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This paper investigates the impact of dependence among successive service times upon the transient and
steady-state performance of a large-scale service system. That is done by studying an infinite-server queueing
model with time-varying arrival rate, exploiting a recently established heavy-traffic limit, allowing depen-
dence among the service times. That limit shows that the number of customers in the system at any time is
approximately Gaussian, where the time-varying mean is unaffected by the dependence, but the time-varying
variance is affected by the dependence. As a consequence, required staffing to meet customary quality-of-
service targets in a large-scale service system with finitely many servers based on a normal approximation
is primarily affected by dependence among the service times through this time-varying variance. This paper
develops formulas and algorithms to quantify the impact of the dependence among the service times upon
that variance. The approximation applies directly to infinite-server models, but also indirectly to associated
finite-server models, exploiting approximations based on the peakedness (the ratio of the variance to the
mean in the infinite-server model). Comparisons with simulations confirm that the approximations can be
useful to assess the impact of the dependence.
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1. Introduction
Performance analysis models for managing service systems, e.g., setting staffing in call centers,
usually assume that the required service times are mutually independent random variables, but
successive service times may in fact be dependent. For example, in a technical support telephone
call center responding to service calls, a product defect can lead to many calls concerning that
same product after the product is first introduced, with these tending to require longer-than-usual
handling times. That would increase the average handling time during this time period, but that
also would make the call handling times positively correlated. There are well developed methods
to study the impact of average service times, but the impact of the dependence, for given mean,
has evidently not been studied before. We will show that positive correlation among service times
typically produces additional congestion, reducing the quality of service during that time period,
unless staffing is increased. Moreover, we will quantify the impact. This phenomenon and our
results apply both to the transient system performance after any one new product is introduced
and the steady-state performance as a succession of new products are introduced over time.

For another example, in a hospital emergency room, there may be multiple patients associated
with the same medical incident. Several people may be victims of a single highway accident or food
poisoning at the same restaurant. There may be rapid spread of a contagious disease. The common
causes of serious problems may lead to multiple patients with longer-than-usual service times.
Again, that would increase the average service time during this time period, but also would make
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the service times positively correlated. As in the first example, this dependence affects both the
transient system performance associated with a single incident and the steady-state performance
as a succession of incidents occur over time.

In this paper, we investigate the performance impact of dependence among the service times
in a queueing model with a large number of homogeneous servers. We treat transient effects as
well as steady-state effects. We do so by establishing results for transient behavior, allowing time-
varying arrival rates. We directly develop analytical formulas and numerical algorithms to expose
the approximate performance impact of dependent service times for infinite-server (IS) models.
The results have useful applications for service systems with only finitely many servers in two ways.
First, IS models can be directly applied to understand and control the performance of large-scale
service systems. Second, the new approximation for IS models can be applied to yield corresponding
performance approximations for models with only finitely many servers; we elaborate below. In
both cases, analytical formulas and numerical algorithms can usefully complement and supplement
computer simulation. Analytical formulas provide important insight; e.g., see Proposition 3 and
the following discussion.

Previous work has shown that IS models can be directly applied to effectively approximate and
control the performance of large-scale service systems; see Jennings et al. (1996), Feldman et al.
(2008) and Green et al. (2007) for applications of the IS model to staffing. For systems with finitely
many servers, where customers wait if they cannot be served immediately upon arrival, we can
directly approximate the number of customers in the system by the corresponding number in the
IS model. For example, if s(t) is the number of servers in the actual system at time t and X(t) is
the random number in system in the IS model at time t, then the probability that an arrival at
time t would have to wait before starting service can be approximated by P (X(t)≥ s(t)).

For the IS model, we determine the performance impact of the dependence among the service
times by approximating the distribution of the number of customers in the system, allowing the
dependence, and comparing the result with and without the dependence. To do that, we apply
an approximation for the the distribution of the number of customers in an IS model based on a
many-server heavy-traffic limit established in Pang and Whitt (2011). That analysis shows that: (i)
the number of customers in the IS model at each time is approximately normally distributed, (ii)
the average number in the IS model at each time is unaffected by dependence among the service
times, and (iii) the variance of the number in the IS model at each time is affected by dependence
among the service times, and it can be quantified.

Hence, to characterize the performance impact of the dependence among the service times, it
suffices to examine the expression for the variance of the number in the IS system. However, the
expressions for the variance in Pang and Whitt (2011) are quite complicated. Even the steady-state
variance formula is complicated; see (6) below, which uses (3) and (5). Our main contribution is to
show that useful engineering approximations can be extracted from the results in Pang and Whitt
(2011) and to conduct simulation experiments showing that the approximations are effective.

Our results about the variance translate quite directly into implications for staffing. As discussed
in Jennings et al. (1996), if we aim to set staffing to achieve a target probability of delay, then
the normal approximation dictates that the staffing level be set at the mean plus some constant
multiple of the standard deviation. Suppose that it has been decided to set the staffing level at
the mean plus a constant q times the standard deviation. If dependence among the service times
changes the variance of the number in system at time t from σ2(t) to η(t)σ2(t), where η(t) > 1,
then the required staffing should increase from E[X(t)] + qσ(t) to E[X(t)] + q

√

η(t)σ(t), which is
an increment of (

√

η(t)− 1)qσ(t).
We indicated that effective approximations for the performance in finite-server models can be

based on the performance of associated IS models. For this purpose, the peakedness – the ratio
of the variance to the mean of the number of busy servers in the IS model – has proven to be
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very useful; see Eckberg (1983), Whitt (1984), Jagerman and Melamed (1994), Massey and Whitt

(1996), Mark et al. (1997), Whitt (2004) and references therein. Since the dependence in the service

times in the IS model does not affect the mean number of busy servers at all, our approximation for

the variance of the number of busy servers translates directly into an associated approximation for

the peakedness. Thus we can obtain new approximations for the performance in finite-server models

with dependent service times by simply substituting our new peakedness for the old peakedness

without dependence into the previous approximation formulas; see (34). Such new approximations

need to be carefully examined, because they have not considered previously. We demonstrate the

potential of the new approximations by reporting results from a simulation experiment for a finite-

server model with dependent service times. Table 5 shows that the new approximation for the

steady-state delay probability is remarkably effective.

Related literature. Even for the relatively elementary IS model with Poisson arrivals, relatively

little work has been done previously on dependent service times; one exception is Falin (1994), who

provided an algorithmic approach for the exact distribution with Poisson arrivals. Another exact

numerical approach could be based on replacing the Pht service times in the Pht/Pht/∞ model

in Nelson and Taaffe (2004) by an associated Markovian service process (MSPt), which has the

structure of a Markovian arrival process, admitting dependence among the service times; e.g., see

Asmussen (2003).

Unlike for the many-server models considered here, much is known about the performance impact

of dependence among the service times, as well as among the interarrival times and between

interarrival times and service times, in single-server queueing models and related models with few

servers. That impact is clearly revealed in conventional heavy-traffic approximations, where the

traffic intensity is allowed to increase toward its critical value 1 from below; see Theorems 9.3.3

and 9.3.4 and §9.6 of Whitt (2002) for a detailed treatment of the case of a single-server queue.

The impact of the dependence is captured via the sums of all the pairwise correlations, as shown in

(6.11) on p. 308 of Whitt (2002). The three forms of dependence - among interarrival times, among

service times, and between interarrival times and service times - can all be important as shown for

a packet queue example in Fendick et al. (1989), reviewed in Example 9.6.1 of Whitt (2002). Our

results here indicate that the impact of the dependence is less dramatic for many-server queues,

but it still can be significant; e.g., see the end of §6.

Organization of the paper. In §2 we review the result from Pang and Whitt (2011). In §3 we

restrict attention to the the steady-state distribution of one stationary IS model, and develop

effective representations for the terms in the steady-state variance formula. In §4 we develop approx-

imations for the variance of the steady-state number in the system based on the correlations of

successive service times. We show that this approximation is realized exactly via a model of ran-

domly repeated service times, which is a special case of a first-order discrete autoregressive process,

DAR(1), studied by Jacobs and Lewis (1978, 1983). In §5 we consider examples and compare the

approximations to simulations. As an example of geometrically decaying correlations, we include a

simulation using the special autoregressive moving-average stationary sequence of dependent ser-

vice times with exponential marginals, the so-called EARMA(1,1) process, from Jacobs and Lewis

(1977). In §6 we evaluate the performance of the approximation for the delay probability in the

finite-server model with the same EARMA(1,1) service process. In §7 we apply the approximations

developed for the stationary model to develop an approximation for the time-varying variance in

the model with time-varying arrival rates. In §8 we conduct simulations to evaluate the approxima-

tions for time-varying arrival rates, considering the special case of sinusoidal time-varying arrival

rates. Finally, in §9 we draw conclusions.
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2. Review of the Heavy-Traffic Limit
The new approximation for the performance of the Gt/G/∞ model from Pang and Whitt (2011),
stated in (5) below, is obtained from a many-server heavy-traffic limit. The arrival process is
assumed to satisfy a FCLT of the form

(An(t)−nΛ(t))/
√

n⇒
√

c2
aB(Λ(t)) as n→∞, (1)

in the function space D (see Whitt (2002)), where

Λ(t)≡
∫ t

0

λ∗(s)ds, t≥ 0, (2)

and B is a standard Brownian motion. Thus, asymptotically, the arrival process is characterized
by the time-varying arrival-rate function λ∗(t) and the variability parameter c2

a, which is deter-
mined by the limit (1). Dependence among the interarrival times is captured by the parameter c2

a,
e.g., see (7) below. For the principal case in which An(t) is a nonhomogeneous Poisson process,
c2

a = 1. Consequently, in model n, the arrival rate at time t is approximately nλ∗(t), while the
number of arrivals in the interval [0, t], An(t), is approximately distributed as N(nΛ(t), nc2

aΛ(t)),
where N(m,σ2) denotes a random variable normally distributed with mean m and variance σ2.
Asymptotically, the arrival process has independent (but not necessarily stationary) increments.

Unlike the arrival process, we know from Krichagina and Puhalskii (1997) and Pang and Whitt
(2010, 2011) that the service times affect the many-server heavy-traffic limit, not via their counting
process or partial sums, but instead via the sequential empirical process. Let {Si : i ≥ 1} be the
sequence of service times of successive customers. The (fluid-scaled) sequential empirical process is
K̄n(t, x) ≡ n−1

∑⌊nt⌋

i=1 1(Si ≤ x), where ≡ denotes equality by definition and 1(A) is the indicator
function of the event A, equal to 1 on A and 0 elsewhere. The sequential empirical process takes
a horizontal (or sideways) view of the service times instead of the customary vertical view. Let all
service times be distributed as the random variable S having cumulative distribution function (cdf)
F with finite mean mS. With independent service times, K̄n(t, x)→ tF (x) as n→∞ by the law of
large numbers. The FCLT for the scaled process K̂n(t, x) ≡√

n(K̄n(t, x)− tF (x)) is the basis for
the heavy-traffic limit for the IS model; the limit process is K̂(t, x) = U(t,F (x)), where U(t, x) is
the Kiefer process. The key tool for dependent service times in Pang and Whitt (2011) is the FCLT
for the sequential empirical process of weakly dependent random variables in Berkes and Philipp
(1977) and Berkes et al. (2009). The service times are assumed to be independent of the arrival
process, but the service times can be mutually dependent. To be able to apply Berkes et al. (2009)
and Berkes and Philipp (1977), Pang and Whitt (2011) assume that the service times come from a
stationary sequence of random variables, satisfying appropriate mixing conditions (producing weak
dependence), which we assume prevails. Let the stationary sequence be extended to a two-sided
stationary sequence (which always can be done).

The many-server heavy-traffic impact of the dependence among the service times is determined
by the bivariate cdf of service times j and j +k, Hk(x, y)≡ P (Sj ≤ x,Sj+k ≤ y), where Hk(x,∞) =
Hk(∞, x) = F (x) for all k ≥ 1 and all x ≥ 0. In particular, the bivariate cdf’s Hk appear via the
function

Γ(s)≡ 2
∞
∑

k=1

(Hk(s, s)−F (s)2) = 2
∞
∑

k=1

(Hc
k(s, s)−F c(s)2), (3)

where F c(s)≡ 1−F (s) is the complementary cdf. The last relation in (3) holds because

Hk(s, s) = Hc
k(s, s) + 2F c(s)− 1 and F (s)2 = F c(s)2 +2F c(s)− 1, (4)

so that Hk(s, s)−F (s)2 = Hc
k(s, s)−F c(s)2.
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Assuming that the system started empty in the distant past, we obtain the following heavy-traffic
approximation from the FCLT in Pang and Whitt (2011):

Q(t) ≈ N(m(t), v(t)), where m(t)≡
∫ ∞

0

λ(t− s)F c(s)ds, t≥ 0, and

v(t) ≡
∫ ∞

0

λ(t− s)V (s)ds, V (s)≡F c(s) + (c2
a − 1)F c(s)2 +Γ(s), s≥ 0, (5)

with Γ in (3), understanding λ(t) = nλ∗(t). If we want the system to start at time 0 instead of in
the distant past, then we can simply set λ(t) = 0 for t < 0 in (5).

From above, it follows that the desired approximate time-dependent variance v(t) is a function
of the arrival process through the arrival-rate function λ(t) and the variability parameter c2

a, and
of the the service times through the bivariate cdf’s Hk(x, y). If the bivariate cdf’s Hk(x, y) were
known and understood, then the story would be complete above, but that typically is not the case.
Much of the following is devoted to developing effective ways to represent and estimate v(t) without
directly calculating or estimating Hk(x, y) for all (k,x, y). After doing so, we conduct simulations
to show that the resulting approximations are effective.

3. An Effective Representation for the Stationary Model
Associated steady-state formulas are obtained by simply replacing the time-varying arrival rate
function λ(t) in (5) by the constant λ. The corresponding steady-state formulas are

m(∞) = λ

∫ ∞

0

F c(s)ds = λmS , v(∞) = λ

∫ ∞

0

V (s)ds = λv∞, v∞ ≡
∫ ∞

0

V (s)ds, (6)

where V (s) is given in (5).
In the stationary setting, it is customary to work with a single fixed arrival process A(t) with

rate λ∗ and let An(t)≡A(nt), t≥ 0, n≥ 1. Then the FCLT (1) holds with Λ(t) = λ∗t in (2). Then
any dependence among the interarrival times is captured by the variability parameter c2

a. Let {Ui}
be the sequence of interarrival times in A, assumed to be strictly stationary. As in §4.4 of Whitt
(2002), the standard case is

c2
a = (λ∗)2σ2

a, where σ2
a = V ar(U1) + 2

∞
∑

k=1

cov(U1,Uk). (7)

The series is required to converge in order to have (1). For a renewal process, c2
a = V ar(U1)/(E[U1])

2,
the squared coefficient of variation (SCV) of an interarrival time U .

Clearly, dependence among the service times affects the performance differently. If there is no
dependence among the service times, then Γ(s) = 0, so that the third term in the integrand V (s)
in (6) and (5) drops out. If the arrival process is Poisson or if only the arrival process satisfies a
FCLT with variability parameter c2

a = 1, then c2
a − 1 = 0, so that the second term (c2

a − 1)F c(s)2 in
the integrand V (s) in (6) and (5) drops out.

3.1. Peakedness

As we indicated in the introduction, for stationary IS models, it is revealing to focus on the
peakedness, z ≡ v(∞)/m(∞). The Markovian M/M/∞ IS model is the reference case; then z ≡
z(M/M) = 1 because the distribution is Poisson. Here we understand z to be the heavy-traffic

approximation for the peakedness (which can be shown to be the limit of z(λ) as λ→∞ by limit
interchange and uniform integrability arguments). For the G/M/∞ model in heavy traffic, where
the stationary arrival process (Λ(t) = λ∗t in (2)) satisfies a FCLT with variability parameter c2

a, and
the service times are i.i.d., z ≡ z(G/M) = (c2

a +1)/2 for c2
a in (7). For the more general model with

general possibly dependent, service times, from (3), after dividing and multiplying by mS ≡ 1/µ,
and recalling the tail integral formula used in (6), we obtain a revealing alternative expression.
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Proposition 1. For the general stationary model allowing dependent service times, the (heavy-
traffic) peakedness can be represented as

z ≡ z(G/G)≡ z(c2
a, F,{Hk}) = 1 + (c2

a − 1)I1 + I2, (8)

where

I1 ≡ I1(F )≡
∫∞

0
F c(s)2 ds

mS

(9)

and

I2 ≡ I2({Hk}) =

∫∞

0
Γ(s)ds

mS

=
2
∫∞

0
(
∑∞

k=1(H
c
k(s, s)−F c(s)2)) ds

mS

. (10)

3.2. Representation of Integrals as Mean Values

Unfortunately, formulas (6), (9) and (10) are still complicated, requiring that we somehow deter-
mine or estimate the entire functions F c and Γ. However, we actually only require the integrals of
these functions. We now show that the integrals have convenient expressions as means of random
variables. That facilitates both analysis and statistical estimation. In particular, with simulation
or system data, we can estimate these mean values directly via standard statistical methods for
estimating means. That provides a convenient simplification for application of these results.

We obtain the new representation by exploiting tail integrals, as in (6). Let S1 ∧ind S2 be the
minimum of two independent random variables each distributed as a single service time random
variable S with cdf F , so that its complementary cdf is P (S1 ∧ind S2 > s) = F c(s)2. Hence, the
integral term I1 in (8) and (9) can be expressed as the ratio of two mean values:

I1 = E[S1 ∧ind S2]/E[S1], (11)

where S1 and S2 are independent random variables with common cdf F . As a consequence, 0 ≤
I1 ≤ 1, with I1 = 1 when F in the deterministic case in which F is the distribution of a single
point mass. More generally, I1 tends to decrease as the distribution of F gets more variable. The
exponential case is an intermediate case, yielding I1 = 1/2.

Similarly, Hc
k(s, s) = P (Sj ∧Sj+k ≥ s), where these random variables have their given joint dis-

tribution. Hence, we can also obtain an alternative representation of I2 exploiting tail integrals.
Paralleling (11), we can write

Jk ≡
E[Sj ∧Sj+k]

E[Sj ]
, k ≥ 1, and I2 = 2

∞
∑

k=1

(Jk − I1). (12)

Just like I1, we have 0≤ Jk ≤ 1. Since we are considering positive dependence, we expect to have
Jk ≥ I1 for all k. At first glance, there is an issue about convergence for I2 in (12), but it can be
expected because we should have Jk − I1 → 0 as k →∞.

We summarize our conclusions in

Proposition 2. The two integral terms I1 and I2 defined in (9) and (10) and appearing in

the peakedness formula (8) can be expressed in terms of mean values of the random variables Sj,

S1 ∧ind S2 and Sj ∧Sj+k via (11) and (12).

4. Approximations Based on Correlations
In applications, it is common to specify dependence through correlations as opposed to the full
bivariate cdf Hk or the mean values of the random variables Sj, S1 ∧ind S2 and Sj ∧ Sj+k. Thus,
in this section we develop an approximation that depends only on the correlations. In the next
section we investigate how well it works. We cannot apply any assumption about the correlations
directly, because the approximation formula for the key integral term I2 in (10) and (12) depends
on the full cdf’s Hk, and not just the correlations. Thus we now provide a way to approximate the
bivariate cdf’s Hk given the partial information provided by their correlation.
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4.1. Exploiting Extremal Bivariate cdf’s

We will construct the approximating cdf by exploiting extremal bivariate cdf’s with the given
marginal cdf F ; see Whitt (1976). The maximum correlation 1 is achieved when the two service
times are identical; the joint cdf is H̃1(x, y)≡F (x∧y). The minimum nonnegative (zero) correlation
is achieved when the random variables are independent; the joint cdf is H̃0(x, y)≡F (x)F (y). (It is
possible to construct multivariate distributions with negative correlation, but that does not seem
realistic for the present application.) A specific cdf with correlation ρ, 0 ≤ ρ ≤ 1, is achieved by
taking a convex combination of these two cdf’s, i.e.,

H̃ρ(x, y)≡ ρH̃1(x, y) + (1− ρ)H̃0(x, y) = ρF (x∧ y) + (1− ρ)F (x)F (y). (13)

Given that two service times have correlation ρ and marginal cdf F , we can let H̃ρ be the joint
cdf in (13). It has marginal cdf F and correlation ρ. We can thus compute an approximation to I2

based on the partial characterization of the joint cdf Hk by its marginal cdf F and correlation ρ.
In particular, as a first step, from (13) and (4), we get

H̃c
ρ(s, s)−F c(s)2 = ρ(F c(s)−F c(s)2) and H̃c

ρ(s, s) = ρF c(s) + (1− ρ)F c(s)2, s≥ 0. (14)

Using the second relation in (14), we see that the function Hc
ρ(s, s) of the single variable s coincides

with the ccdf of a random variable, say Yρ, that is a mixture of random variables with ccdf’s F c(s)
and F c(s)2. On the other hand, we can apply the first relation in (14) with (10) to directly obtain
a new approximate expression for the integral I2 as a function of all the pairwise correlations, in
particular we get

I2 ≈ 2(1− I1)Σρ, Σρ ≡
∞
∑

k=1

ρk and ρk ≡Corr(Sj, Sj+k). (15)

We assume that the sum Σρ in (15) is finite. Given (13), we also obtain a simple representation for
the function V in (5). For these bivariate cdf’s, we have

V (s) = (1 +2Σρ)F
c(s) + (c2

a − 1− 2Σρ)F
c(s)2, s≥ 0. (16)

We now summarize our conclusions.

Proposition 3. If we fit an approximating bivariate cdf H to a specified marginal cdf F and a

nonnegative correlation ρ via (13), then the peakedness in Proposition 1 becomes

z = 1 +(c2
a − 1)I1 +2(1− I1)Σρ = (1 +2Σρ) + (c2

a − 1− 2Σρ)I1, (17)

where Σρ is the sum of all correlations in (15).

Approximation (17) is very useful to obtain a basic understanding of the causes of peakedness.
There are three relevant distinct parameters in approximation (17): the arrival process variability
parameter c2

a, the marginal service-time variability parameter I1 depending only on F , and the
service-time dependence factor Σρ in (15).

From the first expression in (17), we see that the peakedness z is linearly increasing in the two
variables c2

a and Σρ for any value of I1. For c2
a, the growth factor is I1; for Σρ, the growth factor is

2(1− I1). The first growth factor increases in I1, ranging from 0 to 1, while the second decreases in
I1, ranging from 2 to 0. The second expression in (17) shows that z is linearly increasing (unaffected

by or linearly decreasing) in I1 when c2
a − 1− 2Σρ > (= or <)0.

In the cases of D service, M service and highly variable service, we have I1 = 1, I1 = 1/2 and
I1 ≈ 0, respectively. Thus, for D service, z = c2

a; for M service, z = ((c2
a +1)/2)+Σρ; and for highly

variable service (characterized by I1 ≡ 0), z = 1+2Σρ. Thus, with D service, only the arrival process
matters; with M service, we add Σρ to the G/M/∞ peakedness expression; with highly variable
service (as represented by small I1), the arrival process variability as captured by the parameter
c2

a plays no role.
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4.2. Randomly Repeated Service Times

We now introduce a model for a stationary sequence of service times for which the bivariate cdf’s
Hk coincide with the special bivariate cdf’s H̃ρk

in (13). As a consequence, for these models, the
approximation for the (heavy-traffic) peakedness in Proposition 3 is exact.

A simple one-parameter model. We start with an initial simple single-parameter model for the
sequence of service times with marginal cdf F . We let each successive service time be a mixture of
the previous service time with probability p or a new independent service time having cdf F , with
probability 1− p. (This is a special case of a first-order discrete autoregressive process, DAR(1),
studied by Jacobs and Lewis (1978, 1983).) In other words, we can let S1 be distributed according
to F , {Xk : k ≥ 2} be a sequence of i.i.d. random variables, each with cdf F , and then {Zk : k ≥ 2}
be a sequence of i.i.d. random variables with P (Zk = 1) = 1− P (Zk = 0) = p. Then, given S1, we
construct the sequence of service times {Sk : k ≥ 1} by stipulating that

Sk = Zk−1Sk−1 +(1−Zk−1)Xk, k ≥ 2. (18)

This model produces independent groups or “batches” of identical service times, where the batch
sizes are geometric. In this model, we have the correlations

corr(Sj, Sj+k) = pk (19)

and we have all the bivariate cdf’s

Hk(x, y)≡P (Sj ≤ x,Sj+k ≤ y) = H̃ρk
(x, y) where ρk = pk. (20)

Hence Σρ = p/(1− p) in this case.
General batch-size distribution. We can extend the model to allow batches of identical service

times with non-geometric distributions. The new model for the sequence of service times with
marginal cdf F has each successive service time be a mixture of the previous service time with
probability pk or a new independent service time having cdf F , with probability 1− pk, where the
probability pk depends on how many repeated service times have occurred so far. We get probability
pk if there have been k successive identical service times previously

In other words, as before, we can let S1 be distributed according to F , we can let {Xk : k ≥ 2} be a
sequence of i.i.d. random variables, each with cdf F . But now include the counter variables Nk. We
initially set N1 = 1. Now let {Zk : k ≥ 1} be a sequence of random variables that are conditionally
independent given the sequence {Nk : k ≥ 1}, with

P (Zk = 1|Nj , j ≤ k) = 1−P (Zk = 0|Nj, j ≤ k) = pNk
, (21)

where {pk : k ≥ 1} is a sequence of probabilities (0 ≤ pk ≤ 1), where
∏∞

k=1 pk = 0. Then we can
recursively construct the sequences of service times {Sk : k ≥ 1} and the counting variables {Nk :
k ≥ 1} by stipulating that

Sk = Zk−1Sk−1 +(1−Zk−1)Xk, k ≥ 2, (22)

and Nk = Zk−1Nk−1 +1, k ≥ 2; i.e., Nk = Nk−1 +1 if Zk−1 = 1 and Nk = 1 if Zk−1 = 0.
We have specified the distribution of each successive batch size via the conditional probabilities

P (B = k|B ≥ k − 1) = pk−1, k ≥ 2. We have directly assumed that B has a proper distribution:
P (B <∞) = 1. We will also want to require that the mean E[B] is finite as well. Hence, we assume
that

E[B] =
∞
∑

k=1

P (B ≥ k) =
∞
∑

k=1

k−1
∏

i=1

(1− pi) <∞. (23)
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We also want the service times we consider to come from a stationary sequence. In order to
achieve that, we need to start with a stationary batch, denoted by B∗. We want to assume that
the age of the initial batch is distributed according to the batch-size stationary excess distribution.
In particular, we assume that

P (N1 = k) = P (B∗ = k)≡ p∗
k =

P (B ≥ k)
∑∞

k=1 P (B ≥ k)
=

P (B ≥ k)

E[B]
; (24)

which has mean

mB∗ ≡E[B∗] =
E[B2] +mB

2mB

=
mB(c2

B +1) +1

2
. (25)

See Whitt (1983) for more on the batch-size stationary-excess distribution.
For this more general model, we again have the bivariate distributions as in (20), but now, for

k ≥ 1,

ρk ≡Corr(Sj, Sj+k) =
∞
∑

j=1

p∗
jP (B ≥ j + k|B ≥ j) =

∑∞

j=1 P (B ≥ j + k)

E[B]
= P (B∗ > k). (26)

Since the bivariate cdf’s are the same as in §4, the approximation in Proposition 3 is again exact
for this model.

Proposition 4. For the G/RRS/∞ IS model with random batch-size B having finite first two

moments, the exact heavy traffic peakedness is as in Proposition 3 with

Σρ ≡
∞
∑

k=1

ρk =
∞
∑

k=1

P (B∗ > k) = mB∗ −P (B∗ ≥ 1) = mB∗ − 1 =
mB(c2

B +1)− 1

2
<∞. (27)

Proof. Apply (26) and (25) to compute Σρ.
Under regularity conditions, we can also construct an RRS model to have given correlations.

Proposition 5. Suppose that the stationary sequence of service times has the sequence of cor-

relations {ρk : k ≥ 1} with Σρ <∞. If the associated sequence {ρk−1 − ρk : k ≥ 1}, where ρ0 ≡ 1, is

nonincreasing, then we can construct an RRS model with the given correlation sequence. The mean

batch size is mB = (1− ρ1)
−1. The batch-size distribution is specified by having P (B ≥ 1) = 1 and

P (B ≥ k) =
ρk−1 − ρk

1− ρ1

, k ≥ 1. (28)

For the associated G/RRS/∞ IS model, the exact heavy-traffic peakedness is as in Proposition 3.

Proof. From (26), 1−ρ1 = P (B∗ = 1) = P (B ≥ 1)/mB = 1
mB

, implying that mB = (1−ρ)−1. Also
from (26),

ρk−1 − ρk = P (B∗ = k) =
P (B ≥ k)

mB

= (1− ρ1)P (B ≥ k), k ≥ 1.

5. Examples and Simulation Comparisons
In this section we consider some examples and make comparisons with simulation. In addition to
the model with random repeated service times in §4.2, we also consider the EARMA service times
introduced by Jacobs and Lewis (1977), extended by Lawrence and Lewis (1980) and Sim (1990),
and studied further in queueing models by Jacobs (1980). We consider a wide range of correlations,
including quite high values, which seem less realistic, but indicate the limits of the approximations.
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5.1. Evaluating the Approximation with Random Repeated Service Times

We first describe simulations to evaluate the heavy-traffic peakedness approximation for the
M/RRS/∞ model, having random repeated service times, as in §4.2. We let the service times all
be exponentially distributed with mean 1. We consider the simple one-parameter model in (22)
specified by the parameter p. We consider 5 values of p: 0.1, 0.25, 0.50, 0.75 and 0.90, with higher
values indicating higher correlations.

For the stationary model, from (16), we get the associated peakedness in (17). In the case of a
Poisson arrival process and exponential service times having mean 1, we get

V (s) = (1 +2Σρ)e
−s − 2Σρe

−2s. (29)

For the stationary model, we get the associated heavy-traffic peakedness

z = (1 +2Σρ)−Σρ = 1 +Σρ =
1

1− p
. (30)

Results for our simulation experiments are shown in Table 1. In our simulation experiments we
considered a range of arrival rates. For each value of p, we show values of λ that approximately
yield 1% and 10% error for each case (discovered through simulation experiments). We see that the
required value of λ increases as the dependence (measured by p) increases. When p is not extremely
large, the heavy-traffic peakedness provides a remarkably good approximation for a wide range of
λ. For the RRS examples in Table 1, the heavy-traffic peakedness seems to be an upper bound
that is approached monotonically as λ increases.

p λ HT Approx. simul. 95%c.i. Time Int. N reps.
0.10 10.0 1.111 1.103 ±0.009 [20,100] 1000
0.10 0.1 1.111 1.007 ±0.018 [20,100] 3000
0.25 25.0 1.333 1.320 ±0.007 [20,100] 1000
0.25 2.0 1.333 1.201 ±0.009 [20,100] 1000
0.50 100.0 2.000 1.976 ±0.012 [20,100] 2000
0.50 10.0 2.000 1.839 ±0.021 [20,100] 2000
0.75 800.0 4.000 3.976 ±0.012 [20,100] 5000
0.75 80.0 4.000 3.861 ±0.014 [20,100] 5000
0.90 1000.0 10.000 9.899 ±0.018 [20,1000] 5000
0.90 80.0 10.000 8.999 ±0.014 [200,1000] 5000

Table 1 Comparison of the heavy-traffic peakedness for the M/RRS/∞ model in Propositions 3 and 4 to
simulation estimates. Here we use the single-parameter randomly repeated exponential service times
with heavy-traffic peakedness equal to 1 + Σρ = 1/(1− p) from (17) and (19). We consider five cases
for the RRS parameter p: 0.10, 0.25, 0.50, 0.75 and 0.90. For each case, two arrival rates are considered,
the higher one yielding about 1% error and the lower one yielding about 10% error.

5.2. Non-Exponential Distributions

We now extend the last subsection by considering dependence in the interarrival times as well as
the service times and non-exponential distributions. (We use independent RRS models for both
the interarrival times and the service times.) In addition to exponential marginal distributions,
now we also consider hyperexponential (H2, a mixture of two exponential) marginal distributions,
using SCV c2 = 4 and balanced means to fix the parameters; see (3.7) on p. 137 of Whitt (1982).
As before, the mean service time is 1. For this H2 distribution, I1 = 0.3500. As in Table 1, we
consider random repeated service times, using the single-parameter model with p = 1/2. The RRS
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asymptotic variability parameter for the arrival process is c2
a = c2(1 + 2Σρ) = 3c2, where c2 is the

SCV for a single interarrival times; it is obtained by combining Theorems 4.4.1 and 7.3.2 of Whitt
(2002). The arrival rate was initially set at λ = 100, but then increased to λ = 1000 in the two
cases with the more variable RSS(H2) arrival process. The results in Table 2 show that the good
performance extends to this greater level of generality, again provided that the arrival process is
sufficiently large.

arrival service c2
a I1 λ HT Approx. (17) simul. 95%c.i.

M RRS(M) 1.00 0.500 100 2.000 1.976 ±0.012
M RRS(H2) 1.00 0.350 100 2.300 2.274 ±0.019

RRS(M) RRS(M) 3.00 0.500 100 3.000 2.944 ±0.024
RRS(M) RRS(H2) 3.00 0.350 100 3.000 2.974 ±0.018
RRS(H2) RRS(H2) 12.00 0.350 100 6.150 5.580 ±0.032

1000 6.085 ±0.023
RRS(H2) RRS(M) 12.00 0.500 100 7.500 6.876 ±0.058

1000 7.417 ±0.031

Table 2 Comparison of the approximate heavy-traffic peakedness for infinite-server models with dependence
and non-exponential distributions to simulation estimates. As in Table 1, random repeated service times
are used, but now with hyperexponential marginals, RRS(H2), as well as with exponential marginals,
RRS(M). Hence, the peakedness is given in Propositions 3 and 4. The H2 distributions have balanced
means and SCV c2 = 4.0. We use the single-parameter RRS model with p = 1/2, so that Σρ = 1. The
arrival rate is λ = 100 and the mean service time is 1. The first case is from Table 1.

5.3. EARMA Service Times

The EARMA sequence of random variables is stationary with exponential marginal distributions
and the correlation structure of an autoregressive moving average process, ARMA(1,1), called
EARMA(1,1) in Jacobs and Lewis (1977) and simply EARMA here. The EARMA variables are
random linear combinations of i.i.d. exponentials with the same mean. Specifically, we can start
with three independent sequences of i.i.d. random variables {Xn : n ≥ 0}, {Un : n ≥ 1}, and {Vn :
n≥ 1}, where Xn is exponentially distributed with mean m, while

P (Un = 0) = 1−P (Un = 1) = β and P (Vn = 0) = 1−P (Vn = 1) = ρ. (31)

The EARMA sequence {Sn : n≥ 1} is defined recursively by

Sn = βXn +UnYn−1 and Yn = ρYn−1 +VnXn, n≥ 1. (32)

The serial correlation has geometric decay. Specifically,

ρk ≡Corr(Sj, Sj+k) = γρk−1, where γ = β(1−β)(1− ρ) + (1−β)2ρ. (33)

5.4. Simulations with EARMA Service Times

To evaluate the heavy-traffic approximation in Propositions 1 and 2, we simulated several
M/EARMA/∞ models with different EARMA service time sequences. Without loss of generality
(since we are always free to choose the units to measure time), let the mean service time be 1. There
are two remaining EARMA service-time parameters: β and ρ. In our simulations we consider five
cases: (0.75,0.50), (0.50,0.50), (0.50,0.75), (0.00,0.75), (0.25,0.90). The cumulative correlations Σρ

increase over these five cases: 0.25, 0.50, 1.00, 3.00 and 5.25. For each of these five EARMA models,
we used simulation to estimate the first 100 values of Jk in (12) in order to compute I2 in (12) and
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k (0.75,0.50) (0.50,0.50) (0.50,0.75) (0.00,0.75) (0.25,0.90)
1 0.523542 0.557248 0.567959 0.799895 0.699137
2 0.516550 0.533666 0.550338 0.695559 0.672134
3 0.508623 0.517945 0.537533 0.633580 0.648603
4 0.504265 0.508890 0.528097 0.593897 0.628662
5 0.502138 0.504377 0.520967 0.567253 0.611864
10 0.500073 0.500093 0.504739 0.514462 0.558417
20 0.500038 0.499998 0.500192 0.500792 0.518249
40 0.500046 0.499984 0.499920 0.499993 0.502008
100 0.500026 0.499977 0.499936 0.499988 0.499885

Table 3 Simulation estimates of Jk for the five EARMA examples with parameters (β,ρ) considered in Table 4.

thus the exact heavy-traffic peakedness in (8). (These estimates of I2 apply to all arrival rates.)
From the estimates of Jk, we see that the 100 (or much fewer) values are adequate; see Table 3.

Since the approximation is based on the heavy-traffic limit in which λ→∞, we consider a range of
λ values. We consider a Poisson arrival process with five different arrival rates: λ = 200,100,20,10,3.
From (17) and (33), the approximate peakedness based solely on correlations here is z = 1 +Σρ =
1 + γ/(1− ρ). From (33), in the five cases we have γ = 1/8,1/4,1/4,3/4,21/40.

To estimate the peakedness at each time point, we performed 2000 (or in some cases 5000)
independent replications, starting the system empty. In each simulation run we collected data over
the time interval [20,100] and formed the time average. (The system tends to reach steady-state
in a few service times.) To estimate the halfwidth of the 95% confidence intervals, we performed 4
further independent replications and used the Student t distribution with three degrees of freedom.
(The halfwidth is 3.182S4/

√
4, where S2

4 is the sample variance.) The halfwidths of the confidence
intervals of all estimates are approximately 1%. Table 4 shows the results.

The first thing to observe from Table 4 is that the dependence has a significant impact in these
examples. The peakedness would simply be 1 if there were no dependence among the service times.
The peakedness is higher by 11%, 25%, 53%, 200% and 325% in these five examples. Even if we
dismiss the last cases as extreme cases (chosen to test the approximation), it is evident that the
impact of the dependence can be significant.

From Table 4, we see that the heavy-traffic approximation for the peakedness (HT Approx.) is
remarkably accurate, provided that the arrival rate λ is not too small. For very small values of λ,
such as the value λ = 3 for the last three cases, the exact peakedness falls significantly below the
heavy-traffic approximation in (8), but for moderate values of λ such as 10, the approximation is
remarkably accurate. The exact value evidently first increases as λ increases, even slightly passing
the heavy-traffic limit and then decreases toward that limit (as can be seen from the cases λ = 100
and 200).

Unfortunately, the appealing simple approximation based solely on the correlations alone in (17)
is not very accurate. The errors in the five cases are: 12%, 20%, 31%, 33% and 42%. Evidently
a reasonable rough approximation can be obtained from the correlations alone if the correlations
are not too large, but the quality of the approximation degrades seriously as the correlations
increase. From the results, it appears that 1 + Σρ/2 is a pretty good rough approximation for the
M/EARMA/∞ IS model, except in the last case. This experiment suggests that the approximation
based on correlations may yield an upper bound. (Other experiments confirm this too.)

Case 4 in Tables 4 and 1 both have the correlation structure Corr(S1, S1+k) = pk for p = 0.75.
Hence, the heavy-traffic approximation in Table 1 coincides with the approximation based on
the correlations in Table 4, both yielding an approximate peakedness of 4.00. The simulation
estimate is quite close to that approximation for the M/RRS/∞ model in Table 1, but not for the
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(β,ρ) λ simul. 95%c.i. HT Approx. 95%c.i. Corr. Approx.
(0.75,0.50) 200 1.116 ±0.003 1.119 ±0.009 1.250

100 1.116 ±0.010 1.119 1.250
20 1.108 ±0.004 1.119 1.250
10 1.101 ±0.008 1.119 1.250
3 1.080 ±0.011 1.119 1.250

(0.50,0.50) 200 1.251 ±0.009 1.249 ±0.025 1.500
100 1.255 ±0.008 1.249 1.500
20 1.245 ±0.011 1.249 1.500
10 1.242 ±0.008 1.249 1.500
3 1.198 ±0.005 1.249 1.500

(0.50,0.75) 200 1.533 ±0.011 1.526 ±0.019 2.000
100 1.535 ±0.008 1.526 2.000
20 1.533 ±0.009 1.526 2.000
10 1.519 ±0.015 1.526 2.000
3 1.379 ±0.010 1.526 2.000

(0.00,0.75) 200 2.988 ±0.013 2.951 ±0.021 4.000
100 3.012 ±0.020 2.951 4.000
20 3.130 ±0.017 2.951 4.000
10 3.127 ±0.017 2.951 4.000
3 2.591 ±0.025 2.951 4.000

(0.25,0.90) 200 4.335 ±0.030 4.240 ±0.027 6.250
100 4.390 ±0.019 4.240 6.250
20 4.357 ±0.029 4.240 6.250
10 3.936 ±0.065 4.240 6.250
3 2.454 ±0.043 4.240 6.250

Table 4 Comparison of (i) the heavy-traffic peakedness in (8), using simulation to estimate Jk and I2 in (12)
and (12), and (ii) the approximation in (17) based on the correlations, to simulation estimates of the
peakedness for M/EARMA/∞ examples specified by the parameters (β,ρ). For each model, five arrival
rates are considered: λ = 200,100,20,10,3. Halfwidths of 95% confidence intervals are shown.

M/EARMA/∞ model in Table 4. That illustrates that correlations alone are not sufficient for a
good peakedness approximation.

6. Approximations for the Delay Probability in the G/G/n Model
We now consider the stationary G/G/n queue with dependent service times, n servers and unlimited
waiting room, in which customers enter service from queue in order of arrival. Let W be the
steady-state waiting time experienced by an arrival. Formula (1.5) in Whitt (2004) approximates
the steady-state probability P (W > 0) in the G/GI/n model, which has i.i.d. service times, by

P (W > 0)≈ α(β∗/
√

z), (34)

where (i) α(β∗) can be taken to be either the exact steady-state probability of delay in the ele-
mentary Markovian M/M/n model with same arrival rate, service rate, number of servers and
parameter β∗ =

√
n(1 − ρ∗), with ρ∗ being the traffic intensity, or the many-server heavy-traffic

approximation of it, given by the so-called Halfin-Whitt delay function (see Halfin and Whitt
(1981)),

α(β∗)≡ [1 +β∗Φ(β∗)/φ(β∗)]−1, (35)

with Φ and φ being the standard normal cdf and probability density function (pdf) and (ii) z is
the peakedness in the associated G/GI/∞ IS model. As a new approximation for the more general
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model with dependent service times, here we propose the identical formula (34), but with our new
peakedness z accounting for the dependent service times instead of the previous one based on i.i.d.
service times.

To evaluate this new approximation, we consider the same EARMA service times as in the
previous section, considering the first three cases with two different numbers of servers, with the
arrival rate λ chosen according to the many-server heavy-traffic scaling λ = µn(1− (β∗/

√
n)), using

ρ∗ ≡ λ/nµ, where β∗ is a quality-of-service (QoS) parameter; see Halfin and Whitt (1981).

EARMA case (QoS,servers) simulation 95% conf. heavy-traffic percentage
(β,ρ) (β∗, n) estimate interval approx. error

(0.75,0.50) (1, 25) 0.2310 ±0.0003 0.2459 6.5%
(1,400) 0.2411 ±0.0002 0.7%
(0.25, 4) 0.7449 ±0.0008 0.7345 −1.4%
(0.25, 16) 0.7423 ±0.0006 −1.1%

(0.50,0.50) (1, 25) 0.2551 ±0.0002 0.2683 5.2%
(1, 400) 0.2705 ±0.0002 −0.8%
(0.25, 4) 0.7542 ±0.0003 0.7472 −0.9%
(0.25, 16) 0.7555 ±0.0005 −1.1%

(0.50,0.75) (1, 25) 0.2976 ±0.0003 0.3009 4.2%
(1, 400) 0.3142 ±0.0005 −1.4%
(0.25, 4) 0.7627 ±0.0003 0.7690 0.8%
(0.25, 16) 0.7755 ±0.0002 −0.8%

Table 5 Comparison of the approximation for the delay probability in (34) using the Halfin-Whitt function (35) to
simulation estimates for M/EARMA/n/∞ examples, using the EARMA service times from the previous
subsection for the first three cases of (β,ρ): (0.75,0.50), (0.50,0.50) and (0.50,0.75). The arrival rate
was chosen according to the many-server heavy-traffic scaling with QoS parameter β∗ From Table 4,
the peakedness values in these three cases estimated by simulation with n = 200 (approximation) are,
respectively, 1.116 (1.119), 1.251 (1.249) and 1.533 (1.526).

Table 5 shows the results. Clearly, the accuracy is again remarkably good. Higher n is needed
for good accuracy as β∗ increases. Anticipated improvement in accuracy is seen as n increases
in all three EARMA cases with β∗ = 1.0. This example demonstrates that the new peakedness
approximations can be useful for finite-server models.

To put these results in perspective, note that that the delay probabilities based on (34) for the
case z = 1 (with no dependence) are 0.7209 and 0.2234 when β∗ = 0.25 and 1.0, respectively. With
low peakedness, as in the first case with (β,ρ) = (0.75,0.50), there is little difference, but with
higher peakedness, as in the third case, the difference is significant. However, the impact is much
less than in Fendick et al. (1989).

7. Time-Varying Arrival Rates
To treat transient phenomena and time-varying arrival rates in service systems, we now develop
approximations for the time-varying variance v(t) in (5) and the time-varying peakedness z(t) ≡
v(t)/m(t) to go with the mean m(t) in (5) and various approximations for it, such as those based
on Taylor series approximations; see Eick et al. (1993b) and Green et al. (2007).

7.1. Exact Expressions

First, we review exact expressions for the time-varying mean from Eick et al. (1993b) and then
develop analogs for the time-varying variance. To express these, recall that for any nonnegative
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random variable S with cdf F and finite mean mS , we can define a random variable Se with the
stationary-excess cdf

Fe(x)≡ P (Se ≤ x)≡ 1

mS

∫ x

0

F c(x)dx, (36)

where F c(x)≡ P (S > x) is again the ccdf, which has mean E[Se] = mS(c2
S +1)/2 and kth moment

E[Sk
e ] =

E[Sk+1]

(k +1)mS

, k ≥ 1. (37)

Theorem 1 of Eick et al. (1993b) gives two alternative expressions for the mean in (5), namely,

m(t) = E

(
∫ t

t−S

λ(u)du

)

= E[λ(t−Se)]mS. (38)

The first formula in (38) expresses m(t) as the integral of the arrival rate over the interval [t−S, t]
of random length S ending at t. The second formula expresses m(t) as the pointwise-stationary

approximation (PSA) λ(t)mS modified by a random time shift by the stationary-excess random
variable Se.

In Eick et al. (1993b), these expressions are shown to be exact for the number in system at time
t in the Mt/GI/∞ model with nonhomogeneous Poisson arrival process (the Mt) and a sequence of
i.i.d. service times independent of the arrival process, but the same reasoning shows that the mean
formula is also exact for the more general Gt/G/∞ model with the same arrival rate function and
stationary service times independent of the arrival process. The extension to Gt arrivals is noted
and explained in Remark 2.3 of Massey and Whitt (1993). The formulas then remain exact in the
heavy-traffic limit.

It is immediate from the representations (11) and (12) that the same constructions can be used
for the time-varying variance formula in (5). We now give an analog for the final relation in (38),
with the understanding that an analog of the other can be obtained as well.

Proposition 6. An alternative (exact) expression for the time-varying variance (of the heavy-

traffic limit) in (5) is

v(t) = E[λ(t−Se)]mS +(c2
a − 1)E[λ(t− (S1 ∧ind S2)e)]E[S1 ∧ind S2] (39)

+2
∞
∑

k=1

(E[λ(t− (S1 ∧S1+k)e)]E[S1 ∧S1+k]−E[λ(t− (S1 ∧ind S2)e)]E[S1 ∧ind S2]).

The associated (heavy-traffic) peakedness is z(t) = v(t)/m(t), combining (39) with (38).

Proof. The key is to write V (s) in (5) in terms of stationary-excess random variables Se, (S1∧ind

S2)e and (S1 ∧S1+k)e associated with the random variables S, S1 ∧ind S2 and S1 ∧S1+k, defined as
in (36). We get

V (s) = fSe(s)E[S] + (c2
a − 1)f(S1∧indS2)e(s)E[S1 ∧ind S2]

+2
∞
∑

k=1

(

f(S1∧S1+k)e(s)E[S1 ∧S1+k]− f(S1∧indS2)e(s)E[S1 ∧ind S2]
)

. (40)

We now can integrate in (5).
To provide illustrative examples and insight, it has become standard to study sinusoidal arrival

rates. In Eick et al. (1993a) exact formulas are given for the mean with a sinusoidal arrival-
rate function. Paralleling §7, we can construct corresponding exact formulas for the time-varying
variance. Suppose the arrival rate function is

λ(t) = λ̄ +β sin(ωt), t≥ 0, (41)
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where λ̄ is the average arrival rate, β is the amplitude, β/λ̄ is the relative amplitude, ω = 2π/T is
the frequency and T is the period. Theorem 4.1 of Eick et al. (1993a) gives the following expression
for the mean

m(t) = λ̄mS +β (sin(ωt)E[cos(ωSe)]− cos(ωt)E[sin(ωSe)])mS. (42)

Following Proposition 6, we obtain a corresponding exact expression for the variance.

Proposition 7. An alternative (exact) expression for the time-varying variance (of the heavy-

traffic limit) in (5) when the arrival-rate function is sinusoidal as in (41) is

v(t) = λ̄mS +β
(

sin(ωt)E[cos(ωSe)]− cos(ωt)E[sin(ωSe)]
)

mS

+(c2
a − 1)

[

λ̄+β
(

sin(ωt)E[cos(ω(S1 ∧ind S2)e)]− cos(ωt)E[sin(ω(S1 ∧ind S2)e)]
)]

E[S1 ∧ind S2]

2
∞
∑

k=1

(

[

λ̄ +β
(

sin(ωt)E[cos(ω(S1 ∧S1+k)e)]

− cos(ωt)E[sin(ω(S1 ∧S1+k)e)]
)]

E[S1 ∧S1+k]

−
[

λ̄+β (sin(ωt)E[cos(ω(S1 ∧ind S2)e)]− cos(ωt)E[sin(ω(S1 ∧ind S2)e)])
]

E[S1 ∧ind S2]

)

(43)

The associated (heavy-traffic) peakedness is z(t) = v(t)/m(t), combining (43) with (42).

From Proposition 7, we can deduce that the heavy-traffic peakedness can be effectively computed
with sinusoidal arrival rates. Paralleling Proposition 2 for the stationary model, we can conclude
the following for sinusoidal arrival rates.

Corollary 1. If the arrival-rate function is sinusoidal as in (41), then the heavy-traffic

approximations for the time-varying mean, variance and peakedness in (42) and Proposi-

tion 7 can be computed in terms of the mean values: E[Sj ], E[S1 ∧ind S2], E[Sj ∧ Sj+k],
E[cos (ωSj)], E[cos (ω(S1 ∧ind S2))], E[cos (ω(S1 ∧S1+k))], E[sin (ωSj)], E[sin (ω(S1 ∧ind S2))] and

E[sin (ω(S1 ∧S1+k))], k ≥ 1.

As noted in §5 and §7 of Eick et al. (1993a), nice explicit formulas can be obtained in the case
of exponential and hyperexponential service times, because if S is exponential with mean mS, Se

is distributed the same as S and E[sin(ωSe)] = mSω/(1+m2
Sω2) and E[cos(ωSe)] = 1/(1+m2

Sω2).
From (15) of Eick et al. (1993b), the mean has the expression

m(t) =
(

λ̄+β(1 +ω2m2
S)−1

(

sin(ωt)−ωmS cos(ωt)
))

mS. (44)

Hence, we can obtain the following explicit formula in the case of RRS exponential service times.
We exploit equation (16).

Proposition 8. An alternative (exact) expression for the time-varying variance (of the heavy-

traffic limit) in (5) when the arrival-rate function is sinusoidal as in (41) and the service times are

RRS exponential with mean mS = 1 is

v(t) = (1 +2Σρ)mS

(

λ̄ +β(1 +ω2m2
S)−1

(

sin(ωt)−ωmS cos(ωt)
))

+
1

2
(c2

a − 1− 2Σρ)mS

[

λ̄+β(1 +ω2m2
S/4)−1 (sin(ωt)− (ωmS/2) cos(ωt))

]

. (45)

The associated (heavy-traffic) peakedness is z(t) = v(t)/m(t), combining (45) with (44).

The formulas in Proposition 8 can serve as an approximation based on the correlations alone,
paralleling Proposition 3.
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7.2. Approximations

Various approximations for the mean are given in Eick et al. (1993b) and reviewed in §4.4 of Green
et al. (2007).

Taylor-series approximations. A simple effective approximation for the mean is obtained by
applying a Taylor series approximation in the final formula in (38), assuming that the arrival
rate is suitably smooth and that the successive derivatives are suitably small so that the Taylor
approximation is justified. Eick et al. (1993b) observe that a quadratic variant of a two-derivative
approximation is revealing and often effective. It produces a time lag and a space shift, yielding

m(t)≈ λ(t−E[Se])mS +
λ

′′

(t)

2
V ar(Se)mS. (46)

The analog of approximation (46) for v(t) is obtained by again applying a two-term Taylor series
approximation to the arrival-rate function λ. For v(t), we obtain the approximation

v(t) ≈ λ(t−E[Se])mS +(c2
a − 1)λ(t−E[(S1 ∧ind S2)e])E[S1 ∧ind S2]

+2
∞
∑

k=1

(λ(t−E[(S1 ∧S1+k)e]E[S1 ∧S1+k]−λ(t−E[(S1 ∧ind S2)e]E[S1 ∧ind S2])

+
λ

′′

(t)

2
V ar(Se)mS +

(c2
a − 1)λ

′′

(t)

2
V ar(S1 ∧ind S2)e])E[S1 ∧ind S2] (47)

+λ
′′

(t)
∞
∑

k=1

(V ar(S1 ∧S1+k)e)E[S1 ∧S1+k]−V ar(S1 ∧ind S2)e)E[S1 ∧ind S2]).

The associated peakedness approximation is z(t)≈ v(t)/m(t) for v(t) in (47) and m(t) in (46).
Approximations based on a recent average arrival rate. It may suffice to even use a more elemen-

tary approximation, exploiting the formulas and approximations for the stationary model, after
replacing the time-varying arrival rate function in (5) by its time-varying average prior to t. (Ways
to apply results for stationary models to describe the average performance of models with periodic
arrival rates were proposed in Massey and Whitt (1996).) In particular, we propose the alternative
approximations (again assuming that the system starts in the distant past)

m(t) ≈ λ̂(t)

∫ ∞

0

(F c(s)) ds = λ̂(t)mS,

v(t) ≈ λ̂(t)

∫ ∞

0

(

F c(s) + (c2
a − 1)F c(s)2 +Γ(s)

)

ds,

z(t) ≈ v(t)

m(t)
= 1 + (c2

a − 1)I1 + I2 (48)

for t≥ 0, where

λ̂(t)≡
∫ ∞

0

λ(t− s)δe−δs ds, (49)

with δ being a weighting factor that can be selected. A natural choice is δ = 1/E[Se] =
2E[S]/E[S2] = 2/(E[S](c2

S + 1)), because Se is the random time lag and E[Se] is the approximate
time lag. From these formulas, we can deduce that the stationary model approaches steady state
over a few service times; e.g., see (20) in Eick et al. (1993b). It is significant that, the approximate
peakedness in (48) is not time-varying; it has precisely the same form as in Proposition 1. Thus,
even though the variance may be strongly time-varying, we expect its fluctuations to be largely
cancelled out by the mean. Equation (48) tells us to expect that the peakedness should be nearly
constant, assuming nearly the same value as in the case of a constant arrival rate.

Paralleling the mean in Eick et al. (1993b), the simple stationary approximation (SSA) for v(t)
replaces λ̂(t) in (48) by the long-run average λ̄; the PSA replaces λ̂(t) in (48) by λ(t). Both SSA
and PSA predict a constant peakedness, just as in (48).
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7.3. Random Repeated Service Times

It is significant that we can directly compute all the quantities in approximation (47) in the setting
of §4. To evaluate the terms E[S1∧S1+k], E[(S1∧S1+k)e] and V ar((S1∧S1+k)e), we can exploit the
first line of (14), noting that the random variable S1∧S1+k is the mixture of two random variables,
having pdf

fS1∧S1+k
(x) = ρkfS1

(x) + (1− ρk)fS1∧indS2
(x), x≥ 0. (50)

Hence, the first three moments are

E[S1 ∧S1+k] = ρkE[S1] + (1− ρk)E[S1 ∧ind S2],
E[(S1 ∧S1+k)

2] = ρkE[S2
1 ] + (1− ρk)E[(S1 ∧ind S2)

2],
E[(S1 ∧S1+k)

3] = ρkE[S3
1 ] + (1− ρk)E[(S1 ∧ind S2)

3], (51)

where, by integration by parts, p. 150 of Feller (1971),

E[S1 ∧ind S2] =

∫ ∞

0

F c(s)2 ds,

E[(S1 ∧ind S2)
2] = 2

∫ ∞

0

sF c(s)2 ds

E[(S1 ∧ind S2)
3] = 3

∫ ∞

0

s2F c(s)2 ds; (52)

The moments of the associated stationary-excess random variable are then determined by (37).
A relatively simple case arises when S is exponential with mean m. Then S1∧ind S2 is exponential

with mean m/2, and so S1∧S1+k is H2 (hyperexponential of order 2, a mixture of two exponentials),
taking the value of an exponential with mean m with probability ρk and taking the value of another
exponential with mean m/2 with probability 1− ρk. Moreover, the stationary-excess distribution
associated with an exponential is again that same exponential, whereas the stationary-excess cdf
associated with an H2 cdf is again H2, with the same mixing probabilities but new exponential
means. In this case, the first three moments of S1 are m, 2m2 and 6m3; the first three moments
of S1 ∧ind S2 are m/2, m2/2 and 3m3/4; and the first three moments of S1 ∧S1+k are (1+ρk)m/2,
(1 +3ρk)m

2/2 and (3 +21ρk)m
3/4. Finally, E[(S1 ∧S1+k)e] = (1 +3ρk)m/(2(1 + ρk)) and E[((S1 ∧

S1+k)e)
2] = (3 +21ρk)m

2/(6(1 + ρk)).
We now elaborate on how to compute the last term in (47) in the case of random repeated service

times when S is exponential. Suppose that m = 1. Then

V ar((S1 ∧S1+k)e) =
1 +10ρk +5ρ2

k

4(1 + ρk)2
and

V ar((S1 ∧ind S2)e) = V ar(S1 ∧ind S2) =
1

4
, (53)

so that

Uk ≡ V ar((S1 ∧S1+k)e)E[(S1 ∧dep S1+k)] =
1 +10ρk +5ρ2

k

8(1 + ρk)
,

W ≡ V ar((S1 ∧ind S2)e)E[S1 ∧ind S2] =
1

8
and

Uk −W =
(ρk

8

)

(

9 +5ρk

1 + ρk

)

. (54)

Hence, the sum in the last term of (47) is finite when
∑∞

k=1 ρk <∞; i.e., the last term is

λ
′′

(t)
∞
∑

k=1

(Uk −W ) <∞, (55)

where Uk −W is given in (54) above.
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8. Simulation Experiments for Sinusoidal Arrival Rates
We now conduct simulation experiments to evaluate the approximations with time-varying arrival
rates. We restrict attention to sinusoidal arrival rates as in (41), letting the relative amplitude be
fixed at β/λ̄ = 0.25.

Our first example is for the Mt/RRS/∞ model, with nonhomogeneous Poisson arrival process
and the same randomly repeated exponential service times with mean 1 as in Table 1. We consider
4 cases of the single parameter p: 0.10, 0.25, 0.50 and 0.75. For each p, we let the average arrival
rate λ̄ coincide with the larger constant arrival rate in Table 1, yielding about 1% error with the
constant arrival rates. As a base case, we consider a period T = 2π/ω = 10. Afterwards, we consider
the much longer period T = 50 and the much shorter period T = 1.

We consider four different approximations for the time-varying variance v(t). We first consider
the exact heavy-traffic value in (45) (and, more generally, in (43)). We also consider the “recent”
approximation in (48) using δ = 1/E[Se] = 1/E[S] = 1, the Taylor series approximation in (47) and
the pointwise stationary approximation (PSA), obtained by replacing λ̂(t) in (48) by λ(t).

We show the results for the single case p = 0.75, λ̄ = 800 and T = 10 in Figure 1. As before,
the simulation is conducted using multiple replications, without any averaging over time. Further
independent replications were used to confirm that the confidence 95% intervals are about 1%.
From Figure 1, it is apparent that the new approximations are better than PSA, with exact and
recent approximations in (45) and (48) being noticeably better than the Taylor approximation in
(47).

Table 6 gives a mote details for other cases, all with period T = 10. Table 6 shows that the approx-
imation effectiveness has the clear ordering Exact > Recent > Taylor > PSA, where > means
“better than.” The average absolute errors for PSA are quite large, about 10%, but all the other
approximations are quite effective. As in Table 1, the approximations consistently overestimate the
actual values, but only by a relatively small value, ranging from 0.5% to 1.5%.

We next consider the longer period T = 50 in Table 7; the other parameters are the same. In
this case with very slowly varying arrival rate, the system can be regarded as being approximately
in a “local” steady state at each time, so that it is natural to use PSA, and it performs quite well.
Nevertheless, even in this case, Table 7 shows that the other methods are superior to the PSA
approximation (even though the difference is not likely to matter for applications). In this case,
the Taylor series approximation in (47) gets better than in Table 6, performing slightly better than
the Recent approximation in (48).

We now turn to the case of very short periods, letting T = 1, but keeping all other parameters
the same. Table 8 reports results for the sinusoidal arrival rate with period T = 1. With such short
periods, the Taylor series approximation makes no sense at all. It should not be surprising that
it gives exceptionally bad results. That is because the successive derivatives fail to get smaller. In
this case, the PSA approximation is also very bad. The average absolute errors for PSA in Table
8 are approximately 10 times bigger than with the exact heavy traffic approximation in (45). The
recent approximation in (48) performs quite well here; it is only slightly worse for lower values of
p, but has twice the average absolute error for p = 0.75.

The recent approximation in (48), which produces constant approximate peakedness, indicates
that there should be benefits from looking at the time-varying peakedness instead of the time-
varying variance. Approximation (48) suggests that errors in the time-varying mean and variance
may cancel when we divide. We thus look at direct estimates for the time-varying peakedness for
the same case in Figure 2 and Table 6 when the period is T = 10. Paralleling Figure 1, we show
the results for the single case p = 0.75, λ̄ = 800 and T = 10 in Figure 2. Figure 2 shows that the
peakedness values for this case are all within ±8% of the average value, and mostly within ±4%,
so that the constant approximation should not be so bad. More detailed results for more cases, all
with period T = 10, are shown in Table 9.
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Figure 1 Comparison of the approximations for the time-varying variance v(t) in the Mt/RRS/∞ model with
sinusoidal arrival rates to simulation estimates. Here the RRS service times have mean 1 and parameter
p = 0.75. The average arrival rate is λ̄ = 800, the relative amplitude is β/λ̄ = 0.25 and the period is
T = 2π/ω = 10.

In Table 9, we use the same method for approximating the mean as we use for the variance, in
order to increase the likelihood of errors cancelling. That is shown directly for the recent and PSA
approximations in (48). Thus, the Exact peakedness approximation is the variance in (45) divided
by the corresponding exact mean in (44), while the Taylor approximation is the Taylor variance
approximation in (47) divided by the corresponding Taylor approximation for the mean in (46).
In a separate detailed comparison, we found that this Taylor approximation for the peakedness
performs substantially worse when we divide by the exact mean in (44) than when we divide by the
Taylor mean in (46). The simulation estimate for the peakedness is the estimated variance divided
by the exact mean (which is exact in the stochastic model, as noted before).

9. Conclusions
In this paper we have explored the applied consequences of a recent heavy-traffic limit established
by Pang and Whitt (2011). That research tells us that, under regularity conditions, the distribution
of the number of customers in an infinite-server (IS) model at time t becomes approximately
Gaussian as the arrival rate increases, even in the presence of dependence among the service times.
Moreover, the dependence among the service times affects the normal distribution only through
the variance or, equivalently, the peakedness (the variance divided by the mean).
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Parameters Approximation Errors
(p, λ̄, T ) Method Avg. Avg. Abs. Max. Abs.

(0.10,10,10) Exact HT (45) 0.14 0.19 0.66
(v̄ ≈ 10.97) Recent (48) 0.14 0.20 0.69

Taylor (47) 0.14 0.38 1.08
PSA 0.14 1.00 1.99

(0.25,25,10) Exact HT (45) 0.47 0.56 1.95
(v̄ ≈ 32.85) Recent (48) 0.47 0.60 2.15

Taylor (47) 0.47 1.25 3.76
PSA 0.48 3.15 6.50

(0.50,100,10) Exact HT (45) 1.59 2.64 9.34
(v̄ ≈ 198.3) Recent (48) 1.60 4.42 13.14

Taylor (47) 1.56 8.74 21.32
PSA 1.65 20.73 38.80

(0.75,800,10) Exact HT (45) 16.03 47.12 169.02
(v̄ ≈ 3183) Recent (48) 16.26 114.28 296.19

Taylor (47) 15.14 148.67 372.24
PSA 17.14 373.55 691.20

Table 6 Comparison of the approximations for the time-varying variance v(t) in the Mt/RRS/∞ model with
sinusoidal arrival rates to simulation estimates. As in Table 1, we use the single-parameter randomly
repeated exponential service times with mean 1 and parameter p, here considering 4 values of p. The
average variance v̄ is shown in each case. The sinusoidal arrival rate function is as in (41) with relative
amplitude β/λ̄ = 0.25 and period T = 2π/ω = 10. We let the average arrival rate λ̄ for each p be the
higher level in Table 1, yielding about 1% error in Table 1.

Parameters Approximation Errors
(p, λ̄, T ) Method Avg. Avg. Abs. Max. Abs.

(0.10,10,50) Exact HT (45) 0.11 0.17 0.79
(v̄ ≈ 10.54) Recent (48) 0.11 0.17 0.79

Taylor (47) 0.11 0.17 0.79
PSA 0.08 0.28 0.86

(0.25,25,50) Exact HT (45) 0.36 0.47 1.75
(v̄ ≈ 31.58) Recent (48) 0.35 0.46 1.76

Taylor (47) 0.36 0.48 1.77
PSA 0.27 0.74 2.77

(0.50,100,50) Exact HT (45) 1.67 2.55 9.34
(v̄ ≈ 190.1) Recent (48) 1.53 2.71 13.14

Taylor eqnnew42 1.68 2.55 21.32
PSA 1.02 5.52 38.80

(0.75,800,50) Exact HT (45) 4.66 41.00 195.29
(v̄ ≈ 3064) Recent (48) 1.25 47.11 204.10

Taylor (47) 4.44 40.97 194.33
PSA −6.83 96.06 250.83

Table 7 Comparison of the approximations for the time-varying variance v(t) in the Mt/RRS/∞ model with
slowly varying sinusoidal arrival rates to simulation estimates. The model is the same as in Table 6
except now the period T is changed from 10 to 50.

Here we have shown that the exact heavy-traffic variance and peakedness with dependent service
times can often be effectively computed. Explicit expressions are given for the general stationary
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Parameters Approximation Errors
(p, λ̄, T ) Method Avg. Avg. Abs. Max. Abs.

(0.10,10,1) Exact HT (45) 0.08 0.16 0.57
(v̄ ≈ 11.03) Recent (48) 0.08 0.16 0.57

Taylor (47) 0.13 36.44 56.89
PSA 0.08 1.76 3.15

(0.25,25,1) Exact HT (45) 0.47 0.57 2.19
(v̄ ≈ 32.86) Recent (48) 0.47 0.59 2.04

Taylor (47) 0.64 124.86 194.87
PSA 0.46 5.28 9.84

(0.50,100,1) Exact HT (45) 2.06 3.22 10.85
(v̄ ≈ 197.9) Recent (48) 2.05 3.79 11.97

Taylor (47) 3.32 881.94 1373.84
PSA 2.03 31.92 60.19

(0.75,800,1) Exact HT (45) 11.20 39.13 147.83
(v̄ ≈ 3188) Recent (48) 10.99 64.57 213.50

Taylor (47) 34.05 16077.45 24978.46
PSA 10.70 516.70 906.70

Table 8 Comparison of the approximations for the time-varying variance v(t) in the Mt/RRS/∞ model with
rapidly varying sinusoidal arrival rates to simulation estimates. The model is the same as in Table 6
except now the period is T = 1.

Parameters Approximation Errors
(p, λ̄, T ) Method Avg. Avg. Abs. Max. Abs.

(0.10,10,10) Exact HT (45) 0.013 0.019 0.060
(z̄ ≈ 1.100) Taylor (46), (47) 0.013 0.019 0.057

Recent (48)&PSA 0.013 0.019 0.057
(0.25,25,10) Exact HT (45) 0.018 0.023 0.079

(z̄ ≈ 1.315) Taylor (46), (47) 0.018 0.024 0.093
Recent (48)&PSA 0.018 0.024 0.091

(0.50,100,10) Exact HT (45) 0.016 0.027 0.103
(z̄ ≈ 1.986) Taylor (46), (47) 0.014 0.038 0.130

Recent (48)&PSA 0.014 0.044 0.127
(0.75,800,10) Exact HT (45) 0.0067 0.054 0.215

(z̄ ≈ 3.988) Taylor (46), (47) 0.0062 0.054 0.215
Recent (48)&PSA 0.0022 0.062 0.205

Table 9 Comparison of the approximations for the time-varying peakedness z(t) in the Mt/RRS/∞ model with
sinusoidal arrival rates to simulation estimates. We use the designated approximation for the variance,
divided by the time-varying mean in (44). As in Table 1, we use the single-parameter randomly repeated
exponential service times with parameter p, here considering 4 values of p. The average peakedness z̄ is
shown in each case. The sinusoidal arrival rate function is as in (41) with relative amplitude β/λ̄ = 0.25
and period T = 2π/ω = 10. We let the average arrival rate λ̄ for each p be the higher level in Table 1,
yielding 1% error in Table 1.

model in Propositions 1 and 2, the stationary model with randomly repeated service times in
Propositions 3 and 4, and for the model with time-varying arrival rates in Propositions 6 and 7,
the last being for the case of a sinusoidal arrival rate. Simulation experiments for the stationary
model in §5 and for the case of sinusoidal arrival rates in §8 show that the explicit heavy-traffic
expressions are quite accurate for the examples of EARMA service times and randomly repeated
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Figure 2 Comparison of the approximations for the time-varying variance v(t) in the Mt/RRS/∞ model with
sinusoidal arrival rates to simulation estimates. Here the RRS service times have mean 1 and parameter
p = 0.75. The average arrival rate is λ̄ = 800, the relative amplitude is β/λ̄ = 0.25 and the period is
T = 2π/ω = 10.

service (RRS) times. The simulation experiment in §5.2 shows that the approximations remain
effective with dependence among the interarrival times as well as the service times and for non-
exponential marginal distributions. These experiments show that the dependence can have a big
impact, with the impact increasing in the amount of dependence.

Since the explicit heavy-traffic formulas are complicated, it is of interest to develop even more
elementary rough approximations that can provide insight. From that perspective, the approxima-
tions based on the correlations alone in Proposition 3 for the stationary model and in Proposition
8 for sinusoidal arrival rates are especially interesting. The contributions of the dependence to the
peakedness are clearly visible from these formulas. It is significant that these approximations are
accurate for the RRS model, for which they are the exact heavy-traffic formulas. However, Tables
4 and 1 showing results for EARMA and RRS service times shows that the approximation based
on correlations alone only provide a rough approximation more generally.

For the case of time-varying arrival rate, we found that the constant approximate peakedness of
the corresponding stationary model performs remarkably well. This is the “recent” approximation
in (48). Table 9 shows that its performance is not so much below the exact heavy-traffic peakedness
(which is not constant). More generally, approximation errors in the mean and variance tend to
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cancel when dividing to calculate the peakedness; the Taylor approximation performs better when
dividing by the Taylor approximation for the mean than when dividing by the exact mean.

There are many directions for future research. In a sequel to this paper, Pang and Whitt (2012),
we ourselves have examined an alternative model with batch arrivals and dependence among service
times only within the same batch. It remains to consider the performance impact of the dependence
between arrival times and service times. In Fendick et al. (1989) all three forms of dependence
were shown to play a significant role, even though the dependence between interarrival times and
service times was least important. In §6 we showed that the new peakedness approximations with
dependent service times can be used to extend previous approximations for finite-servers based
on peakedness for independent service times, but it remains to more thoroughly explore such
approximations for queues with only finitely many servers. It remains to consider more general
network models, with dependence among the service times at different queues. It remains to conduct
empirical studies to estimate the level of dependence among service times in applications.
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