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Abstract

The Laguerre method for numerically inverting Laplace transforms is an old established method

based on the 1935 Tricomi-Widder theorem, which shows (under suitable regularity conditions) that

the desired function can be represented as a weighted sum of Laguerre functions, where the weights

are coefficients of a generating function constructed from the Laplace transform using a bilinear

transformation. We present a new variant of the Laguerre method based on: (1) using our previously

developed variant of the Fourier-series method to calculate the coefficients of the Laguerre gener-

ating function, (2) developing systematic methods for scaling, and (3) using Wynn’s ε-algorithm

to accelerate convergence of the Laguerre series when the Laguerre coefficients do not converge to

zero geometrically fast. These contributions significantly expand the class of transforms that can

be effectively inverted by the Laguerre method. We provide insight into the slow convergence of the

Laguerre coefficients as well as propose a remedy. Before acceleration, the rate of convergence can

often be determined from the Laplace transform by applying Darboux’s theorem. Even when the

Laguerre coefficients converge to zero geometrically fast, it can be difficult to calculate the desired

functions for large arguments because of roundoff errors. We solve this problem by calculating very

small Laguerre coefficients with low relative error through appropriate scaling. We also develop

another acceleration technique for the case in which the Laguerre coefficients converge to zero ge-

ometrically fast. We illustrate the effectiveness of our algorithm through numerical examples.

Subject classifications: Mathematics, functions: Laplace transforms. Probability, distributions:

calculation by transform inversion. Queues, algorithms: Laplace transform inversion.

Keywords: numerical transform inversion, Laplace transforms, Laguerre polynomials, Weeks’ algo-

rithm, accelerated summation, Wynn’s ε-algorithm



Introduction

Our purpose in this paper is to contribute to the Laguerre method for calculating values of a

real-valued function f on the nonnegative real line by numerically inverting its Laplace transform

f̂(s) =

∫

∞

0
e−stf(t)dt , (1)

which we assume is well defined, e.g., convergent and thus analytic for Re(s) > 0; see Doetsch [20].

The Laguerre method is based on the Laguerre-series representation

f(t) =
∞
∑

n=0

qnln(t), t ≥ 0 , (2)

where

ln(t) = e
−t/2Ln(t), t ≥ 0 , (3)

Ln(t) =
n
∑

k=0

(

n

k

)

(−t)k
k!
, t ≥ 0 , (4)

and

Q(z) ≡
∞
∑

n=0

qnz
n = (1− z)−1f̂((1 + z)/2(1 − z)) , (5)

with Ln in (4) being the Laguerre polynomials, ln in (3) the associated Laguerre functions, qn

in (2) the Laguerre coefficients and Q(z) in (5) the Laguerre generating function (the generating

function of the Laguerre coefficients). The Laguerre functions form an orthonormal basis for the

space L2[0,∞) of square integrable functions on the nonnegative real line, so that (2) is valid (in
the sense of convergence in L2[0,∞)) for any f in L2[0,∞) with

qn =

∫

∞

0
f(t)ln(t)dt ; (6)

see Laguerre [30] and Szegö [45]. Under extra regularity conditions, the Laguerre series in (2)

converges to f(t) pointwise for each t that is a continuity point of f .

The Laguerre-series representation of f in (2) can serve as a basis for inverting the Laplace

transform f̂ in (1) because the Laguerre generating function Q in (5) is expressed directly in terms

of the Laplace transform f̂ . This fortunate situation occurs because the Laplace transform of the

nth Laguerre function has the special form,

l̂n(s) ≡
∫

∞

0
e−stln(t)dt = 2(2s− 1)n/(2s+ 1)n+1 . (7)

By (1), (2) and (7), the Laplace transform f̂ can be expressed as

f̂(s) = 2
∞
∑

n=0

qn(2s− 1)n/(2s+ 1)n+1 . (8)
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By using the transformation

z = T (s) =
2s− 1
2s+ 1

, s = T−1(z) =
1 + z

2(1− z) , (9)

we obtain (5) from (8). The inversion is carried out by calculating the Laguerre coefficients qn

using (5) and approximately summing the series (2). We will have more to say about these two

important steps later.

This general approach to inverting Laplace transforms was evidently first proposed in 1935 by

Tricomi [46] and Widder [51]. By the early 1960’s the basic theory appeared in several textbooks;

e.g., p. 250 of Van der Pol and Bremmer [47], p. 471 of Hille [25], p. 333 of Kaplan [26] and p. 426

of Moretti [35]. The first paper to specifically consider numerical inversion was evidently Ward

[48] in 1954, but he did not propose a general procedure for computing the Laguerre coefficients

qn. The first full algorithms exploiting the Laguerre method as we know it today seem to have

been developed in 1966 by Chen [10], Spinelli [40] and Weeks [50]. At AT&T Bell Laboratories a

variant of the Laguerre method was developed by M. Eisenberg (related to the Weeks [50] algorithm,

which he helped develop) and has been frequently used for applied probability problems. In 1969

the Laguerre method was reviewed in the perspective of Jacobi polynomials by Luke [31]. In

1971 a new variant of the Laguerre method plus an extensive literature review was provided by

Piessens and Branders [36]. (See [36] for more early references.) Other more recent papers on

numerical inversion by the Laguerre method (in chronological order) include: Davies and Martin

[19], Weber [49], Wu and Ong [54], Lyness and Giunta [32], Garbow, Giunta, Lyness and Murli

[22], [23] and Duffy [21]. The Laguerre method is now often called Weeks’ method because of his

early contribution [50]; see [19], [22], [23] and [32]. The Laguerre method is available from the ACM

library of software algorithms in Algorithm 662 by Garbow et al. [23].

There is also a body of related literature related to the relationships (2)–(5) which is not con-

cerned with numerical inversion of the Laplace transform f̂ . Instead, the sequence of Laguerre

coefficients {qn} is regarded as a Laguerre transform of f , and attention is focused on how oper-
ations on functions fi can be represented by corresponding operations on the associated Laguerre

transforms {qin}. The notion of the Laguerre transform was introduced in 1960 by McCully [34]
and further studied by Keilson and Nunn [27], Keilson, Nunn and Sumita [28], Keilson and Sumita

[29], Sumita [41], [42] and Sumita and Kijima [43], [44]. A significant idea of Keilson and Nunn

[27] is to focus on the associated differences of {qn}, i.e. on

pn = qn − qn−1, n ≥ 1, p0 = q0 . (10)
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The generating function of {pn} is

P (z) ≡
∞
∑

n=0

pnz
n = (1− z)Q(z) = f̂((1 + z)/2(1 − z)) . (11)

From (11) it follows that continuous convolution of functions f is associated with discrete convo-

lution of the associated sequences {pn}; i.e., if

f3(t) =

∫ t

0
f1(t− y)f2(y)dy (12)

and {pin} is the Laguerre (difference) transform of fi, then

p3,n =
n
∑

k=0

p1,kp2,n−k, n ≥ 0 . (13)

We will not make use of the differences pn in (10) and their generating function P (z) in (11).

However, the theory of the Laguerre transform helps to understand the numerical inversion problem.

In particular, useful background can be found in Keilson and Nunn [27].

We have become interested in the Laguerre method for numerically inverting Laplace transforms

as a possible alternative to the Fourier-series method, which we have been using; see Abate and

Whitt [3], [5], Abate, Choudhury and Whitt [1], Choudhury, Lucantoni and Whitt [14], Choudhury

and Lucantoni [13], Choudhury, Leung and Whitt [11], [12] and Choudhury and Whitt [15] [16].

Earlier comparisons of different inversion algorithms by Davies and Martin [19], Garbow et al. [22]

and Duffy [21] indicate that for some problems the Laguerre method performs better than the

Fourier-series method (produces higher accuracy in less time), but for other problems it performs

worse. Indeed, for 6 of 16 test problems in Davies and Martin [19] the Laguerre method gave poor

results, but no clear explanation was given and no remedy was proposed. These conclusions have

been verified in two more recent papers: see p. 170 of Garbow et al. [22] and p. 338 of Duffy [21].

Our goal here is to understand why the Laguerre method performs as it does and to propose some

improvements.

First, we note that the Fourier-series method is actually quite closely related to the Laguerre

method. In both cases the desired function f is represented as an expansion in terms of orthogonal

functions, where the coefficients are expressed in terms of the Laplace transform f̂ . In the Fourier-

series method, we begin by replacing f by a periodic function fp constructed by aliasing, i.e., we

let the periodic function be

fp(t) =
∞
∑

k=−∞

f(t+ (2πk/h)) (14)
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for suitably small h, after damping f exponentially if necessary (i.e., replacing f(t) by e−σtf(t) for

σ > 0) to guarantee that the series in (14) converges. For given t, we choose h sufficiently small so

that fp(t) is sufficiently close to f(t). The difference between fp and f is the aliasing error. Since

fp is periodic, it has a Fourier series expansion, paralleling (2). Moreover, paralleling (5), it turns

out that the Fourier coefficients can be expressed directly in terms of the Laplace transform values.

Just as with (2), there is a further truncation error when we approximately sum the resulting

Fourier series. The Fourier series can be expressed so that it tends to eventually be an alternating

series. Hence, effective acceleration can be achieved with Euler summation [3], [5].

Given the relationships (2)–(5), there are two problems in implementing the Laguerre method:

(i) calculating the Laguerre coefficients qn given their generating function Q in (5) and (ii) cal-

culating the sum in (2). It turns out that the first step is usually relatively easy unless qn needs

to be computed accurately even when it is very small, which is typically required for large t (see

Sections 6 and 7). In Section 1 we show that our discrete variant of the Fourier-series method,

which we call LATTICE-POISSON [3], [4], [14], applies to systematically and effectively invert the

Laguerre generating function Q in (5). Thus, we enhance, the Laguerre method by combining it

with the Fourier-series method.

The second step can be difficult because the Laguerre coefficients qn can approach 0 slowly. In

Section 2 we show that an examination of the nonlinear transformation T in (9) reveals whether qn

approaches 0 geometrically fast or not, as a function of the singularities of the Laplace transform

f̂ . Previous authors such as Garbow et al. [22], [23] require that the good geometric rate of

convergence prevails; otherwise the Laguerre method is called “unsuitable.” However, we consider

the case of non-geometric convergence as well as the case of geometric convergence.

We remark that we are primarily motivated by probability applications, so that the function of

interest to us is often a complementary cumulative distribution function (ccdf) F c(t) (representing

the probability of the interval (t,∞)), which is a nonnegative decreasing function on [0,∞) with
F c(0) ≤ 1 and F c(t) → 0 as t → ∞. Our algorithm does not require this special structure, but
this special structure can help perform numerical inversion. (We present both probability and

non-probability examples in the paper.) However, even with this structure, the standard Laguerre

method can encounter difficulties, as we will show.

It might be thought that geometric convergence of {qn} would hold for transforms f̂ associated
with functions with pure exponential tail, i.e., if

f(t) ∼ αe−ηt as t→∞ , (15)
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for constants α and η, with η > 0, where a(t) ∼ b(t) means that a(t)/b(t)→ 1 as t→∞. However,
that is not the case, as is illustrated by the example

f̂(s) = (2
√
1 + s− 1)−1 (16)

for which f(t) ∼ (1/2)e−2t/4 as t→∞; see Section 2. This is an example of an exponential mixture
of inverse Gaussian distributions; see [6].

On the other hand, it might be thought that long-tail probability density functions with

f(t) ∼ αt−β as t→∞ (17)

necessarily lead to non-geometric convergence of {qn}. However, that is not necessarily the case
either, as is illustrated by the example

f̂(s) = 1− s+ s
2

2
log(1 + 2s−1) , (18)

which is the Laplace transform of a Pareto mixture of exponential (PME) distributions pdf from

[1] for which (17) holds with α = 1 and β = 3. It turns out that the tail behavior of the Laguerre

coefficients qn depends not upon the tail behavior of f(t) but upon the smoothness of f(t) and its

derivatives; alternatively, it depends primarily upon the behavior of the Laplace transform f̂(s) for

s at infinity; see Section 2.

When the Laguerre coefficients qn approach 0 geometrically fast, there usually is little difficulty

in summing the Laguerre series, except when we want to calculate f(t) for large t; see Section 6. We

treat this case using a new scaling procedure. We also propose an acceleration technique exploiting

the geometric convergence; see Section 8. When the Laguerre coefficients approach 0 slowly, we

propose another acceleration technique to speed up convergence of (2). In particular, in Section 3

we propose Wynn’s [55], [56] ε-algorithm for this purpose; e.g., see Chapter 6 of Wimp [53]. The

ε-algorithm has been used with the Fourier-series method, e.g., see Crump [17] and Piessens and

Huysmans [37], but we are unaware of any acceleration technique having been considered previously

for the Laguerre method. Indeed, none of the previous work addresses the case of non-geometric

convergence of the Laguerre coefficients or the difficulty at large t with geometric convergence. We

find that the ε-algorithm often helps greatly, but sometimes not very much. However, in the latter

case, we have been able to obtain good accuracy by exploiting both the ε-algorithm and judicious

scaling; see Sections 4 and 5.

We summarize our proposed variant of the Laguerre algorithm in Section 9 and state our con-

clusions in Section 10. In a sequel to this paper we show how the Laguerre method can be extended
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to invert multidimensional Laplace transforms. As is well known, the basic orthogonal function

structure extends immediately, using products of the one-dimensional Laguerre functions as ba-

sis elements. In fact, the multivariate generalization of (2) was already studied by Sumita and

Kijima [43]. However, we do propose the first effective numerical inversion algorithm for multidi-

mensional transforms via the Laguerre method by applying our multivariate Fourier-series method

algorithm [14] to invert the resulting multidimensional Laguerre generating function. Furthermore,

all enhancements introduced here can be used in each dimension of the multidimensional inversion.

1. Calculating the Laguerre Coefficients

Using the basic Hilbert space theory of the function space L2[0,∞), we know that the squared
norm of f is

||f ||22 ≡
∫

∞

0
f(t)2dt =

∞
∑

n=0

q2n <∞ (19)

for each f in L2[0,∞), which implies that qn → 0 as n → ∞. We can also bound qn by making
a further integrability assumption. Since |ln(t)| ≤ 1 for all n and t (see 22.14.12 on p. 786 of
Abramowitz and Stegun [7] or Szegö [45]), we can apply (6) to deduce that

|qn| ≤
∫

∞

0
|f(t)||ln(t)|dt ≤

∫

∞

0
|f(t)|dt . (20)

To take advantage of (19), we assume that f is integrable as well as square integrable. We are

primarily interested in probability applications, where usually there will be nothing extra to verify.

For example if f is a probability density function (pdf), then |qn| ≤ 1 for all n. Similarly, if f is a
complementary cumulative distribution function (ccdf), i.e., if f(t) = F c(t) where F c(t) = 1−F (t)
for a cumulative distribution function (cdf) F on the nonnegative real line with mean m, then

|qn| ≤
∫

∞

0
F c(t)dt = m . (21)

The mean m could be calculated directly to know the bound in (20), e.g., as in Choudhury and

Lucantoni [13], but in practice it is not necessary to know the bound in advance.

Moreover, it is not really necessary for the desired function f(t) to be integrable or square

integrable, because we can modify it to make it so. In particular, if f is not initially integrable or

square integrable, then we can often make it so by damping f , i.e., by replacing f by

h(t) = e−σtf(t) , t ≥ 0 , (22)
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for σ > 0, which has transform ĥ(s) = f̂(s+σ). (This is a form of scaling, which we discuss further

in Section 4. In general, σ has to be chosen so that σ > σ0 where σ0 is the real part of the rightmost

singularity of f̂(s).) For example, if we were considering the constant function f(t) = 1 for all t ≥ 0,
which has Laplace transform s−1 (test function #5 in Davies and Martin [19]), then we would need

to use damping, after which we have little difficulty. (Even without damping, it turns out that

computing qn would not be difficult in this case, because qn = 2(−1)n, n ≥ 0). However, the series
converges very slowly due to the very slow decay rate of ln(t) as n → ∞, which we discuss in the
next section.) Since the Laguerre coefficients can be regarded as bounded, inverting the Laguerre

generating function to calculate the Laguerre coefficients qn is relatively straightforward, if we can

be satisfied with absolute accuracy of about 10−8.

Given a bound for the Laguerre coefficients, we can apply the LATTICE-POISSON variant

of the Fourier-series algorithm for generating functions in [3], [4], to calculate qn with guaranteed

absolute error bound. Given the generating function Q(z) in (5), we can obtain expressions for the

coefficients via Cauchy contour integrals, i.e.,

qn =
1

2πi

∫

Cr
Q(z)/zn+1dz ,

where Cr is a circle about the origin of raidus r, 0 < r < 1, such that Q(z) is analytic in {z : |z| < r}.
upon making the change of variable z = reiu, we obtain the expression

qn =
1

2πrn

∫ 2π

0
Q(reiu)e−ikudu . (23)

If we calculate the integral (23) approximately by the trapezoidal rule, then we obtain

qn ≈ q̄n =
1

2nrn

2n
∑

j=1

(−1)jRe(Q(reπij/n))

=
1

2nrn







Q(r) + (−1)nQ(−r) + 2
n
∑

j=1

(−1)jRe(Q(reπji/n))







.

(24)

Moreover, as shown in [3], [4], we can use the discrete Poisson summation formula to derive the

discretization error ea ≡ q̄n − qn. Since the Poisson summation formula is based on creating a
periodic extension of the original function by aliasing, ea is also called the aliasing error. The

aliasing error is

ea =
∞
∑

j=1

qn+2jnr
2jn . (25)

If |qn| ≤ C, then the absolute aliasing error is bounded by

|ea| ≤
Cr2n

1− r2n ≈ Cr
2n . (26)
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Given C and n, we choose r less than 1 to make the aliasing error bound meet a prescribed error

criterion such as 10−10. If C is not known in advance, then we can reduce r later if it becomes

evident that we underestimated C.

Moreover, the relative aliasing error is bounded by

|ea
qn
| ≤

∞
∑

j=1

|qn+2jn
qn
|r2jn . (27)

Note that for the Laguerre method to be applicable |qn| should not grow fast with n and should
actually decay with n for large n. This implies that |qn+2jn/qn| should be small compared to
1 for large n and should remain an O(1) quantity even for small n. Therefore, we should have

|qn+2jn/qn| ≤ K for all n for some constant K, which implies that

|ea
qn
| ≤ Kr2n

1− r2n ≈ Kr
2n . (28)

Therefore, we can effectively control the relative aliasing error by choosing r2n suitably small, say

10−10.

Computing q̄n via (24) involves a potential roundoff problem, because the factor 1/2nr
n in (24)

can be small; see Remark 5.8 of [3]. We can address this problem by using the modification of the

LATTICE-POISSON algorithm in Choudhury, Lucantoni and Whitt [14]. In particular, instead of

(24) and (25), we can use qn = q̄n − ea, where

q̄n =
1

2lnrn

l−1
∑

j=0

n−1
∑

k=−n

(−1)j exp(−πik/l)Q(re(πi(j+lk)/nl)) (29)

with relative aliasing error
ea
qn
=
∞
∑

j=1

qn+2jln
qn

r2jln . (30)

If |qn+2jln/qn| ≤ K, then
|ea/qn| ≤ Kr2ln/(1− r2ln) ≈ Kr2ln . (31)

Just as with (28), for C and n given, we choose r2l such that the aliasing error bound meets a

prescribed error criterion. This choice leaves a degree of freedom in the choice of r and l. As can

be seen from (29), the required computation is proportional to l, but increasing l tends to reduce

the roundoff error, because it reduces the factor 1/2lnrn in (29). For one-dimensional inversions,

usually l = 1 is sufficient to obtain about 10−8 accuracy. If not, l = 2 or l = 3 is usually sufficient.

However, the roundoff error cannot be reduced below the machine precision, which is about 10−14

8



for standard double-precision computations, even with large l. So there is little point in increasing

l above 3.

Moreover, repeating the calculation with different values of l serves as an accuracy check.

Different values of l correspond to numerical integration along different circles in the complex

plane, so they represent totally different calculations.

Our proposed variant of the Fourier-series method to compute the Laguerre coefficients is quite

close to what Piessens and Branders [36] and Garbow et al. [22], [23] do. However, the seemingly

minor differences are important. First, Piessens and Branders [36] follow the procedure above but

with r = 1, so they do not attain a guaranteed error bound when inverting the Laguerre generating

function Q(z). Garbow et al. [22] recognize the value of having r < 1, but they leave r as a control

parameter. They do not have the (r, l) procedure to obtain an explicit error bound with roundoff

error control. Instead, they use an elaborate procedure involving integration along several circles,

which is more difficult to understand and implement than our (24) or (29).

2. Convergence of the Laguerre Series

Typically, the most challenging problem in the Laguerre method, if there is a problem, is to

calculate the Laguerre series Σ∞n=0qnln(t) in (2) given the Laguerre coefficients qn. There is little

difficulty in evaluating the Laguerre functions ln(t) to an absolute accuracy of about 10
−8; they

can be calculated in a numerically stable way using the recursion

ln(t) =

(

2n− 1− t
n

)

ln−1(t)−
(

n− 1
n

)

ln−2(t) , (32)

starting with l0(t) = e
−t/2 and l1(t) = (1 − t)e−t/2; see [45]. As we have noted before, |ln(t)| ≤ 1

for all n and t, and (assuming that f is integrable) |qn| ≤ C for all n. In addition, ln(t) approaches
0 as n→∞ for each positive t; in particular,

ln(t) ∼
1

π1/2(nt)1/4
cos(2

√
nt− (π/4)) as n→∞ ; (33)

see p. 245 of Magnus, Oberhettinger and Soni [33].

However, note that the convergence rate of ln(t) as n → ∞ in (33) is very slow. Hence, in
practice |ln(t)| becomes nearly constant for large n. Hence, for an effective algorithm, we must rely
on the decay rate of qn as n→∞.
In many cases there is no difficulty at all. For example, consider the function

f(t) = e−(1+(t/2))I0(2
√
t), t ≥ 0 , (34)
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where I0(t) is the modified Bessel function, with Laplace transform

f̂(s) = (s+ (1/2))−1 exp(−(2s− 1)/(2s + 1)) . (35)

The function f is related to the Bessel pdf in (11.2) of Abate and Whitt [6] with r = 0; i.e.,

f(t) = et/2β0(t) where β0(t) is the second Bessel pdf. The Laplace transform f̂ in (35) above has

the property that the associated Laguerre generating function is just

Q(z) = e−z , (36)

so that qn = (−1)n/n! and the Laguerre algorithm works spectacularly well; e.g., q20 = 0.4×10−18 .
However, the Laguerre coefficients do not always converge to 0 so rapidly. Indeed, a serious

difficulty is that the Laguerre coefficients qn may approach 0 slowly. We propose to address this

problem when it exists by using appropriate scaling and an acceleration technique, in particular,

the ε-algorithm, which we describe in the next section. Now we aim to understand why this slow

convergence can occur.

First, assuming that f ∈ L2[0,∞),which may require damping as in (22), we have qn → 0 as
n → ∞ by (19). The essential reason why qn → 0 slowly as n → ∞ is lack of smoothness of f .
Indeed, as shown on p. 326 of Keilson and Nunn [27], if f is not continuous, then

∑

∞

n=0 |qn| =∞,
which implies that qn → 0 slowly. Unlike the Fourier-series method (see Section 6 of [3]), lack of
smoothness evidently cannot be directly addressed by convolution smoothing, because convolution

smoothing makes f(t) defined for negative t. An important point is that lack of continuity of

f is not the only reason the Laguerre coefficients qn can converge to zero slowly. As indicated

in Section 6 of Keilson and Nunn [27], lack of smoothness of derivatives of f also leads to slow

convergence of qn to zero. The more continuous derivatives f has, the faster qn converges to 0.

Since the Laplace transform f̂(s) is presumably available, while the function f(t) is not, it

is natural to approach the slow convergence of qn to zero via the transform f̂(s). From this

perspective, a key to understanding the slow convergence is the conformal mapping T in (9). The

mapping T maps the complex plane into itself. It is sometimes called a bilinear map, because it

can be expressed via the equation

sz +
z

2
− s+ 1

2
= 0 , (37)

which is linear with respect to both s and z. The mapping T maps the positive half plane {s :
Re(s) > 0} into the interior of the unit circle, i.e., into {z : |z| < 1}, maps the negative half
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plane {s : Re(s) < 0} outside the unit circle, i.e., into {z : |z| > 1}, and maps the imaginary axis
{s : Re(s) = 0} onto the unit circle {z : |z| = 1}. We consider Laplace transforms f̂ that are
analytic in the positive half plane, so that the Laguerre generating function Q(z) in (5) is analytic

inside the unit circle. Hence, the radius of convergence of Q(z) is R ≥ 1; e.g., see Sec. 2.4 of Wilf
[52]. If R > 1, then the convergence of {qn} is geometric; i.e., qn = o(εn) as n→∞ for any ε > R−1.
On the other hand, if R = 1, then the convergence will not be geometric.

In summary, non-geometric convergence of qn can occur only if the Laguerre generating function

Q has a singularity on the unit circle {z : |z| = 1}. This can happen in two ways: first, if f̂ has
a singularity on the imaginary axis {s : Re(s) = 0} and, second, if f̂ has a singularity at infinity.
At first, the possibility of this second case may not be obvious, but it can occur because, from (9),

|T (s)| → 1 as |s| → ∞. Since s−1 → 0 as |s| → ∞, the second case occurs if and only if f̂(1/s) has
a singularity at s = 0. If these two possibilities can be ruled out, then R > 1 and qn converges to

0 geometrically fast, as noted in Theorem 3.1 of Keilson and Nunn [27]. (Keilson and Nunn [27]

rule out a singularity on the imaginary axis by the condition that eatf(t) be integrable for some

positive a; this implies that f̂(s) is analytic for Re(s) > −a.)
For further discussion, we restrict attention to transforms f̂ whose singularities fall on the

negative real axis. This class covers most transforms arising in probability applications. For s real,

clearly T (s) is also real. Note that T (0) = −1 and T is strictly increasing on (−1/2, 0] and strictly
decreasing on (−∞,−1/2) with T (s) → 1 as s → −∞. Hence, for this class of transforms, Q can
have a singularity on the unit circle only if f̂ has a singularity at s = 0 or s = −∞.
Thus the source of non-geometric convergence of qn must be a singularity of f̂ at s = 0 or s =

−∞. However, it is not necessary that the Laguerre generating function Q inherit the singularity
of the Laplace transform f̂ under the transformation T . For example, the PME Laplace transform

in (18) has a singularity at 0, but the Laguerre generating function Q turns out to be analytic at

T (0) = −1, and has radius of convergence R > 1. In this case we easily obtain high accuracy with
small n in (2). Moreover, a singularity at 0 can always be removed by doing exponential damping;

i.e., if f̂(s) has a singularity at s = 0, then f̂(s+ σ) for σ > 0 has a singularity at s = −σ.
The more difficult case is the singularity of f̂ at s = −∞. For example, the Laplace transform f̂

in (16) has a branch point singularity at s = −∞, and Q has an algebraic singularity at T (−∞) = 1,
so that qn does not converge geometrically to 0. Moreover, it is fairly common for Laplace transforms

to have singularities at s = −∞, as we will show below. Furthermore, these singularities evidently
cannot be so easily removed as the singularities on the imaginary axis.
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We can see the impact of singularities of Q on the unit circle by doing asymptotic analysis.

The asymptotic analysis yields the asymptotic form of qn as n→∞. In some cases, the generating
function Q will have a pole on the unit circle. For example, if f(t) = t, t ≥ 0, then f̂(s) = s−1 and
Q(z) = 2(1 + z)−1, so that Q has a simple pole at z = −1 and qn = 2(−1)n. However, in many
applications Q will have an algebraic singularity on the unit circle. With an algebraic singularity,

we can apply Darboux’s theorem; see Darboux [18], p. 179 of Wilf [52] and pp. 445–450 of Henrici

[24].

We will actually apply only a simple form of Darboux’s theorem. Suppose that Q has one sin-

gularity on the unit circle, which is an algebraic singularity at z = 1 (corresponding to a singularity

of f at s = −∞). Then Q(z) = (1− z)βG(z) where β is non-integer and G is analytic in the circle
{z : |z| < 1 + η} for some η > 0. In this setting, Darboux’s theorem concludes that

qn ∼ G(1)/n1+βΓ(−β) as n→∞ , (38)

where Γ(x) is the gamma function. The full Darboux’s theorem gives more terms, but we only

make use of the single term in (38).

To illustrate, we give some probability examples, drawing on Abate and Whitt [6]. In these

examples we know the function f as well as its transform, so that these examples are intended

to provide insight rather than to be serious candidates for inversion. In these examples we can

directly see that the function f(t) lacks smoothness at the origin. For harder examples, for which

only f̂(s) is available, we would really need Darboux’s theorem. In the first four examples, we can

apply Darboux’s theorem to show that (38) holds for 0 < β < 1, so that the rate of convergence

of qn to 0 is very slow in each case. In each example we discuss the pdf’s. Afterwards we indicate

how to relate pdf’s and ccdf’s.

Example 2.1. First consider the gamma pdf with (positive) shape parameter ν and (positive)

mean ν/λ, namely,

f(t) = Γ(ν)−1λνtν−1e−λt , t ≥ 0 , (39)

which has Laplace transform

f̂(s) = (1 + s/λ)−ν . (40)

Clearly f in (39) is a relatively nice and well-behaved function for each ν and λ, but f̂ has branch

point singularities at s1 = −1/λ and s2 = −∞ for all non-integer ν. Note that f(t) lacks smoothness
at t = 0 for 0 < ν < 1 and that higher derivatives of f(t) lack smoothness at t = 0 for noninteger

ν > 1.

12



To be more specific, let λ = 1 and ν = 1/2. Then f̂(s) = (1 + s)−1/2 and Q(z) = 1/
√

2(1− z),
so that Darboux’s theorem yields

qn = (1/4
k
√
2)

(

2k

k

)

∼ 1/
√
2πn as n→∞ . (41)

We remark that this gamma (1/2) pdf example is a damped version of the transform s−1/2 with

inverse (πt)−1/2, which is Example 9 in Davies and Martin [19], for which the Laguerre method

performed poorly; also see Duffy [21].

Example 2.2. Next let f(t) be the density of the first-moment cumulative distribution function of

regulated Brownian motion, as in (1.10) and (4.5) of Abate and Whitt [2] and in (8.6) and (9.15)

of Abate and Whitt [6]; i.e., let

f(t) = (2πt)−1/2e−t/4 − 1 + Φ(
√

t/2), t ≥ 0 , (42)

where Φ(t) is the standard (mean 0, variance 1) normal cdf, which has Laplace transform

f̂(s) = 2/(1 +
√
1 + 4s) . (43)

This example is similar to (16). In this case

Q(z) =
1√
1− z

(

2√
1− z +

√
3 + z

)

, (44)

so that Darboux’s theorem yields

qn ∼ 1/
√
nπ as n→∞ . (45)

Given (42), (45) is not a surprise because f(t)→∞ as t→ 0.
Example 2.3. As in Section 10 of [6], let f be Feller’s first Bessel pdf; i.e.,

f(t) =
√

µ/2πt3 exp(−t/2µ)[(1 − exp(−(µ2 − 1)t/2µ))/(µ − 1)], t ≥ 0 , (46)

and

f̂(s) = (µ− 1)−1(
√

µ2 + 2µs−
√

1 + 2µs) (47)

for µ > 1. To be more specific, let µ = 2. Then

f̂(s) = 2
√
1 + s−

√
1 + 4s , (48)

Q(z) = (1− z)−3/2(
√
6− 2z −

√
3 + z)

= (1− z)−1/2
(

3√
6− 2z +

√
3 + z

)

(49)
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and Darboux’s theorem yields

qn ∼ 3/4
√
πn as n→∞ . (50)

Example 2.4. As in Section 11 of [6], let f be Feller’s second Bessel pdf with parameter r = −1/2;
i.e.,

f(t) = (πt)−1/2e−(1+t) cosh(2
√
t), t ≥ 0 , (51)

and

f̂(s) = (1 + s)−1/2 exp(−s/(1 + s)) . (52)

(Also use 10.2.14 of Abramowitz and Stegun [7].) In this case,

Q(z) = (1− z)−1/2((3− z)/2)1/2 exp(−(1 + z)/(3 − z)) , (53)

so that Darboux’s theorem yields

qn ∼ 1/e
√
πn as n→∞ . (54)

Example 2.5. As in (2.2) of [6], let f be the exponential-integral pdf; i.e.,

f(t) ≡ E1(t) ≡
∫

∞

t
x−1e−xdx =

∫ 1

0
µ−1e−t/µdµ (55)

and

f̂(s) = log(1 + s)/s . (56)

In this case,

Q(z) = (2/(1 + z)) log((3− z)/2(1 − z)) . (57)

In this case Q(z) has singularities at z = 1 and 3, which are the branch points of the logarithm.

(Note that Q(z) does not have a singularity at z = −1, in fact, Q(−1) = 1/2.) Darboux’s theorem
can not be used in this example because it only applies to algebraic singularities. However, note

that as z → 1, Q(z)→ − log(1− z). Therefore,

qn ∼ 1/n as n→∞ . (58)

Example 2.6. As in Section 13 of [6], let f be the first theta pdf, i.e., the pdf of the first passage

time for standard reflected Brownian motion from 0 to
√
2/2; i.e.,

f(t) = π
∞
∑

n=1

(−1)n+1(2n− 1) exp(−π2(n− (1/2))2t) (59)
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and

f̂(s) = 1/ cosh(
√
s) . (60)

In this case

Q(z) = 1/((1 − z) cosh(
√

(1 + z)/2(1 − z)) . (61)

The transform f̂ in (60) has a simple pole at s = −∞, but the corresponding singularity in Q(z)
at z = 1 is an essential singularity. Hence, Darboux’s theorem does not apply to this example.

However, we will show that qn approaches 0 slowly numerically in Section 5.

Our examples above have been for pdf’s, but we are usually interested in ccdf’s instead. How-

ever, it is easy to relate the asymptotic behavior of the Laguerre coefficients of a ccdf to the

asymptotic behavior of the associated Laguerre coefficients of the pdf. For this purpose, suppose

the pdf f satisfies (2) and let the ccdf be represented as

F c(t) =

∫

∞

t
f(u)du =

∞
∑

n=0

q′nln(t) . (62)

with Q′(z) =
∑

q′nz
n. Since F̂ c(s) = (1− f̂(s))/s,

Q′(z) =
−2(1− z)
(1 + z)

(Q(z)− 1) . (63)

Hence, if Q has radius of convergence R > 1 with a singularity at R (which will be the case if f̂

has all its singularities on the negative real axis and has no singularities at s = −∞ or s = 0), then
q′n ∼ [2(R − 1)/(1 +R)]qn as n→∞. On the other hand, if Q has a radius of convergence 1 with
only one algebraic singularity on the unit circle at z = 1, then the asymptotic behavior of q ′n is the

same as the coefficients of (1 − z)Q(z), which are qn−1 − qn. Hence, if qn ∼ Cn−β as n → ∞ for
β > 0, then q′n ∼ Cβn−(1+β) n→∞. (This can be deduced directly or by Darboux’s theorem.)
In summary, when there is geometric rate of convergence of the Laguerre coefficients, this rate

applies to both the pdf and the ccdf. On the other hand, when there is non-geometric rate of

convergence, the Laguerre coefficients of the ccdf tend to approach 0 somewhat faster than the

Laguerre coefficients of the pdf. In particular, for ccdf’s (but not for pdf’s) we can guarantee that

the truncation error is asymptotically negligible, i.e.,

|
∞
∑

n=m

qnln(t)| ≤
∞
∑

n=m

|qn| <∞ (64)

because qn ∼ Cn−(1+β) as n→∞ for β > 0. However, the rate of convergence of qn for the ccdf’s
in the examples above is still quite slow.
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3. Application of Wynn’s ε-Algorithm

We propose using Wynn’s [55], [56] ε-algorithm to accelerate convergence of the Laguerre series

(2) when the rate of convergence is slow. We will show in Section 5 that this algorithm together

with suitable scaling can indeed greatly improve the accuracy. The ε-algorithm is defined by the

recursion

εnk+1 = ε
n+1
k−1 + (ε

n+1
k − εnk)−1 , (65)

where εn
−1 = 0 and ε

n
0 = Sn for all n, where Sn is the n

th partial sum of the series (2); see p. 138

of Wimp [53]. The final approximation is εn2m for suitable n and m. We typically use n = 100

and m = 6. There is typically significant improvement as m increases from 1 to 2 and 3, but

improvement slows by about m = 6.

As discussed in Wimp [53], pp. 3–5 and Chapters 5 and 6, the ε-algorithm is a nonlinear lozenge

algorithm implementing the Schmidt transformation; as in Shanks [38]. Moreover, the ε-algorithm

result εn2m for a specific t is equivalent to the [n+m/m] Padé approximant; see pp. 112, 131, 138

of Wimp [53]. Knowing these connections, useful additional background can be obtained from

Baker [8] and Bender and Orszag [9]. In contrast to Euler summation used in [3]–[4] and [14],

the ε-algorithm is often effective for non-alternating series. See Smith and Ford [39] for numerical

comparisons. In Section 5 we show that the ε-algorithm is effective for the examples in Section 2

in which the sequence {qn} converges to zero slowly.
It should go without saying that there are no guarantees in advance with the ε-algorithm. To

understand why, note that the recursion (65) can behave badly if Sn converges too quickly. In

particular, if Sn = Sn+1, then the calculation of e
n
1 involves a division by 0. However, we can

be fairly confident about the success of the ε-algorithm after the computation if accuracy checks

indicate consistent answers. By computing εn2m for m = 0, 1, . . . , 6, we can clearly see the impact

of the ε-algorithm. Moreover, we can use the scaling discussed in the next section to obtain

independent accuracy checks.

4. Scaling

Ever since Weeks [50], it has been recognized that the Laguerre method can be enhanced by

scaling; e.g., see Garbow et al. [22], [23]. We scale with two positive real parameters σ and b.

fσ,b(t) = e
−σtf(t/b), t ≥ 0 . (66)
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We then apply the Laguerre algorithm to fσ,b and recover f by

f(t) ≡ f0,1(t) = eσbtfσ,b(bt) . (67)

The Laguerre generating function associated with fσ,b is

Qσ,b(z) =
b

1− z f̂
(

b(1 + z)

2(1− z) + bσ
)

. (68)

The scaling parameter σ moves the singularities of f̂ to the left by σ. Hence, σ is important for

eliminating the bad effect of a singularity in f̂ at 0, as discussed in Section 2. However, σ cannot

help with singularities at infinity, as in the six examples in Section 2.

Weeks [50] and Garbow et al. [22] [23] all noted that the scaling parameter b can help, but a

systematic procedure for setting b has yet to be developed. Weeks [50] noted that the Laguerre

method should be more effective if the Laguerre functions are evaluated where they are oscillating.

This leads to the restriction bt ≤ 4n, where n is the number of terms used. However, this restriction
does not adequately explain the benefits of b. We have found that in the cases of slow convergence

the ratio |qn|/|q0| can be decreased significantly by increasing b, say from b = 1 to b = 10. Even
though the new sequence {qn} still converges to 0 non-geometrically, the smaller ratio |qn|/|q0|
significantly improves the accuracy.

Another reason for using the scaling parameters σ and b is that they provide a powerful accuracy

check. Since the computation is very different with different scaling pairs (σ, b), we can estimate

the accuracy of the results by doing the same computations with two or more different scaling pairs.

5. Numerical Examples Treating Slow Convergence

In this section we present numerical examples of the Laguerre algorithm applied to treat the

case in which the Laguerre coefficients qn converge to 0 slowly. We show that using both the ε-

algorithm in Section 3 and scaling with b (but not σ) in Section 4 can greatly improve the results.

We show the scaling improvement with b = 10, but the exact choice is not critical. In fact, b = 15

or b = 20 provides similar (usually slightly better) improvement.

In all numerical examples we use the notation AeB to indicate A× 10−B .
Example 5.1. We start by considering the gamma distribution with shape parameter 1/2 in

Example 2.1. In particular, we consider the ccdf F c(t), which has Laplace transform

F̂ c(s) = s−1(1− f̂(s)) = s−1(1− (1 + 2s)−1/2) , (69)
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where f̂ is the Laplace transform of the pdf in (40) with λ = 1 and ν = 1/2. As indicated in

Section 2, qn ∼ 1/2
√
2πn3 as n→∞.

For this example, we compare exact values of the ccdf with numerical values from four variants

of the Laguerre algorithm. We do the inversion with and without the ε-algorithm, and with and

without scaling. Scaling means using b = 10, while no scaling means using b = 1. Without the

ε-algorithm, we use 100 terms in the Laguerre series (2). When we use the ε-algorithm, we use the

sixth-order version; i.e., we use en2m in (65) for m = 6 and n = 100. This requires that we compute

qn for 0 ≤ n ≤ 113.
The exact values are obtained using the Fourier-series method, using the accuracy check based

on computations with different l parameters, as in [14]. The exact values have been checked to all

digits given.

b = 1 b = 1 b = 10 b = 10
t exact without epsilon with epsilon without epsilon with epsilon

0 1.000000000 .960 .9824 .9875 .9945
1 .317310508 .31745 .317289 .3173096 .31731040
2 .157299207 .15742 .157304 .157308 .15729922
3 .83264517e-1 .8333e-1 .832674e-1 .83273e-1 .83264521e-1
4 .45500264e-1 .4562e-1 .455014e-1 .45495e-1 .45500250e-1
5 .25347319e-1 .2537e-1 .253457e-1 .25352e-1 .25347324e-1
6 .14305878e-1 .1422e-1 .143037e-1 .14310e-1 .14305902e-1
8 .46777349e-2 .4647e-2 .467711e-2 .46741e-2 .46777307e-2
10 .15654022e-2 .15626e-2 .156495e-2 .15623e-2 .15654026e-2

Table 1. A comparison of four variants of the Laguerre algorithm with exact results for the gamma

(1/2) ccdf in Example 5.1. The number of terms is 100 without the ε-algorithm and 113 with the

ε-algorithm.

From Table 1, we see that the accuracy of the basic Laguerre algorithm without refinements is

not good (only 2 or 3 digits) for this example. The epsilon algorithm without scaling and scaling

without the epsilon algorithm both improve the results in roughly the same way (one to two extra

digits). For small t, scaling has more benefit; for large t, the epsilon algorithm has more benefit.

However, taking both measures clearly provides dramatic improvement.

Examples 2.2–2.4 have a structure similar to Example 2.1 and yield similar numerical results,

so we do not display them.

Example 5.2. We next consider the exponential-integral ccdf in Example 2.5, for which the

Laplace transform has a logarithmic singularity. In particular, we consider the Laplace transform
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F̂ c(s) = s−1(1 − f̂(s)) for f̂ in (56). In this case, the Laguerre coefficients qn of the ccdf decay
somewhat faster, in particular, qn ∼ 1/n2 as n → ∞. We carry out the same experiment for the
exponential-integral ccdf, once again using the Fourier-series method to compute the exact values.

Numerical results for the exponential-integral ccdf are given in Table 2. The basic Laguerre

algorithm performs even worse than for the gamma (1/2) ccdf in Table 1, at least for the larger

times. Here again we see that both scaling and the ε-algorithm provide significant improvement

separately. However, as before, both together again provide dramatic improvement.

b = 1 b = 1 b = 10 b = 10
t exact without epsilon with epsilon without epsilon with epsilon

0 1.000000000 .9902 .9895 .99902 .99979
1 .148495507 .14856e-1 .148483 .14849532 .148495486
2 .37534266e-1 .37595e-1 .375382e-1 .3753416e-1 .37534293e-1
3 .10641925e-1 .10678e-1 .106435e-1 .1064188e-1 .106419267e-1
4 .31982292e-2 .326e-2 .319845e-2 .31973e-2 .31982288e-2
5 .99646904e-3 .1008e-2 .9958e-3 .9972e-3 .99646916e-3
6 .318257463e-3 .274e-3 .31849e-3 .31893e-3 .318257469e-2
7 .103509844e-3 .137e-3 .10371e-3 .10341e-3 .103509846e-3
8 .34137645e-4 .18e-4 .3382e-4 .3357e-4 .34137666e-4

Table 2. A comparison of four variants of the Laguerre algorithm with exact results for the

exponential-integral ccdf in Example 5.2. The number of terms is 100 without the ε-algorithm

and 113 with the ε-algorithm.

Example 5.3. Finally, we consider the theta ccdf in Example 2.6, for which the Laguerre gen-

erating function Q has an essential singularity at z = 1. In particular, we consider the transform

F̂ c(s) = s−1(1 − f̂(s)) for f̂ in (60). We repeat the previous experiment for this example and
display the results in Table 3. In this case, scaling (by b = 10) separately is more effective than the

ε-algorithm alone, but both together again provide dramatic improvement.

b = 1 b = 1 b = 10 b = 10
t exact without epsilon with epsilon without epsilon with epsilon

0.0 1.000000000 .9913 .99918 1.000037 .9999945
0.5 .370777430 .37132 .37083 .37077708 .370777430
1.0 .107977044 .10818 .107968 .10797695 .107977031
1.5 .314443118e-1 .3117e-1 .31463e-1 .3144415e-1 .31444363e-1
2.0 .91569903e-2 .928e-2 .91503e-2 .915687e-2 .91569942e-2
2.5 .26666340e-2 .2608e-2 .26681e-2 .266673e-2 .26666334e-2
3.0 .77655831e-3 .844e-3 .7755e-3 .77647e-3 .776491e-3
3.5 .22614382e-3 .12e-3 .2294e-3 .22622e-3 .2261445e-3
4.0 .65856006e-4 .20e-3 .619e-4 .65899e-4 .658572e-4
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Table 3. A comparison of four variants of the Laguerre algorithm with exact results for the theta

ccdf in Example 5.3. The number of terms is 100 without the ε-algorithm and 113 with the ε-

algorithm.

We conclude this section by pointing out how the ratio |q100|/|q0| decreased by increasing b from
1 to 10. For the examples in Tables 1, 2 and 3, the ratio decreased, respectively, from 3.4 × 10−4

to 4.5× 10−5, from 2.6× 10−4 to 7.7× 10−5, and from 5.0× 10−4 to 2.9× 10−7.

6. Difficulties with Large Arguments

In this section we show that the basic Laguerre algorithm can encounter serious difficulties even

when qn has a fast geometric decay rate.

Example 6.1. To make this point, we consider the first test function included in ACM Algo-

rithm 662 [23], namely,

f̂(s) =
1

s+ 0.5
+
1

s2
+

1

1 + (s+ 0.2)2
, (70)

which has the known inverse

f(t) = e−0.5t + t+ e−0.2t sin t . (71)

This test example is the sum of test examples 3, 4 and 6 from Davies and Martin [19], for which the

Laguerre method performed very well. However, Davies and Martin [19] only considered relatively

small times, in particular, they considered 30 time points, all with t ≤ 15. In contrast, we will also
consider larger times.

Because of the s−2 term, the transform f̂ has a singularity at 0, which can be removed by

exponential damping. Accordingly, the ACM algorithm uses the scaling (σ = 1, b = 1) for this

example. We compare the results of applying the ACM algorithm with this scaling to the exact

values of f(t) for several values of t in Table 4.
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ACM algorithm
t exact σ = 1, b = 1

0.05 1.074792 1.074792
0.10 1.149086 0.149086
0.50 1.712603 1.712603
1. 2.295469 2.295469
5. 4.729316 4.729316
10. 9.933113 9.933113
15. 15.03293 15.03293
30. 29.99755 29.9790
50. 49.99999 −1.2e7
90. 90.00000 −3.8e23
200. 200.00000 —
400. 400.00000 —
800. 800.00000 —
1200. 1200.00000 —

Table 4. A comparison of ACM algorithm 662 with the exact solution for the three-term test

function in (67). Our modified algorithm matches the exact values up to all displayed digits.

From Table 4, we see that the ACM algorithm performs very well for smaller t, but begins to

break down at t = 30 and completely fails for t ≥ 50. The difficulty is not due to slow convergence
of qn. The ACM algorithm uses n = 63 and obtains q63 = −3.6 × 10−14. (The true |q63| is even
smaller.) No improvement is obtained by increasing n to 100 or 300. Furthermore, the choice of

the scaling parameters (σ = 1, b = 1) is not too critical. For four other scaling settings used in the

ACM algorithm, the algorithm also always crashes, with the critical time falling between t = 15

and t = 50. The problem is not just with the ACM algorithm either. We tried the same example

with our LATTICE-POISSON algorithm in Section 1 and got essentially the same results.

The difficulty is that, for large t, we need low relative error in qn. For large t, the dominant

terms eσbtqnln(bt) occur for relatively large n, where qn is very small, but it is offset by very large

values of eσbt, while ln(bt) is near 1. For smaller n, ln(bt) is much smaller than 1, making the whole

term eσbtqnln(bt) negligible. The computation will be satisfactory if we can calculate qn with low

relative error.

In many examples, such as the ccdf’s, the function f(t) will be very small when t is large, so

that we may not care about large t. However, even then, we will encounter difficulties if we want

to calculate f(t) for large t with suitably small relative error.

We conclude this section by pointing out that the problem when we apply LATTICE-POISSON

is the relative roundoff error, not the relative aliasing error. Since we will tend to have |qn+2jln| ≤
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|qn|, the relative aliasing error in (27) should not be substantially worse than the absolute aliasing
error bound in (26).

However, l in formula (24) tends to control only the absolute roundoff error in qn. We need to

take extra measures to control the relative roundoff error.

7. Achieving Low Relative Error in the Laguerre Coefficients

In this section we indicate how to calculate qn with low relative error, so that we can calculate

f(t) for large t. Following Choudhury and Lucantoni [13], we introduce the scaled generating

function

Qα(z) ≡
∞
∑

n=0

q(α)n z
n =

∞
∑

n=0

qnα
nzn = Q(αz) , (72)

where α is chosen so that q
(α)
n remains O(1) for all n. This scaling evidently is new in the context

of the Laguerre method. The standard inversion algorithm maintains low absolute error in q
(α)
n ,

implying that it will also maintain low relative error in qn.

If |qn| ∼ Cβn as n → ∞, then a natural candidate for α should be β−1. However, in general
the asymptotic decay rate β is unknown. Moreover, even if it is known, it is often not appropriate

for all n. As in Choudhury and Lucantoni [13], we can estimate the appropriate scaling from the

most recent two computed values; i.e., when we compute qn, we use the scale parameter

αn = |qn−2/qn−1| . (73)

Given that |qn| ∼ Cβn as n→∞, then αn → 1/β as n→∞, as it should.
Through extensive numerical experiments, we observed that the scaling (72) and (73) works in

the current context as well, provided σ is not too large. Also we do not use this scaling for the first

few values of n when qn is O(1) but changes erratically. Also if the ratio is less than 1, then we use

α = 1.

In particular, we observed that we can compute all the exact values for Example 6.1 in our

Table 4 with our Laguerre algorithm provided we choose σ = 0.05 and b = 1 and use the scaling in

(69) and (70) whenever |qn−1| < 0.1. This happens for n− 1 > 40.
In this case, q162 = 9.189 × 10−12, q197 = −9.814 × 10−15 and q350 = 8.0609 × 10−28. Hence,

without scaling, there will be significant errors for n ≥ 162 and serious errors for n ≥ 197. For small
t, the convergence occurs for n < 162, so the standard algorithms compute accurately. However,

for t = 1200,

|eσbtqnln(bt)| < 10−30 for all n ≤ 197 . (74)
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Therefore, it is clear that all the significant contribution to the final answer comes from values of

n for n > 197. It turns out that, with the new scaling in this section, n = 500 yields the correct

answer for t = 1200.

We observed that the scaling introduced in this section is not effective if the decay rate of |qn| is
slower than geometric. However, it remains pretty effective if the decay rate is faster than geometric.

In particular, for the functions f(t), f̂(s) and Q(z) given in (34), (35) and (36), qn = (−1)n/n!.
In this case, with decay rate faster than geometric, we observed that the scaling in (73) is very

effective and may be used to compute f(t) accurately even for very large t.

8. Extrapolation with a Geometric Rate

The frequently occurring asymptotic geometric rate of convergence of qn allows us to introduce

a further refinement to the Laguerre algorithm. With the (σ, b)-scaling in Section 4, the inversion

formula is

fn(t) = e
σbt

n
∑

k=0

qklk(bt) , (75)

where the truncation error is

en(t) ≡ f(t)− fn(t) = eσbt
∞
∑

k=n+1

qklk(bt) . (76)

We can exploit the geometric rate of convergence (when it holds) to approximate the truncation

error by replacing qn with Cβ
n, where C and β are chosen to satisfy qk = Cβ

k for k = n− 1 and
k = n, which yields

β = qn/qn−1 and C = qnβ
−n . (77)

Now the approximate truncation error can be written as

en(t) ≈ eσbt
∞
∑

k=0

Cβklk(bt)− eσbt
n
∑

k=0

Cβklk(bt) . (78)

Using the generating function of Laguerre polynomials, 22.9.15 of Abramowitz and Stegun [7], we

can sum the first term in (78) to obtain

en(t) ≈
C

1− β exp(bt(σ −
1

2
− β

1− β ))− e
σbt

n
∑

k=0

Cβklk(bt) . (79)

Combining (75), (76) and (79), we get the refined inversion formula

f (r)n (t) = e
σbt

n
∑

k=0

(qk − Cβk)lk(bt) +
C

1− β exp(bt(σ −
1

2
− β

1− β )) . (80)
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Formula (80) is usually substantially more accurate than formula (75) for a given n. For

example, to get 9 significant digits for t = 1200 in Example 6.1, we need n = 500. In contrast, the

same accuracy is obtained with (80) with only n = 350. For smaller t, usually n = 100 suffices for

(75), while n = 50 suffices for (80).

We illustrate the extrapolation refinement with another example.

Example 8.1. As in [1], we now consider the ccdf Gc(t) of the steady-state waiting time in the

M/G/1 queue with arrival rate 0.7, mean service time 1.0 and PME service-time distribution with

Laplace transform (18). This service-time distribution is interesting because it has a long tail. In

particular, the service-time pdf has the asymptotic form f(t) ∼ t−3 as t→∞.
The ccdf of interest Gc(t) has Laplace transform Ĝc(s) = (1− ĝ(s))/s for

ĝ(s) =
0.3

1− 0.7[1 − f̂(s)]/s
(81)

and f̂ in (18). Table 5 compares the ACM algorithm to exact values for both large and small t.

exact ACM Algorithm 662
t Fourier-series method σ = 0.1, b = 1

1 0.539934 0.539934
10 0.162295 0.162295
100 0.131553e-1 0.131553e-1
200 0.624080e-2 0.62424e-2
400 0.302786e-2 0.77e-12
800 0.148865e-2 —
1200 0.986383e-3 —

Table 5. A comparison of ACM algorithm 662 with exact values of the steady-state waiting-time

ccdf for the M/G/1 queue with long-tail service-time distribution in Example 8.1. Our modified

algorithm matches the exact values to all displayed digits.

The exact values in Table 5 are computed by the Fourier-series method [1], [14] using l = 2

and l = 3 for an accuracy check. The ACM algorithm is done with scaling σ = 0.1 and b = 1.

As can be seen from Table 5, the ACM algorithm is excellent when t is not too large, but it

starts losing accuracy at t = 200 and fails for t ≥ 400. In contrast, with the scaling in Section 7
the Laguerre algorithm produces accuracy to all displayed digits (and more) for all values of t.

Moreover, extrapolation using (80) significantly improves accuracy for a given number of terms.

We close this section by pointing out that the extrapolation can produce errors, rather than im-

provement, if {qn} does not converge to zero geometrically fast. However, such errors will invariably
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be detected if accuracy checks are performed. In such cases it is better to use the ε-algorithm con-

sidered in Section 3. However, in the presence of geometric convergence, the acceleration technique

introduced in this section usually is much more effective than the ε-algorithm.

9. Summary of the Algorithm

We first describe a simple basic algorithm assuming that the problem is well behaved, i.e.,

assuming that f̂(s) has all singularities strictly to the left of the imaginary axis, f(t) is square

integrable, |qn| decays geometrically or faster with n, we are not interested in f(t) for large t,
and we are not interested in very small (less than 10−8) values of |f(t)|. Later we will describe
refinements to treat cases when one or more of these assumptions does not hold. We will also show

how to check the validity of these assumptions.

Basic Algorithm

Step 1: Compute and store the Laguerre coefficients qn for n = 0, 1, 2, . . . , n0 from Q(z) in (5) using

the basic LATTICE-POISSON algorithm in Section 1, in particular, with (23) using r = (0.1)4/n

yielding roughly errors of the order 10−8 or smaller using standard double-precision computation.

The truncation point n0 is the minimum of 100 and the n for which |qk| < 10−8 for all k ≥ n. (In
particular, we can observe when |qn| < 10−8 for several successive n to avoid one chance occurrence.
For well-behaved problems, n0 can often be significantly smaller than 100.)

Step 2: For each desired t, first compute and store the Laguerre functions ln(t) for n = 0, 1, . . . n0

using the recursion (32) and then use (2) with truncation point n0 to compute f(t).

Refinements

Refinement 1: (better accuracy and accuracy check in computing qn): This is done by replacing

Step 1 of the basic algorithm with the enhanced LATTICE-POISSON algorithm with r = (0.1)6/n

and l = 2 and/or 3. Also, decide the truncation point n0 based on |qn| < 10−12. This will roughly
yield errors of the order 10−12 or smaller. Also, if both l = 2 and l = 3 are used and the results

agree, then that provides an accuracy check for qn since the contours of integration in the two cases

are different. If only an accuracy check is needed, then the above comparison can be done with

just l = 1 and 2.

Refinement 2: (accuracy check in the computation of f(t)): Use the (σ, b) scaling algorithm in

Section 4. The basic algorithm uses σ = 0 and b = 1. Redoing the computations with slightly

perturbed values such as (σ = 0.1, b = 1) or (σ = 0, b = 1.1) yields an independent accuracy check

because the entire computation changes significantly.
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What To Do Next?

If the accuracy checks in Refinements 1 and 2 above are both satisfied for all desired values of

t, then we are done. If not, then there are problems in the basic method and we have to consider

further refinements. To identify which refinement will help, the best thing to do is to look at the

decay rate of |qn| with n. This is easy to do since the values of qn are already stored as part of the
basic algorithm. There are two scenarios:

Scenario 1: |qn| either does not decay with n or decays too slowly and remains much above 10−8

even at n = 100.

Scenario 2: |qn| decays rapidly and is around or less than 10−8 by n = 100.
Under Scenario 1 we try Refinements 3, 4 and 5 below in turn; under Scenario 2 we try Refine-

ment 6.

Refinement 3: (first refinement to consider under Scenario 1): Increase n0 to 200 or 400 and see if

|qn0 | falls below 10−8. If yes, then perform accuracy checks as in refinements 1 and 2. If the checks
are satisfied, then we are done. If any of the above is negative, go to Refinement 4.

Refinement 4: (second refinement to consider under Scenario 1): Assume that the problem is due

to the presence of singularities of f̂(s) on the imaginary axis or at infinity. (In some cases the user

may know this and come directly to this step.) Redo the algorithm with successive higher values

of σ. For example, it is natural to consider geometrically increasing values, such as 0.1, 0.2, 0.4,

0.8, . . . etc. See if there exists some critical σ above which |qk| starts decaying fast. If yes, then use
some suitable σ above this critical value and redo the basic algorithm with refinements 1 and 2. If

no, then go to refinement 5.

Refinement 5: (third refinement under Scenario 1): Assume that the difficulty is due to a singular-

ity of f̂(s) at s = −∞ as in Section 2. Use the scaling parameter b = 10 and the ε-algorithm as in
Sections 4–6. If this is indeed the difficulty, then it should be possible to obtain high accuracy, as

demonstrated in Section 5.

Refinement 6: (Refinement under Scenario 2). In Scenario 2 the decay rate of |qn| with n is fast
and so the algorithm should not have any difficulty for small values of t. So the difficulty here

should only be for large values of t and be caused due to large relative errors in computing qn when

it is very small but still contributes significantly in the expression (2) or (27). As explained in

Sections 7 and 8, high accuracy is attainable using the scaling in (75). In this setting, improvement

can usually be obtained by extrapolation exploiting the geometric rate as in (82).

We conclude by summarizing the controls that can be used with the refined Laguerre algorithm
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in Table 6.

10. Conclusions

In this paper we have investigated the Laguerre method for numerically inverting Laplace trans-

forms. We have obtained new insight into when the Laguerre method performs well and when it has

difficulties. Using the six refinements described in Section 9, it is possible to treat a significantly

larger class of problems via the Laguerre method than was possible before.

Given our previous experience with the Fourier-series method, it is natural to compare the

Laguerre method to the Fourier-series method. We noted at the outset that the Fourier-series

method and Laguerre method proceed in a similar way. However, there are significant differences.

First, in order to control the aliasing error in approximating f(t) by fp(t) in the Fourier-series

method, we focus on a single value of t for each calculation. In contrast, the Laguerre method is

more likely to yield one function that is a good approximation for a large set of t. However, this

capability is a mixed blessing, because if f(t) is badly behaved at just one value of t, then the

Laguerre method has difficulties at all values of t. As a simple example, the distribution of the

steady-state waiting time in a stable queueing system usually has an atom at the origin, which

causes large errors in the Laguerre method unless the atom is explicitly taken out. This can be

a nuisance since it is often not easy to identify this atom for non-Poisson arrival processes. In

contrast, the atom has negligible effect on the accuracy of the Fourier-series method, so that there

is no need to take it out. Moreover, even if f(t) is differentiable everywhere, but its derivative has

a discontinuity at the origin, then the Laguerre method has difficulty, whereas the Fourier-series

method does not. Nevertheless, the Laguerre method can perform much better for smooth functions

when function values are sought for a large number of time points.

Another difficulty with the Laguerre method is that the Laguerre coefficients are not expressed

directly in terms of Laplace transform values. Instead, the Laguerre generating function is connected

to the Laplace transform via the nonlinear function T in (9). We showed that this causes the

Laguerre method to have difficulties for some functions. We have shown that it is possible to

resolve many of the difficulties that arise with the Laguerre method, but the remedies make the

Laguerre algorithm more complicated. Overall, our experience indicates that the Fourier-series

method tends to be more robust, i.e., provides satisfactory accuracy without special tuning for a

wider class of functions. However, for well-behaved functions, the Laguerre method can be more

efficient, especially when many function values are required.

27



control default source of
control parameter values more information

truncation point n0 100 (2) in Section 0
or smallest n
with |qn| < 10−8

aliasing error r (0.1)4/ln (27) in Section 1
in LATTICE-POISSON for qn

roundoff error
in LATTICE-POISSON l 1 (25) in Section 1

exponential damping
scale parameter σ 0 Section 4

time scale parameter b 1 Sections 4 and 5

ε-algorithm use not use Section 3

scaling of Laguerre
generating function use not use Section 7
Q(z) to achieve low
relative error in qn

extrapolation
exploiting geometric use not use Section 8
rate of convergence

Table 6. A summary of the controls that can be used with the refined Laguerre algorithm.
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Mathématiques 4, 5–56 and 377–416.

19. B. Davies and B. L. Martin, 1979. Numerical inversion of the Laplace transform: A survey

and comparison of methods, J. Comp. Phys. 33, 1–32.

20. G. Doetsch, 1974. Introduction to the Theory and Application of the Laplace Transformation,

Springer-Verlag, New York.

21. D. G. Duffy, 1993. On the numerical inversion of Laplace transforms: comparison of three

new methods on characteristic problems from applications, ACM Trans. Math. Software 19,

333–359.

22. B. S. Garbow, G. Giunta, J. N. Lyness and A. Murli, 1988. Software for an imple-

mentation of Weeks’ method for the inverse Laplace transform problem, ACM Trans. Math.

Software 14, 163–170.

23. B. S. Garbow, G. Giunta, J. N. Lyness and A. Murli, 1988. Algorithm 662: A FOR-

TRAN software package for numerical inversion of the Laplace transform based on Weeks’

method, ACM Trans. Math. Software 14, 171–176.

24. P. Henrici, 1977. Applied and Computational Complex Analysis, vol. 2, Wiley, New York.

30



25. E. Hille, 1962. Analytic Function Theory, Vol. 2, Ginn, Boston.

26. W. Kaplan, 1962. Operational Methods, Addison, Reading.

27. J. Keilson and W. R. Nunn, 1979. Laguerre transformation as a tool for the numerical

solution of integral equations of convolution type, Appl. Math. Comput. 5, 313–359.

28. J. Keilson, W. R. Nunn and U. Sumita, 1981. The bilateral Laguerre transform, Appl.

Math. Comput. 8, 137–174.

29. J. Keilson and U. Sumita, 1982. Waiting time distribution response to traffic surges via the

Laguerre transform, Applied Probability – Computer Science: The Interface, ed. R. L. Disney
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