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MINIMIZING THE MAXIMUM EXPECTED WAITING

TIME IN A PERIODIC SINGLE-SERVER QUEUE WITH A

SERVICE-RATE CONTROL

By Ni Ma∗, and Ward Whitt∗

We consider a single-server queue with unlimited waiting space,
the FCFS discipline, a periodic arrival-rate function and i.i.d. ser-
vice requirements, where the service-rate function is subject to con-
trol. We previously showed that a rate-matching control, where the
service rate is made proportional to the arrival rate, stabilizes the
queue length process, but not the (virtual) waiting time process. In
order to minimize the maximum expected waiting time (and stabi-
lize the expected waiting time), we now consider a modification of
the service-rate control involving two parameters: a time lag and a
damping factor. We develop an efficient simulation search algorithm
to find the best time lag and damping factor. That simulation algo-
rithm is an extension of our recent rare-event simulation algorithm
for the GIt/GI/1 queue to the GIt/GIt/1 queue, allowing the time-
varying service rate. To gain insight into these controls, we establish a
heavy-traffic limit with periodicity in the fluid scale. That produces a
diffusion control problem for the stabilization, which we solve numer-
ically by the simulation search in the scaled family of systems with
ρ ↑ 1. The state space collapse in that theorem shows that there is
a time-varying Little’s law in heavy-traffic, implying that the queue
length and waiting time cannot be simultaneously stabilized in this
limit. We conduct simulation experiments showing that the new con-
trol is effective for stabilizing the expected waiting time for a wide
range of model parameters, but we also show that it cannot stabilize
the expected waiting time perfectly.

1. Introduction. In this paper we address an open problem fromWhitt
[31], which considered the problem of stabilizing performance over time in a
single-server queue with unlimited waiting space, the first-come first-served
(FCFS) discipline and a time-varying arrival-rate function. The stabilization
is to be achieved with a deterministic service-rate function, under the as-
sumption that the customer service requirements are specified independently
of the service-rate control.

There is a large literature on setting staffing levels (the number of servers)
in a multi-server queue to stabilize performance in face of time-varying de-
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mand, e.g., [8, 13, 19, 26]. For a single-server queue, the direct analog would
be turning on and off the server, which has received considerable attention
in the stationary setting, starting with [33, 14]. As indicated in [31], control-
ling the service rate to meet time-varying demand is analogous to Kleinrock’s
classic service-capacity-allocation problem in a stationary Markovian Jack-
son network [17]; we allocate service capacity over time instead over space
(different queues within the network).

As explained in §1 of [31], variants of this service rate control are per-
formed in response to time-varying demand, in many service operations,
such as hospital surgery rooms and airport inspection lines, but little is
known about the ideal timing and extent of service rate changes. Service-
rate controls for single-server queues are also of current interest within more
complex systems, such as in energy-efficient data centers in cloud computing
[18] and in business process management [28].

Given that the service requirements are specified independently, the ac-
tual service times resulting from a time-varying control are relatively com-
plicated, but a construction is given in §3.1 of [31]. In [31], several controls
were considered, but most attention was given to the rate-matching control,
which chooses the service rate to be proportional to the arrival rate; i.e., for
a given target traffic intensity ρ, the service-rate function is

(1.1) µ(t) ≡ λ(t)/ρ, t ≥ 0,

with ≡ denoting equality by definition. In [31], Theorem 4.2 shows that
the rate-matching control stabilizes the queue-length process; Theorem 5.1
gives an expression for the waiting-time with the rate matching control,
while Theorems 5.2 and 5.3 establish heavy-traffic limits showing that the
queue-length is asymptotically stable, but the waiting time is not, being
asymptotically inversely proportional to the arrival-rate function.

1.1. The Open Problem: Stabilizing the Waiting Time. The open prob-
lem from [31] is developing a service-rate control that can stabilize the ex-
pected waiting time. (We only discuss the continuous-time virtual waiting
time process in this paper, which is the waiting time of a potential or hypo-
thetical customer if it were to arrive at that time, and so omit “virtual.”)
Toward that end, we now study a modification of the rate-matching control.
Without loss of generality, we write the periodic arrival-rate function as

(1.2) λ(t) ≡ ρ(1 + s(t)), t ≥ 0,

where 0 < ρ < 1 and s is a periodic function with period c satisfying

(1.3) s̄ ≡ 1

c

∫ c

0
s(u) du ≡ 0.
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As a regularity condition, we require that

(1.4) sL ≤ s(t) ≤ sU for all t with − 1 < sL ≤ 0 ≤ sU <∞.

Our numerical examples will be for a sinusoidal function, where s(t) =
β sin(γt) for s(t) in (1.2), so that

(1.5) λ(t) ≡ ρ(1 + β sin (γt)), t ≥ 0,

so that β is the relative amplitude, with 0 ≤ β < 1, and the period is
c = 2π/γ.

In the periodic setting of (1.2)-(1.4), we consider the rate-matching control
in (1.1) modified by a time lag η and damping factor ξ; in particular,

(1.6) µ(t) ≡ 1 + ξs(t− η)), t ≥ 0,

for 0 < ξ ≤ 1 and η > 0. Thus, the average arrival rate and service rate
are λ̄ = ρ and µ̄ = 1, so that the long-run traffic intensity is ρ̄ ≡ λ̄/µ̄ = ρ.
However, the instantaneous traffic intensity ρ(t) ≡ λ(t)/µ(t) can satisfy
ρ(t) > 1 for some t in each periodic cycle if β > (1− ρ)/ρ.

1.2. Formulation of Optimal Control Problems. Because it is directly
of interest, and because we want to allow for imperfect stabilization, we
formulate our control problem as minimizing the maximum expected waiting
time over a periodic cycle [0, c]. We formulate the main optimization problem
as a min-max problem, i.e.,

(1.7) w∗ ≡ min
µ(t)∈M(1)

max
0≤y≤1

{E[Wy]},

where E[Wy] is the expected (periodic) steady-state (virtual) waiting time
starting at time yc within a cycle of length c, 0 ≤ y < c, and M(m) is the
set of all periodic service-rate functions with average rate m, which we take
to be m ≡ 1. We have not yet solved this general optimization problem.
Here are open problems, applying to the Markovian Mt/Mt/1 model and
generalizations:

1. For the general periodic problem, what is the solution (value of w∗ and
set of optimal service-rate functions µ∗(t) as a function of the model)?

2. For the sinusoidal special case in (1.5), what is the solution?
3. To what extent do the optimal solutions stabilize the expected waiting

time E[Wy] over time? In particular, is it possible to stabilize E[Wy]
perfectly?
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In this paper, we only consider the restricted set of controls in (1.6). Now
our goal is

(1.8) w∗(η, ξ) ≡ min
η,ξ

max
0≤y≤1

{E[Wy]}.

For practical purposes, this two-parameter control is appealing for its sim-
plicity. We also find that it is quite effective, even though it cannot stabilize
E[Wy] perfectly.

We also consider the associated stabilization control, where (1.8) is re-
placed by

(1.9) w∗
stab(η, ξ) ≡ min

η,ξ
{ max
0≤y≤1

{E[Wy]} − min
0≤y≤1

{E[Wy]}}.

In our examples, we find that the solutions to (1.8) and (1.9) are the same
(but we have no proof), but neither stabilizes perfectly.

1.3. The Primary Tool: A Simulation Search Algorithm. Our primary
tool for finding good (η, ξ) controls is a simulation search algorithm. For that
purpose, we extend the rare-event simulation algorithm for the time-varying
workload process in the periodic GIt/GI/1 model in [21] to the GIt/GIt/1
model, where the service rate is time-varying as well. (The notation GIt
means that the process is a deterministic time transformation of a renewal
process; see §2.) The workload L(t) represents the amount of work in service
time in the system at time t, while the waiting time can be represented as
the first-passage time

(1.10) W (t) = inf {u ≥ 0 :

∫ t+u

t
µ(s) ds = L(t)}.

The waiting time W (t) coincides with the workload L(t) when µ(t) = 1 for
all t, but not otherwise.

As in [21], the rare-event simulation algorithm calculates the periodic
steady-state workload Ly and waiting time Wy, starting at time yc within
a cycle of length c, 0 ≤ y < 1. We employ a search over the parameters
(η, ξ), as discussed in §3, in order to solve the optimization problems (1.8)
and (1.9). The search part is relatively elementary because we have only two
control parameters. For background on simulation optimization, see [10, 16]
and the references there.

The computational complexity for one control vector (η, ξ) is essentially
the same as in [21]. In particular, the program running time tends to be
proportional to the number of replications and number of y values, which
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for the case ρ = 0.8 in Figure 1 were taken to be 40,000 and 40, respectively.
That required about 100 minutes on a desktop computer. As indicated in
§4.7 of [21], the run time tends to be of order (1 − ρ)−1, so that the cases
with high traffic intensity are more challenging. The simulation search is
performed in stages, with fewer y values and replications in the early stages,
but the full long run at the end to confirm performance.

1.4. Simulation Examples for the Mt/Mt/1 Model. To illustrate the ef-
fectiveness of our new algorithm, we show results for two simulation ex-
amples. We consider the Markovian Mt/Mt/1 model with the sinusoidal
arrival rate function in (1.2)-(1.5). The first example has model parameters
(ρ, β, γ) = (0.8, 0.2, 0.1), so that the average arrival rate is ρ̄ = 0.8, the aver-
age service time is 1 and the cycle length is c = 2π/γ = 62.8. Figure 1 (left)
shows the steady-state waiting time E[Wy] together with the corresponding
expected workload E[Ly] and the product λ(y)E[Wy], all for 0 ≤ y < 1. The
second example on the right differs only by increasing ρ from 0.8 to 0.95.
(The case ρ = 0.9 is shown in Figure 5 (right) in §7.) Figure 1 also shows
the upper and lower 95% confidence-interval bounds for E[Ly] and E[Wy]
with black dashed lines, but these can only be seen by zooming in.
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Fig 1. Estimates of the periodic steady-state values of E[Wy] (blue solid line), E[Ly ]
(red dashed line) and λ(y)E[Wy] (green dotted line) for the optimal control (η∗, ξ∗) for the
sinusoidal example with parameter triples (ρ, β, γ) = (0.8, 0.2, 0.1) (left) and (0.95, 0.2, 0.1)
(right), so that the cycle length is c = 2π/γ = 62.8. The optimal controls are (5.84, 0.84)
for ρ = 0.8 and (15.1, 2.13) for ρ = 0.95.

Figure 1 shows that the expected waiting time E[Wy] is well stabilized
at a value somewhat higher than the expected steady-state waiting time for
the stationary M/M/1 model, which is ρ/(1 − ρ) (4 on the left and 19 on
the right). The maximum deviation (maximum - minimum) over a cycle is
0.0335 is for ρ = 0.8 and 0.4653 for ρ = 0.95. Thus the maximum relative
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errors are about 0.8% for ρ = 0.8 and 2.2% for ρ = 0.95, clearly adequate
for practical applications. Nevertheless, careful simulations and statistical
analysis allow us to conclude that it is impossible to stabilize the expected
waiting time perfectly with this control. To see the contrasting view with
the rate-matching control for this same model, see Figure 5 (left) in §7 or
Figure 6 of [31].

Remark 1.1. (the cost of periodicity) The difference between the stable
average waiting time in Figure 1 and the value ρ/(1 − ρ) for the stationary
model (4 on the left and 19 on the right) might be called “the average cost
of periodicity,” but we point out that the overall average waiting time with
a service-rate control could be much less than in the stationary model. See
Example 10.1.

Remark 1.2. (the single-parameter alternative) It is natural to wonder
if we could use only the single control parameter η, fixing ξ = 1. If we let
ξ = 1 and optimize over η in the setting of Figure 1, then for ρ = 0.8
(ρ = 0.95) we get η∗ = 5.93 (η∗ = 28.3)and a maximum deviation of 0.4109
(3.034), which yields about 10% (14%) relative error instead of 0.8% (2.2%).
(Figure 7 in §7 shows the analog of Figure 1.) Hence, we use the two control
parameters.

1.5. Gaining Additional Insight: Heavy-Traffic Limits. To better under-
stand how the control parameters and performance depends on the model
parameters, we establish heavy-traffic (HT) limits, which involve considering
a family of models indexed by ρ and letting ρ ↑ 1, drawing on our previ-
ous work in [30, 31, 21]. That previous work shows that the scaling is very
important, because there are several possibilities. We use the conventional
HT scaling of time by (1− ρ)−2 (usually denoted by n) and space by 1− ρ
(usually denoted by 1/

√
n), as in Chapters 5 and 9 of [29], but if we do so

without also scaling the arrival-rate function, then the HT limit is easily seen
to be the same as if the periodicity were replaced by the constant long-run
average, as shown by Falin [7].

To obtain insight into the periodic dynamics, it is thus important to also
scale the arrival-rate function. However, the papers [30] and [31] actually use
two different HT scalings of the arrival-rate function. Our main HT scaling
in §4 follows [31] and has periodicity in fluid scale, i.e.,

(1.11) λρ(t) ≡ ρ(1 + s((1− ρ)2t), t ≥ 0,

but in §8 we also consider the scaling from [30] and [21], which has the
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periodicity in diffusion scale, i.e.,

(1.12) λρ(t) ≡ ρ(1 + (1− ρ)s((1− ρ)2t), t ≥ 0.

The extent of the periodicity is stronger in (1.11) than in (1.12). The
workload and the waiting time have the same HT limit with the diffusion-
scale scaling in (1.12), but different limits with the fluid-scale scaling in
(1.11). To capture the clear differences shown in Figure 1, we obviously want
the stronger fluid scaling in (1.11). The HT functional central limit theorem
(FCLT) in Theorem 4.2 for the scaling in (1.11) in §4 helps interpret Figure
1.

It is important to note that if we have constant service rate with this
scaling, then the waiting times explode as ρ ↑ 1, because the instantaneous
traffic intensity ρ(t) ≡ λ(t) > 1 over intervals growing as ρ ↑ 1; this case is
analyzed in [6]. We also establish a HT functional weak law of large numbers
(FWLLN) in Theorem 4.1, but it is not very useful, because it shows that
our proposed control with ξ = 1 stabilizes the waiting time perfectly for all
η as ρ ↑ 1 (But it helps to see that nothing bad happens.)

1.6. Organization of the Paper. We elaborate on the model and key pro-
cesses representing the workload and the waiting time in §2. We discuss the
extension of the rare-event simulation algorithm from [21] to our setting and
its application to perform simulation search in §3. In both §2 and §3 we will
be brief because we can draw upon [31] and [21]. We establish heavy-traffic
limits in the diffusion scaling in (1.11) in §4. We give simulation examples
in that setting in §5. We present the proof of the main heavy-traffic limit,
Theorem 4.2, in §6. We provide results of additional simulation experiments
in §7. We establish heavy-traffic limits in the diffusion scaling in (1.12) in §8
and we give simulation examples in that setting in §9. We draw conclusions
in §10.

2. The Model. In this section we specify the general model, defining
the arrival process in §2.1 and the basic queueing stochastic processes in
§2.2. We specialize to the periodic Gt/Gt/1 model in §2.3. We show that the
workload is stabilized by the rate-matching control in (1.1), extending the
results for the queue-length process in [31].

2.1. The Arrival Process. We represent the periodic arrival counting pro-
cess A as a deterministic time transformation of an underlying rate-1 count-
ing process N by

(2.1) A(t) ≡ N(Λ(t)), where Λ(t) ≡
∫ t

0
λ(s) ds, t ≥ 0.
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where λ is the arrival-rate function. This is a common representation when
N is a rate-1 Poisson process; then A is a nonhomogeneous Poisson process
(NHPP). For the Gt/Gt/1 model, N is understood to be a rate-1 stationary
point process. Hence, for the GIt/GIt/1 model, N is an equilibrium renewal
process with time between renewals having mean 1, for which the first inter-
renewal time has the equilibrium distribution. The representation in (2.1)
has been used frequently for processes N more general than NHPP’s, an
early source being by [22].

For the sinusoidal arrival-rate function in (1.5), the associated cumulative
arrival-rate function is

(2.2) Λ(t) = ρ(t+ (β/γ)(1 − cos (γt)), t ≥ 0.

We only consider the case ρ < 1, under which a proper steady-state exists
under regularity conditions (which we do not discuss here). Behavior differs
for short cycles and long cycles. For the case of a constant service rate, there
are two important cases for the relative amplitude: (i) 0 < β < ρ−1 − 1 and
(ii) ρ−1 − 1 ≤ β ≤ 1. In the first case, we have ρ(t) < 1 for all t, where
ρ(t) ≡ λ(t) is the instantaneous traffic intensity, but in the second case we
have intervals with ρ(t) ≥ 1, where significant congestion can build up. If
there is a long cycle as well, the system may be better understood from fluid
and diffusion limits, as in [6]. However, that difficulty can be avoided by a
service-rate control.

2.2. The General Gt/Gt/1 Model with a Service-Rate Control. We con-
sider a modification of the standard single-server queue with unlimited wait-
ing space where customers are served in order of arrival. Let {Vk} be the
sequence of service requirements. As in [31], we separately define the rate at
which service is performed from the service requirement. Given the arrival
counting process A(t) defined in §2.1, let the total input of work over the
interval [0, t] be the random sum

(2.3) Y (t) ≡
A(t)
∑

k=1

Vk, t ≥ 0.

Let service be performed at time t at rate µ(t) whenever there is work to
perform. Paralleling the cumulative arrival rate Λ(t) defined in (2.1), let the
cumulative available service rate be

(2.4) M(t) ≡
∫ t

0
µ(s) ds, t ≥ 0.
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Let the net-input process of work be X(t) ≡ Y (t) −M(t), t ≥ 0. Then we
can apply the reflection map to the net input process X(t) to represent the
workload (the remaining work in service time) at time t, starting empty at
time 0, as

L(t) = X(t)−inf {X(s) : 0 ≤ s ≤ t} = sup {X(t) −X(s) : 0 ≤ s ≤ t}, t ≥ 0.

In this setting it is elementary that the continuous-time waiting time at
time t, which we denote by W (t), can be related to L(t).

Lemma 2.1. (waiting time representation) The waiting time at time t
can be represented as

(2.5) W (t) =M−1
t (L(t)), t ≥ 0,

where M−1
t is the inverse of Mt(u) ≡M(t+ u)−M(t) for M(t) in (2.4).

Proof. By definition,

W (t) = inf {u ≥ 0 :

∫ t+u

t
µ(s) ds = L(t)}

= inf {u ≥ 0 :M(t+ u)−M(t) = L(t)} =M−1
t (L(t)),(2.6)

for Mt(u) above, as claimed in (2.5).

2.3. The Periodic Gt/Gt/1 Model. As in [21], we consider the periodic
steady state of the periodic Gt/Gt/1 model with arrival-rate function in
(1.2). For that purpose, we exploit the arrival process construction in (2.1) in
terms of the stationary processes N ≡ {N(t) : t ≥ 0} and V ≡ {Vk : k ≥ 1}
in (2.1). Let the associated service-rate function µ(t) also be periodic with
cycle length c, with average service rate be µ̄ = 1, and bounds 0 < µL ≤
µ(t) ≤ µU <∞, for 0 ≤ t ≤ c.

As in [21] and earlier in [20] and Chapter 6 in [25], We now convert the
standard representation of the workload process in §2 to a simple supremum
by using a reverse-time construction. To do so, we extend the stationary
processes {N(t)} and {Vk} to the entire real line. We regard the periodic
arrival-rate and service-rate as defined on the entire real line as well, with
the functions fixed by their position within the periodic cycle at time 0.
With those conditions, the reverse-time construction is achieved by letting
the interarrival times and service times be ordered in reverse time going
backwards from time 0. Then Ã(t) counts the number of arrivals in [−t, 0],
Ỹ (t) is the total input in [−t, 0] and X̃(t) is the net input in [−t, 0], for
t ≥ 0.



10 N. MA AND W. WHITT

To exploit the reverse-time representation, let

(2.7) Λ̃y(t) ≡ Λ(yc)− Λ(yc− t), t ≥ 0,

be the reverse-time cumulative arrival-rate function starting at time yc
within the periodic cycle [0, c], 0 ≤ y < 1, and Λ̃−1

y is its inverse function,

which is well defined because Λ̃y(t) is continuous and strictly increasing.
As an analog of (2.7) for the cumulative service rate, let

(2.8) M̃y(t) ≡M(yc) −M(yc− t), t ≥ 0,

We let the service requirements Vk come from a general stationary sequence
with E[Vk] = 1.

With this reverse-time representation, the workload at time yc in the
system starting empty at time yc− t can be represented as

Ly(t) = sup
0≤s≤t

{X̃y(s)}

d
= sup

0≤s≤t

{

N(Λ̃y(s))
∑

k=1

Vk − M̃y(s)
}

= sup
0≤s≤Λ̃y(t)

{

N(s)
∑

k=1

Vk − M̃y(Λ̃
−1
y (s))

}

,(2.9)

where X̃y is the reverse-time net input of work starting at time yc within
the cycle of length c. The other quantities in (2.9) are the reverse-time
cumulative arrival-rate function Λ̃y(t) in (2.7) with inverse Λ̃−1

y (t) and the

reverse-time cumulative service-rate function M̃y in (2.8) with inverse M̃−1
y .

The equality in distribution in (2.9) holds because N is a stationary point
process, which is a point process with stationary increments and a constant
rate.

As t→ ∞, Ly(t) ↑ Ly(∞) ≡ Ly w.p.1 as t→ ∞, for

(2.10) Ly
d
= sup

s≥0

{

N(s)
∑

k=1

Vk − M̃y(Λ̃
−1(s))

}

, 0 ≤ y < 1.

Even though (2.9) is valid for all t, we think of the system starting empty
at times −kc, for k ≥ 1, so that we let yc − t = −kc or, equivalently, we
stipulate that t = c(k+y), 0 ≤ y < c, and consider successive values of k and
let k → ∞ to get (2.10). That makes (2.9) valid to describe the distribution
of L(c(k + y)) for all k ≥ 1.

We now observe that the time transformation in (2.9) shows that the peri-
odic Gt/Gt/1 model is actually equivalent to a G/Gt/1 model with a station-
ary arrival process and a new cumulative service rate function M̃y(Λ̃

−1
y (t)).
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Corollary 2.1. (conversion of Gt/Gt/1 to an equivalent Gt/G/1) In
addition to representing the periodic steady-state workload Ly in a periodic
Gt/Gt/1 model as a periodic steady-state workload in a periodic G/Gt/1
model, which has a stationary stochastic input and a deterministic service
rate, as shown in (2.10) above, we can represent it as a periodic steady-state
workload in a periodic Gt/G/1 model, which has a periodic stochastic input
and a constant service rate, via

Ly = sup {
N(Λ̃(M̃−1(s)))

∑

k=1

Vk − s : s ≥ 0}.(2.11)

Corollary 2.2. (the associated periodic steady-state waiting time) The
periodic steady-state waiting time associated with the periodic steady-state
workload in (2.10) is

Wy = M̃−1
y (Ly), 0 ≤ y < 1.(2.12)

Proof. Apply the reasoning of Lemma 2.1.
In [31] we showed that the rate-matching service-rate control in (1.1) sta-

bilizes the queue-length process. Now we establish the corresponding result
for the workload.

Theorem 2.1. (stabilizing the periodic workload) If the rate-matching

control in (1.1) is used, then Ly
d
= L for Ly in (2.10), where L is the steady-

state workload in the associated (stable) stationary G/G/1 model, i.e.,

(2.13) L
d
= sup

s≥0

{

N(s)
∑

k=1

Vk − ρ−1s
}

,

which is independent of y.

Proof. With the rate matching control, we haveM(t) = cΛ(t) and M̃y(t) =
cΛ̃y(t), t ≥ 0. As a consequence, M̃y(Λ̃

−1
y (t) = ct, t ≥ 0, so that

Ly
d
= sup

s≥0

{

N(s)
∑

k=1

Vk − M̃y(Λ̃
−1
y (s)

}

d
= sup

s≥0

{

N(s)
∑

k=1

Vk − cs
}

d
= L.(2.14)
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3. The Simulation Search Algorithm. The rare-event simulation
algorithm from [21] exploits the classic rare-event simulation algorithm for
the GI/GI/1 queue, exploiting importance sampling using an exponential
change of measure, as in Ch. XIII of [1] and Ch. VI of [2]. Hence our simu-
lation algorithm applies to the GIt/GIt/1 queue. It was shown in [21] that
the algorithm is effective for estimating the mean as well as small tail prob-
abilities.

3.1. The GIt/GIt/1 Model. In the GIt/GIt/1 setting, the underlying
rate-1 process N is an equilibrium renewal process, which means that U1 has
the stationary-excess or equilibrium distribution Ue, which may be different
from the i.i.d. distributions of Uk, k ≥ 2, in (2.9). Also in the GIt/GIt/1
setting, the service times Vk’s are i.i.d. with distribution V , and are inde-
pendent of the arrival process.

The simulation algorithm exploits the discrete-time representation of the
workload Ly in (2.10) and the waiting time Wy, i.e.,

Ly
d
= sup

s≥0

{

N(s)
∑

k=1

Vk − M̃y(Λ̃
−1(s))

}

d
= sup

n≥0

{

n
∑

k=1

Vk − M̃y(Λ̃
−1(

n
∑

k=1

Uk))
}

,

Wy
d
= M−1

y (Ly), 0 ≤ y < 1.(3.1)

where My is the same as Mt, which is the forward integral of the service
rate starting from position y within a cycle.

We refer to [21] for background. In that setting, we use the underly-
ing measure Pθ∗ determined for GI/GI/1 queue. We again use the same
notations Xk(ρ) = Vk − ρ−1Uk and partial sum process Sn ≡ ∑n

k=1Xk for
GI/GI/1 and define the new associated processQn ≡

∑n
k=1 Vk−M̃y(Λ̃

−1
y (

∑n
k=1 Uk)),

which is the process inside the supremum function. Then the estimator of
the rare-event probability for Wy can be derived as below:

P (Wy > b) = P (M−1
y (Ly) > b) = P (Ly > My(b))

= P (τQMy(b)
<∞) = Eθ∗ [LτQ

My(b)
(θ∗)]

= Eθ∗ [mX1(θ
∗)mX(θ∗)

(τQ
My (b)

−1)
e
−θ∗S

τ
Q
My(b) ]

= mX1(θ
∗)Eθ∗ [e

θ∗S
τ
Q
My(b) ].(3.2)
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Again the first X1(ρ) in the partial sum S
τQ
My(b)

has a different distribution

from {Xk, k ≥ 2}.

3.2. The Extended Algorithm for the GIt/GIt/1 Model. Here is a sum-
mary of the extended algorithm to estimate the tail probabilities in the
GIt/GIt/1 queue with average service rate 1 and average arrival rate ρ:

1. Construct a table of the inverse cumulative arrival-rate function ρΛ̃−1
y

(same as for GIt/GI/1).
2. Determine the required length of partial sums (ns) needed in each

application (same as for GIt/GI/1).
3. For each replication, we generate the required vectors of exponentially

tilted interarrival times ρ−1Ũ and service times Ṽ from F−θ∗

ρ−1U
and F θ∗

V

respectively (same as for GIt/GI/1).
4. Calculate the associated vectors of Sn andQn and find out the stopping

time τQMy(b)
, which is the hitting time of Qn at level My(b). This step

is different from for GIt/GI/1 in that first we need to calculate My(b)
as the hitting level instead of b and second we calculate vector Qn

different from Rn in an additional function M̃y in the second term.
5. Use the above estimator to calculate the tail probability P (Wy > b)

for each replication (same as for GIt/GI/1).
6. Run N i.i.d. replications and calculate the mean of the estimated val-

ues of P (Wy > b) (same as for GIt/GI/1).

3.3. Explicit representations for the Sinusoidal Case. Here we summa-
rize the expressions for all the basic deterministic rate functions in our si-
nusoidal examples, extending (1.5), (1.6) and (2.2):

Λ̃y(t) = ρ(t+
β

γ
(cos(γ(t− yc)) − cos(γyc)))

M(t) = t− ξ
β

γ
(cos(γ(t− η))− cos(γη))

My(t) = t− ξ
β

γ
(cos(γ(t+ yc− η)) − cos(γ(yc− η)))

M̃y(t) = t+ ξ
β

γ
(cos(γ(t+ η − yc))− cos(γ(η − yc))).(3.3)

3.4. The Search Algorithm. We use an elementary iterative search algo-
rithm, fixing an initial value of η at the mean for the steady-state model,
ρ/(1−ρ), and searching first over ξ and then over each variable until we get
negligible improvement. That simple approach is substantiated by estimat-
ing the structure of the objective function. Figure 2 illustrates by showing the
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maximum waiting time max0≤y≤c {E[Wy ]} in the setting of Figure 1 (left).
Figure 2 shows estimates of the maximum waiting time max0≤y≤c {E[Wy]}
as a function of (η, ξ) in [0, 20] × [0, 5] (left) [3, 9] × [0.6, 1.0] (right) in that
setting. Figure 2 shows that the function is not convex as a function of
η, but suggests that it is unimodal with a unique global minimum, sup-
porting our simple procedure. Similar plots for the maximum deviation
max0≤y≤c {E[Wy]} −max0≤y≤c {E[Wy ]} are shown in Figure 4 in §7.
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Fig 2. Three-dimensional plots of estimates of the maximum waiting time
max0≤y≤c {E[Wy]} for (η, ξ) in [0, 20]× [0, 5] (left) [3, 9]× [0.6, 1.0] (right).

We perform the search with fewer points y and replications in the initial
stages, and then confirm with more points, 40 values of y and 40, 000 repli-
cations, which yields excellent statistical precision, as can be seen from the
narrow confidence interval bands in Figure 1.

4. Supporting Heavy-Traffic Limits for Periodic Queues. In this
section we obtain a heavy-traffic (HT) functional weak law of large numbers
(FWLLN) and a HT functional central limit theorem (FCLT) for the peri-
odic Gt/Gt/1 model with a general service-rate control of the form in (1.6).
The HT FCLT produces a limit depending on an asymptotic time lag η∗

and damping factor ξ∗, which arise from HT limits; see condition (4.26) in
Theorem 4.2 and the conclusion in (4.18). Thus we reduce the optimization
problems over the parameter pairs (ηρ, ξρ) in (1.8) and (1.9), asymptotically
as ρ ↑ 1, to diffusion control problems with the parameter pairs (η∗, ξ∗).

4.1. The Underlying Rate-1 Processes. As in much of the HT literature,
we start by introducing basic rate-1 stochastic processes, but here we con-
sider service requirements instead of service times. We assume that the rate-1
arrival and service-requirements processes N and V specified in §2 are in-
dependent and each satisfies a FCLT. To state the result, let N̂a

n and Ŝv
n be
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the scaled processes defined by
(4.1)

N̂a
n(t) ≡ n−1/2[Na(nt)− nt] and Ŝv

n(t) ≡ n−1/2[

⌊nt⌋
∑

i=1

Vk − nt], t ≥ 0,

with ≡ denoting equality in distribution and ⌊x⌋ denoting the greatest in-
teger less than or equal to x. We assume that

(4.2) N̂a
n ⇒ caBa and Ŝv

n ⇒ csBs in D as n→ ∞,

where D is the usual function space of right-continuous real-valued functions
on [0,∞) with left limits and ⇒ denotes convergence in distribution, as
in [29], while Ba and Bs are independent standard (mean 0, variance 1)
Brownian motion processes (BM’s). The assumed independence implies joint
convergence in (4.2) by Theorem 11.4.4 of [29].

We emphasize that GI assumptions are not needed, but that is an impor-
tant special case. If the service times Vk are i.i.d. mean-1 random variables
with variance, also the squared coefficient of variation (scv), c2s, then the
limit in (4.2) holds with service variability parameter cs. Similarly, if the
base arrival process is a renewal process or an equilibrium renewal process
with times between renewals having mean 1 and variance (and scv) c2a, then
the limit in (4.2) holds with arrival variability parameter ca. (See [23] for
theoretical support in the case of an equilibrium renewal process.)

For the queueing HT FCLT, we will apply Theorem 9.3.4 of [29], which
refers to the conditions of Theorem 9.3.3. Those conditions require a joint
FCLT for the partial sums of the arrival and service processes, notably (3.9)
on p. 295. That convergence follows from the FCLT’s we assumed for N̂a

n

and Ŝv
n in (4.2) above. In particular, the assumed FCLT for Na

n implies the
associated FCLT for the partial sums of the interarrival times by Theorem
7.3.2 and Corollary 7.3.1 of [29].

4.2. A Family of Models. As a basis for the HT FCLT, we create a model
for each ρ, 0 < ρ < 1. We do so by defining the arrival-rate and service-rate
functions.

4.2.1. The Arrival-Rate and Service-Rate Functions.. Let the arrival-
rate function in model ρ be as in (1.11) in the setting of (1.2)-(1.4). As
a further regularity condition, we also require that the function s be an el-
ement of the function space D, as in [29]. Then the associated cumulative
arrival-rate function in model ρ be

(4.3) Λρ(t) ≡ ρ(t+ (1− ρ)−2S((1− ρ)2t), t ≥ 0,
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where

(4.4) S(t) ≡
∫ t

0
s(u) du,

for s again being the periodic function in (1.2)-(1.4). From (4.3)-(4.4), we
see that the associated arrival-rate function obtained by differentiation in
(4.3) is indeed λρ(t) in (1.11).

The time scaling in (1.11) and (4.3) implies that the period in model ρ
with arrival-rate function λρ(t) in (1.11) is cρ = c(1 − ρ)−2, where c is the
period of s(t) in (1.2)-(1.4). Thus the period cρ in model ρ is growing with
ρ. This scaling follows Lemma 5.1 and Theorem 5.2 of [31], with n there
replaced by (1 − ρ)−2. In particular, the scaling here is in fluid or FWLLN
scale, and thus is different from the diffusion or FCLT scaling in Theorem
3.2 of [30] and Theorem 2 of [21].

Let Aρ(t) ≡ Na(Λρ(t)) be the arrival process in model ρ, which is obtained
by using the cumulative arrival-rate function Λρ in (4.3) in place of Λ in (2.1).
Given that definition, we see that the cumulative arrival rate is indeed

(4.5) E[Aρ(t)] = E[Na(Λρ(t))] = Λρ(t), t ≥ 0.

We now define associated scaled time-varying service-rate functions. These
are the rate-matching service-rate functions in [31] modified by a time lag
and a damping factor. In particular,

µρ(t) ≡ 1 + ξρs((1− ρ)2(t− ηρ)) and

Mρ(t) ≡
∫ t

0
µρ(u) du = t

+(1− ρ)−2ξρS((1 − ρ)2(t− ηρ)), t ≥ 0,(4.6)

where s is the periodic function with period c in (1.3), while ηρ is the ρ-
dependent time lag and ξρ is the ρ-dependent damping factor. From (4.6)
and (1.3), we see that the average service rate is µ̄ρ = 1 for all ρ. As a
consequence, the average traffic intensity is λ̄ρ/µ̄ρ = ρ for all ρ, while the
instantaneous traffic intensity at time t is λρ(t)/µρ(t), t ≥ 0, which is a more
complicated periodic function, again with period c.

4.2.2. The Associated Queueing Processes. Having defined the family of
arrival processes Aρ(t) and deterministic service-rate functionsMρ(t) above,
we define the other queueing processes Yρ(t), Xρ(t), Lρ(t) and Wρ(t) as in
§2.2. Let the completed-work process be defined by

(4.7) Cρ(t) ≡ Yρ(t)− Lρ(t), t ≥ 0.
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We now can apply Lemma 2.1 in §2 to express the waiting time process as

Wρ(t) ≡ inf {u ≥ 0 :Mρ(t+ u)−Mρ(t) ≥ Lρ(t)}, t ≥ 0.(4.8)

The (virtual) waiting time Wρ(t) represents the time that a hypothetical
arrival at time t would have to wait before starting service.

As in (3.7) and (3.8) of [31], we can define the queue-length process (num-
ber in system) and the departure process in model ρ jointly. We can also
express the departure process in terms of the workload process instead of
the queue-length process by

(4.9) Dρ(t) ≡ N s

(
∫ t

0
µρ(s)1{Lρ(s)>0} ds

)

, t ≥ 0,

but we do not focus on the departure and queue-length processes here.

4.3. The Scaled Queueing Processes. We start with the FWLLN-scaled
processes. First let the scaled deterministic rate functions be
(4.10)
Λ̄ρ(t) ≡ (1−ρ)2Λρ((1−ρ)−2t) and M̄ρ(t) ≡ (1−ρ)2Mρ((1−ρ)−2t), t ≥ 0,

for Λρ(t) in (4.3) and Mρ(t) in (4.6). We immediately see that

(4.11) Λ̄ρ → Λf in D as ρ ↑ 1,

where

(4.12) Λf (t) ≡ t+ S(t), t ≥ 0,

for S(t) in (4.4).
Let the FWLLN-scaled arrival arrival stochastic process be defined by

Āρ(t) ≡ (1− ρ)2Aρ((1 − ρ)−2t),(4.13)

Let the input, net-input, workload, completed-work and waiting-time com-
ponents of the FWLLN-scaled the vector (Āρ, Ȳρ, X̄ρ, L̄ρ, C̄ρ, W̄ρ) be defined
in the same way.

Then let the associated FCLT-scaled deterministic rate functions be de-
fined by

Λ̂ρ(t) ≡ (1− ρ)[Λρ((1− ρ)−2t)− (1− ρ)−2Λf (t)],

M̂ρ(t) ≡ (1− ρ)[Mρ((1− ρ)−2t)− (1− ρ)−2Λf (t)](4.14)
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for Λf in (4.12). Let the associated FCLT-scaled stochastic processes be
defined by

Âρ(t) ≡ (1− ρ)[Aρ((1 − ρ)−2t)− (1− ρ)−2Λf (t)],

Ŷρ(t) ≡ (1− ρ)[Yρ((1− ρ)−2t)− (1− ρ)−2Λf (t)],

X̂ρ(t) ≡ (1− ρ)Xρ((1− ρ)−2t),

L̂ρ(t) ≡ (1− ρ)Lρ((1− ρ)−2t),

Ĉρ(t) ≡ (1− ρ)[Cρ((1− ρ)−2t)− (1− ρ)−2Λf (t)],

Ŵρ(t) ≡ (1− ρ)Wρ((1− ρ)−2t), t ≥ 0.(4.15)

4.4. The HT FWLLN. We start with the HT FWLLN. Let Dk be the k-
fold product space of D with itself, let ⇒ denote convergence in distribution
and let x ◦ y be the composition function defined by (x ◦ y)(t) ≡ x(y(t)).

Theorem 4.1. (HT FWLLN) Under the definitions and assumptions in
§4 above, if ξρ → ξ and ηρ → η as ρ ↑ 1, and the system starts empty at
time 0, then

(4.16) M̄ρ →Mf in D, where Mf (t) ≡ t+ ξS(t− η)

and

(4.17) (Āρ, Ȳρ, X̄ρ, L̄ρ, C̄ρ, W̄ρ) ⇒ (Ā, Ȳ , X̄, L̄, C̄, W̄ ) in D6 as ρ ↑ 1

for (Āρ, Ȳρ, X̄ρ, L̄ρ, C̄ρ, W̄ρ) defined in (4.13), where

Ā(t) ≡ Ȳ (t) ≡ Λf (t), X̄(t) ≡ S(t)− ξS(t− η), t ≥ η,

L̄(t) ≡ sup
0≤s≤c

{X(t)−X(t− s)}, t ≥ c+ η, C̄ ≡ Ȳ − L̄, and

W̄ (t) ≡ inf {u ≥ 0 :Mf (t+ u)−Mf (t) ≥ L̄(t)}, t ≥ 0.(4.18)

for Λf (t) in (4.12) with S(t) in (4.4), Mf (t) in (4.16) and ψ being the re-
flection map.

Proof. We successively apply the continuous mapping theorem (CMT)
using the functions in §12.7 and §§13.2-13.6 of [29]. First, observe that
(4.16) is a minor modification of (4.10). Let N̄a

ρ and S̄ρ denote N̄a
n and

S̄v
n, respectively, where, paralleling (4.1), we let N̄a

n(t) ≡ n−1Na(nt) and
S̄v
n ≡ n−1Sv

⌊nt⌋, t ≥ 0, and then let n = (1 − ρ)−2. Then observe that

Āρ = N̄a
ρ ◦ Λ̄ρ and Ȳρ = S̄ρ ◦ Āρ, so that we can apply the CMT with the

composition map. The limit for X̄ρ follows from the CMT with addition
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and then the limit for L̄ρ follows from the CMT with the reflection map.
To establish the limit for the scaled waiting time W̄ρ(t) in D we apply the
CMT with the inverse function. Finally, The limit for C̄ρ again follows from
the CMT with addition.

We obtain stronger results in special cases:

Corollary 4.1. (FWLLN for the rate-matching service rate control)
In addition to the conditions of Theorem 4.1, if η = 0 and ξ = 1, then
Mf (t) = Λf (t), t ≥ 0, and then X̄(t) = L̄(t) = W̄ (t) = 0 for all t ≥ 0, while
C̄ = Ȳ = Ā = Λf .

Corollary 4.2. (stabilizing the waiting time at any positive value) In
addition to the conditions of Theorem 4.1, ξ = 1, so that Mf (t) = 0, 0 ≤
t < η, and Mf (t) = Λf (t− η), t ≥ η, for a fixed time lag η > 0, then

(4.19) L̄(t) = X̄(t) ≡ X̄η(t) = Λf (t)− Λf (t− η) =

∫ t

t−η
λf (s) ds > 0

and

(4.20) W̄ (t) = η for all t ≥ η.

Corollary 4.3. (sinusoidal with damped time lag) In addition to the
conditions of Theorem 4.1, suppose that

(4.21) s(t) ≡ β sin (γt), t ≥ 0,

for positive constants β and γ with β < 1, so that s(t) is periodic with period
c ≡ cγ = 2π/γ. Then

(4.22) S(t) = (β/γ)(1 − cos (γt)), t ≥ η,

so that

L̄(t) = (β/γ)([ξ cos (γ(t− η))− cos (γt)]

+ sup
0≤s≤c

{cos (γ(t− s))− ξ cos (γ(t− η − s))}

= (β/γ)([ξ cos (γ(t− η))− cos (γt)]

+ sup
0≤s≤c

{cos (γs)− ξ cos (γ(s − η))}), t ≥ c+ η.(4.23)

For the special case ξ = 1, W̄ (t) = η. If in addition, and η < π/γ, the
supremum in (4.23) is attained at s∗ = (π/2γ) − η/2), so that
(4.24)

L̄(t) = (
β

γ
)([cos (γ(t− η))−cos (γt)]+[cos ((π/2) − (γη/2))−cos ((π/2) + (γη/2))])
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for t ≥ c+ η. As η ↓ 0,

(4.25) L̄(t)/η → 1 + β sin (γt) = 1 + s(t).

4.5. The HT FCLT. We now state the FCLT, which has periodicity in
fluid scale, as in (1.11). The proof appears in §6.

Theorem 4.2. (HT FCLT) In addition to the definitions and assump-
tions in §4 above, including the scaled arrival-rate function in (1.11), assume
that the periodic function s(t) in (1.3) is continuous and

(4.26) (1− ρ)ηρ → η∗ and
ξρ − 1

1− ρ
→ ξ∗ as ρ ↑ 1,

where 0 ≤ η∗ < ∞ and 0 ≤ ξ∗ < ∞. Then there is a limit for the scaled
cumulative service-rate functions Mρ in (4.6) and (4.14); i.e.,

M̂ρ(t) ≡ (1− ρ)[Mρ((1− ρ)−2t)− (1− ρ)−2(t+ S(t))]

→ M̂(t) ≡ −s(t)η∗ + S(t)ξ∗ in D as ρ ↑ 1(4.27)

for s(t) in (1.3) and S(t) in (4.4). If, in addition, the system starts empty
at time 0, then

(4.28) (Âρ, Ŷρ, X̂ρ, L̂ρ, Ŵρ, Ĉρ) ⇒ (Â, Ŷ , X̂, L̂, Ŵ , Ĉ) in D5 as ρ ↑ 1

for (Âρ, Ŷρ, X̂ρ, L̂ρ, Ŵρ, Ĉρ) defined in (4.15), where

Â(t) ≡ (caBa − e) ◦ Λf (t), Ŷ (t) ≡ (cxB − e) ◦ Λf (t), Ĉ(t) ≡ Ŷ (t)− L̂(t),

X̂(t) ≡ Ŷ (t)− M̂(t) = Ŷ (t) + s(t)η∗ − S(t)ξ∗,

= (cxB ◦ Λf )(t) − Λf (t) + s(t)η∗ − S(t)ξ∗,

L̂(t) ≡ ψ(X̂)(t) and Ŵ (t) ≡ L̂(t)/µf (t), t ≥ 0.(4.29)

with cx ≡
√

c2a + c2s, B a BM and µf (t) ≡ λf (t) ≡ 1 + s(t), t ≥ 0, the
limiting arrival-rate function.

We now draw attention to some important consequences. First, Theorem
4.2 establishes a HT time-varying (TV) Little’s law (LL), paralleling the
many-server heavy-traffic (MSHT) TV LL in [27]. This is a time-varying
version of the familiar state-space collapse, which goes back to the early HT
papers. We remark that the relation is different from the time-varying LL
discussed in [3, 9] and [32].
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Corollary 4.4. (HT time-varying Little’s law) Under the conditions
of Theorem 4.2, the limit processes are related by

(4.30) L̂(t) = λf (t)Ŵ (t), t ≥ 0, w.p.1.

Corollary 4.5. (the case of no variability) If cx = 0 in addition to the
conditions of Theorem 4.2, then

(4.31) X̂(t) = −t+ s(t)η∗ − S(t)(ξ∗ + 1), t ≥ 0,

so that L̂(t) = Ŵ (t) = 0 for all t ≥ 0 if X̂(t) ≤ 0 for all t ≥ 0.

Theorem 4.2 reduces the question of asymptotic stability of the processes
L̂ρ(t) and Ŵρ(t), and the expected values of various functionals, such as
E[h(L̂ρ(t))] and E[h(Ŵρ(t))] (assuming appropriate uniform integrability) to
diffusion control problems with the objective functions in (1.8) and (1.9). To
express the stabilization goals, we also formulate two definitions of asymp-
totic stability, which involve both large time t and large ρ.

Even for t alone, there are many possibly definitions of asymptotic sta-
bility as t → ∞; e.g., see [15]. For both ρ and t, we omit issues of limit
interchange as t → ∞ and ρ ↑ 1, as treated for example in [12], [11] and [5]
in other contexts. Since our limit process is a Markov diffusion process, we
actually obtain a stronger conclusion, for which we give a second definition.

Definition 4.1. (asymptotic stability for stochastic processes) We say
that a scaled stochastic process {Ẑρ(t) : t ≥ 0} is asymptotically stable as
ρ ↑ 1 (in HT) if

(4.32) Ẑρ ⇒ Ẑ in D as ρ ↑ 1, where Ẑ(t) ⇒ Ẑ(∞) as t→ ∞

for a proper random variable Ẑ(∞).

Definition 4.2. (asymptotically stable and Markov) We say that a scaled
stochastic process {Ẑρ(t) : t ≥ 0} is asymptotically stable and Markov as
ρ ↑ 1 if

(4.33) Ẑρ ⇒ Ẑ in D as ρ ↑ 1,

where {Ẑ(t) : t ≥ 0} is a Markov process, for which there exists a proper
initial distribution Ẑ(0) such that the limit process {Ẑ(t) : t ≥ 0} is a
stationary Markov process.
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Corollary 4.6. (asymptotically stable and Markov) Under the condi-
tions of Theorem 4.2,

(a) the scaled workload process {L̂ρ(t) : t ≥ 0} (respectively, waiting time
process {Ŵρ(t) : t ≥ 0}) is asymptotically stable and Markov as ρ ↑ 1 if and
only if there are asymptotic parameters η∗ and ξ∗ and initial distributions
L̂(0) (respectively, Ŵ (0)) for the limiting diffusion process L̂ (respectively,
Ŵ ) such that the limit process is stationary.

(b) If η∗ = ξ∗ − 1 = 0, as with the rate-matching service-rate control
in [31], then the scaled workload process {L̂ρ(t) : t ≥ 0} is asymptotically
stable and Markov. Given that λf (t) is periodic and not constant, the scaled
waiting-time process is not stable, by either Definition 4.1 or Definition 4.2.

(c) There exist asymptotic parameters η∗ and ξ∗ satisfying (4.26) such
that the scaled waiting-time process {Ŵρ(t) : t ≥ 0} is asymptotically stable
and Markov if and only if the scaled workload process {L̂ρ(t)/λf (t) : t ≥ 0}
is asymptotically stable and Markov.

Proof. For (a), observe that the limiting net-input process X̂ is X̂ =
(cxB − e) ◦ Λf , which is the deterministic time transformation Λf of or-

dinary Brownian motion with drift, cxB − e. Thus, L̂ = ψ(cxB − e) ◦ Λf )

becomes a stationary process if we let L̂(0) have the exponential limiting dis-
tribution of the RBM, instead of L̂(0) = 0, as assumed for simplicity to avoid
complications involving the initial conditions. The remaining statements are
direct consequences of Theorem 4.2.

We now establish conditions for the optimality of an (η∗, ξ∗) control for
the limiting diffusion control problem for either formulation (1.8) or (1.9).
Our proof will exploit uniform integrability (UI); see p. 31 of [4].

Corollary 4.7. (optimality for the limiting diffusion process) Consider
the special case of the GIt/GIt/1 model with E[U2+ǫ

k ] <∞ and E[V 2+ǫ
k ] <∞

for some ǫ > 0. If (η∗ρ, ξ
∗
ρ) → (η∗, ξ∗) as ρ→ 1, where (η∗ρ, η

∗
ρ) is the optimal

control for problem (1.8) or (1.9), then the limiting control (η∗, ξ∗) is optimal
for the corresponding diffusion control problem.

Proof. We let (η̃, ξ̃) be any alternative control for the limiting diffusioon
process. Then let (η̃ρ, ξ̃ρ) be an associated control for model ρ, 0 < ρ < 1,
where η̃ρ ≡ η̃/(1 − ρ) and η̃ρ ≡ 1 + (1 − ρ)ξ̃. Then, by this construction,
condition (4.26) holds for the family (η̃ρ, ξ̃ρ). We next want to show that the
convergence in distribution can be extended to convergence of the means for
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all t, which requires uniform integrability uniformly in t; see p. 31 of [4]. We
use the bounds on the second moments to show that it holds.

Toward that end, we exploit the upper bounds for the workload process
in the Gt/Gt/1 model in terms of the associated workload process in the
stationary G/G/1 model from §3 of [21]. These bounds extend directly to
the Gt/Gt/1 model by virtue of Corollary 2.1. These bounds show that the
mean workload is bounded above uniformly in y over the interval [0, c]. These
bounds also apply to the waiting time process because W (t) ≤ L(t)/µL,
where µL > 0 is a lower bound on the service rate, which follows from
(1.4) and (1.6). For the stationary GI/GI/1 model, finite second moments
imply the existence of the first moments of the waiting time and uniform
integrability needed for convergence; see p. 31 of [4] and §X.2 and X.7 of [1].

Finally, we observe that our optimal policy (η∗ρ, ξ
∗
ρ) has expected value

greater than or equal to the alternative policy (η̃ρ, ξ̃ρ) for all ρ, while both
converge as ρ→ 1. Hence, the limit of the optimal policies, (η∗, ξ∗) must be
at least as good as (η̃, ξ̃).

We apply Corollary 4.6 to support our numerical calculations by observ-
ing that (η∗ρ , ξ

∗
ρ) when scaled as in (4.26) converges to a limit. We thus

deduce that the limit must be the optimal policy for the diffusion. However,
this numerical evidence is not a mathematical proof. Moreover, while the
numerical evidence is good, it is not exceptionally good, especially for ξ∗ρ as
can be seen from Table 1 in §5 below.

5. Simulation Examples in the Setting of §4. In this section we
report results of simulation experiments to evaluate the new (ηρ, ξρ) controls
as a function of ρ for models scaled according to Theorem 4.2, specifically
by (1.11), (4.3) and (4.6), so that we can see the systematic behavior.

Table 1 shows results for four values of the traffic intensity ρ with ρ ↑ 1 for
the sinusoidal model in (1.2)-(1.6) with HT scaling in (1.11) with parameters
(ρ, βρ, γρ) = (ρ, 0.2, 2.5(1−ρ)2). For this case, we found that the solutions to
optimization problems (1.8) and (1.9) are identical, to within our statistical
precision. Hence, our solutions are for both problems.

Table 1 shows the estimated controls ηρ and ξρ in each case, plus scaled
versions consistent with condition (4.26). Table 1 shows that the relative
error is roughly independent of ρ, being less than 1% in each case. Table 1
also shows that the limit η∗ ≈ 1.45 is rapidly approached by (1 − ρ)ηρ/ρ,
while the limit ξ∗ ≈ 1.8 is roughly approached by (1−ρ)/ρηρ, both of which
are consistent with condition (4.26). The results support Theorem 4.2, but
unfortunately the rate of convergence in the control parameters is not fast.
Evidently the damping control ξρ is more problematic.
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Table 1

The (identical) solutions to the minimax and minimum-deviation optimization problems
in (1.8) and (1.9) for the sinusoidal model in (1.2)-(1.6) with HT scaling in (1.11) with
parameters (ρ, βρ, γρ) = (ρ, 0.2, 2.5(1− ρ)2). The reported mean waiting times are without

space scaling.

ρ 0.8 0.9 0.95 0.975
βρ ≡ β 0.2 0.2 0.2 0.2
γρ 0.1 0.025 0.00625 0.0015625

ηρ 5.80 12.94 27.7 56.6
(1− ρ)ηρ/ρ 1.45 1.44 1.46 1.45
ξρ 0.842 0.889 0.931 0.960
(1− ξρ)/(1− ρ) 0.79 1.11 1.38 1.60

maxE[Wy] 4.03 9.10 19.29 39.61
min(max−min) 0.032 0.091 0.143 0.364
average wait 4.02 9.07 19.21 39.47
relative error 0.8% 1.0% 0.7% 0.9%

For the model in Table 1, Figure 3 shows the expected periodic steady-
state virtual waiting time (solid blue line), the expected steady-state work-
load (the dashed red line) and arrival rate multiplied by the mean waiting
time (the dotted green line) for ρ = 0.8 (left) and ρ = 0.95 (right). As in
Figure 1, the 95% confidence interval bands are included, but they can only
be seen by zooming in.

We also considered alternative values of the relative amplitude β. Table 2
shows the solutions to the minimum-deviation optimization problem in (1.9)
for the sinusoidal model in Table 1 except β has been increased to β = 0.8
from 0.2. Table 2 shows that the relative error is roughly independent of ρ,
but the relative error has increased to about 10% from about 1% in in Table
1. Unlike in Figure 3, it is evident that the (ηρ, ξρ) control does not stabilize
the expected waiting time perfectly, either for fixed ρ or asymptotically as
ρ→ 1.

From cases with 0.2 ≤ β ≤ 0.9 and 0.8 ≤ ρ ≤ 0.975, we conclude that
η∗ρ ≡ (1 − ρ)ηρ/ρ and ξ∗ρ ≡ (1 − ξρ)/(1 − ρ) are nondecreasing in ρ, while
η∗ρ (ξ∗ρ) is nondecreasing (nonincreasing) in β. The relative error tends to be
independent of ρ but is increasing in β. The relative error for β = 0.5 was
about 4%, while the relative error for β = 0.9 was about 22%. The difficulty
as β ↑ 1 can be partially understood by the rate-matching control, where
E[Wy] ≈ c/λf (t) by Theorem 5.2 of [31], where c is the stable value, which
has minimum and maximum values c/(1 + β) and c/(1 − β), which deviate
greatly as β ↑ 1. (The constant c is the stable value of the expected queue
length.) Tables 1 and 2 also show that the limiting optimal controls (η∗, ξ∗)
as well as the relative error depend on β.
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Fig 3. The expected periodic steady-state virtual waiting time (solid blue line), the expected
steady-state workload (the dashed red line) and arrival rate multiplied by the mean waiting
time (the dotted green line) for ρ = 0.8 (left) and ρ = 0.95 (right) in the base case
(β, γ) = (0.2, 2.5). The control parameters are (ηρ, ξρ) = (5.80, 0.84) for ρ = 0.8 and
(27.7, 0.93) for ρ = 0.95. The maximum minus minimum of EWy over a cycle equals
0.0321 for ρ = 0.8 and 0.1425 for ρ = 0.95.
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Table 2

The solutions to the minimum-deviation optimization problem in (1.9) for the sinusoidal
model in Table 1 except /beta has been increased to β = 0.8 from 0.2. Again, the reported

mean waiting times are without space scaling.

ρ 0.8 0.9 0.95 0.975
βρ ≡ β 0.8 0.8 0.8 0.8
γρ 0.1 0.025 0.00625 0.0015625

ηρ 6.08 15.4 33.6 70.3
(1− ρ)/ρηρ 1.52 1.71 1.77 1.80
ξρ 0.874 0.893 0.929 0.960
(1− ξρ)/(1− ρ) 0.63 1.07 1.42 1.60

max(EWy)−min(EWy) 0.54 1.32 2.28 4.55
average wait 4.33 10.68 23.97 51.76
relative error 12.5% 12.4% 9.5% 8.8%
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6. Proof of Theorem 4.2. To establish (4.27), apply (4.6) and (4.14)
to obtain

M̂ρ(t) ≡ (1− ρ)[Mρ((1 − ρ)−2t)− (1− ρ)−2(t+ S(t))]

= (1− ρ)−1[ξρS(t− (1− ρ)2ηρ)− S(t)]

= (1− ρ)−1[ξρS(t− (1− ρ)2ηρ)− ξρS(t)] + (1− ρ)−1[ξρS(t)− S(t)]

→ −η∗s(t) + ξ∗S(t) in D as ρ ↑ 1,(6.1)

where on the third line we have subtracted and added the term ξρS(t) and
on the last line we have differentiated using

(1− ρ)2ηρ/(1− ρ) = (1− ρ)ηρ → η∗ as ρ ↑ 1

by assumption (4.26). We used the assumed continuity of s to have S be
continuously differentiable, so that the derivative of S(t) holds uniformly in
t over bounded intervals.

We next establish (4.28). First, the limit for Âρ is given in Lemma 5.1 of
[31], but we need to make an adjustment because the arrival rate in model ρ
is chosen to be ρ here as opposed to 1 before. From (4.3), (4.11) and (4.14),
we see that

Λ̄ρ(t) = ρΛf (t) → Λf (t) in D as ρ→ 1

Λ̂ρ(t) = (1− ρ)−1ρΛf (t)− (1− ρ)−1Λf (t) = −Λf (t)(6.2)

for all ρ, where Λf (t) is defined in (4.12). Then the limit for Âρ follows from
the standard argument for random sums. The key is to observe that

(6.3) Âρ = N̂ρ ◦ Λ̄ρ + Λ̂ρ,

where N̂ρ is defined to be N̂n in (4.1) for n = (1 − ρ)−2. So we can start
with the joint convergence

(6.4)
(

N̂ρ, Λ̄ρ, Λ̂ρ

)

⇒ (caBa,Λf ,−Λf ) in D3 as ρ→ 1,

We then apply convergence preservation with the map g(x, y, z) = x ◦ y + z
(composition plus addition) as in §13.3 of [29] to get Âρ ⇒ caBa ◦Λf −Λf =
(caBa − e) ◦ Λf in D.

Similarly, given that N̄ρ ≡ (1 − ρ)2N((1 − ρ)−2t) ⇒ e and Āρ ≡ (1 −
ρ)2A((1 − ρ)−2t),

Āρ = (1− ρ)2N(Λρ((1 − ρ)−2t)) = (1− ρ)2N((1− ρ)−2ρΛf (t))

= N̄ρ(ρΛf (t)) ⇒ Λf in D as ρ→ 1.(6.5)
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A variant of the random-sum argument holds for Ŷρ too. In particular, we
start with the joint convergence

(6.6)
(

Ŝρ, Āρ, Âρ

)

⇒ (csBs,Λf , caBa ◦ Λf − Λf ) in D3 as ρ→ 1,

The joint convergence holds by virtue of Theorems 11.4.4 and 11.4.5 of [29].
We then apply convergence preservation with the map g(x, y, z) = x ◦ y + z
(composition plus addition) as in §13.3 of [29] to get

Ŷρ = Ŝρ ◦ Āρ + Âρ ⇒ csBs ◦ Λf + caBa ◦ Λf − Λf

d
= cxB ◦ Λf − Λf in D as ρ→ 1.(6.7)

Then the limits for X̂ρ and L̂ρ follow from the continuous mapping theorem
with the standard reflection map reasoning, e.g., as in Chapter 9 of [29],
even though the service rate function is now more general.

However, the waiting time requires a new treatment. The limit follows
from the definition of the scaled service-rate control in (4.6) and the first-
passage-time representation of the waiting time in (4.8). The structure and
result are to the [24] theorem and related results in §13.7 of [29], but they
evidently do not apply directly. In particular, letting M̃ρ(t, u) ≡ Mρ((1 −
ρ)−2t+ u) and

(6.8) S̃ρ(t, u) ≡ (1− ρ)−1ξρS(t+(1− ρ)−1u)− (1− ρ)2ηρ)− (1− ρ)−1S(t),

we have

Ŵρ(t) ≡ (1− ρ)Wρ((1− ρ)−2t)

= (1− ρ) inf {u ≥ 0 : M̃ρ(t, u)− M̃ρ(t, 0)) ≥ Lρ((1− ρ)−2t)}
= inf {u ≥ 0 : M̃ρ(t, (1− ρ)−1u)− M̃ρ(t, 0) ≥ Lρ((1− ρ)−2t)}
= inf {u ≥ 0 : (1− ρ)[M̃ρ(t, (1 − ρ)−1u)− M̃ρ(t, 0)] ≥ L̂ρ(t)}
= inf {u ≥ 0 : u+ S̃ρ(t, u) ≥ L̂ρ(t)}
= inf {u ≥ 0 : u+ s(t)u+ γρ(t, u) ≥ L̂ρ(t)}
= inf {u ≥ 0 : uλf (t) + γρ(t, u) ≥ L̂ρ(t)}, t ≥ 0,(6.9)

where λf (t) = t+s(t) by (4.12) and we apply Taylor’s theorem with (6.8) in
line 6 to obtain that γρ(t, u) is asymptotically negligible as ρ→ 1 uniformly
over both t and u over bounded subintervals. Just as in (6.1), we use the
assumed continuity of s to have S be continuously differentiable, so that the
derivative of S(t) holds uniformly in t over bounded intervals.

For the final step, to simplify, we make the entire argument deterministic
by using the Skorohod representation theorem, as in Theorem 3.2.2 of [29],
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to replace the stochastic convergence L̂ρ ⇒ L̂ in D by associated convergence
w.p.1. Then we see from line 6 of (6.9) that in the infinimum it suffices to
consider u only just beyond L̂(t)/λf (t), which for t in a bounded interval
is bounded for each sample path, because λf (t) has been assumed to be

bounded below, while L̂(t) is bounded above, for t in a bounded interval.
Thus, we can write

(6.10)
L̂ρ(t)−Kγ↑ρ(t)

λf (t)
≤ Ŵρ(t) ≤

L̂ρ(t) +Kγ↑ρ(t)

λf (t)

for t and u over specified bounded intervals, K an appropriate positive con-
stant and

γ↑ρ(t) ≡ sup
0≤u≤ū

|γρ(t, u)|

for an appropriate ū. Given that L̂ρ ⇒ L̂ and γ↑ρ → 0 in D, we can use the
standard sandwiching argument (uniformly over bounded time intervals) to
obtain convergence Ŵρ(t) ⇒ L̂(t)/λf (t) ≡ Ŵ (t) in D, which completes the
proof.
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7. Additional Simulation Results. In this Section, we present addi-
tional simulation results. First, Figure 4 shows three-dimensional plots of es-
timates of the maximum deviation of the waiting time max0≤y≤c {E[Wy]}−
min0≤y≤c {E[Wy]} for (η, ξ) in [0, 20]×[0, 5] (left) and [3, 9]×[0.6, 1.0] (right).
These look just like Figure 2 for the maximimum waiting time, showing that
optimization problems (1.8) and (1.9) are indeed very similar.
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Fig 4. Three-dimensional plots of estimates of the maximum deviation of the waiting time
max0≤y≤c {E[Wy]} −min0≤y≤c {E[Wy]} for (η, ξ) in [0, 20] × [0, 5] (left) [3, 9] × [0.6, 1.0]
(right).

We next present results that supplement Figure 1. First, on the left in
Figure 5 we plot estimates of the time-varying expected waiting time E[Wy]
with the rate-matching control for the sinusoidal example in Figure 1 with
parameter triple (ρ, β, γ) = (0.8, 0.2, 0.1) and ρ = 0.8. Then, on the right in
5 we plot the analog of Figure 1 for ρ = 0.9. (The cases of ρ = 0.8 and 0.95
are shown in Figure 1.)

Unlike the rate-matching control in [31], which stabilizes the entire queue-
length distribution, the optimal modified (η, ξ) control does not stabilize
the entire waiting time distribution. Figure 6 illustrates by showing plots of
the time-varying variance V ar[Wy] (left) and delay probability P (Wy > 0)
(right) in the setting of Figure 1. We also plot the fluid arrival rate λf =
1 + s(t) (blue dashed line) and fluid service rate µf = 1 + ξ∗s(t− η∗) (blue
dotted line). The delay probability tend to reach their upper (lower) bound
near the point that the arrival and service rate cross, after the arrival rate
has been above (below). The variance tends to be proportional to the sum
of the two rates.
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Fig 5. Estimates of the time-varying expected waiting time E[Wy] with the rate-matching
control for the sinusoidal example in Figure 1 with parameter triple (ρ, β, γ) = (0.8, 0.2, 0.1)
and ρ = 0.8 (left) and for the new (η, ξ) control for the case of ρ = 0.9 (right). The optimal
control is (η∗, ξ∗) = (9.5, 1.11). In both cases, 95% confidence bands are included, which
can be seen by zooming in.
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Fig 6. Estimates of the periodic steady-state variance V ar[Wy] (left) and probability of
delay P (Wy > 0) (right), both shown in red solid line, for the sinusoidal example in Figure
1 with parameter triple (ρ, β, γ) = (0.8, 0.2, 0.1) and ρ = 0.8, using the optimal control
(η∗, ξ∗) = (5.84, 0.84). Also displayed are the fluid arrival rate λf = 1 + s(t) (blue dashed
line) and fluid service rate µf = 1 + ξ∗s(t− η∗) (blue dotted line).
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We now show two candidate modifications of the control used in Figure
1. First, Figure 7 shows the analog of Figure 1, where we fix ξ = 1 and only
use the single control parameter η. As we remarked in Remark 1.2 in §1.4,
if we let ξ = 1 and optimize over η, then for ρ = 0.8 we get η∗ = 5.93 and a
maximum deviation of 0.4109, which yields about 10% relative error instead
of less than 1%. For ρ = 0.95, η∗ = 28.3, the maximum deviation is 3.034
and the relative error is about 14%.
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Fig 7. Estimates of the expected waiting time E[Wy] for the one-parameter η control with
ξ ≡ 1, for the sinusoidal example in Figure 1 with parameter triple (ρ, β, γ) = (0.8, 0.2, 0.1)
and ρ = 0.8 (left) and ρ = 0.95 (right). For ρ = 0.8, η∗ = 5.93 the maximum deviation
is 0.4109 and the relative error is about 10%; for ρ = 0.95, η∗ = 28.3, the maximum
deviation is 3.034 and the relative error is about 14%.

Second, Figure 8 shows the consequences of a direct HT approximation in
the setting of Figure 1, obtained by letting η∗ ≈ 1.45, ηρ ≈ 1.45/(1−ρ), ξ∗ =
1.80 and ξ = 1−1.8(1−ρ), based on Table 1. For ρ = 0.8, (η, ξ) = (7.25, 0.64)
and the maximum deviation is 0.6005, yielding about 15% relative error.
For ρ = 0.95, (η, ξ) = (29.0, 0.91) and the maximum deviation is 0.9220
yielding about 5% relative error. Unlike in Figure 7, we see that the direct
HT approximation improves as ρ increases, but the direct two-parameter
optimal control is better.

Finally, Figure 9 plots two deterministic functions associated with the
diffusion limit for the case β = 0.2, γ = 2.5, η∗ = 1.45 and ξ∗ = −1.8. On the
left appears M̂(t) = −η∗s(t)+ξ∗S(t) = −1.5β sin(γt)−1.5(β/γ)(1−cos(γt))
together with s(t) = β sin(γt) and S(t) = (β/γ)(1 − cos(γt)). On the right
appears the diffusion limit for the net input X̂(t) = −t−M(t) when cx = 0.
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Fig 8. Estimates of the expected waiting time E[Wy] (solid red line) with the heavy-traffic
control exploiting the estimated limiting controls η∗ = 1.45 and ξ∗ = 1.8, so that ηρ =
1.45/(1− ρ) and ξρ = 1− 1.8(1− ρ). The plots are for the sinusoidal example in Figure 1
with parameter triple (ρ, β, γ) = (0.8, 0.2, 0.1) and ρ = 0.8 (left) and ρ = 0.95 (right). Also
displayed are E[Ly ], λfE[Wy] and 95% confidence interval bands, which require zooming
in to see.
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Fig 9. Deterministic functions associated with the diffusion limit for the case β = 0.2,
γ = 2.5, η∗ = 1.45 and ξ∗ = −1.8.. On the left appears M̂(t) = −η∗s(t) + ξ∗S(t) =
−1.5β sin(γt)− 1.5(β/γ)(1− cos(γt)) together with s(t) = β sin(γt) and S(t) = (β/γ)(1−
cos(γt)). On the right appears the diffusion limit for the net input X̂(t) = −t−M(t) when
cx = 0.
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8. A HT FCLT with Alternative Scaling. In this section we estab-
lish a HT FCLT with periodicity holding in the diffusion scale instead of
in the fluid scale, as was done in §4. The scaling here follows [30] and [21]
instead of [31]. In this scaling the HT limits of the waiting time coincides
with the HT limit for the workload process, and so does not capture the
differences we see in the simulations in previous sections.

8.1. An Alternative Family of Models. We start with the same basic rate-
1 processes in §4.1. We then create a model for each ρ, 0 < ρ < 1, now using
(1.12) instead of (1.11). That yields the family of cumulative arrival rate
functions

(8.1) Λρ(t) ≡ ρ(t+ (1− ρ)−1S((1− ρ)2t), t ≥ 0,

for S in (4.4). Differentiating in (8.1) yields the arrival-rate function in
(1.12). Just as before, the time scaling in (1.12) and (8.1) implies that the
period in model ρ with arrival-rate function λρ(t) in (1.12) is cρ = c(1−ρ)−2,
where c is the period of s in (1.2)-(1.4). Thus the period cρ in model ρ is
growing with ρ.

8.2. An Associated Family of Service-Rate Controls. Just as in §4.2.1, we
define associated service-rate controls. Closely paralleling (1.12) and (8.1),
we define associated scaled time-varying service-rate functions using the
control parameters ηρ and ξρ, i.e., for all t ≥ 0,

µρ(t) ≡ 1 + (1− ρ)ξρs(t− ηρ) and

Mρ(t) ≡
∫ t

0
µρ(s) ds = t+ (1− ρ)−1ξρS((1 − ρ)2(t− ηρ)).(8.2)

Just as in (8.1), differentiation of Mρ(t) in (8.2) shows that it is consistent
with µρ(t). As a consequence of (8.2), the average service rate is µ̄ρ = 1,
0 < ρ < 1.

8.3. The Scaled Queueing Processes. We use the same processes intro-
duced in §2, but new scaling. Let the scaled arrival-rate and service-rate
functions be defined for t ≥ 0 by

Λ̂ρ(t) ≡ (1− ρ)[Λρ((1− ρ)−2t)− (1− ρ)−2t]

= ρS(t)− t

M̂ρ(t) ≡ (1− ρ)[Mρ((1 − ρ)−2t)− (1− ρ)−2t]

= ξρS(t− (1− ρ)2ηρ).(8.3)
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Clearly, Λ̂ρ(t) → S(t) − t as ρ → 1 uniformly over bounded intervals of t.
The key is what happens to M̂ρ(t). From (8.3), we get

Lemma 8.1. (HT limit of M̂ρ(t)) If ξρ → 1 and (1 − ρ)2ηρ → 0, then
M̂ρ(t) → S(t) uniformly over bounded intervals of t.

Then let associated scaled stochastic processes be defined by

Âρ(t) ≡ (1− ρ)[Aρ((1 − ρ)−2t)− (1− ρ)−2t],

Ŷρ(t) ≡ (1− ρ)[Yρ((1− ρ)−2t)− (1− ρ)−2t],

X̂ρ(t) ≡ (1− ρ)Xρ((1 − ρ)−2t),

L̂ρ(t) ≡ (1− ρ)Lρ((1− ρ)−2t), Ĉρ ≡ Ŷρ − L̂ρ,

Ŵρ(t) ≡ (1− ρ)Wρ((1− ρ)−2t), t ≥ 0.(8.4)

8.4. The HT FCLT with Periodicity in Diffusion Scale. Just as in §4,
the following heavy-traffic FCLT states that Âρ and Ŷρ converge to periodic
Brownian motions (PBM’s). However, unlike §4, X̂ρ converges to an ordinary
Brownian motion (BM), L̂ρ and Ŵρ converge to the same ordinary reflected
Brownian motion (RBM), while Ĉρ has a complicated limit. We thus show
that L̂ρ and Ŵρ are asymptotically stable and Markov, as in Definition 4.2.
Note that the scaling condition on (ηρ, ξρ) here are implied by condition
(4.26) in Theorem 4.2.

Theorem 8.1. (heavy-traffic limit extending Theorem 3.2 of [30] and
Theorem 2 of [21]) If, in addition to the definitions and assumptions in
(8.1)-(8.4) above, (1−ρ)2ηρ → 0 and ξρ → 1 as ρ→ 1 and the system starts
empty at time 0, then

(8.5) (Λ̂ρ, M̂ρ, Âρ, Ŷρ, X̂ρ, L̂ρ, Ŵρ, Ĉρ) ⇒ (Λ̂, M̂ , Â, Ŷ , X̂, L̂, Ŵ , Ĉ)

in D8 as ρ → 1 for (Λ̂ρ, M̂ρ) defined in (8.3) and (Âρ, Ŷρ, X̂ρ, L̂ρ, Ŵρ, Ĉρ)
defined in (8.4), where

Λ̂ ≡ S − e, Â ≡ caBa + S − e, M̂ ≡ S,

Ŷ ≡ Â+ csBs, X̂ ≡ Ŷ − S
d
= cxB − e,

L̂ ≡ ψ(X̂), Ŵ (t) ≡ ψ(X̂) and Ĉ(t) ≡ Ŷ (t)− L̂(t),(8.6)

with Ba and Bs being independent BM’s, S in (4.4), ca and cs being the
variability parameters in (4.2), cx ≡

√

c2a + c2s and B is a BM.
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Proof. We will be brief because most of the argument is essentially the same
as in [30] and [21]. First, the limit for Âρ is given in Theorem 3.2 of [30]. Then
the limit for Ŷρ follows from Theorem 9.3.4 of [29], as noted in the proof of
Theorem 2 in [21]. (See C(t) in (9.2.4) and Cn in (9.3.4) and Theorem 9.3.4
of [29].) Then the limits for X̂ρ and L̂ρ follow from the standard reflection
mapping argument as in even though the service rate function is now more
general. Again, the waiting time requires a new treatment. The limit follows
from the first-passage-time representation in (4.8). In particular, paralleling
(6.9), letting M̃ρ(t, u) ≡Mρ((1− ρ)−2t+u) and S̃(t, u) ≡ S((1− ρ)−2t+u),
we have

Ŵρ(t) ≡ (1− ρ)Wρ((1− ρ)−2t)

= (1− ρ) inf {u ≥ 0 : M̃ρ(t, u)− M̃ρ(t, 0) ≥ Lρ((1 − ρ)−2t)}
= inf {u ≥ 0 : M̃ρ(t, (1− ρ)−1u)− M̃ρ(t, 0) ≥ Lρ((1 − ρ)−2t)}
= inf {u ≥ 0 : (1− ρ)[M̃ρ(t, (1 − ρ)−1u)− M̃ρ(t, 0)] ≥ L̂ρ(t)}
= inf {u ≥ 0 : u+ ξρS(t+ (1− ρ)u− (1− ρ)2ηρ)− S(t) ≥ L̂ρ(t)}
= inf {u ≥ 0 : u+ γρ(t, u) ≥ L̂ρ(t)},(8.7)

for t ≥ 0, where γ(t, u) is asympotically negligible as ρ → 1 uniformly in
compact intervals, given the conditions on ηρ and ξρ. As technical support
for the last step, note that

(8.8) S(t+ ǫ)− S(t) ≤ sU ǫ for all ǫ > 0,

for sU in (1.4). Also add and subtract ξρS(t) and treat the two terms sepa-
rately, i.e.,

ξρS(t+ (1− ρ)u− (1− ρ)2ηρ)− S(t) = ξρS(t)− S(t)

+ξρS(t+ (1− ρ)u− (1− ρ)2ηρ)− ξρS(t).

Hence, we can apply the continuous mapping theorem for the inverse in
§13.6 of [29] to get Ŵρ ⇒ L̂ in D as ρ→ 1, jointly with the other limits.

9. Simulation Examples for the Alternative Scaling in §8. We
now consider four simulation examples in the alternative heavy-traffic scaling
in §8. This is the same heavy-traffic scaling as in [21]. We consider the base
case of β = 1, γ = 2.5, and use

(λ̄ρ, βρ, γρ, bρ) = (ρ, (1 − ρ)β, (1 − ρ)2γ, (1 − ρ)−1b).

Specifically, we consider cases with ρ = 0.84, 0.92, 0.96, 0.98. Here we use the
lags η = 5.25, 11.5, 24, 49 calculated by ρ/(1 − ρ), the scaler ξ = ρ. (These
are consistent with Theorem 8.1.)
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Figures 10-11 show the expected periodic steady-state waiting time (the
solid blue line) and the expected steady-state workload (the dashed red line).
Figures 10 and 11 show that the stabilization is not achieved well for the
lower traffic intensities, but the stabilization improves for both curves as ρ
increases. Both processes get quite well stabilized at ρ = 0.98, consistent
with Theorem 8.1.

Fig 10. the expected periodic steady-state virtual waiting time (the blue line) and the
expected steady-state workload (the red line) for ρ = 0.84, β = 0.16, γ = 0.064, η = 5.25,
ξ = 0.84, yielding a maximum deviation 0.0699 (left) and ρ = 0.92, β = 0.08, γ = 0.016,
η = 11.5, ξ = 0.92, yielding a maximum deviation 0.0408. (right)
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Fig 11. the expected periodic steady-state virtual waiting time (the blue line) and the
expected steady-state workload (the red line) for ρ = 0.96, β = 0.04, γ = 0.004, η = 24,
ξ = 0.96,, yielding a maximum deviation 0.0228 (left) and ρ = 0.98, β = 0.02, γ = 0.001,
η = 49, ξ = 0.98,, yielding a maximum deviation 0.0070. (right)
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10. Conclusions. In this paper we extended the rare-event simulation
algorithm for the periodic GIt/GI/1 model in [21] to the periodic GIt/GIt/1
model and applied the new algorithm to study methods to stabilize the
expected (virtual) waiting time over time. We studied a modification of the
rate-matching service-rate control in (1.1) to include a time lag η and a
damping factor ξ as in (1.6). We developed and applied a simulation search
algorithm to find optimal pairs of control parameters (η, ξ) for the control
problems in (1.8) and (1.9). Thus, we obtained a practical solution to the
open problem in [31] of developing an effective way to stabilize the expected
waiting time.

We also established supporting heavy-traffic limits for the general periodic
Gt/Gt/1 model and showed that the control problems in (1.8) and (1.9)
converge to associated diffusion control parameters with appropriate scaling.
In Theorem 4.2, the arrival-rate function was scaled as in (1.11), making
the periodicity occur in fluid scale, as in [31]. In §8 we also obtained heavy-
traffic limits with alternative scaling as in (1.11), making the periodicity
occur in diffusion scale, as in [30] and [21]. With scaling in diffusion scale,
the workload and waiting time are both asymptotically stabilized as ρ ↑ 1,
but that is not consistent with practical examples, as in Figure 1.

We conducted extensive simulation algorithms showing that the new (η, ξ)
control is effective in stabilizing the expected waiting time. However, un-
like the rate-matching control for the queue length process in [31], the new
modified rate-matching control does not stabilize the expected waiting time
perfectly. Moreover, Figure 6 shows that it does not stabilize the full wait-
ing time distribution. There remain many opportunities for future research,
including the open problems mentioned in §1.2. It also remains to directly
solve the diffusion control problems with objectives (1.8) and (1.9) resulting
from Theorem 4.2

It is interesting to consider the performance impact of time-varying ar-
rivals. In §1 we observed that the difference between the stable average
waiting time in Figure 1 and the value ρ/(1 − ρ) for the stationary model
(4 on the left and 19 on the right) might be called “the average cost of
periodicity,” but we now show that the overall average waiting time with
a service-rate control could be much less than in the stationary model. It
remains to investigate more carefully.

Example 10.1. (small waiting times with periodicity) To illustrate a
nonstationary model with a low average waiting time, consider theMt/Mt/1
model with the two-level arrival-rate function with period c:

(10.1) λ(t) ≡ ρb1[(c/2)−δ,(c/2)+δ)(t), 0 ≤ t < c and bδ = c,
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where δ < c/2 and 1A is the indicator function of the set A, i.e., 1A(t) = 1 if
t ∈ A and 0 otherwise. Let the service-rate function be as in (1.6) with η = 2δ
and ξ = 1. Then the number of arrivals in the interval [(c/2) − δ, (c/2) + δ)
has a Poisson distribution with mean ρc, while the number of potential
departures in the interval [(c/2) + δ, (c/2) + 3δ) has a Poisson distribution
with mean c. Thus, for ρ < 1 and c = bδ suitably large, the net input
over the interval [(c/2)− δ, (c/2) + δ) is approximately Gaussian with mean
−(1 − ρ)bδ and variance (1 + ρ)bδ, which is unlikely to be positive. By
choosing δ suitably small and bδ suitably large, subject to specified ρ, we
can make the maximum steady-state expected waiting time, and thus the
average, approach 0. One way to explain this phenomenon is to observe that
the interarrival times and service times will be highly correlated.

Finally, we mention that the methods in this paper generalize and can be
applied to other problems. First, the rare-event simulation algorithm in §3
applies to any GIt/GIt/1 model with other service-rate controls. Second, the
heavy-traffic limits in §4 and §8 evidently extend to general Gt/Gt/1 models
with with other service-rate controls. More generally, simulation of converg-
ing stochastic processes is a promising way to numerically solve complex
diffusion control problems.
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