TAS - 10:45

Proceedings of the 28th Conference
on Decision and Control
Tampa, Florida » December 1989

ON AVERAGES SEEN BY ARRIVALS IN DISCRETE TIME

Armand Makowski

Benjamin Melamed

Ward Whitt

Department of Electrical Engineering AT&T Bell Laboratories AT&T Bell Laboratories

University of Maryland
College Park, MD 20742

ABSTRACT

We study the limiting behavior of averages from an embedded
stochastic process obtained by sampling a discrete-time stochastic
process at points of an associated discrete-time stochastic point
process. We determine when the limit of the averages from the
embedded process coincides with the limit of the averages from the
original process. In a certain stationary Markov framework, this
happens if and only if the point process is a Bernoulli sequence with
future points being independent of the state of the Markov process.

I. INTRODUCTION

A fundamental principle in queueing theory is PASTA (Poisson
Arrivals See Time Averages) [6],{16]. The PASTA property has
recently been generalized by Brémaud [1],[2], Kénig and Schmidt
{71, Melamed and Whitt [10],[11] and Stidham and El Taha [13];
they characterize what the arrivals see in general and develop
necessary and sufficient conditions to have ASTA (Arrivals See
Time Averages); see [10] for more discussion. New Anti-PASTA
results have also been established by Walrand [14], Green and
Melamed [4], Melamed and Whitt [11] and Wolff [17]; i.e., in
certain circumstances the arrival process must be Poisson if arrivals
see time averages. However, much of the interest in this recent
work is in treating non-Poisson point processes. For example, the
recent results apply to non-Poisson flows in Jackson queueing
networks; indeed they encompass the Arrival Theorem for closed
queueing networks [10, Example 4].

Here we present related discrete-time results, extending discrete-
time PASTA (5],[15]. We give quick clean proofs based on the
strong law of large numbers (SLLN) for martingale differences or,
equivalently, the stability theorem for partial sums of random
variables centered at conditional expectations [9, p. 53, E); see
Lemma 1 below. This nice approach was previously employed by
Georgiadis [3]. Similar arguments can be employed in continuous
time; see Remark 2 below.

Let N (N.) be the set of nonnegative (positive) integers. Let
{F,:n €N} be a filtration on an underlying probability space
Q,F P);ie., {F,}is an increasing sequence of sub-g-fields of .
Let U ={U,: n €N} and A = {4,: n €N.} be bounded nonnegative
real-valued &,-adapted stochastic processes on Q,F,P); F,-
adapted means that U, and A, are measurable functions on o, %)
for each n. Let N\, = E(4,+,|%,), n=0; see [9, p.7] for
background on conditional expectation; we call \ = {\,: n €N} the
(P, &,)-stochastic intensity of A.

We are interested in the limiting behavior of
A n n
Ur= S AU /DA, n=1, (1)
k=1 k=1
with U = 0if A, = ... = 4, = 0, and its relation to

—_ n-=1 - n—1 - n
U,,=n_lk2 U, Uh=n"1'3 NU, Up=nt'S AU,
=0 k=0 k=1

(2)
- n=1 - n
Ny =0T N, Ay=n"'T A, n=z=1.
k=0 k=1
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Here is what we have in mind: We think of U, being Lix, ¢ B}
where 1¢ is the indicator function of a set C, X = {X,: n €N} is an
F,-adapted stochastic process on (Q, %, P) and B is a measurable
subset of the state space of X. We think of A being a discrete-time
point process, i.e., 4, is {0, 1}-valued, so that 4, = 1 corresponds to
a point (arrival) at time n. We regard U, _, as the state ‘‘seen” by
this arrival at time n. With this interpretation, U# is the average
value of U “seen” by the arrivals up to time n, and ASTA holds if
lim U4 = Iirx}e U, w.p.l. However, we do not restrict attention to

n-

n-x

this framework until §4, where we obtain our Anti-PASTA result.
We use the following well known basic martingale result.

Lemma 1. M} = n(U% ~ U}) and M? = _n(,‘?,l - N.) are zero-mean
F,-martingales with bounded increments My — Mi,_, for i = 1,2, so
that (U4 — UMY -0 and (A4, = \,) - O0w.p.d asn~ec,

Proof. Note that My — M}_, = U,_ A, — E(U,_;A,|%,_,), and
$0 is bounded and %,-measurable. Since
EM) — M) _||%._) =0, Ml: n=1}is a martingale. By the
SLLN for martingale differences [9, p.53, E, with b, = nj,
(Ug = UM -0 wp.l as n~x. A similar argument applies to
M: n=1}). =

Remark 1. Although the boundedness of U and A is a natural
sufficient condition for Lemma 1, this condition can be relaxed. For
the SLLNs above, it suffices to have > n=? Var(U,-1A,) < = and

= n=1

> n? Var(4,) < = [9, p. 53]. Allowing unbounded A is useful
n=1

for treating batch arrivals [3], [5], [15].

Remark 2. For continuous-time versions of the results here, we can
work with a bounded left-continuous process {U(r): r = 0} and a
right-continuous counting process {N(t): 1= 0} with stochastic
intensity {\(r): r = 0} such that E[N(r)?] < = for all t = 0. Since

r '

M(r) = f U(s)dN(s) — fU(:))\(s)dx is the stochastic integral of U
] 0

with respect to a square integrable martingale, {M(r): r = 0} is
itself a square integrable martingale with quadratic variation process
I3

M), = [U(s)2N(s)ds [8, §5.1, 5.4, 18.1]. Hence, the SLLN can
0

be applied, just as for Lemma 1. To control the differences, we can

assume that, for some u > 0,
ttu

EM(t+u) =M@ = E(M)s, —MY) = [ E[UGH?Ns)]ds <K

H
for all r = 0; e.g., it suffices to have EN(r) bounded. Variants of
this continuous-time argument were given by P. Brémaud (personal
communication, 1988) and more recently by Rosenkrantz and Simha
[12]. =

We assume that

liminf A, >0 w.p.1. 3)

From Lemma 1, we have lim inf X,, = lim inf X,, >0 w.p.1 and,

- - =% n-x
since  EA, = E\,, from Fatou’s
lim inf EA, = lim inf EX, > 0.
x

n- nex

lemma it follows that
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II. SAMPLE PATH RESULTS

We first show that arrivals always see weighted time averages
provided that the weighted time averages are well defined. When
we talk about limits, we mean finite limits.

Theorem 2. lim (}ﬂ = lim L_I,);/lim X,, w.p.1l provided that two of the
n-x Hn-x

n-=x
three limits exist w.p.1.

Proof. Note that

a T @B+ D
U @EoTHe D

Ay (Ap = M) T Ay

n=1, (4)

and apply Lemma 1.
zero. W

By (3), the denominator cannot approach

Let cov(Y, Z) be the covariance of random variables Y and Z.
The following is the discrete-time analog of the important covariance
formula in [1],{10], [13]. Note that the two conditions below are not
equivalent.

Corollary. If either {(\,,U,): n€N} or {(A,+1, Uy: n€N} is
stationary and ergodic, then
. E XU cov(ho, Ug)
lim Ug = =EUy+ —0—™
nx " TExo 0 EXo
L= cov (g, Ug)
= + ———— w.p.l.
I]]l{?: U, Erg w.p.1

Proof. The first condition implies that U, - EUq, Uy ~ENoUp
and N, - ENg w.p.1 as n-=. Then apply Theorem 2. The second
condition implies that U, - E Uy, U4 ~EA Uy and 4, ~EA,, but
EA\Uy=EE(A Uy|Fo) =ENUy and EA, =EE(A,|F)
= E\g. Now use the first relation in (4). ®

As observed in [5], a discrete-time analog of PASTA [14] occurs
when X\ is deterministic and constant. Then A is a Bernoulli process,
i.e., A, is independent of ¥, -, and P(A,=1) = pforalln = 1.

Theorem 3. (Discrete-time PASTA) If A, = ENg w.p.I, n = 0, then
U4 converges w.p.l if and only if U, converges w.p.l; if the
convergence holds, then lim U4 = lim U, w.p.1.

n-x n-x

Proof. Apply Theorem 2, noting that U) = (ENo)U, and
M =ENwpl,nz=0 m

However, from the Corollary to Theorem 2, we see that in a
stationary framework we have ASTA -(ie., lim U4 = lim U,) if
n-x n-x

and only if cov(Ng, Ug) = 0, which does not require that Ag = E \g
w.p.1 as in Theorem 3. (cov(\g, Ug) = 0 coincides with the lack of
bias assumption, LBA, in [10].) We now provide necessary and
sufficient conditions for ASTA.

Theorem 4. Suppose that one of l_/,, or lA/ﬂ converges w.p.1 as n-x.
The following are then equivalent:

(i) lim U4 = lim U, wp.l (ASTA);
om

frod
(i) lim (U4 — 4,U,) =0 w.p.l;
patd

(iii) lim (U} = X, U,) =0 wp.l.
s

Proof. To relate (i) and (ii), note that

511‘ _ Z_]ﬁ __‘ZnUn + an (5)

Ut = =
An Ay
and apply (3)_ To_ relate (i) and (iii), note that
(U4 = AUy = Uy = MU = W = UR) = (A = M) U, =0
w.p.l by Lemma 1. ®

We call condition (ii) in Theorem 4 the operational condition,
because we are more likely to apply it when analyzing data; we call
(iii) the theorerical condition, because we are more likely to apply it
when analyzing models.

I1I. EXPECTED VALUE RESULTS

As in [10],[11], we can also work with expected values. To
motivate this ap})ro_ach,_suppogc for the moment that U, - ;ﬁ,
Uh-u ,Uf-u , N\, ~Nand A, -@ wp.l as p~, where &, U_,
#°, N and a are determjnistic. By Lemma 1, ¥ =4 and a =\
By Theorem 2, U4 =4~ w.p.l where & = W /\. Since Un, Up,
UA, X, and A, are bounded, EU, -u, EUj-u , EUA-U,
EX, ~ X and EA, - X as n- too. Now we show that EUA - 4" too
under the assumptions above.

Lemma 5. If0 < U, < B for all n, then 0 = U% = B for all n.

Proof. If A, = .. =A, =0, then UA =0 by convention.
Otherwise,

n=1 n—1

Up =3 (A+! Y A+ Uk, n=1,
k=0 k=0

so that U4 is a convex combination of Uy, 0 S k < n—1. ®
Corollary. If U - it w.p.1 as n~=, then EUA ~i* asn-=.

Since lim UA = lim EU% = lim EUA/EA, w.p.l under the
conditions na-;ove, intne;:st center’;_zn the asymptotic behavior of
EU%/EA,.

Theorem 6. lim EUA/EA, = lim EUNEN, provided that one of the
limits exist. " "
Proof. By Lemma 1, EU4 = EUX and EA, = EX,. ®

n—1

Corollary. (a) Ifn™' S cov(N, Uy) -0 as n~x, then

k=0

n—1
; -1
El_/ﬁ ,11121‘ n kgoE)\kEUk
lim ——— = o (6)
lim n~! S ENg

n=x k=0

provided rwo of the three limits exist. _
(b) If, in addition, either EX, ~\ or EU, ~# as n-%,
then lim (EUA/EA,) = lim EU,,.
n-x n-x
Proof. For (a), note that
— n—1 n-1
EUN = n7' 3 cov(h, Up) + 71 S ENEU,
k=0 k=0
and apply Theorem 6 recalling that lim inf EX,, >0 wp.l as a
. n-x
result of (3). For (b), note that A > 0 by (3) and apply (6). ®
The following is the obvious expectation version of Theorem 4.

Theorem 7. Suppose that one of Eaf}/EZ,, and EU . converges as
n~x<. The following are then equivalent:
oo EUR =
(i) lim —— = lim EU,;
n-x EAn n-x

(i) lim (EU\ — EX,EU,) = 0;
ol

(iii) lim (EU4 — EA,EU,) = 0.
n-x

Proof. _ By Lemma 1_and (3), (i) holds if and only if
lim (EUY — EN,EU,)/EN, = 0, which is equivalent to (ii) by

n-

virtue of (3). By Lemma 1 again, (ii) is equivalent to (iii). ®

We combine previous results to further characterize the limiting
behavior of U4.

—.  _a - _ _a
Theorem 8. (a) If U4 ~u" and A, -a w.p.l as n~= where & and
a are deterministic, then necessarily
~A n-l _ n=1
u =limn ' TENU, a=lma™ ! 3 EN
n= k=0 n=x k=0

n-=% n-x

and lim U4 = lim EU4 = %
a
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n-=1
(b) If, in addition, n™' S cov(h, Uy) -0 and either
k=0

E\, -_X or EU,-u" as n-% for some u, then
lim EU, = lim EU% = 7" /a.
n-x nex

(c) If, in addition to (a) and (b), U, ~u w.p.l as n-x
where U is deterministic, then i = u' /a.

Proof. Part (a) follows easily from (3) and (4): By Lemma 1,

A -A i . N -A - -
Un-u and N\ -2 w.p.l as n-% with ¥ =% and A\ =a.
Consequently, EU} -~ %" and EX, - a as nox gnd, by Theorem 2,
U ~u /@ w.p.1asn-® Moreover, EU% ~ 5"/Z as n - as well,
by the Corollary to Lemma 5. For part (b), apply the Corollary to
Theorem 6. Finally, (c) is easy because the limit of EU, is
established in (b). ®

Example 1. To see that U, need not converge under the
assumptions of Theorem 8(a) and (b), let Ay_; =0 and
Au=Uy-y=1 for k=1 wpl. then UP-%" =1/2 and
Ay, -a =1/2 as n-= w.p.1. Since 4 is deterministic, Ay = Ay,
and cov(Ag, Ug) = 0 for all k. Finally, choose U, such that
EUy =1 but U‘, does not converge as n-x. For example, let
U =1+ (="M Y, where P(Ug=1) = P(Ug=~1) = 1/2
and [x] is the integer part of x. ®

IV. ANTI-PASTA

Henceforth we consider the &,-adapted process X mentioned in
§1 and assume that U, = f(X,), n=1, for some bounded
measurable real-valued function f on the state space of X. From
Theorem 8(b) and the Corollaries to Theorems 2 and 6, we know
that ASTA follows from cov(N,,U,) =0 for all n = 1 plus other
regularity conditions. The following is essentially (10, Theorem 4].
Theorem 9. cov()\,, f(X,)) = O for all bounded measurable fif and
only if E(\,|X,) = EX, w.p.l.

Proof. Note that Ef(X,)\, = Ef(X,)E\, for all bounded
measurable f if and only if EN, is a version of the conditional
expectation E(\,]X,); [9,p. 7). ®

Let ¥} and F} be the o-fields generated by {4,,...,4,} and
{Xo, ..., X,} respectively. The following is the discrete-time version
of [11, Theorem 5]. For related Anti-PASTA results, see [14],[4],
[17] and references cited therein.

Theorem 10. Suppose that X is a stationary ergodic Markov process,

F, = FY, Uy = f(X,) and A has the form A, = g(X,_,,X,) for some

{0, 1}-valued measurable function g for all n = 1. Then the following

are equivalent:

(i) lim &‘,‘,‘ = lim l_/,, w.p.1 for all bounded measurable f (ASTA);
fryse

nex

(ii)  cov(hg, f(Xq)) = O for all bounded measurable 1
(iii) E(Ng|Xo) = ENg w.p.d;
(iv) Ao = E\g w.p.l;

(v) A+ is independent of F, for all n =0 and A is an i.i.d
Bernoulli sequence.

Proof. Since X is stationary, {(4,+1,Up): n = 0} = {(g(X,,, Xp+1),
f(Xyp)): n = 0} is stationary too. By the Corollary to Theorem 2,
ASTA holds if and only if cov(hg, f(Xq)) = 0. By Theorem 9,
cov(hg, f(Xo)) = 0 for all bounded measurable f if and only if
E(N\o|Xg) = ENg. Since &, = FX and X is Markov,

)"n = E(g(X,,,X,,H)\Q’,,) = E(g(Xqun-H)an) s
and therefore N\, = E(\,|X,). In particular, \g = E(\g |Xo), so
that (iii) and (iv) are equivalent. Recall that by stationarity (iv) is

equivalent to A\, = EN, =p for all n w.p.l. Finally, since
Ay = E(Ap+1|Fy) = P(A,+ = 1|1%F,) wp.l, (iv) and (v) are

n=z0,

equivalent; ie., P(A,+, = 1|#,) = p w.p.1 for all n if and only if
Ay +1 is independent of ¥, for all n = 0 and A is an i.i.d sequence.
A variant of Wolff’s proof in [17] could also be used to show that
(iv) implies (v). ®
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