t) ≡ [Qn(t)− n]/
√

n,

Qa
n(t) ≡ [Qa

n(bntc)− n]/
√

n, t ≥ 0 . (2.6)

There is no time scaling for Qn in (2.6) because the arrival rate λn is allowed to grow directly.

We also must specify the initial conditions, which could be complicated because of the

general arrival process. In standard heavy-traffic limits for the G/GI/n/∞ model with a fixed

number of servers, it is common to start the system empty. However, with the scaling in

(2.6), where n → ∞, it is convenient to let Qn(0) = n. Alternatively, we could let Qn(0) =

bn + x
√

nc ∨ 0 for some real number x, where bxc is the greatest integer less than or equal to

x and x ∨ 0 = max{0, x}. More generally, we let Qn(0) be an integer-valued random variable

with

0 ≤ Qn(0) ≤ n + mn (2.7)

that is independent of the arrival process {Cn(t) : t ≥ 0} and we assume that

Qn(0) ⇒ Q(0) as n →∞ , (2.8)
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where Q(0) is a proper random variable and

Qn(0) ≡ [Qn(0)− n]/
√

n . (2.9)

We also let Qa
n(0) = Qn(0) and Qa

n(0) = Qn(0). Moreover, we assume that the min{n,Qn(0)}
customers initially in service have exponential service times with mean ν−1, while the [Qn(0)−
n]+ customers initially waiting in queue have the H∗

2 cdf. (That is, we assume that customers

with zero service times would already have left if they could be in service.) Finally, given that

specification, we assume that all service times are independent of the initial state Qn(0) and

the arrival process.

Let D2 ≡ D×D be the product space with the associated product topology. As indicated

above, we use the standard J1 topology on each coordinate, but the specific Skorohod topology

(e.g., J1 or M1) does not matter because the limit process has continuous sample paths. Indeed,

the topology could be the J1 or M1 topology on D([0,∞),R2); see Sections 3.3 and 11.5 and

Chapter 12 of SPL. Let e be the identity function in D, i.e., e(t) = t, t ≥ 0. Let ◦ be the

composition map, defined by (x ◦ y)(t) ≡ x(y(t)); see Section 13.2 of SPL.

Theorem 2.1. For the family of G/H∗
2/n/m models specified above, where the rate-1 arrival

process obeys the FCLT in (2.2), suppose that the arrival rate λn and the number of waiting

spaces, mn, change with n so that (1.1) and (1.2) hold with −∞ < β < ∞ and 0 < κ ≤ ∞. In

addition, suppose that the initial conditions are as specified above with (2.7)-(2.9). Then

(Qn,Qa
n) ⇒ (Q,Qa) in (D,J1)2 as n →∞ , (2.10)

where

Q(t) ≡ g(Qp(t)), t ≥ 0, (2.11)

g(x) ≡
{

x, x < 0,
x/p, 0 ≤ x ≤ pκ ,

(2.12)

Qa ≡ Q ◦ µ−1e and , (2.13)

and Qp is a diffusion process starting at Qp(0) = g−1(Q(0)) with a reflecting upper barrier at

pκ if κ < ∞ and an inaccessible upper boundary at infinity if κ = ∞. The diffusion process

Qp has infinitesimal mean (drift function)

mQp(x) =
{ −pµβ, 0 ≤ x < pκ,
−pµ(x + β), x < 0 ,

(2.14)

and infinitesimal variance (diffusion function)

σ2
Qp(x) = p2µ(c2

a + (2/p)− 1) = p2µ(c2
a + c2

s),−∞ < x < pκ . (2.15)
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Remark 2.1. The superscript p. The limit process Qp in Theorem 2.1 has a natural physical

interpretation: It is the limit process for the scaled version of the queue-length process {Qp(t) :

t ≥ 0} containing only the customers with positive (non-zero) service times, ignoring the

customers with zero service times. When all servers are not busy, we can ignore the customers

with zero service times because they leave immediately upon arrival, and Q(t) does not record

their appearance. Except for the upper barrier at mn, the customers with zero service times

have no impact on other customers. To obtain the limit process Qp directly in the case

mn = κ = ∞, we ignore the customers with zero service times, giving us the stochastic process

{Qp(t) : t ≥ 0}, which corresponds to the queue-length process {Q(t) : t ≥ 0} in the G/M/n/∞
model where p = 1, but with different parameters. Thus, in the special case of GI arrivals and

unlimited waiting space, the limit for the scaled version of {Qp(t) : t ≥ 0} is a consequence of

Halfin and Whitt (1981) and Puhalskii and Reiman (2000). For the limiting diffusion process

Qp, the extension to a finite upper barrier κ is obtained by inserting a reflecting upper barrier

at κ; see Remark 2.5 for a discussion of the construction. We do not actually prove that

Qp
n → Qp in the finite-waiting-room case here; that remains an open problem.

Remark 2.2. Q and Qa are not diffusion processes. Since the function g in (2.12) is not

differentiable at 0 (and has a discontinuous derivative using one-sided derivatives), the limit

processes Q and Qa are not diffusion processes with the common definitions; e.g., see p. 110 of

Rogers and Williams (1987) and p. 159 of Karlin and Taylor (1981). The limit processes Q and

Qa are strong Markov processes with continuous sample paths, but the infinitesimal mean and

variance are not well defined in state 0. However, the function g is a convex function, so that

the limit processes Q and Qa can be characterized as stochastic integrals, using a generalized

Itô rule for convex functions based on Tanaka’s formula; e.g., see Sections 43, 45 and 47 of

Rogers and Williams (1987). Indeed, by Theorem 45.1 of Rogers and Williams (1987), Q can

be represented as the stochastic integral

Q(t) = g(Qp(t))

= g(Qp(0)) +
∫ t

0
[1(−∞,0](Q

p(s)) + (1/p)1(0,pκ](Q
p(s))]dQp(s)

+
1− p

2p
LQp(t, 0) , (2.16)

where 1A(x) is the indicator function, with 1A(x) = 1 if x ∈ A and 1A(x) = 0 otherwise, and

LQp(t, 0) is the local time in state 0 of the diffusion process Qp (with infinitesimal parameters

in (2.14) and (2.15)). In turn, by Theorem 49.1 of Rogers and Williams (1987), the local time
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of the diffusion process Qp is a time change of the local time of standard Brownian motion B,

i.e.,

LQp(t, 0) = LB(γ(t), 0) (2.17)

for appropriate time-change function γ(t) fully specified there.

Remark 2.3. Tractability. It is evident that the limit processes Q and Qa are quite tractable

due to the representation in (2.11) - (2.13). First, it is easy to obtain the steady-state dis-

tributions from the steady-state distribution of Qp. We do not give details here, because the

steady-state distribution is discussed extensively in Whitt (2004). It also follows that the limit

processes Q and Qa act like diffusion processes away from the origin. Away from the origin,

the process Q has infinitesimal mean (drift function)

mQ(x) =
{ −µβ, 0 < x < κ,
−pµ(x + β), x < 0 ,

(2.18)

and infinitesimal variance (diffusion function)

σ2
Q(x) =

{
µ(c2

a + (2/p)− 1) = µ(c2
a + c2

s), 0 < x < κ,
p2µ(c2

a + 2− p) = p2µ(c2
a + c2

s), x < 0 .
(2.19)

However, the infinitesimal parameters are not well defined at 0. For example, in the M/H∗
2/n/m

special case, from state n the process Qn(t) has a drift up of λn, but a drift down of pµn. If we

could regard the process Q as a diffusion process with the infinitesimal parameters in (2.18)

and (2.19), extended to 0, then the diffusion process would be a piecewise-linear diffusion (like

Qp) as in Browne and Whitt (1995), and we could directly write down the steady-state distri-

bution. However, since Q is not actually a diffusion, that alleged steady-state distribution for

Q is not correct.

Remark 2.4. Different speeds in different regions. The infinitesimal variance σ2
Q(x) in (2.19)

is discontinuous at x = 0 when p < 1: σ2
Q(0−) = p2σ2

Q(0+), so that the limit process Q “moves

faster” when x > 0. That difference in the infinitesimal variances is evident from plots of queue-

length sample paths obtained from simulations. To demonstrate that property, we plot sample

paths of the queue-length process for 104 arrivals in the M/M/n/∞ and M/H∗
2/n/∞ models

with λ = 100, µ = 1, p = 0.1 and several values of n in Figures 1 and 2. For the M/H∗
2/n/∞

model with p = 0.1, the infinitesimal variance of Q is σ2
Q(x) = 2pµ for x < 0 and σ2

Q(x) = 2µ/p

for x > 0. Hence the ratio of the infinitesimal variances in the two regions is p2 = 0.01. The

difference is striking in the plots.
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Figure 1: Sample paths of the queue-length process for 104 arrivals in the M/M/n queue with
arrival rate λ = 100, service rate µ = 1 and several values of n. A common realization of the
arrival process and service times is used for all n.

For the simulation, the same arrival process sample path is used for all plots, and the same

service-time realizations are used for different n in each separate queueing system. Consistent

with the steady-state distribution described in Whitt (2004), the steady-state probability that

all servers are busy tends to be no greater for the more highly-variable H∗
2 service times than

for the exponential service times. Indeed, for n = 120 in these plots, no customers are delayed

for H∗
2 service times, whereas some are for exponential (M) service times.

Remark 2.5. Constructing Qp. The key limit process Qp in Theorem 2.1 is a diffusion process

on the interval (−∞, pκ) with reflection at the upper barrier when κ < ∞. It is of course

important that this limiting diffusion process be well defined. Constructing this diffusion

process is somewhat complicated when κ < ∞, because it cannot be regarded simply as the

image of an “unreflected free process” under a reflection map, as in Sections 5.2, 9.3, 13.5 and

14.8 of SPL. There are several ways to do the construction. One is to rely on an asymptotic

construction of the reflected process from an associated unreflected process on (−∞,∞) as in

the proof of Theorem 4.1 of Srikant and Whitt (1996). That construction characterizes the

probability law of the reflected process as the common limit (in distribution) of two converging
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Figure 2: Sample paths of the queue-length process for 104 arrivals in the M/H∗
2/n queue with

arrival rate λ = 100, µ = 1 and p = 0.1 (SCV c2
s = 19) and several values of n. A common

realization of the arrival process and service times is used for all n.
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sequences of bounding processes. These bounding processes have small jumps into the interior

of the state space the instant the boundary is hit.

A second approach is to directly apply the standard reflection map in the neighborhood

of the upper barrier. That second approach is useful to construct an approximation for the

overflow process in the queueing model (recording arrivals turned away because the waiting

room is full), which we do in the next corollary. To do that construction, we can use the

following “alternating-renewal-process” construction: We let the reflected diffusion process be

distributed as the unreflected diffusion process until the first time the upper barrier is hit.

Since the diffusion process has constant drift for states in the interval (0, pκ), we can then let

the reflected diffusion process be reflected Brownian motion (with one-sided reflection down

from the upper barrier) until a state b is next hit, with 0 < b < pκ, using the usual construction

involving the reflection map; see Chapters 5 and 9 in SPL. The approximation for the losses

in the queueing model is determined by the upper-barrier regulator map associated with the

reflection map in the random intervals during which the process acts as reflected Brownian

motion. After hitting the state b again, we repeat the construction above. For further discussion

about constructing diffusion processes, see Lions and Sznitman (1984), Stroock and Varadhan

(1979) and Rogers and Williams (1987).

We now state some corollaries. Our first is for the loss processes when κ < ∞. Let Ln(t)

be the number of customers lost (blocked) in the interval [0, t] and let La
n(k) be the number of

customers lost among the first k arrivals. Paralleling (2.6), let the associated scaled processes

be

Ln(t) ≡ Ln(t)/
√

n,

La
n(t) ≡ La

n(bntc)/√n, t ≥ 0 . (2.20)

We construct the loss process associated with the limiting diffusion process in Theorem 2.1 by

using the reflection map in the “alternating-renewal-process” framework specified in Remark

2.5.

Corollary 2.1. If, in addition to the assumptions of Theorem 2.1, Ln(0) = La
n(0) = 0 w.p.1

and 0 < κ < ∞, then

(Ln,La
n) ⇒ (L,La) in (D, J1)2 (2.21)

jointly with (2.10), where Ln and La
n are as in (2.20), La = L ◦ µ−1e and L is constructed as

indicated above in Remark 2.5.
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We now state a corollary for the waiting time and virtual waiting time. Let Wn(k) be the

waiting time of the kth admitted customer (before beginning service) and let W v
n be the virtual

waiting time (the time required for all the customers in the queue at time t to begin service) in

model n. Since there are n servers, the waiting time Wn(k) tends to be about [Qn(l)−n]+/nµ,

where l is the index of the kth admitted customer. (In the limit the proportion of admitted

customers approaches 1, so the shift in index is asymptotically negligible.) Thus, for the

stochastic-process limit, we need to scale the waiting times by multiplying by
√

n instead of

dividing by
√

n as in (2.6).

Let

Wn(t) ≡ √
nWn(bntc),

Wv
n(t) ≡ √

nW v
n (t), t ≥ 0 . (2.22)

For x ∈ D, let x ∨ 0 be the element of D defined by

(x ∨ 0)(t) ≡ x(t) ∨ 0 ≡ max{x(t), 0}, t ≥ 0 . (2.23)

The following result is established very similarly to Corollary 2.3 of Puhalskii and Reiman

(2000); we give details in Section 4.

Corollary 2.2. Under the conditions of Theorem 2.1,

(Wn,Wv
n) ⇒ (µ−1Qa ∨ 0, µ−1Q ∨ 0) in (D, J1)2 as n →∞ , (2.24)

where (Qa,Q) is as in Theorem 2.1.

3. Extension for Customer Abandonments

As in Garnett et al. (2003), suppose that each customer that joins the queue before

receiving service abandons, independently of all other events, after an exponential time with

mean θ−1 if service has not begun before that time. We now extend Theorem 2.1 to this setting

for the special case of exponential service times. (The extension to H∗
2 service times remains

an open problem.)

Theorem 3.1. For the G/M/n/mn + M model with exponential customer abandonment as

specified above, under the conditions of Theorem 2.1, the conclusions of Theorem 2.1 hold with

two modifications: First, here p = 1; second, the infinitesimal mean for Q ≡ Qp should be

changed to

mQ(x) =
{ −βµ− θx, 0 ≤ x < κ,
−βµ− µx, x < 0 .

(3.1)
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4. Proof of Theorem 2.1

4.1. Outline of the Proof

In this subsection we give a high-level view. Our proof of Theorem 2.1 has three steps:

Step 1. G/M/n/∞. We first establish a stochastic-process limit under two extra restrictions:

(i) We consider only the customers with positive service times, and (ii) we assume an unlim-

ited waiting room. We show that this first step is equivalent to establishing the heavy-traffic

stochastic-process limit for the G/M/n/∞ model, which then requires only a slight general-

ization of the results by Halfin and Whitt (1981) and Puhalskii and Reiman (2000) (restricted

to the special case of exponential service times). The G/M/n/∞ result is only more general

because the arrival process need not be a renewal process, but that is a useful generalization

for applications.

We actually give two different proofs of the G/M/n/∞ result. Since the service times

are exponential in this step, the second proof extends to the G/M/n/mn + M model with

exponential abandonments and finite waiting room, thus yielding a proof of Theorem 3.1.

Proof 1. Piecewise Construction for G/M/n/mn Exploiting Previous Results. Our

first proof is a piecewise construction for G/M/n/mn, with finite waiting room, exploiting

established results for the more elementary G/M/∞ infinite-server and G/M/1/mn single-

server models. The G/M/∞ model applies below state n when not all servers are busy, while

the G/M/1/mn model applies above n when all servers are busy. In each separate region we

can apply previous results for these more elementary systems. We recursively establish limits

in the different regions, letting the end of the previous excursion in the other region serve as

the initial distribution for the next excursion in the new region. Then we show that the pieces

can be put together to imply convergence for the entire process. The piecewise construction

is interesting in part because it can be applied in other contexts. Indeed, our proof in Step 3

uses a variant of the same argument.

Proof 2. Martingale Proof for M/M/n/mn + M Extended to G Arrivals. In Section

5 we also give a second proof for the G/M/n/∞ model. This second proof is a martingale

proof for the M/M/n/∞ model in the spirit of Puhalskii and Reiman (2000), but extended to

a general G arrival process. Since the service times are exponential, the model can also have

finite waiting room and exponential customer abandonments, so we obtain a proof of Theorem

12



3.1 at the same time. The logic for the extension to G arrival processes also applies to many

other contexts. In particular, the same reasoning lets us extend the results in Puhalskii and

Reiman (2000) from GI/PH/n/∞ to G/PH/n/∞. For the general arrival process, we assume

only a FCLT, as in (2.2).

Open Problems. We conjecture that the proof for the G/M/n/mn + M model (Proof

2 above) can be extended to yield corresponding direct proofs for the G/H∗
2/n/mn model

(Theorem 2.1) and generalizations to, first, the G/H∗
2/n/mn + M model and, more generally

the G/H∗
2/n/mn + H∗

2 model. Those remain interesting open problems. Even if those direct

proofs can be done, we believe that the piecewise constructions are interesting.

Step 2. G/H∗
2/n/∞. We apply the G/M/n/∞ result in Step 1 (not considering the ex-

tensions to finite waiting rooms and customer abandonment) to obtain the stochastic-process

limit for the more general G/H∗
2/n/∞ model, having H∗

2 service times instead of M service

times, but still an unlimited waiting room. For the case of an unlimited waiting room, we show

that the distance between Qn and Qp
n is asymptotically negligible. Thus for the G/H∗

2/n/∞
model we establish joint convergence of (Qn,Qp

n).

Step 3. G/H∗
2/n/mn. Finally, we apply the result for the G/H∗

2/n/∞ model in Step 2

to obtain the desired stochastic-process limit for the associated G/H∗
2/n/mn model, having

finite waiting room. The finite-waiting-room proof is by no means a simple extension, such as

directly applying the continuous-mapping theorem with a reflection map. We use a piecewise

construction as in the first proof of Step 1. It requires the same rather complicated recursive

or inductive proof. To treat the finite waiting rooms, we consider two regions with boundary

above n. In the upper region, the system behaves like a G/MX/1/mn single-server system

with batch service, while in the lower region the system behaves like the G/H∗
2/n/∞ system

treated in Step 2. We can apply the standard one-sided reflection map associated with the

upper barrier to treat each piece in the upper region, and we can apply Step 2 to treat each

piece in the lower region. Thus, in both steps 2 and 3, we make strong use of the result

established in the previous step. (By our argument, it is not possible to skip any steps.)

4.2. Positive Customers and an Unlimited Waiting Room.

We start with the case of an unlimited waiting room, which produces a limit process without

an upper barrier. Establishing the desired limit with H∗
2 service times is complicated even with
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an infinite waiting room because of different system behavior in two regions of the state space.

If the servers are not all busy, then customers with zero service times depart immediately upon

arrival. however, if all severs are busy, then customers with zero service times must join the

queue. Subsequently, upon any service completion, there is a random batch of departures,

because customers with zero service times that enter service at that time will also depart

immediately. Hence there may be several simultaneous departures at each of these departure

epochs.

With an infinite waiting room, the situation simplifies if we focus on the customers with

positive (non-zero) service times. With an infinite waiting room (but not with a finite waiting

room), the customers with zero service times have absolutely no impact on the customers with

positive service times. Thus, with an infinite waiting room, we can focus on the customers with

positive service times, by simply ignoring the customers with zero service times. We initially

establish a limit for the queue-length process consisting only of the customers with positive

service times. Afterwards, in Step 2, we use the limit for customers with positive service times

to establish the limit for all customers (in the setting with unlimited waiting room).

When we look only at the customers with positive service times, the system behaves like

a G/M/n/∞ model with a new G arrival process and a new initial condition. To reduce our

problem to the G/M/n/∞ model, we need to show that the assumed FCLT for the arrival

process and the assumed initial conditions imply corresponding behavior for the positive cus-

tomers alone. We first show that the assumed FCLT for the full arrival process in (2.2) implies

a corresponding FCLT for the arrival process of customers with positive service times.

Let Cp(t) count the number of arrivals in the interval [0, t] that have positive service times.

We first observe that an analog of the FCLT assumed for the full arrival process C in (2.2)

holds for Cp under the assumption (2.2). Let Cp
n be the random element of D defined by

Cp
n(t) ≡ [Cp(nt)− pnt]/

√
nc2

p,a , (4.1)

where the new scaling parameter is

c2
p,a ≡ pc2

a + p(1− p) . (4.2)

Lemma 4.1. If the FCLT in (2.2) holds, then

Cp
n ⇒ B in (D, J1) . (4.3)
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Proof. Recall that Cp(t) can be written as the random sum

Cp(t) =
C(t)∑

i=1

Yi ,

where {Yi : i ≥ 1} is a sequence of IID Bernoulli random variables, independent of the stochastic

process C, with P (Yi = 1) = 1− P (Yi = 0) = p, so that Yi has mean p and variance p(1− p).

Hence,

(
√

c2
aCn,SY,n) ⇒ (

√
c2
aB1,

√
p(1− p)B2) in (D, J1)2 , (4.4)

where Cn is given in (2.1), B1 and B2 are independent standard Brownian motions and

SY,n(t) ≡ n−1/2

bntc∑

i=1

(Yi − p), t ≥ 0 .

Hence we can apply the continuous mapping theorem with composition and addition to obtain

the desired conclusion; specifically, we can Theorem 9.5.1 of SPL with (4.4) to obtain (4.3).

In the same spirit, we need to show that the initial conditions specified for Qn(t) imply

corresponding initial conditions for Qp
n(t). For that purpose, let

Qp
n(0) ≡ [Qp

n(0)− n]/
√

n .

Lemma 4.2. If

Qn(0) ≡ [Qn(0)− n]/
√

n ⇒ Q(0) in R as n →∞ ,

then

|Qp
n(0)− g−1(Qn(0))| ⇒ 0

so that

Qp
n(0) ⇒ g−1(Q(0)) in R as n →∞ ,

Proof. Note that [Qp
n(0)− n]+ can be written as the random sum

[Qp
n(0)− n]+ =

[Qn(0)−n]+∑

i=1

Yi ,

where {Yi : i ≥ 1} is the sequence of IID Bernoulli random variables we introduced to prove

Lemma 4.1. Hence,

Qp
n(0)− g−1(Qn(0)) = n−1/2

[Qn(0)−n]+∑

i=1

(Yi − EYi) .
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We have Qp
n(0) − g−1(Qn(0)) = 0 where Qn(0) ≤ 0. Otherwise, Qp

n(0) − g−1(Qn(0)) is

asymptotically negligible. To see that, use the Skorohod representation theorem to replace the

convergence Qn(0) ⇒ Q(0) by convergence w.p.1. For the case Q(0) ≤ 0, we have Qp
n(0) =

Qn(0) → Q(0) ≤ 0. Henceforth focus on the case Q(0) > 0. For that case, we can write

n−1/2

[Qn(0)−n]+∑

i=1

(Yi − EYi) =
[Qn(0)− n]+√

n

∑[Qn(0)−n]+

i=1 (Yi − EYi)
[Qn(0)− n]+

,

and then apply the LLN together with the assumed limit for Qn(0). That w.p.1 convergence

implies convergence in law for the original versions, which is equivalent to convergence in

probability because the limit is deterministic.

Hence, establishing the limit for the customers with positive service times is actually equiva-

lent to proving Theorem 2.1 for the special case of the G/M/n/∞model, i.e., with an unlimited

waiting room and exponential service times.

4.3. Proof 1 in Step 1: The Piecewise-Construction Proof

Thus, to complete Step 1, it suffices to prove Theorem 2.1 for the special case with exponen-

tial (M) service and unlimited waiting room (mn = ∞). However, given that we now consider

exponential service times, we are also able to treat finite waiting rooms. As mentioned earlier,

we give two different proofs for the G/M/n/mn result, because each is of some independent

interest. The second proof appears in Section 5. There we treat customer abandonments as

well; there is no customer abandonment here.

Our main result in this subsection is

Theorem 4.1. If, in addition to the conditions of Theorem 2.1, the service-time distribution

is exponential (p = 1), then

Qn ⇒ Q in (D,J1) as n →∞ , (4.5)

where Q is the diffusion process specified in Theorem 2.1 with p = 1, so that Q = Qp.

As a consequence, we obtain the desired result for the customers with positive service times.

To state it, let Qp
n(t) be the queue length of customers with positive service times at time t in

the nth model. Let Qp
n be the associated random element of D defined by

Qp
n(t) ≡ [Qp

n(t)− n]/
√

n, t ≥ 0 .
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Corollary 4.1. If, in addition to the conditions of Theorem 2.1, mn = ∞ for all n, then

Qp
n ⇒ Qp in (D,J1) as n →∞ ,

where Qp is the diffusion process specified in Theorem 2.1 (with κ = ∞).

The Main Ideas in the Proof of Theorem 4.1. Our proof is based on the recognition

that the G/M/n/mn model and the limiting diffusion process have different character in two

regions, with the state-dependent rates being piecewise-linear, as discussed in Halfin and Whitt

(1981) and Browne and Whitt (1995). When Qn(t) < n, the system behaves like the G/M/∞
model; when Qn(t) ≥ n, the system behaves like the G/M/1/mn model. For both those

component models, limits have already been established. (For the G/M/∞ model, we could

employ a simplification (special case) of the second (martingale) proof in Section 5 below.)

Similarly, the limiting diffusion process acts like simple reflected Brownian motion (RBM)

above 0 and like the Ornstein-Uhlenbeck (OU) diffusion process below 0.

The idea, then is to apply the previous limits in successive excursions above and below

n. Suppose that we start above n. Then we use the known convergence for the G/M/1/mn

model during the excursion above n, until Qn(t) falls below n. Then we switch over to the

other region, using the terminal distribution of the process in the upper region to serve as the

initial distribution for the excursion in the lower region. We apply induction to deduce that

the limits hold for all such excursions, and we use the continuous mapping theorem to show

that we can put all the pieces together to obtain the originally desired convergence for the full

process.

However, there is a complication in the piecewise argument as just described: As stated,

there are too many excursions, because the process changes back and forth quickly in the

neighborhood of the boundary n (which will become 0 for the limiting diffusion process).

(There will be no such difficulty in Step 3 later, because the switchover points are widely

separated.) In order to circumvent this difficulty here, we modify the original processes at

the boundary n. When we hit level n from above, we insert a jump down of size bε√nc; and

when we hit level n from below, we insert a jump up of size bε√nc. By inserting those jumps

in the original process, we ensure that the excursions above and below n asymptotically have

length of order O(1). (Without inserting the jumps, the expected lengths of the excursions

are of order O(1/
√

n).) We then carry out the piecewise constructions for the processes with

these extra jumps. Afterwards, we obtain the desired result by letting ε ↓ 0. Conceptually, the
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argument is relatively simple (should already be crystal clear), but there are several technical

details, which we will try to treat carefully.

Overview of the Detailed Proof of Theorem 4.1. Recall that we are now considering

the G/M/n/mn model. We will establish the desired convergence Qn ⇒ Q in (4.5) by approx-

imating the processes Qn by related processes that are easier to analyze. For each ε > 0, we

will define processes Qε
n such that, for all t > 0 and n ≥ 1,

‖Qn −Qε
n‖t ≤ ε, (4.6)

where

‖x‖t = sup
0≤s≤t

{|x(s)|} ,

and, for each ε > 0,

Qε
n ⇒ Qε in (D, J1) as n →∞ . (4.7)

We form Qε
n by deliberately introducing jumps, so the limit processes Qε do not have contin-

uous sample paths, but they only have jumps of size ε.

Since the limit processes Qε in (4.7) have jumps, we will need to use the nonuniform J1

topology on D in the convergence. Given the nonuniform J1 convergence in (4.7), it is useful to

measure distance on D using a J1 metric over the interval [0, t], say dJ1 as in (3.2) of SPL. Let

π be the Prohorov metric on the space of all probability measures on (D, J1), using the time

interval [0, t] and the metric dJ1 on D; see (2.2) of SPL. The main property for our purposes

is that it induces weak convergence. For random elements X1 and X2, let π(X1, X2) denote

the Prohorov metric applied to the probability laws of the random elements. We can apply

the triangle inequality to deduce that

π(Qn,Q) ≤ π(Qn,Qε
n) + π(Qε

n,Qε) + π(Qε,Q) . (4.8)

Now we use the fact that

π(X1, X2) ≤ inf{c > 0 : P (dJ1(X1, X2) > c) < c}

≤ inf{c > 0 : P (‖X1 −X2‖t > c) < c} (4.9)

for any random elements X1, X2 ∈ D, by virtue of the Strassen representation theorem, The-

orem 11.3.5 of SPL. As a consequence, (4.6) implies that

π(Qn,Qε
n) ≤ ε for all n . (4.10)
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Hence we can apply (4.6) and (4.7) to treat the first two terms on the right in (4.8). We

complete the proof by showing that

Qε ⇒ Q as ε ↓ 0 , (4.11)

which is equivalent to π(Qε,Q) → 0.

Thus, we can apply (4.10) and (4.11) to first pick ε to make the first and third terms on the

right in (4.8) small, uniformly in n. Then, by (4.7), given that ε, we can choose n to make the

second term arbitrarily small. In that way, we succeed in establishing the desired convergence.

Verifying (4.6): Constructing the Approximation with Jumps. To establish (4.6),

we modify the unscaled process Qn by inserting a jump up of bε√nc whenever the sample path

reaches level n from below, and a jump down of b−ε
√

nc whenever the sample path reaches

level n− 1 from above.

Let the associated scaled processes be

Qε
n ≡ [Qε

n(t)− n]/
√

n, t ≥ 0 .

Clearly the scaled processes have jumps of size ε, at least asymptotically as n →∞.

We construct the unscaled processes Qε
n on the same sample space as Qn so that (4.6) holds.

First, we give all these processes the same sample path of arrivals. We cannot give the processes

the same sample paths of departures, because they are in different states with different rates.

However, we can exploit the special form of our exponential service-time distribution to perform

a stochastic coupling construction with the desired property, drawing on Whitt (1981); see

especially Theorem 10.

For simplicity, suppose we start at time 0 with an arrival from state n. Then Qε
n immedi-

ately has a jump up of bε√nc. It thus starts out bε√nc above Qn; i.e., initially we have the

relation

Qε
n(t) ≥ Qn(t) ≥ Qε

n(t)− bε√nc . (4.12)

Above the level n, the servers are all busy, so that the processes can be given identical service

completions, which occur in a Markovian manner. Specifically, the departure events can be

generated by a Poisson process with rate nµ. At each departure event, there is a single

departure, which occurs in both processes as long as Qn(t) ≥ n.

We have yet to account for the upper barrier at state n + mn. If both processes are equal,

then the common new arrivals will be lost in both processes. Otherwise, the higher process
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may hit the upper barrier, while the lower process does not. That may cause losses to occur

in the higher process that are not matched in the lower process. But that causes no problem;

that just brings the two ordered sample paths closer together. Even with the upper barrier,

we maintain the relation (4.12) throughout the excursion in the upper region.

Now consider what happens when Qn first hits level n−1 from above. Because all servers are

no longer busy, its departure rate decreases. However, below level n−1, the departure process

is a pure death process with rate kµ in level k. We can thus generate all departures from the

common Poisson process with rate nµ by thinning: If the queue-length process Qn is at level

k (< n) at a departure epoch, then the candidate departure event generated from the Poisson

process with rate nµ is an actual departure with probability k/n; otherwise the candidate

departure event has no effect. Since, we construct the departures for the two queue-length

processes from a common Poisson process, whenever a departure occurs in Qn a corresponding

departure necessarily occurs in Qε
n, but there may be departures in Qε

n that are not matched

in Qn. Those departures may bring the two sample paths closer together, but the relation

(4.12) is necessarily maintained. Moreover, the construction gives each of the two processes

their correct probability law.

Now we come to the time that the process Qε
n first hits the level n−1. As indicated before,

that process immediately is given a jump down of bε√nc. Since prior to that jump, the relation

(4.12) held, after the jump the order of the processes is switched, i.e., we have the relation

Qε
n(t) ≤ Qn(t) ≤ Qε

n(t) + bε√nc . (4.13)

Going forward in time, the processes get no further apart, because we do the sample path

construction so that the higher process Qn has a departure whenever the lower process Qε
n

does. The lower process may fail to match departures with the upper process, either because

of hitting the lower barrier at 0 or, probabilistically, because of the difference in the service

rates. That could cause the processes to couple, after which the sample paths would be identical

until level n is first hit from below. In any case, relation (4.13) is maintained until Qε
n again

hits level n from below.

When Qε
n again hits level n from below, it experiences a jump up of bε√nc, causing relation

(4.13) to be replaced by relation (4.12), with the subsequent reasoning repeated (leading to

a formal proof by induction on the successive hitting of level n from below and level n − 1

from above). From the scaling in (2.6), we have thus established the inequality in (4.6), which

implies the inequality in (4.10) uniformly in n.
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Verifying (4.7): Establishing Convergence of the Approximations. To establish the

convergence in (4.7), we focus on the successive intervals during which the unscaled processes

Qε
n spend above n and below n− 1. Equivalently, we focus on the successive intervals during

which the scaled processes Qε
n spend above 0 and below 0. Because of the jumps of size ε > 0

at each crossing of 0 by the scaled processes, those intervals are asymptotically of positive

finite (but random) length. (Without the size-ε jumps, the average excursion interval length

would be of order 1/
√

n and would be harder to analyze.)

The convergence in each of the two regions follows easily from previous heavy-traffic limits,

because the unscaled processes Qε
n behave like queue-length processes in previously studied

queueing systems in their excursions above and below level n. Above level n, the queue-

length process Qε
n behaves like the queue-length process in a G/M/1/mn queue; below level

n, the queue-length process Qε
n behaves like the queue-length process in a G/M/∞ queue.

The assumed FCLT for the arrival process in (2.2) implies associated convergence over random

subintervals.

One step of the proof is to treat the successive excursions between each successive crossing.

Another step is to show that we can put together all the pieces and establish convergence of

the overall process. We address that second step first.

Putting the Pieces Together. It should be apparent that convergence of all the pieces

implies convergence of the overall process. To demonstrate it, we apply the continuous map-

ping theorem; see Section 3.4 of SPL. We now define the function that puts together all the

converging pieces. Let t ≡ {tk : k ≥ 0} be a sequence of numbers with 0 = t0 < t1 <

. . . < tk < tk+1 < . . . such that tk → ∞ as k → ∞. Let ∆ be the subset of such se-

quences in R∞. (The subset ∆ is well defined, being an intersection of open subsets in R∞:

The subset A ≡ {t : t0 = 0, tk ≤ tk+1 for all k} is a closed subset of R∞. The subset

Am ≡ {t : tk ≤ m for all k} is a closed subset, the subset Bm ≡ {t : tm = tm+1} is a closed

subset, and ∆ is the (countable) intersection of the complements Ac
m and Bc

m within A. Thus

∆ is metrizable as a complete separable metric space with the relative topology from R∞; see

p. 371 of SPL.)

We also consider a sequence of elements of D: let x ≡ {xk : k ≥ 0} be an element of the

product space D∞ (with the product topology; see Section 11.4 of SPL). Let h : (D∞ ×∆) →
(D, J1) be the function defined by

h((x, t))(s) ≡ xk(s) : tk ≤ s < tk+1, k ≥ 0 . (4.14)
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Note that we need to restrict h to (D∞×∆) (instead of just (D∞×R∞) in order for h((x, t))

to be a legitimate element of D. We use the following lemma.

Lemma 4.3. The function h : (D∞×∆) → (D, J1) defined in (4.14) is continuous at all (x, t)

such that, for all k, xk is continuous everywhere except possibly at the points t1, . . . , tk.

Proof. Suppose that (x, t)n ≡ (xn, tn) → (x, t)) as n →∞ in (D∞×∆) with the continuity

condition holding. We want to show that yn ≡ h((xn, tn)) → h((x, t) ≡ y as n →∞ in (D,J1).

Because of the discontinuities at the transition points tk, we need the J1 topology on the range.

It suffices to focus on bounded intervals [0, t], where t is not one of the limit points tk. Suppose

such a t is given. We fix k by also supposing that tk < t < tk+1. Hence it suffices to work with

the first k + 1 limits (xj,n, tj,n) → (xj , tj) : 0 ≤ j ≤ k.

To treat the convergence in D with time domain [0, t], we make use of the J1 metric on

D([0, t],R); see (3.2) on p. 79 of SPL. We let λn : [0, t] → [0, t] be the strictly increasing time

transformations used there (not to be confused with the arrival rate in the queue). We want

to construct time transformations λn such that

‖λn − e‖t → 0 as n →∞ , (4.15)

where e is the identity map and

‖yn ◦ λn − y‖t → 0 as n →∞ . (4.16)

Note that the only difficulties (discontinuities of the functions in D) occur at the points tk.

(There is local uniform convergence elsewhere.) We thus construct λn by requiring that λn(s) =

s for s = 0, s = (tj−1 + tj)/2, 1 ≤ j ≤ k, and for s = t. We let λn be defined on the subinterval

[0, (t0+t1)/2] as required to get the convergence x1,n → x1 for the restrictions to [0, (t0+t1)/2].

We let λn be defined on the subinterval [(tj−1 + tj)/2, (tj + tj+1)/2] as required to get the

convergence xj+1,n → xj+1 for the restrictions to [(tj−1 + tj)/2, (tj + tj+1)/2]. This continues

up to the last component process xk,n and the last interval, which is [(tk−1 + tk)/2, (tk + t)/2].

It is easy to see that this construction produces the desired asymptotic behavior in (4.15) and

(4.16).

Analyzing the Pieces. Now we construct the processes that let us analyze the different

pieces. We define a sequence of queue-length processes {Qε
n,k : k ≥ 0} and an associated
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sequence of first passage times {T ε
n,k : k ≥ 0}. The process Qε

n,k is constructed to agree with

the process Qε
n up to the random time T ε

n,k.

As before, for simplicity, we assume that there is an initial jump up, so that the scaled

queue length starts off at +ε. In particular, let

Qε
n,0(0) = ε and T ε

n,0 = 0 . (4.17)

(It is easy to modify this with some other initial condition as specified before Theorem 2.1.)

For t > 0, we let Qε
n,0(t) be the scaled queue-length process in the G/M/1/mn model with

arrival process Cn(λnt) and service rate µn. Hence we can apply established heavy-traffic limits

for single-server queues in Chapter 9 of SPL, modified to treat the upper barrier to deduce

that

Qε
n,0 ⇒ Qε

0 in (D, J1) as n →∞ . (4.18)

The assumption of exponential service times allows us to directly apply the continuous mapping

theorem with the one-sided reflection map to treat the upper barrier. Alternatively, we could

use the two-sided reflection map, as in Chapter 5 and Section 14.8 of SPL.

We now define the remaining random times and processes recursively. For k ≥ 1, let

T ε
n,2k−1 ≡ inf{t > T ε

n,2k−2 : Qε
n,2k−2(t) ≤ 0} ,

Qε
n,2k−1(T

ε
n,2k−1) ≡ −ε ,

Qε
n,2k−1(t) ≡ Qε

n,2k−2(t), 0 ≤ t < T ε
n,2k−1 ,

T ε
n,2k ≡ inf{t > T ε

n,2k−1 : Qε
n,2k−1(t) ≥ 0} ,

Qε
n,2k(T

ε
n,2k) ≡ +ε ,

Qε
n,2k(t) ≡ Qε

n,2k−1(t), 0 ≤ t < T ε
n,2k . (4.19)

As part of the recursive definition, we also must define the scaled queue-length processes Qε
n,k

after the random time T ε
n,k. For t > T ε

n,2k−1, we let Qε
n,2k−1(t) be the scaled queue-length

process associated with the G/M/∞ model with individual service rate µ and scaled arrival

process Cn(λnt) starting at level −ε at the random time T ε
n,2k−1. Just as for Qε

n,0, for t > T ε
n,2k,

we let Qε
n,2k(t) be the scaled queue-length process in the G/M/1/mn model with service rate

µn and arrival process Cn(λnt), starting at lever +ε at the random time T ε
n,2k.

Having established the convergence in (4.18), we next show that

T ε
n,1 ⇒ T ε

1 in R as n →∞ , (4.20)
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jointly with the limit in (4.18), where T ε
1 is the first passage time to the origin for the limiting

diffusion process Qε
0, i.e.,

T ε
1 ≡ inf{t > T ε

0 = 0 : Qε
0(t) ≤ 0} . (4.21)

We obtain the convergence in (4.20) by applying the continuous mapping theorem with the

first-passage-time function, see Section 13.6.3 of SPL. We use the fact that the first-passage-

time function is measurable and continuous almost surely with respect to the limit process.

The almost sure continuity follows because the limiting diffusion process is almost surely not

flat on any interval. That property for general diffusions can be reduced to the familiar

property of Brownian motion because the diffusion process can be expressed as a time and

space transformation of Brownian motion involving strictly increasing functions; see Chapter

7 of Rogers and Williams (1987).

We next turn to Qε
n,1. As indicated above, the process is defined after random time T ε

n,1

by treating it as the queue-length process in a G/M/∞ model with the scaled arrival process

starting after T ε
n,1. The previous results imply that the initial conditions satisfy the conditions

needed for a stochastic-process limit after the random times T ε
n,1. (It is perhaps helpful to

think of the processes as having domain [0,∞), shifting time in the nth process by T ε
n,1 and

shifting time in the limit process by T ε
1 . Afterwards, we can shift time back to obtain the

desired construction.

Just as in Srikant and Whitt (1996), we can thus apply a previous FCLT for the G/M/∞
system, specifically Theorem 1 on p. 103 of Borovkov (1984). An especially transparent

argument to show that the limit should apply to G arrival processes only under the FCLT

condition (2.2) is given in Glynn and Whitt (1991) for G/GI/∞ queues for the special case

of discrete service-time distributions having only finitely many point masses; see Section 10.3

of SPL. An alternative direct proof is provided in Proof 2 in Section 5 below; the G/M/∞
result is an easier special case. Also see Krichagina and Puhalskii (1997), which treats the

more difficult case of general service times, but again with infinite waiting room. Here, the

established G/M/∞ FCLT applies to each “below 0” interval, yielding convergence to the

Ornstein-Uhlenbeck diffusion process starting each such random interval in state −ε.

In order to obtain the desired convergence, we use the established convergence of Qε
n,1

before time T ε
n,1. To obtain the joint convergence of all random quantities considered, we

exploit the map h1 : D × C × R→ D ×D × R defined by

h1(x, y, t)(s) ≡
{

(x(s), x(s), t), 0 ≤ s < t,
(x(s), y(s), t), s ≥ t .
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This map h1 is continuous at all (x, y, t) ∈ D×C×R such that x is continuous at t (our case).

We thus obtain the joint convergence

(Qε
n,0,Q

ε
n,1, T

ε
n,1) ⇒ (Qε

0,Q
ε
1, T

ε
1) (4.22)

in (D, J1)2 × R as n →∞, where Qε
1 is an OU process after the random time T ε

1 . Since T ε
1 is

obtained as a first passage time relative to Qε
0, it is a stopping time relative to Qε

0. Hence the

limit process Qε
1 is a (Markov) diffusion process.

Paralleling (4.19) and (4.21), we recursively define the other limit processes by

T ε
2k−1 ≡ inf{t > T ε

2k−2 : Qε
2k−2(t) ≤ 0} ,

Qε
2k−1(T

ε
2k−1) ≡ −ε ,

Qε
2k−1(t) ≡ Qε

2k−2(t) , 0 ≤ t < T ε
2k−1

T ε
2k ≡ inf{t > T ε

2k−1 : Qε
2k−1(t) ≥ 0} ,

Qε
2k(T

ε
2k) ≡ +ε ,

Qε
2k(t) ≡ Qε

2k−1(t) , 0 ≤ t < T ε
2k . (4.23)

As before, we also need to define the processes Qε
k after the random times T ε

k ; we let the process

evolve after T ε
k according to the appropriate diffusion process, depending on whether we are

above zero or below zero. As before, since T ε
k is a first passage time, T ε

k is a stopping time

relative to Qε
k−1 for each k, so that Qε

k is a diffusion process for all k. Moreover, {T ε
2k−1−T ε

2k−2 :

k ≥ 1} and {T ε
2k−{T ε

2k−1 : k ≥ 1} are independent sequences of IID positive random variables.

We then apply the arguments above to recursively establish the limits

T ε
n,2k−1 ⇒ T ε

2k−1 in R ,

Qε
n,2k−1 ⇒ Qε

2k−1 in (D, J1) ,

T ε
n,2k ⇒ T ε

2k in R ,

Qε
n,2k ⇒ Qε

2k in (D,J1) (4.24)

for all k ≥ 1, where the convergence is joint. In order to get the joint convergence, we need to

modify the map h1 above as k increases. In particular, for each k, we construct an analogous

map hk : (D×R)k−1×C ×R→ (D×R)k and apply induction to obtain joint convergence for

all k. That joint convergence for all k then implies convergence of the entire sequence in the

product space (D × R)∞.
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Finally, we apply the continuous map h in (4.14) to establish the overall desired convergence

stated in Theorem 4.1. We can apply Lemma 4.3 because

Qε
n = h(({Qε

n,k : k ≥ 0}, {T ε
n,k : k ≥ 0})) (4.25)

and

Qε = h(({Qε
k : k ≥ 0}, {T ε

k : k ≥ 0})) . (4.26)

We use the fact that {T ε
2k−1 − T ε

2k−2 : k ≥ 1} and {T ε
2k − {T ε

2k−1 : k ≥ 1} are independent

sequences of IID positive random variables to deduce that the single sequence {T ε
k : k ≥ 0}

almost surely belongs to ∆: By the strong law of large numbers, the averages converge to the

positive means, which implies that T ε
k →∞ w.p.1.

Verifying (4.11): Qε ⇒ Q. We now complete the proof of Theorem 4.1 by establishing

(4.11), i.e., by showing that Qε ⇒ Q as ε ↓ 0. We give two different proofs.

The first proof exploits previously established limits for the special GI/M/n/∞ model in

Halfin and Whitt (1981) or Puhalskii and Reiman (2000), where the arrival process as assumed

to be renewal. The previous results imply, first, that Qn ⇒ Q and, second, as a consequence of

that, Qε
n ⇒ Qε as n →∞ for each ε > 0. Then, by doing the special construction to establish

(4.6), we obtain π(Qε
n,Qn) ≤ ε for all n and ε > 0. As a consequence, we obtain π(Qε,Q) ≤ ε

for each ε > 0, which implies the desired conclusion.

The second proof works directly with the limiting diffusion processes Qε and Q. As in

comparison theorems for diffusion processes, such as in Theorem 43.1 of Rogers and Williams

(1987), we construct the two diffusions on the same sample space by using a common Brownian

motion in the definition of the stochastic differential equations. In this way, we show that

analogs of the two relations (4.12) and (4.13) hold for the processes Qε and Q over excursions

above and below 0.

First, suppose that we start with a jump up to ε in Qε. We then construct the two processes

on the same space using the stochastic integrals

Q(t) = Q(0) +
∫ t

0
σ2
Q dB(s) +

∫ t

0
m(Q(s)) ds

Qε(t) = ε +
∫ t

0
σ2
Q dB(s) +

∫ t

0
m(Qε(s)) ds, (4.27)

where σ2
Q is the constant diffusion coefficient of Q in (2.15), 0 ≤ Q(0) ≤ ε w.p.1 and we use a

common standard Brownian motion B in both cases. Since the diffusion coefficient is constant,

we can simplify the component stochastic integrals with respect to Brownian motion, to obtain
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σ2
QB(t). This construction remains valid until Qε next hits zero, after which there is a jump

down to −ε.

Referring to the two stochastic integrals in (4.27), we see that the drifts are identical when

Q(t) > 0, but the drift of Q is greater than the drift of Qε whenever Qε(t) > 0 > Q(t). As a

consequence, with the special construction, the distance between the two stochastic processes

is a nonincreasing function until the two sample paths coincide, i.e., until they couple. In

particular,

Qε(t)−Q(t) = ε +
∫ t

0
(m(Qε)−m(Q(s))) ds . (4.28)

Hence we have the relation

Qε(t) ≥ Q(t) ≥ Qε(t)− ε

during each excursion of Qε above 0. Essentially the same argument works for excursions of

Qε below 0, yielding the relation

Qε(t) ≤ Q(t) ≤ Qε(t) + ε

during each excursion of Qε below 0. From these constructions, we obtain ‖Qε −Q‖t ≤ ε for

the special processes on the same sample space. That in turn implies that π(Qε,Q) ≤ ε, which

implies the claimed convergence.

4.4. Step 2: G/H∗
2/n/∞; Relating Qn to Qp

n.

We now return attention to the G/H∗
2/n/∞ model. We now show that the limit for Qp

n

established in Corollary 4.1, the Corollary to to Theorem 4.1, implies a corresponding limit

for the primary processes of interest Qn when there are H∗
2 service times, in the case of an

unlimited waiting room. We do this by establishing the following result, which goes beyond

Theorem 2.1 to establish joint convergence of Qn and Qp
n (only in the case of unlimited waiting

room). Let ĝ : D → D be the function defined by

ĝ(x)(t) = g(x(t)) for all t ≥ 0 , (4.29)

where g : R→ R is the function defined in (2.12). Clearly ĝ is a continuous function.

Theorem 4.2. Consider the G/H∗
2/n/∞ model under the assumptions of Theorem 2.1. For

each t > 0,

‖Qn − ĝ(Qp
n)‖t ⇒ 0 as n →∞ , (4.30)
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so that

(Qn,Qp
n) ⇒ (ĝ(Qp),Qp) in (D,J1)2 (4.31)

where Qp is the limit process in Theorem 2.1 and ĝ is the mapping in (4.29) and (2.12).

Proof. We exploit the infinite-waiting room assumption. Let Dp
n(t) be the number of de-

partures of customers with positive service times in the interval [0, t] in the nth system. Since

there is unlimited waiting space, we have the basic relation

Qp
n(t) = Qp

n(0) + Cp
n(t)−Dp

n(t) for t ≥ 0 . (4.32)

We now relate Qn to Qp
n, Cp

n, Dp
n and a single sequence of IID geometric random variables

{Xi : i ≥ 1}. The random variable Xi represents 1 (for the ith arrival with positive service

times) plus the number of customers with zero service times that arrive after the ith arrival

with positive service times but before the (i + 1)st arrival with positive service times. For

example, X1 + · · ·+Xk represents the total number of arrivals before the (k +1)st arrival with

a positive service time.

First, if Qp
n(t) < n, then Qn(t) = Qp

n(t). Next, if Qp
n(t) ≥ n, then we have the bound

Qp(0)+Cp
n(t)−1∑

i=Dp
n(t)+n

Xi ≤ Qn(t) ≤
Qp(0)+Cp

n(t)∑

i=Dp
n(t)+n

Xi . (4.33)

The bound applies for all Qp
n(t) if we understand the sum to be zero whenever the lower index

exceeds the upper index. The upper bound includes all the possible arrivals with zero service

times that could occur following the (Cp
n(t))th arrival with positive service times, while the

lower bound omits the last batch, allowing for the possibility that some of those customers

have not arrived yet.

Hence we can write

(Qn(t)− n)− g(Qp
n(t)− n)) = 1{Qp

n(t)≥n}[
Qp

n(0)+Cp
n(t)∑

i=Dp
n(t)+n

(Xi − p−1) + Rn(t)] for t ≥ 0 , (4.34)

where EXi = p−1 and Rn(t) is a remainder term involving the last batch, as can be seen from

the bounds in (4.34). We obtain the desired convergence in (4.30) because both the partial

sums of the summands Xi− p−1 satisfy a FCLT and the random number of terms, within 1 of

[Qp
n(t)− n]+, also satisfies a FCLT.

First, we apply Donsker’s theorem for the IID geometric random variables, i.e.,

Sn ⇒
√

(1− p)/p2B , (4.35)
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where

Sn(t) = n−1/2

bntc∑

i=1

(Xi − p−1) . (4.36)

As a first consequence of this FCLT, we can deduce that the remainder term Rn(t) in (4.34)

is asymptotically negligible after dividing by
√

n, uniformly over the interval [0, t]. (We first

obtain the related FCLT for the random sum of (Xi − p−1) up to Cp
n(t), Corollary 13.3.2 of

SPL, and then we apply the continuous mapping theorem with the maximum jump functional;

p. 119 of SPL.) To state that result, let Rn(t) = n−1/2Rn(t), t ≥ 0; we are concluding that

‖Rn‖t ⇒ 0.

As a second consequence of the limit in (4.35), we can apply Prohorov’s theorem to obtain

tightness, so that we have an associated bound on the oscillations of Sn: For each u > 0, ε > 0

and η > 0, there exists a δ with 0 < δ < 1 and an n0 such that

P (w(Sn, δ, u) > ε) ≤ η for all n ≥ n0 , (4.37)

where w(x, δ, u) is the modulus of continuity of x over the interval [0, u], i.e.,

w(x, δ, u) ≡ sup{|x(s)− x(t)| : 0 ≤ s ≤ u, 0 ≤ t ≤ u, |s− t| < δ} ; (4.38)

see Section 11.6 of SPL.

As a consequence of the continuous mapping theorem and Corollary 4.1, for each t > 0,

‖Qp
n‖t ≡ sup

0≤s≤t
{|Qp

n(s)|} ⇒ sup
0≤s≤t

{|Qp(s)|} ≡ ‖Qp‖t . (4.39)

Finally, combining (4.34), (4.37) and (4.39), we obtain (4.30), which together with Corollary

4.1 implies the desired limit (4.31), using the convergence-together theorem, Theorem 11.4.7

of SPL. In particular, defining events

An,ε ≡ {‖Qn − ĝ(Qp
n)‖t > ε},

Bn,ε ≡ {w(Sn, δ, t) > ε/2},

Cn,ε ≡ {‖Rn‖t > ε/2},

Dn ≡ {‖Qp
n‖t > η} ,

we have, for any η > 0 and then all sufficiently large n, that

An,ε ⊆ Bn,ε ∪ Cn,ε ∪Dn ,

so that

P (An,ε) ≤ P (Bn,ε) + P (Cn,ε) + P (Dn) ,
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Since, for each ε > 0 and η > 0, each of the terms on the right converges to 0 as n → ∞, the

result is established.

We have now completed the proof of Theorem 2.1 for the stochastic process Qn in the case

of an unlimited waiting room. We treat the stochastic process Qa
n later.

4.5. Step 3. G/H∗
2/n/mn; Piecewise Construction for a Finite Waiting Room.

We now apply the previous results, in particular, Corollary 4.1 and Theorem 4.2, to es-

tablish the desired limit for Qn in the G/H∗
2/n/mn model; i.e., we now treat Qn in the case

of a finite waiting room. Our proof here is recursive or inductive, exploiting a piecewise con-

struction, just as in the first proof of Step 1 above. In particular, our proof here is like the

verification of (4.7) previously. By that, we mean that we use a similar piecewise construction.

The overall argument now is much easier than Proof 1 of Step 1, however, because (i) we

now make no special distinction between the customers with positive service times and the

customers with zero service times, and (ii) we do not need to introduce any approximating

processes, such as we did before by adding the jumps away from the boundary. Now we are

able to construct the necessary pieces directly. However, the proof now closely follows part of

Proof 1 of Step 1. In particular, the specific construction here is an obvious modification of

(4.17) - (4.26), so we will be brief here.

We break up the construction of the processes, and the justification of convergence, into

pieces, just like we did for Qε
n in the verification of (4.7). Here we consider two levels a and b

with 0 < a < b < κ. Assuming that the scaled queue-length (number in system) process starts

below level b, we first consider the scaled queue-length process until it first hits or passes level

b. Up to that time, we use the result for an infinite waiting room established in Step 2 above.

That obviously is reasonable, because whenever the scaled number in system is below level b,

the actual finite waiting room plays no role.

After the process hits level b from below, we switch over to another process, in particular,

to a reflected version of the scaled queue-length process, using the standard reflection map

with a reflecting upper barrier at κ. It is natural for arrivals to occur one at a time, so that the

scaled process will indeed pass the level b at a well defined time. However, our assumptions

permit batch arrivals. In that event, the batch sizes necessarily are of order O(1) before scaling,

and become asymptotically negligible after scaling. So, without loss of generality, it suffices to

assume that the scaled process is asymptotically at level b when the switch occurs.

New treatment is required for the pieces starting when level b is first hit or passed from
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below. In each of these “upper” pieces, starting at a hitting time of b from below, the queue-

length process behaves like the queue-length process in a single-server G/H∗
2/1/mn model and

a finite waiting room, which in turn is equivalent to a G/MX/1/mn model with batch service

(a geometric batch at exponential intervals) as long as all servers remain busy. In order to

make this equivalence clear, we elaborate on two points:

First note that, without loss of generality, we can let customer service times be determined

the moment that a customer starts service. Thus the identification of customers – specifying

whether they have positive service time or zero service time – can be determined by independent

Bernoulli random variables, with each customer having a positive service time with probability

p, independent of the system history prior to the instant the customer enters service. (That

construction is not actually required, but it can help understanding. It is then easy to see that

there is no dependence between the number in system and the type of the customers waiting

in queue.)

Second, we should explain what we mean by the batch service. As usual, in the batch-service

queue we have in mind, there is a batch of potential service times, with the number of potential

service times being geometrically distributed. At a service epoch, service is simultaneously

performed on that many (the batch size) customers if that many customers are in the system;

otherwise, all available customers are served. Thus the number of potential customers served

at a service epoch has a geometric distribution, but the actual number of customers served at a

service epoch does not have a geometric distribution. The M in MX means that the intervals

between successive service epochs are exponentially distributed, provided there are customers

to be served. Since all servers are busy in the G/H∗
2/n/mn model when the scaled process is

above level a, that will always (asymptotically) be the case.

The upper pieces start when they hit or pass level b from below, and they end when they

hit or pass level a from above. Since 0 < a < b < κ, the length of these pieces is asymptotically

of order O(1). Moreover, all servers are always busy when we are considering the upper pieces.

We can analyze each piece starting after hitting or passing b from below and ending when

the lower level a is hit or passed from above by applying the continuous-mapping theorem

together with the one-sided reflection map associated with the upper barrier at κ together

with established limits for the G/MX/1/∞ queue; see Sections 5.2 and 13.5 of SPL. Since the

arrival process is exogenous and the service times are Markovian, the construction for each of

these pieces starting at level b is routine. That is, the reflection map applies directly; no extra

approximation step is needed. Expressed differently, we can treat each upper piece starting at
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b and ending at a by applying known results for the G/MX/1/mn model.

We use the reflection construction just specified until the scaled queue-length process next

hits or passes below level a from above. In general, the scaled queue-length process will jump

below level a because of batch services, but with the scaling, the batch sizes are asymptotically

negligible. The fact that the heavy-traffic limit for the G/MX/1/mn model is RBM, which

almost surely has continuous paths, allows us to prove the point by applying the maximum

jump functional; see p. 119 of SPL. Thus, asymptotically, no servers in the full G/H∗
2/n/mn

model will become idle at these transition epochs. Moreover, it suffices to assume that the

level a is actually hit at the transition points.

For an upper piece, after the scaled queue-length process hits or passes level a from above,

we transition to a lower piece; i.e., we revert back to the previous construction involving the

G/H∗
2/n/∞ model without an upper barrier, discussed above. We use the lower piece starting

at a until the process next hits or passes level b again. We switch back and forth between

successive visits to b from below and a from above.

Just as for (4.7), each successive piece requires a new construction. The overall construction

and proof is inductive. The limit for each successive piece provides the convergence for the

initial conditions in the next piece. The initial weak convergence of the arrival process implies

weak convergence for the new arrival processes after the random times. Since the switching

times are specified as first passage times, they are again stopping times. As before, that

stopping time property implies that the overall limit process is a diffusion process.

The argument just sketched justifies the convergence, but how do we know that the limit

process has the properties stated in Theorem 2.1? We know that because the full diffusion

limit has the local character of the diffusion limits for the pieces. First, below level a, the new

limit must agree with the previously established limit for the G/H∗
2/n/∞ model. Necessarily,

we have thus captured the difficult behavior at 0 without directly addressing the issue again

when there is a finite waiting room. (Indeed, it should be evident that the addition of a finite

waiting room cannot alter the behavior at 0.) At the same time, above level b, the new limit

must coincide with the RBM limit for the upper piece; and it is easy to see that that is the

case. In particular, the RBM limit for the upper piece determines the reflection map applying

at the upper barrier and the infinitesimal mean and variance of the diffusion process, which we

have displayed in (2.18) and (2.19). Finally, since the switching levels a and b are arbitrary,

they obviously play no role in the final result.
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4.6. Establishing convergence of (Qa
n,Qn)

We now show that the stochastic-process limit established for Qn in (2.6) implies a correspond-

ing stochastic-process limit for Qa
n and the joint convergence in (2.10). Just as in Halfin and

Whitt (1981), we apply a random-time-change argument to connect the two limits; i.e., we

apply the continuous mapping theorem with the composition map.

Recall that Cn(t) counts the number of arrivals in the interval [0, t] and form the scaled

process

Ĉn(t) ≡ Cn(t)/n, t ≥ 0 .

Since λn/n → µ as n →∞, it is an elementary consequence of the assumed FCLT in (2.2) that

Ĉn ⇒ µe in (D, J1) as n →∞.

Now let Tn(k) be the arrival time of the kth customer in model n and let T̂n be the scaled

random element of D defined by

T̂n ≡ Tn(bntc), t ≥ 0 .

By the continuous mapping theorem with the inverse map, see Section 13.6 of SPL,

T̂n ⇒ µ−1e in (D, J1) as n →∞.

Given that we have established Qn ⇒ Q, we can invoke Theorem 11.4.5 of SPL to obtain

the joint convergence

(Qn, T̂n) ⇒ (Q, µ−1e) in (D, J1)2 ,

from which we deduce (by applying the continuous mapping theorem with the composition

map) that

Qn ◦ T̂n ⇒ Q ◦ µ−1e = Qa .

We now show that

‖Qa
n −Qn ◦ T̂n‖t ⇒ 0 (4.40)

for each t > 0, which implies the desired conclusion. The limit in (4.40) follows because the

difference there is bounded by the maximum batch size among all arrivals up to time t divided

by
√

n. However, we can apply the assumed convergence in (2.2) to deduce that this scaled

maximum batch size is asymptotically negligible. In particular, we can apply the continuous

mapping theorem with the maximum jump function, as on p. 119 of SPL, with the limit in

(2.2) to obtain (4.40).

33



That finally completes the proof of Theorem 2.1. We now turn to the alternative proof of

Step 1 in our proof of Theorem 2.1 and Theorem 3.1.

5. Proof of Theorem 3.1: Martingale Proof for G/M/n/mn + M

We now present the proof of the limit with customer abandonments in Theorem 3.1. The

special case with an infinite waiting room and without customer abandonments yields the

second proof of Step 1 in the proof of Theorem 2.1.

In particular, here we prove the following result, which extends Theorem 3.1 by giving an

alternative characterization of the limit process (which is equivalent).

Theorem 5.1. Under the conditions of Theorem 3.1, Qn ⇒ Q, where Q is a reflected diffusion

process, defined by

Q(t) = Q(0) + C′(t)− µβt− θ

∫ t

0
(Q(s)∨ 0) ds− µ

∫ t

0
(Q(s)∧ 0) ds +

√
µW(t)−Φ(t) , (5.1)

where C′ is the limit in (2.4), W is a Brownian motion independent of Q(0) and C′, and Φ

is the regulator process recording the time spent at the upper barrier κ, i.e.,

Φ(t) =
∫ t

0
1(Q(s) = κ) dΦ(s) . (5.2)

Proof. Much of the proof can follow Puhalskii and Reiman (2000), so we will be brief. We will

start by indicating how we do the extension to G arrival processes. Given that the martingale

proof is the “standard modern” argument, the extension to G arrival processes seems to be

the most interesting part. The fact that the arrival process is exogenous allows us to condition

on it and then afterwards uncondition, and establish convergence.

As in Theorem 2.1, the arrival processes is created from a single rate-one arrival process

by scaling according to (2.3). The scaled rate-one process in (2.1) satisfies the FCLT in (2.2).

Thus we have the FCLT in (2.4). We now condition on possible realizations of these processes.

For that purpose, for each n, let cn be a possible realization of the scaled stochastic process C′
n

in (2.5), and let c be a possible realization of the limit process C′. Let Qcn
n be the conditional

scaled queue-length stochastic process Qn in the G/M/n/mn + M model given that C′
n = cn,

and let Qc be the conditional limit process Q given that C′ = c. Technically, it is significant

that these conditional probabilities can be regular conditional probabilities; see Chapter 5 of

Parthasarathy (1967). The martingale proof below establishes that

Qcn
n ⇒ Qc in D whenever cn → c in D . (5.3)
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We establish the desired convergence Qn ⇒ Q by showing that

E[f(Qn)] → E[f(Q)] as n →∞ (5.4)

for each continuous bounded real-valued function on D. For that purpose, observe that the

limit (5.3) can be restated as

hn(cn) ≡ E[f(Qcn
n )] → E[f(Qc)] ≡ h(c) as n →∞ (5.5)

for all such f . We obtain the desired limit in (5.4) by combining (2.4) and (5.5); i.e.,

E[f(Qn)] = E[hn(C′
n)] → E[h(C′)] = E[f(Q)] as n →∞ ,

by virtue of the generalized continuous-mapping theorem; Theorem 3.4.4 of SPL.

It remains to establish the limit in (5.3). For that purpose, it suffices to establish the limit

under the condition that C′
n converges to C′ with probability one, and, for that, we use the

martingale proof, following the line of reasoning in Puhalskii and Reiman (2000). What makes

the simple global conditioning argument work is the fact that the arrival process is exogenous

in the queueing model.

Let Lk(t) and Nk(t) be mutually independent Poisson processes with rates θ and µ, respec-

tively, for each k, k ≥ 1. The unscaled number in system can be written as

Qn(t) = Qn(0) + An(t)−Dn,1(t)−Dn,2(t) , (5.6)

where

An(t) ≡
∑

s:s≤t

(n + mn −Qn(s−)) ∧∆Cn(s) ,

with the sum being over the jumps of the arrival process Cn, and

Dn,1(t) ≡
∞∑

k=1

∫ t

0
1(Qn(s−) ≥ k + n) dLk(s) ,

Dn,2(t) ≡
n∑

k=1

∫ t

0
1(Qn(s−) ≥ k) dNk(s) .

Let

Φn(t) ≡
∑

s:s≤t

(∆Cn(s) + Qn(s−)− n−mn)+,

Mn,1(t) ≡ n−1/2
∞∑

k=1

∫ t

0
1(Qn(s−) ≥ k + n) d(Lk(s)− θs) ,

Mn,2(t) ≡ n−1/2
n∑

k=1

∫ t

0
1(Qn(s−) ≥ k) d(Nk(s)− µs) .
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Then, by (5.6), we have the following equation for the scaled process

Qn(t) = Qn(0) + C′
n(t)− θ

∫ t

0
(Qn(s) ∨ 0) ds− µ

∫ t

0
(Qn(s) ∧ 0) ds

−Mn,1(t)−Mn,2(t)− Φn(t), (5.7)

where

Φn(t) =
∫ t

0
1(Qn(s) = mn + n) dΦn(s) =

∫ t

0
1(Qn(s) = mn/

√
n) dΦn(s) . (5.8)

To apply the martingale argument, we need to specify the filtration. Let the filtration Fn ≡
{Fn(t) : t ≥ 0} be defined by

Fn(t) = σ(Qn(0); Lk(s), 0 ≤ s ≤ t;Nk(s), 0 ≤ s ≤ t; k ≥ 1) .

Then the processes Mn,1 and Mn,2 are orthogonal Fn-locally-square-integrable martingales

with predictable quadratic variation processes

〈Mn,1〉(t) = θ

∫ t

0
(
Qn(s)

n
− 1)+ ds (5.9)

and

〈Mn,2〉(t) = µ

∫ t

0
(
Qn(s)

n
∧ 1) ds . (5.10)

We next deduce limits in the fluid scale (when dividing by n instead of
√

n). By (5.7), the

fact that Qn(0)/
√

n ⇒ 0, (5.9) and (5.10), we deduce that Qn(t)/
√

n ⇒ 0 uniformly in t over

bounded intervals. Hence, by (5.9) and (5.10),

〈Mn,1〉(t) ⇒ 0 and 〈Mn,2〉(t) ⇒ µt

uniformly in t over bounded intervals. Also the jumps of Mn,1 and Mn,2 uniformly go to 0.

Thus, by the martingale central limit theorem, see Ethier and Kurtz (1986) or Liptser and

Shiryaev (1989),

Mn,1 ⇒ 0
¯

and Mn,2 ⇒ √
µW in D as n →∞ ,

where 0
¯
(t) ≡ 0, t ≥ 0. Then we can apply the continuous mapping theorem with the reflection

map in (5.7) and (5.8) to deduce the claimed limit.

6. Proofs of the Corollaries

We conclude by proving the two corollaries in Section 2.

36



Proof of Corollary 2.1. We exploit the alternating-renewal-process construction used in

the definition of the limit process L before the statement of Corollary 2.1 (without requiring

the independence in the converging processes) and used in the proof of Theorem 2.1 in the

case of a finite waiting room. With that explicit use of the reflecting upper barrier, we obtain

converence of the upper-boundary regulator processes along with convergence of the content

processes Qn by an application of the continuous mapping theorem; see Sections 3.4, 5.2 and

13.5 of SPL. The same argument can be used for Qa
n.

Proof of Corollary 2.2. We apply Lemma A.2 of Puhalskii and Reiman (2000), just as

they do to establish their Corollary 2.3. (In the statement of Lemma A.2, the condition

λN/N → λ should be replaced by the stronger condition (λN −Nλ)/
√

N → β, which holds in

our application.) Their Lemma A.2 draws upon Puhalskii (1994); see Theorem 13.7.4 of SPL

and Section 5.4 of the Internet Supplement to SPL.

By (2.3), Cn(t) counts the number of arrivals in the interval [0, t] in model n. Let Cad
n (t)

count the number of admitted customers in the interval [0, t] in model n. Let

C1
n ≡ [Cn(t)− λnt]/

√
λnc2

a,

Cad
n ≡ [Cad

n (t)− λnt]/
√

λnc2
a . (6.1)

(We use the superscript in C1
n to avoid confusion with Cn in (2.1).) By (2.2), C1

n ⇒ B, where

B is standard Brownian motion. It is evidently possible, with some work, to extend Theorem

2.1 and Corollary 2.1 to obtain the joint convergence

(C1
n,Qn,Ln) ⇒ (B,Q,L) in (D,J1)3 ,

but it is not necessary to do that. Tightness for the sequence {(C1
n,Qn,Ln) : n ≥ 1} follows

from the convergence of the component processes; see Theorems 11.6.1 and 11.6.7 of SPL.

By Prohorov’s theorem, that tightness implies relative compactness: Any subsequence has a

convergent subsubsequence. Consider any convergent subsequence:

(C1
nk

,Qnk
,Lnk

) ⇒ (C1,Q,L) in (D,J1)3 .

Since Cad
n = C1

n − Ln, we deduce that

(Cad
nk

,Qnk
) ⇒ (C1 − L,Q) in (D, J1)2 . (6.2)

We can apply Lemma A.2 of Puhalskii and Reiman (2000) to (6.2) in order to obtain the limit

(2.24) for that subsequence. Since the limit Q is independent of the subsequence chosen, we

obtain the full convergence in (2.24).
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