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= 3 [Naltsn(h)p (= €0, )+ pra(t)(h + Daa (0" + 1)
+ > np(t) (ks + Dpsa(t)sgn(ka)p”(k — eq + es,1)
BeC

(b (06, 8) = ()50 0)] 70 t) - . (e (1)) - ot

= 3 [Aat)sen(ha)p (K = €0, )+ (1) (ke Daa (05" + 1)
+ > 1(t) (ks + 1)psa(t)sgn(ka)p”(k — ex + g, 1)
BeC

~O0at) + pa Ok, 1) | 47, 1) - B 12c (1)) - om0,

The above relation holds for all k, but we can also write it as

jt (k) = %[Aa(t)sgﬂ(ka)p*(k — e, t)
' ﬁzcuﬁ (ks + 1)psa(t)sgn(ka)p™(k — ea + €5, t) — pa(t)kap™(k, t)

) (1= B (mea(t) ) - St

This last equation resembles the forward equations for p(k,t) when |k| = s. Recasting these
results in operator form gives us

d

V(0= P OAG)  Gmnit) 5y 0(P() - ex) (1.5

We can then write the solution to this inhomogeneous ordinary differential equation as

p(t) = P (OBA() + [ Fmel()- X 9 7)(p°(r) — ewBalr,dr. (76)

k|=s

Combining the above with (2.5) yields the desired (4.2). g

14



where p = max(p4, p—). Moreover, we get from the other bounds

07O = pUIK] < el = pole [ Bu(natn) (s = ) (1= () )t

pylps — p-lte™™* Bu(p)(s — p(1 — Bs(p)))

IN

where p = min(py, p_).
In addition to these error estimates, we get the following stochastic dominance results by
applying Proposition 5.1,

p— < pr = p(t) <up(t) forall t >0, (6.9)
and

p— > py = Pp(t) > p(t) for all t > 0. (6.10)
7 Proving the Main Theorem

Lemma 7.1 Ifx =) cc ta€s and we define

N
W(k,x):g/;T, (7.1)
then it follows that
0 .
92 m(k,x) = m(k — ey, x) - sgn(k,) — n(k,x) (1 -3 F(J,X)) (7.2)
“ ll=s
and
m(k,x) -z =7k + ey, x) - (ko +1). (7.3)

Proof of Theorem 4.1: We first observe that p*(k,t) = n(k, m.(¢)) and

Bu(meo(t)) = X2 w(k, meo(t)). (7.4)

|k|:S

We then apply the identities of Lemma 7.1 and get

)= [ enot) - smnlh) =) - (1= 8. (a0 )] - G0
= z;p — ey, t) - sgn(k,) - %m (t) —p"(k,t)- <1 — B (moo(t))) . %moo(t)
= Zcp — e, 1) - sgn(ka) ( +ﬁZC/m )pga(t)mi, (1) — Ma(t)mﬁo(t))
- 30 Aalt) — o (Daa (O (0) 4 (k1) - By (meclt)) - Tomc(t)

aeC
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for all time ¢ > 0. We now want to compute an upper bound for the error between the
transient distribution of )5 and its MOL approximation. Now, in addition to Theorem 4.1,
we exploit the fact that E5(t) = exp(At), where A is the infinitesimal generator of the
M/M/s/0 queue with parameters Ay and gy. In this case, (5.1) becomes

p(1) = p(0) = [ B (mecl) - (0°(r) — ) exp((t = T)A) dmos(). (6.1)

If welet pp = Ay/py and p_ = A_/u_, then

Moo(7) = p— exp(—p4+7) + p+(1 — exp(—p47)) (6.2)
and p
g7 Meo(T) = pa(py — p-) exp(—ps7). (6.3)

Since @ is reversible, see page 32 of Keilson [10], the generator A is diagonally similar to a
symmetric matrix. By the spectral decomposition theorem, we have

exp(tA) = 17w + zs:exp(—ajt)A(\/E) IXTX]A(\/E), (6.4)

i=1

where 7 is the steady state probability vector for A such that wA = 0, /& is the positive
vector whose components are the square roots of the components of o, and A(y/m) is the
corresponding diagonal matrix. The negatives of the s 4+ 1 real numbers 0 < oy < -+ < oy
are the eigenvalues for A. Finally, {\/m,x;,...,X,} is the corresponding set of orthonormal
eigenvectors for A(y/w)AA(y/mw)~". The eigenvalues and eigenvectors for this model are
readily obtained, as shown by Lederman and Reuter [12] and Karlin and McGregor [9]. In
this case the orthogonal polynomials are the Poisson-Charlier polynomials, also see Jagerman
8].

Since p*(7) and e are probability vectors, we have

(p™(7) — es)lT = 0. (6.5)

Using the Cauchy-Schwartz inequality, we have

ANVT| 1 and AN < zﬁi (6.6)

(p"(7) —es) - exp((t —7)A)| <2 Z Zexp —oj(t =7)). (6.7)

kO

Hence, we get

Combining all of these results, we obtain

. L1 Eexp(— —exp(—puyt
(1) — p(B)] < 2t 5@ s — | - |30~ oit) Zepmiet) g
k:Oﬂ- j:l Iu’+_0-]

12



Translating back into matrix form, we get

[0 A 0 0 0 1
0 —(A+p) A 0 0
S R S CEY
0 0 0 e =(A (s = 1)p) A
L 0 0 0 (s — D —(A+sp) |
Let A* be the lower righthand s x s submatrix of K~'AK, namely
—(A+p) A 0 0
b~ e 0 0
A* = (5.25)
0 0 e =(A (s = 1)p) A
0 0 (s = D —(A 4 sp)

The off-diagonal terms of A* are non-negative, which makes exp(tA*) a non-negative matrix.
Moreover, the row sums of A* are all non-negative and so exp(tA*) is substochastic meaning
its {1 operator norm is less than or equal to 1. Since A* + I has these same properties, we
get

|exp(tA”)| < exp(—put). (5.26)

Now observe that if p and q are probability vectors then the first (or zero-th) entry of
the row vector (p — q)K is 0. Hence A acts on (p — q)K the same way that A* acts on the
non-zero, righthanded, s-dimensional subvector of (p — q)K. Taking norms, we get

(p— @) exp(tA)K| < |(p— q)Kexp(tK™'AK))
(P — K| lexp(tA”)|

(P — @)K exp(—pt). (5.27)

IA A IA

Now we consider the transition matrix [T, exp (¢;A;), where A; is an M/M/s/0 gener-
ator for each ¢. By (5.27) and induction,

(p—q) ﬁ exp (t;A;) K

=1

< ‘(P - Q)K‘ exp (— g mti) : (5.28)

However, we can approximate E4 () arbitrarily closely by [T, exp (¢;A;). This allows us to
deduce (5.20). g

6 Example: Changing M/M/s/0 Rates in Midstream

Suppose we consider the case of A(t) = Ay and p(t) = pq for all ¢ > 0 and p(0) = p*(0)
where m . (0) = A_/u_. The time-dependent behavior of ); is that of a stationary M/M/s/0
queue with rates A_ and p_ for all time ¢t < 0, that suddenly switches to rates Ay and py

11



Proof of Theorem 5.2 and Corollary 5.3: Since p is constant, we can write (5.10) as

meoft) = meo(0)e 4 [ Mt —r)edr (5.12)
= [ pme@e T+ [ A=) (5.13)
< /OOO max(| Ao, 11100 (0))e ™ dr (5.14)
< max(M= (). (5.15)
o

Combining this with (5.9) gives us

dme,
D < Mg € e (s 70 (0)) = max(2 s [N 4 g (0)).
b (5.16)
When ) exists and is bounded, we have by (5.11)
dmoo —ut K —ut !
Tl ‘(A(O)—,umoo(O))e o [N = r)dr (5.17)
0
cut Nl ut
< JA0) — pme (0) e + (I —e™) (5.18)
7
Ry
< max(|A(0) — pma(0)], ). (5.19)

Finally, we apply the lemma below:

Lemma 5.5 I[f EA(t) is the transition probability matriz for an M;/M;/s/0 queue at time
t, then for any two probability vectors p and q we have

(b~ BAWK] < (0 — a)K]exp (— [ u(r)ir). (520)

Proof: If A is the generator for an M/M/s/0 queue, then it has the form

[ —A A 0 0 0
o —(A+p) A 0 0
A | 0 2 (2 0 0 (5.21)
0 0 0 (At (s=Dp) A
0 0 0 s —sp |
Using right and left shift operators, we have
A =)R+ uAL — ARL — A = (AR — pA)(I— L). (5.22)
Since K = (I — L)~%, then
K'AK = (I- L)AR — pA) = AR + uLA — \LR — pA. (5.23)

10



Corollary 5.3 In the setting of Theorem 5.2, if A is a bounded function on [0,00), and u
is a constant function, then

sup [p*(t) — p(t)|x < imax(zmo, Noo + #moe(0)) B, (max(%,moom))). (5.7)

t>0 M

If in addition, X\ is differentiable and its derivative X' is bounded on [0,00), then

. S M Moo
sup [p*(1) = p(t)l < ;maX(M(O) — 1ma(0)), %)BS <max(%,mm(0))). (5.8)

£>0

We remark that Corollary 5.3 is not good for the blocking probabilities, because we can use
stochastic comparisons to directly deduce with proper initial conditions the sharper bound
P(Qs(t) =s) < Bs(|Meo/1); €.g., by Theorem 10 of Whitt [18]. However Corollary 5.3 yields
useful bounds for the mean, as stated in (1.7).

Proof of Theorem 5.1: The basis vector e, is a probability vector for the point mass
distribution of being in state s, which is the maximum probability distribution, with respect
to stochastic dominance, on {0,1,...,s}. It follows that the probability vector p*(¢) is
always stochastically dominated by e;. Now A(?) for fixed ¢, is the generator for a birth-
death process, which is stochastically monotone. Using Theorem 7.5 of Massey [14], it follows
that the probability vector p*(7)Ea(7,t) is always stochastically dominated by e,Ea (7,1)
for all 0 < 7 < t. After combining this result with (4.2), we will be done once we show that
the derivative of m., is non-negative (or non-positive) on [0,¢]. This will follow from the
lemma below. m

Lemma 5.4 If ms(0) < A(0)/x(0) and M/ p is a right-continuous, increasing function on
[0,t] then my is increasing on [0,t] also. Conversely, if mo,(0) > A(0)/u(0) and A/ p is a
right-continuous, function on [0,t] then my, is decreasing on [0,1].

Proof: Since |C| = 1, (3.4) becomes

Comalt) = M(t) = (1) mec 1), (5.9)

and so

Moo (t) = Mmoo (0) exp (— /Ot ,u(T)dT) + /t A(T)exp (— /: ,u(v)dv) dr. (5.10)

0

Now let p = A/u. Since by hypothesis, p is right-continuous and of bounded variation, we
can apply the integration by parts formula (see page 104 of Daley and Vere-Jones [2]), and
get

ﬁ%mm(t) = (p(0) — ms(0)) exp <_ /Ot H(T)dr) + /Of exp <_ /:lu(v)dv) dp(7). (5.11)

We now observe that the hypothesis gives precisely the conditions that makes the two sum-
mands above non-negative or non-positive on [0,%]. g



The next proposition establishes a stochastic comparison between the M;/M;/s/0 queue
and its MOL approximation. (All proofs appear at the end of the section.) We say that a
probability vector py is stochastically dominated by py, and write p; < pa2, if

Sopi(f) <D o pe(y) forallk=0,1,...,s. (5.2)
1=k 1=k

In terms of operators and componentwise ordering of vectors, p; <s p2 1s equivalent to
p1K < p:K, where K = (I-L)™! with L equalling the left shift operator on row vectors, or

1 0 0 - 0 0
r1r o --- 0 0
S I (53
r1r 1 - 1 0
11 1 - 1 1 |

Theorem 5.1 For the M;/M;/s/0 system, if m(0) < A(0)/u(0) and N/ p is an increasing
function on [0,t], then the modified offered load distribution is stochastically dominated by
the ezact distribution for Q)5 on [0,t], or

p (1) <st p(7), forall 7 €0,¢]. (5.4)

In particular, Bs(ms) underestimates the actual blocking probability on [0,t]. Conversely, if
Moo (0) > A(0)/p(0) and A/ is an decreasing function on [0,1], then the exact distribution
for Qs(t) is stochastically dominated by the the modified offered load distribution at time t
and fs(ms) overestimates the actual blocking probability on [0,1].

In order to obtain better bounds on the error of MOL in the blocking probability, we focus
on the {1-norm on cumulative distribution functions (cdf’s) or, equivalently complementary
cdf’s, instead of probability mass functions. For any vector x on {0,1,...,s} we define |x|g
to equal |xK], i.e., the {;-norm applied to tail sums. Recall that E[X] = >32, P(X > k) if
X in a non-negative integer valued random variable. Thus, is p1 and pa are two probability
vectors corresponding to {0,1,...,s}-valued random variables X; and X;, we have

max ([P (X1 = s) =P (X, = s)[, [E[Xq] = E[X3]]) < |p1 — p2|k - (5.5)
Theorem 5.2 For all t > 0 with p(0) = p*(0), we have
p"(1) = p(V)[k (5.6)

< /Ot Bs (moo(r)) (3 — Moo(T) <1 — B (moo(r))>) exp <— /: ,u(r)dr) |dmeo| (7).

We now apply Theorem 5.2 to obtain bounds that hold for all time. Note that sg,(z) — 0

as § — OQ.



We now apply Theorem 4.1 to obtain bounds and inequalities. First, we obtain bounds
by simply bounding the time-ordered exponential Ea(7,%) in (4.2) by 1. It may be possible
to obtain more refined relations by more carefully examining the time ordered exponential,
as we illustrate by example in Section 6 below. Recall that |x| is the ¢;-norm, defined in
(3.1). Let |dmoo|(7) be the measure

dm

dr (7)

Corollary 4.2 In the setting of Theorem 4.2, We have the following bounds for the error
due to the modified offered load approximation:

sup [p°(7) = p(r)| < 2030 [ 5 )= p (7)) e (1) (1.5)

0<r<t k|=s 0
Bs(meo(7))

2 [ (o) (1= 20 ) 0
< 2+ [ Bulmao(r)) ldimec](7), (4.7)
where Bs(meo(t)) is given in (1.4), i.e.

Ba(meo) = 37 97 (ks t). (4.8)

k|=s

|[dmeo|(T) = ‘ dr. (4.4)

IN

Proof: The first bound follows from Theorem 4.1, the identity
p"(t) —ex| =2(1 —p(k, 1)) (4.9)

for all k € S¢, and fact that |Ea(f)| = 1, where | - | is an operator norm induced by the ¢,
norm on row vectors.
For the second inequality, we observe that x(1 — z) is a concave function of z, and

(S‘HZ'_I) equals the number of states k with |k| = s. Now apply Jensen’s inequality to the
first bound. m

If Q;(0) has a distribution that is not of the form (4.1), then we can construct a process
Q; that has the same infinitesimal generator, but an initial distribution of the proper form.

We then have

sup [p*(7) — p(7)| < [p(0) = p(0)[ + sup [p*(7) — B(7)], (4.10)

0<r<t 0<r<t

where p is the probability vector for Q,, and now the above corollary applies.

5 MOL Bounds for the M;/M,;/s/0 Queue

Now we restrict ourselves to one class or |C| = 1, which gives us the M;/M,/s/0 queue. It
follows that Sc(s) = {0,1,...,s}, which is a totally ordered set. Moreover, (4.2) simplifies
to

p(1) = p(1) = [ Bulmea(r)) - (0°(7) — e)BA(r. 1) dmec(7). (51)

7



where z, = x(«). We will also represent x by the formal sum }_ .- z,e,. Hence |x] is the
{1-norm applied to x. In this notation, the multinomial theorem is transformed into

Xk B |X|s

Kl el
kms k! s!

(3.2)

Theorem 8.2 of Massey and Whitt [15] gives the exact solution for the M,/PH;/oc queue
with appropriate initial distributions, as

e~ Om (1)K

k! ’

where mo. (1) = Y. co m% (t)e, and me(t) = (Moo (t)] = Y aec Mm% (1), such that the m& (¢)’s
solve the set of differential equations

©me (1) = Aa(t) + 3 nalOm Opat) = ot (1) (3.4)

q(k,t) =

(3.3)

for all @ € C, with arbitrary m.,(0). The solution (3.3) is valid provided that the initial
distribution p(k, 0) is also of the same form depending on the initial mean vector mu.(0).

4 The Fundamental Identity and Bounds for MOL

The MOL approximation is defined to be p*(k,t) for S¢, where

gy 2 Me(OF
PQu() = k) ~ p(kt) = T 3

i=0

m‘j# P (Qu(t) =k [|Qu() <5), (41)

where the components of the vector m..(t) = > ,cc m2 (t)e, solve the differential equations
given by (3.4), with arbitrary initial vector m.,(0). We now present our main result, which
we prove in Section 7.

Theorem 4.1 Let { Qs(t) | t > 0} be the Markovian queueing process for M;/PH;/s/0 with
the family of infinitesimal generators { A(t) |t >0 }. Let p(t) be the probability vector for
the distribution of Qs(t), with an initial distribution p(0) = p*(0), which is of the form
(3.3) for arbitrary my(0). Let p*(t) be the probability vector for the modified offered load
approximation, then

P —p() = 3 [ 50 7) (07() = ew)Balr 1) die(7) (1.2

k|=s

where Ea(7,1) is given by (2.7), the signed measure dmy(7) is formally the derivative of
Moo titmes dr, and

dme(7) = (Z Aa(T) — ua(r)mgo(r)qa('r)) dr. (4.3)

aeC



Letting ¢(Sc(s)) be the vector space for real valued functions on S¢(s), we can encode these
equations as

(1) = PA(D) (23)

where

p(t)= >  P(Qi(t) =kex (2.4)

keSc(s)

and A(t) is the corresponding infinitesimal generator that is a linear operator on ¢(S¢(s))
composed of the arrival and service rates for the queueing process. The ey’s are the unit basis
vectors for £(S¢(s)), where each ey corresponds to the indicator function for the singleton
set {k}. In general, p(t) is a probability vector, since it is a vector encoding of the proba-
bility distribution given by p(k,t). We will use the terms probability vector and probability
distribution interchangeably. Formally, we can solve for p(t¢), and get

p(t) = p(0)EA(?), (2.5)

where Ea (1) is the time-ordered exponential of the family of generators { A(7) |0 <7 <t }.
When A is a constant operator, then the corresponding time-ordered exponential is just
exp(tA). In general, it is the unique operator solution to the equation

d
4 BA(1) = BA(DA(1). (2.6)
where EA (0) = I, the identity operator. For all 0 < 7 <, it will also be useful to define
Ea(7,t) = EA(7) '"EA(?). (2.7)

A thorough treatment of the issues of existence, uniqueness, and construction of time-ordered
exponentials can be found in Dollard and Friedman [4].

3 The M;/PH;/cc Queue

Our approximate analysis of the M;/PH;/s/0 employs the exact solution for its infinite
counterpart, the M/ PH;/oo queue. Let { Quo(t) |t > 0} be the M;/PH;/oc queue length
process. Its marginal probabilities ¢(k,t) = P(Qu(t) = k) for all k € S¢, will then solve the
following set of forward equations:

d

10k = X | Aa(Osgn(ke)alk = o)+ pa(t)(ka + Daa(t)alk + ea.1)
+ > p(t) (ks + Dpsalt)sgn(ka)g(k — eq +es,1) — (Aa(t) + palt)ka)a(k, 1) |.
BeC

Now for any x in £(C'), the vector space of real-valued functions on C, and any state k € S¢,
define the following useful operations:

x¥= [ ok, K=]] k!, and |x| = |zal, (3.1)

aelC aeC aeC
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2 The M;/PH;/s/0 Queue

We define the M,;/PH;/s/0 queueing system as follows. It has s independent servers, each
with a common time-dependent phase-type service, and an arrival process that is non-
homogeneous Poisson. The class of phase-type service-time distributions is quite general,
because phase-type distributions are dense in the space of all distributions. This assumption
enables us to construct an extended finite state space such that the queue length process is
Markovian in continuous time. Let C' equal the finite set of service phases (which we assume
does not change with time). To obtain a general state description that makes our system
Markovian, we count the number of customers in each phase of service. We define S¢ to be
the corresponding state space, allowing arbitrary numbers of customers. The states in S¢
can be denoted by k, where every k € S¢ is written as the formal sum

k=" ke, (2.1)

ael

such that e, is an independent basis vector, corresponding to the service phase «, and each
k. 1s a non-negative integer, representing the number of customers in service phase a. The
set S¢ 1s the state space for the case of s = co. In algebraic terms, S¢ is referred to as the
free abelian semigroup generated by the set C', in contrast to the free nonabelian semigroup
structure used in Massey [13] for the state space of a multiclass single server queue. Finally, if

we denote the length of k as |k|, which equals 3", c¢ ko, then the state space for our queueing
model M,;/PH;/s/0, will be Sc(s), where

Sc(s) ={k|ke Sc and |k|<s}. (2.2)

Now let { Qs(¢) | t > 0 } be the Markovian queue length process with state space S¢(s).
Its infinitesimal generator will be constructed from the following parameters:

Aa(t) = the external arrival rate at time t for a customer that initiates service in
phase a.
ta(t) = the service rate at time ¢ for phase a.

Pap(t) = the probability that phase 3 service is initiated at time ¢, given that phase «
service has just terminated.

~—

the probability that the entire service has terminated at time ¢, given that
phase « service has just terminated.

ga(t

If p(k,t) = P(Qs(t) = k), then for |k| < s, Qs(¢) has the following set of forward equations:
d

a' (kv t) = Z%[)\a(t)sgn(ka)p(k — €q, t) + /La(t)(ka + 1)qa(t)p(k + e, t)

+ 3 nalt)(ks + Dpan(0)sgalblpc = o+ e5,0) = (a(0) + oDk )|

where sgn(k) equals 0 if £ =0, and 1 if £ > 0. When |k| = s, we have

e )= 3 [tsentk ol — e 1)
+ 3 nalt)(ka -+ Dpaa(t)sgn(ka ol — e+ e3,0) = pa(B)kapllc 1)
pec



where 3 is given by (1.1) and m(t) is given by (1.3).

From (1.4), we see that MOL enables us to apply the exact results for the M;/G/ /oo model
to the analysis of the M;/G/s/0 model. For example, we applied the MOL approximation
to help understand the impact of the service-time distribution in an M;/G/s/0 queue in
Davis et al. [3]. The MOL approximation was also a major motivation for the papers by
Eick et al. [5], [6] on the M;/G /oo model. Moreover, since a solution exists for the transient
distribution of the M,;/G; /oo queue, see Brown and Ross [1] and Massey and Whitt [15], we
can apply the MOL approximation to the M,;/G;/s/0 queue as well.

The goal of this paper is to create a mathematical theory supporting this heuristic ap-
proximation. In Section 4, we do so by constructing a formal solution to the error between
the exact probability solution and the MOL approximation for the case of time dependent
phase type service. From this main result, we derive simple, computable error bounds for

MOL. For the M;/M/s/0 queue, we will show that

dme

sup [P(Q.(r) = 9 = 5 ma)] < 2 [ 5 ) (18 (7)) | 2500

0<r<t

dr. (1.5)

where we assume that the distribution of ()5(0) is the steady state M/M/s/0 distribution
with parameter m.,(0), which is a family of distributions that includes the point masses at
0 and s; see (4.6). For the more general M;/G/s/0 system, we will also show that

dme

T (1) dr

up [P(Qu(r) = 8) = B (mec(r))| <2 [ B ()

0<r<t

; (1.6)

see (4.7). These error bounds imply that the MOL approximation is asymptotically correct
as either the derivative of m., () or the tail probability P(Qs(t) > s) in the M;/G; /oo model
approaches 0. In turn, these limits for the M;/G /oo model hold as the derivative of A(t)
approaches 0 and as s — oo. More generally, these bounds support the intuition that MOL
should perform better when the arrival rate A(t) changes more slowly and when the blocking
probability is lower.

We obtain alternative bounds for the M;/M/s/0 system in Section 5 by using the {;-norm
on cumulative distribution functions instead of the £;-norm on probability mass functions.
For example, with the same initial conditions, if 4 = 1 and X is bounded with a bounded
derivative A" on [0, 00), then

sup
>0

E[Qu(0)] e (0)(1 = 8 (mee()) )| £ N s (1AL, (1.7)

where |f|s = sup,so|f(z)| for all bounded functions f on [0, 00). Note that (1.7) is uniform
over all time. -

In Section 6, we investigate in detail the special case of an M/M/s/0 model which
experiences a change of parameters at time 0. Hence we are describing the transient behavior
going from one stationary regime to another. Here we exploit the fact that the generator
after time 0 is not time-dependent.



1 Introduction

The probabilistic modelling of the number of busy lines in telephone trunk groups is one
of the fundamental problems that led to the development of queueing theory. It was first
formulated as an M/M/s/0 queue by Erlang [7]. He gave an exact solution for the steady
state distribution, which gave rise to the well known Erlang blocking formula. This formula
states that if )5(¢) is the random queue length at time ¢ for the M/M/s/0 system (queueing
here means “waiting” for service completion), then

Jim P(Q.(0) = )= a0y = T /5 B i) (1)
where A is the Poisson arrival rate, 1/p = E[S] is the mean of the exponentially distributed
random service time S, and s equals the total number of servers (trunk lines). Since Poisson
arrivals see time averages, B5(A/u) is also the long-run proportion of arrivals that are lost.

The Erlang blocking formula also applies to the M/G/s/0 queue with a general service
time distribution, having the same Poisson arrival rate and mean service time. This in-
sensitivity property means that the assumption of exponential service is superfluous, which
expands the model’s range of applicability. Moreover, limit theorems for general point pro-
cesses show that modelling the arrival process as Poisson is not too restrictive, e.g. see page
281 of Daley and Vere-Jones [2].

In fact, the most restrictive assumption in the M/M/s/0 model is having a constant
arrival rate. Significant steps were made to solve this problem starting in the 1930’s, see
Palm [16], Khintchine [11], and Prékopa [17]. They found the exact solution for the time
dependent distribution in the M,;/G /oo model. This infinite server queue captures the effect
of a time varying mean arrival rate and general service times, but at the expense of letting

the total number of servers be infinite. If ) (f) equals the queue length at time ¢ in the
M, /G /oo model, and Q) (tg) = 0 for some 5 < ¢, then

k

P(Qult) = k) = et 1) (1.2)

for all non-negative integers k, where

mo(t) = E Utis )\(T)dr] , (1.3)

with A(¢) = 0 for all ¢t < t5. A simple direct approximation for the blocking probability
P(Qs(t) = s) in the M;/(G/s/0 model is the tail probability P(Qu(t) > s).

These exact solutions to the M/G/s/0 and M;/G /oo models led to a better technique
for approximating the time-dependent queue length distribution in the M;/G/s/0 model.
It is called the the modified-offered-load approzimation (MOL), see Jagerman [8]. Since the
Erlang blocking formula is a function of A\/u, and A/p is the mean queue length in the
steady-state stationary M/G/oo queue, we should obtain a reasonable approximation for
the time-dependent blocking probability in the M;/G/s/0 queue if we substitute m(t) for
A/p in the Erlang blocking formula. Thus the MOL approximation is

P(Qu(t) = 5) & B(moa(t)) = P (Qua(t) = 5 | Quo(t) < 5). (1.4)
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Abstract

A fundamental problem that led to the development of queueing theory is the
probabilistic modelling of the number of busy lines in telephone trunk groups. Based on
the behavior of real telephone systems, a natural model to use would be the M;/G/s/0
queue, which has s servers, no extra waiting space and a nonhomogeneous Poisson
arrival process (M;). Unfortunately, so far queueing theory has provided an exact
analysis for only the M/G/s/0 queue in steady state, which yields the Erlang blocking
formula, and the M;/G /oo queue, which treats nonstationary arrivals at the expense
of having infinitely many servers. However, these results can be synthesized to create a
modified offered load (MOL) approximation for the M;/G/s/0 queue: the distribution
of the number of busy servers in the M;/G/s/0 queue at time ¢ is approximated by
the steady-state distribution of the stationary M/G/s/0 queue with an offered load
(arrival rate times mean service time) equal to the mean number of busy servers in
the M;/G /oo queue at time ¢. In addition to being a simple effective approximation
scheme, the MOL approximation makes all of the exact results for infinite server queues
relevant to the analysis of nonstationary loss systems.

In this paper, we provide a rigorous mathematical basis for the MOL approxima-
tion. We find an expression for the difference between the M;/G/s/0 queue length
distribution and its MOL approximation. From this expression we extract bounds on
the error and deduce when one distribution stochastically dominates the other.

Keywords: Performance Analysis, Traffic Theory, Nonstationary Queues, Nonstation-
ary Erlang Loss Model, Erlang Blocking Formula, Infinite Server Queues, Phase-Type
Service, Time Ordered Exponentials, Stochastic Dominance.



