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We review functional central limit theorems (FCLTs) for the queue-content process in
a single-server queue with finite waiting room and the first-come first-served service disci-
pline. We emphasize alternatives to the familiar heavy-traffic FCLTs with reflected Brownian
motion (RBM) limit process that arise with heavy-tailed probability distributions and strong
dependence. Just as for the familiar convergence to RBM, the alternative FCLTs are ob-
tained by applying the continuous mapping theorem with the reflection map to previously
established FCLTs for partial sums. We consider a discrete-time model and first assume that
the cumulative net-input process has stationary and independent increments, with jumps up
allowed to have infinite variance or even infinite mean. For essentially a single model, the
queue must be in heavy traffic and the limit is a reflected stable process, whose steady-
state distribution can be calculated by numerically inverting its Laplace transform. For a
sequence of models, the queue need not be in heavy traffic, and the limit can be a general
reflected Lévy process. When the Lévy process representing the net input has no negative
jumps, the steady-state distribution of the reflected Lévy process again can be calculated by
numerically inverting its Laplace transform. We also establish FCLTs for the queue-content
process when the input process is a superposition of many independent component arrival
processes, each of which may exhibit complex dependence. Then the limiting input process
is a Gaussian process. When the limiting net-input process is also a Gaussian process
and there is unlimited waiting room, the steady-state distribution of the limiting reflected
Gaussian process can be conveniently approximated.

Keywords: queues, approximations, heavy traffic, stable laws, Lévy processes, infinitely di-
visible distributions, Gaussian processes, supremum of a Gaussian process, functional central
limit theorems, invariance principles, Laplace transforms, numerical transform inversion

1. Introduction

In this paper we discuss extensions of the familiar heavy-traffic functional central
limit theorem (FCLT) for the single-server queue in which the limit process is reflected
Brownian motion (RBM) and the approximating steady-state distribution is exponen-
tial. By changing the assumptions, we obtain different limits with different scaling,
different limit processes and different approximating steady-state distributions.

 J.C. Baltzer AG, Science Publishers
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We assume that our queueing process of interest is a discrete-time process satis-
fying the finite-capacity generalization of the classical Lindley recursion, i.e.,

Q(k) = max
{

0, min
{
C,Q(k − 1) +X(k)

}}
, (1.1)

where X(k) is the net input between periods k − 1 and k; i.e.,

X(k) = A(k)−B(k), k > 1, (1.2)

A(k) is a nonnegative input and B(k) is a nonnegative potential (maximum possible)
output. The variable Q(k) depicts the queue (or buffer) content in period k. In the
classical Lindley recursion associated with the GI/GI/1/∞ queue, C = ∞, Q(k) is
the waiting time of the kth customer before beginning service, A(k) is the service time
of the (k − 1)st customer and B(k) is the interarrival time between the (k − 1)st and
kth customers. A popular model for communication networks is (1.1) with Bk = c,
where c is a deterministic service capacity per period.

To obtain continuous-time stochastic processes as limits, we embed the discrete-
time processes in continuous time by writing Q(btc), where btc is the greatest integer
less than t, and then scale space and time, so that we work the scaled continuous-time
process {c−1

n Q(bntc): t > 0} for normalization constants cn.
First, assuming that the net inputs X(k) are i.i.d., we allow the single-period

inputs A(k) to have infinite variances and even infinite means. It is known that a
proper steady-state distribution exists for the queue-content process in this context if
and only if the single-period input A(k) has finite mean. If the single-period input has
infinite mean, then we use the limit theorem to describe the transient behavior of the
queue-content process.

The standard framework for heavy-traffic limit theorems involves a sequence of
queueing processes associated with a sequence of queueing models, which we take to
be indexed by n. However, it often suffices to consider essentially a single model,
in the sense that the basic sequence {(An(k),Bn(k)): k > 1} associated with model
n is a simple multiplicative scaling of the basic sequence {(A1(k),B1(k): k > 1}
associated with model 1, i.e.,

An(k) = anA1(k) and Bn(k) = bnB1(k) for k > 1 and n > 1. (1.3)

The familiar RBM limits can be obtained for more general model sequences, but it
suffices to use the scaling (1.3).

Using the framework (1.3), and assuming that {Xn(k): k > 1} is i.i.d., we
allow the input A1(1) to have infinite variances. We then show that a heavy-traffic
FCLT holds for the queue-content process if and only if A1(1) has a power tail, i.e.,
P (A1(1) > x) ∼ x−α for 0 < α < 2 (or, more generally, a regularly varying tail).
Then the limit process is a reflected stable process.

We also consider sequences of queue-content processes associated with a more
general sequence of models, not constrained to satisfy (1.3). Then we obtain FCLTs for
the queue-content process that do not require that the queue be in heavy traffic. When
heavy traffic does not prevail, these FCLTs can be thought of as model continuity
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results. Assuming that the net input sequences {Xn(k): k > 1} are i.i.d. for each n,
we obtain conditions for the convergence of the sequence of normalized queue-content
processes to reflected Lévy processes.

Finally, we also consider limits for the queue-content process when the inputs are
superpositions of many independent component input processes, where each component
input process may exhibit complex (e.g., long-range) dependence. Then we obtain
reflected Gaussian processes as limits.

Interest in approximations associated with such alternative conditions has grown
in recent years because of efforts to model evolving communication networks. Network
traffic measurements have revealed complex stochastic behavior such as heavy-tailed
probability distributions, long-range dependence and self-similarity. For background
and recent related work, see Barford and Crovella [7], Boxma and Cohen [14–16],
Cohen [25], Furrer et al. [30], Gaver and Jacobs [31], Konstantopoulos and Lin [47],
Kurtz [49], Norros [53], Resnick and Rootzén [57], Resnick and Samorodnitsky [58],
Resnick and van den Berg [59], Taqqu et al. [63], Tsoukatos and Makowski [64,65]
and Willinger et al. [74].

The limit theorems are of interest because they yield relatively simple approxi-
mations for intractable performance measures in complex systems. (However, even the
scaling in a limit theorem by itself can be very useful; e.g., see Whitt [69].) We thus
are particularly concerned about having ways to calculate the approximating distrib-
utions. Unfortunately, the approximations stemming from the nonstandard limits are
more complicated than the approximations stemming from the standard heavy-traffic
limit. A main contribution here is to show how the approximating distributions can be
conveniently calculated in each case. For this purpose, a major technique is numerical
inversion of Laplace transforms, as in Abate and Whitt [3].

To place our results in perspective, we briefly review the heavy-traffic theory.
The first heavy-traffic limit theorem was obtained by Kingman [44,45]. By applying
asymptotics to the previously determined transform of the steady-state queue content
Q(∞) in the case C =∞, Kingman showed that the relatively complicated steady-state
distribution is asymptotically exponential as the traffic intensity ρ ≡ EA(k)/EB(k)
approaches 1, leading to the approximations

P
(
Q(∞) > x

)
≈ e−x/EQ(∞) (1.4)

and

EQ(∞) ≈ EA(1)ρ(c2
A + c2

B)
2(1− ρ)

, (1.5)

where c2
A and c2

B are the squared coefficients of variation (SCV, variance divided by
the square of the mean) of A(1) and B(1), respectively. A key condition, which we
will be changing, is that the SCVs c2

A and c2
B in (1.5) be finite.

As reviewed in Whitt [67], it was discovered by Prohorov [55], Borovkov [13],
Iglehart and Whitt [37,38] and Whitt [66] that this heavy-traffic limit and others could
be approached via FCLTs (convergence in distribution for random elements of function
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spaces generated by partial sums and other basic processes). The essential idea is that
the queue-content process can be represented, either exactly or to within an asymptoti-
cally negligible error, as a reflection map applied to an associated cumulative net-input
process, i.e., the partial sums S(k) = X(1) + · · · + X(k). In the function space set-
ting (with appropriate topology), the reflection map can be shown to be a continuous
function. For background on the function space setting, see Billingsley [10], Ethier
and Kurtz [27] and Jacod and Shiryaev [39]. Thus continuous mapping theorems can
be applied to deduce that limits hold for a sequence of queue-content processes when-
ever limits hold for the associated sequence of cumulative net input processes. When
{X(k): k > 1} is assumed to be i.i.d. with finite second moments, the limit holds by
virtue of Donsker’s FCLT; e.g., see Billingsley [10]. As a consequence, the scaled
queue-content process {(1−ρ)Q(bt(1−ρ)−2c): t > 0} can be approximated by RBM,
which has an exponential steady-state distribution. By considering the iterated limit
in which first ρ → 1 and then t → ∞, we obtain again the approximations (1.4) and
(1.5).

The heavy-traffic FCLT is of interest, beyond Kingman’s earlier result, because it
is a limit for the entire queue-content process, which can generate approximations for
many different functions of the queue content process, such as max{Q(k): 0 6 k 6 n}.
Even more important, however, is the fact that the limit can be established for more
general models, for which explicit expressions for the steady-state distribution are
not known. As shown by Abate et al. [1,2], the exact steady-state queue-content
distribution when {X(k)} is i.i.d. can be calculated from previously derived transforms.
Thus, although the exponential approximation in (1.4) is very helpful under the i.i.d.
assumption, it is not absolutely crucial. In contrast, FCLTs have been proved for net-
input processes in much more general situations, allowing various forms of dependence
among the interarrival times and service times. Many such theorems for net-input
processes are contained in Jacod and Shiryaev [39]. In many of these situations, the
steady-state queue-content distribution is unavailable. The heavy-traffic FCLTs again
lead to approximations of the form (1.4) and (1.5), but now where the variability
parameters depend on the asymptotic variances of the sequences {A(k): k > 1} and
{B(k): k > 1}; see Iglehart and Whitt [38, theorem 2] and Fendick et al. [29].

As shown by Iglehart and Whitt [38] (for the special case of acyclic networks),
Harrison and Reiman [36] and Reiman [56], the heavy-traffic limits extend from one
queue to single-class networks of queues by essentially the same reasoning, using a
multidimensional reflection mapping. More recently, attention has been focused on
the difficult and important extension to multiclass networks, which involves different
reasoning; see Bramson [17] and Williams [72,73]. However, we only discuss a single
queue here.

By its nature, the FCLT approach extends directly to other conditions. The
continuous-mapping argument implies that convergence of appropriately normalized
net-input processes to a limit process will translate into corresponding convergence of
the normalized queueing processes to a reflected limit process. This may involve new
normalization constants, new limit processes and a modification of the function-space
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topology, but the argument is essentially the same. Thus, the limiting results described
here have been known for twenty years or more. Consequently, to a large extent the
present paper should be regarded as a review.

Until recently, there has been little motivation for delving into this further. First,
it was not evident that such generalizations can have much practical application and,
second, it was not evident that the approximating process could be usefully described.
However, these situations have changed: There now is strong interest in these alter-
native limits because of the observed heavy-tailed probability distributions and strong
dependence. Moreover, the numerical transform inversion makes it possible to calcu-
late the approximating distributions.

Here is how the rest of this paper is organized: In section 2 we review the general
limit theorem for the single-server queue, which involves a sequence of queueing mod-
els. In section 3 we consider the important special case of essentially a single model,
as specified by (1.3). The essentially-single-model framework greatly restricts the class
of possible limit processes. With i.i.d. summands and infinite variances, we get only
convergence to a reflected stable process, which is characterized by only a few para-
meters. Hence, both with and without finite variances, the heavy-traffic limit theorems
in the essentially-single-model framework yield parsimonious approximations.

In section 4 we consider more general limits for more general sequences of
queueing models. Particularly tractable are reflected Lévy process limits where the
Lévy process has no negative jumps. That case is also most relevant in applications
because it occurs when there are exceptionally large inputs. Just as in section 3, the
steady-state distributions of these limit processes can be readily calculated by numerical
transform inversion.

However, the reflected Lévy processes are much more complicated than reflected
stable processes, because they have essentially infinitely many parameters (the Lévy
measure). They have the advantage of being more flexible, but the disadvantage of
being harder to fit. Lévy processes are characterized by their infinitely divisible (ID)
one-dimensional marginal distributions. Since many common distributions are ID,
see Bondesson [12], the limit theorem does not greatly restrict the class of candidate
approximating distributions. For example, Pareto, Weibull, lognormal and hyperex-
ponential distributions are all ID. The general reflected Lévy process limits suggest a
potentially useful class of approximations. However, work is still needed on methods
for approximating net-input processes by Lévy processes. Direct analysis of models
in this framework is discussed by Takács [62] and Prabhu [54].

We conclude in section 5 by briefly considering limits for single-server queueing
models in which the input is a superposition of many independent component arrival
streams, allowing very general dependence in each component arrival process. This
case is motivated by communication networks in which many sources are multiplexed
together. Then, by the central limit theorem, the total input can be approximated by
a Gaussian process. If the queue output is deterministic or if heavy-traffic condi-
tions prevail, then the net-input process can be regarded as Gaussian and the queueing
process can be approximated by a reflected Gaussian process. This produces con-



44 W. Whitt / Overview of Brownian and non-Brownian FCLTs

siderable simplification because a stationary Gaussian process is characterized by its
mean and its autocovariance function. As shown by Willinger et al. [74] and Taqqu
et al. [63], subsequent limits after scaling time and space can lead to convergence to
special Gaussian processes such as fractional Brownian motion (FBM). Conditions for
convergence to FBM are also determined by Kurtz [49].

2. The basic FCLT

We start with the queueing model defined in (1.1) and (1.2). After embedding
the discrete-time processes in continuous time, the original discrete-time processes as
well as the continuous-time limit process can be regarded as random elements of the
same space. With that continuous-time representation, the process {Q(k): k > 0}
and associated heavy-traffic limit processes can be defined in terms of a two-sided
reflection (or regulator) map; see Harrison [35, p. 22], Chen and Mandelbaum [19,20]
and Berger and Whitt [8, p. 16]. For this purpose, let D ≡ D[0,∞) be the space of
right-continuous real-valued functions on [0,∞) with left limits at all positive times.
Let Dk be the k-fold product space. The reflection map R takes elements of x ∈ D
with 0 6 x(0) 6 C into (z, l,u) in D3, where

z(t) ≡ R(x)(t) = x(t) + l(t) + u(t), t > 0, (2.1)

l(t) and u(t) have nondecreasing sample paths with l(0) = u(0) = 0, l(t) increases
only when z(t) = 0 and u(t) increases only when z(t) = C; i.e.,∫ ∞

0
z(t) dl(t) =

∫ ∞
0

[
z(t)− C

]
du(t) = 0. (2.2)

In the infinite-capacity case, we have no upper barrier C and no increasing
process u in (2.1). Then the reflection map has the equivalent form

R(x)(t) = x(t)−min
{

0, inf
{
x(s): 0 6 s 6 t

}}
. (2.3)

The minimum in (2.3) is unnecessary when x(0) = 0.
Exploiting the embedding into continuous time, we obtain

Q
(
btc
)

= R(S)
(
btc
)
, t > 0, (2.4)

where {S(k)} is the cumulative net-input sequence, i.e.,

S(k) = X(1) + · · · +X(k), k > 1. (2.5)

In fact, the representation (2.4) is easy to verify in discrete time by induction. At each
step, the new increment X(k) is either positive or negative, so that we will want to
increase at most one of l and u in (2.1).

The relation (2.4) allows us to apply the continuous mapping theorem to obtain a
limit theorem for the queue-content process Q whenever we have a limit theorem for
the partial sums S in (2.5), e.g., see Billingsley [10, theorem 5.1] and Whitt [68]. To
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invoke a continuous mapping theorem, we need a topology on the function space D.
It suffices to use the standard Skorohod [61] J1 topology; see Ethier and Kurtz [27],
Jacod and Shiryaev [39] and Whitt [68]. (We remark that the situation can be dif-
ferent for continuous-time models; then we may need to work with the less familiar
Skorohod [61] M1 topology; see Konstantopoulos and Lin [47] and Whitt [70,71].)

To formulate a general heavy-traffic limit theorem, we consider a sequence of
queueing systems indexed by n. The nth queueing system is assumed to satisfy the
recursion (1.1) with capacity Cn, net-input sequence {Xn(k): k > 1} and initial content
Qn(0). We get a FCLT for the scaled process Qn(bntc)/cn under an assumed FCLT
for Sn(bntc)/cn, where Sn(k) = Xn(1) + · · ·+Xn(k). Let ⇒ denote convergence in
distribution.

Theorem 1. Let cn be deterministic scaling values and let the capacity in model n be
Cn ≡ Ccn for 0 < C <∞. If Qn(0)/cn ⇒ Q(0) in R as n→∞ and

Sn(bntc)
cn

⇒ S∗(t) in D as n→∞, (2.6)

then

Qn(bntc)
cn

⇒ Q(t) ≡ R
(
S∗
)
(t) in D as n→∞. (2.7)

Proof. The assumptions allow us to write

c−1
n Qn

(
bn·c

)
= R

(
c−1
n Sn

(
bn·c

))
(2.8)

for R in (2.1), so that we can apply the continuous mapping theorem with the two-sided
reflection map. �

The obvious consequence is the convergence of the one-dimensional distributions.

Corollary 2. Under the conditions of theorem 1, if the limit process {R(S∗)(t): t > 0}
is continuous at t with probability 1, then

c−1
n Qn

(
bntc

)
⇒ R

(
S∗
)
(t) in R as n→∞. (2.9)

We apply the limit (2.9) to help justify the approximation

Qn(k) ≈ cnR
(
S∗
)
(k/n) for each k. (2.10)

Theorem 1 does not directly imply convergence of the steady-state distributions, but
assuming that Qn(k) ⇒ Qn(∞) as k → ∞ for each n and R(S∗)(t) ⇒ R(S∗)(∞) as
t→∞, we also apply theorem 1 and corollary 2 to help justify the approximation

Qn(∞) ≈ cnR
(
S∗
)
(∞). (2.11)

In addition to establishing convergence for finite-dimensional distributions, the
FCLT in theorem 1 is useful to establish convergence of various functionals of the
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queueing process. Just as in the proof of theorem 1, we apply the continuous mapping
theorem. We illustrate with one corollary.

Corollary 3. Under the assumptions of corollary 2,

c−1
n sup

{
Qn
(
bnsc

)
: 0 6 s 6 t

}
⇒ sup

{
R
(
S∗
)
(s): 0 6 s 6 t

}
in R as n→∞

for S∗ in (2.6).

The standard way to establish the condition of theorem 1 is to establish a joint
FCLT for the partials sums of the single-period inputs and outputs. For this purpose,
let San(k) and Sbn(k) be the k-fold partial sums in the nth model, i.e.,

San(k) =
k∑
j=1

An(j) and Sbn(k) =
k∑
j=1

Bn(j). (2.12)

Theorem 4. Let cn be the deterministic scaling values. If

c−1
n

(
San
(
bntc

)
− annt,Sbn

(
bntc

)
− bnnt

)
⇒
(
Sa(t),Sb(t)

)
in D2 (2.13)

as n→∞ and

(an − bn)n
cn

→ c, −∞ < c < +∞ as n→∞, (2.14)

then condition (2.6) of theorem 1 holds with

S∗(t) = Sa(t)− Sb(t) + ct, t > 0. (2.15)

3. Essentially a single model with weak dependence

Suppose that there is only a single model and the FCLT (2.13) in theorem 4
holds, i.e.,

c−1
n

(
Sa1
(
bntc

)
− ant, Sb1

(
bntc

)
− bnt

)
⇒
(
Sa(t),Sb(t)

)
in D2 as n→∞. (3.1)

The remaining condition in theorem 4 becomes (a−b)n/cn → c as n→∞. Assuming
that {(A1(k),B1(k)): k > 1} is stationary and ergodic,

n−1(Sa1 (n),Sb1(n)
)
→
(
EA1(1),EB1(1)

)
w.p. 1 as n→∞. (3.2)

Assuming, in addition, that n/cn →∞ as n→∞, in order for the FCLT (3.1) to hold
we must have

a = EA1(1) = b = EB1(1). (3.3)

In other words, in this situation the conditions of theorem 4 can be satisfied only if
ρ ≡ EA/EB = 1, the critical value for stability with an infinite buffer. Of course,
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with finite capacity, stability can hold with ρ > 1. Nevertheless, a limit is possible in
this single-model framework only at the single value ρ = 1.

In order to develop approximations for more general traffic intensities, it is natural
to consider a sequence of models such that the associated traffic intensities satisfy
ρn → 1. In the setting of theorem 4, we choose parameters an and bn such that
(an − bn)n/cn → c, −∞ < c <∞. However, it is also natural to want to regard the
framework as being essentially a single model. We can do so by assuming that the
nth model variables (An(k),Bn(k)) are obtained by simply scaling initial variables, as
in (1.3).

The following theorem gives the essentially-single-model version of theorem 4.
Without loss of generality, we let the common translation constant in (3.1) be 1.

Theorem 5. If for a single model

c−1
n

(
Sa1
(
bntc

)
− nt, Sb1

(
bntc

)
− nt

)
⇒
(
Sa1 (t),Sb2(t)

)
in D2 as n→∞, (3.4)

and a sequence of models is defined by scaling as in (1.3), where an → 1, bn → 1,
and (an− bn)n/cn → c, −∞ < c <∞, then the conditions of theorem 4 are satisfied.

With the scaling (1.3), the RBM limit is obtained when {(A1(k),B1(k)} is an
i.i.d. sequence with finite second moments. The result follows directly from the 2-di-
mensional version of Donsker’s FCLT.

Theorem 6. If {(A1(k),B1(k)): k > 1} is an i.i.d. sequence with EA1(1) = EB1(1)
= 1, VarA1(1) = σ2

A, VarB1(1) = σ2
B and Cov[A1(1),B1(1)] = σ2

AB, then the FCLT
(3.4) holds with cn = n1/2 and (Sa1 (t),Sb1(t)), being 2-dimensional centered (drift 0)
Brownian motion with covariance matrix

Σ ≡
(
σ2
ij

)
=

(
σ2
A σ2

AB

σ2
AB σ2

B

)
. (3.5)

If also an → 1, bn → 1 and (an − bn)
√
n→ c, −∞ < c <∞, then the conditions of

theorem 4 hold with cn =
√
n and the limit process S∗(t) in (2.15) being σB(t) + ct,

where B(t) is standard (drift 0, variance 1) Brownian motion and

σ2 = σ2
A − 2σ2

AB + σ2
B. (3.6)

As in Kennedy [43] and Berger and Whitt [8], theorem 6 generates a relatively
simple approximation for the steady-state queue-content distribution, in particular,

P
(
Q(∞) 6 x

)
≈


1− e−θx

1− e−θC
, c 6= 0,

x

C
, c = 0,

(3.7)
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and

EQ(∞) ≈


1
θ
− C

eθC − 1
, c 6= 0,

C

2
, c = 0,

(3.8)

where θ = −σ2/2c. The distribution in (3.7) is the truncated exponential distribution,
which approaches the exponential distribution as C → ∞ if c < 0. For C = ∞, we
require c < 0 to have a proper steady-state distribution.

A significant feature of the heavy-traffic FCLT is that it implies that the queue-
content process and its steady-state distribution can be approximately characterized by
a single stochastic process, canonical RBM (with drift −1, diffusion parameter 1 and
upper boundary C) and the two parameters c and σ2 appearing in (3.7) and (3.8).

The heavy-traffic FCLT in theorem 6 has been stated under the assumption that
the pairs (A(k),B(k)) are mutually independent for k > 1. In this i.i.d. setting the
transient and steady-state queue-content distributions can actually be computed di-
rectly by numerical transform inversion, as in Abate et al. [1,2]. Thus, it is significant
that essentially the same FCLT holds when the independence condition is relaxed.
Indeed there now is a large literature providing the required FCLT (3.4) when in-
dependence is relaxed, i.e., when it is replaced by some form of weak dependence.
Prominent among these are martingale FCLTs; see Ethier and Kurtz [27] and Jacod and
Shiryaev [39]. With such weakly-dependent FCLTs, all that changes is the variance
constant σ2 in (3.6). Examples of alternative variance constants are given in Fendick
et al. [29]. For Markov-modulated arrival processes and more general batch Markov-
ian arrival processes (BMAP), the contribution to the variance parameter by the input
is through the asymptotic variance; e.g., see Burman and Smith [18] and Neuts [52,
p. 284].

A critical condition in theorem 6 is that the random variables A1(1) and B1(1)
have finite second moments. We now discuss alternative FCLTs when this condition
is violated. The principal case of interest occurs when the inputs occasionally may be
very large, so that A1(1) has an infinite second moment, but B1(1) still has a finite
second moment. Assuming that A1(1) still has a finite mean, it is natural to assume
that the cdf of A1(1) has a power tail, decaying as x−α for 1 < α < 2. Fortunately, in
this case we can conclude that the FCLT (3.4) once again holds, but the limit process
no longer is Brownian motion. Instead it has a component that is a stable Lévy motion,
which fortunately is also characterized by only a few parameters.

A stable Lévy motion is a real-valued stochastic process {Y (t): t > 0}
with Y (0) = 0, stationary and independent increments and having the stable one-
dimensional marginal distribution Sα(σt1/α,β,µ); see Samorodnitsky and Taqqu [60,
p. 113]. The stable law Sα(σ,β,µ) has four parameters: the index α, 0 < α 6 2, the
scale parameter σ > 0, the skewness parameter β, −1 6 β 6 1, and the location or
shift parameter µ, −∞ < µ <∞; see Samorodnitsky and Taqqu [60, chapter 1]. The
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logarithm of the characteristic function of an Sα(σ,β,µ)-distributed random variable
Y is

logE eiθY =

{
−σα|θ|α

(
1− iβ(sign θ) tan(πα/2)

)
+ iµθ, α 6= 1,

−σ|θ|
(
1 + iβ(2/π)(sign θ) ln

(
|θ|
))

+ iµθ, α = 1,
(3.9)

where sign(θ) = 1, 0 or −1 for θ > 0, θ = 0 or θ < 0. We will be interested in the
special case Sα(σ, 1, 0) in which the distribution is totally skewed to the right (β = 1)
and centered (µ = 0). Brownian motion is the special case in which α = 2. Then the
skewness parameter β ceases to play a role and σ2 is again the scale (now variance)
parameter.

The stable law Sα(σ, 1, 0) has a cdf with power tail decaying as x−α; i.e., if Y
is distributed as Sα(σ, 1, 0), then

lim
x→∞

xαP (Y > x) = Kασ
α, (3.10)

where

Kα =

(∫ ∞
0

x−α sinx dx

)−1

=


1− α

Γ(2− α) cos(πα/2)
, α 6= 1,

2
π

, α = 1,

(3.11)

and Γ(x) is the gamma function. For 0 < α < 1, the stable law Sα(σ, 1, 0) is
concentrated on the positive half-line. The associated stable process has nonnegative
nondecreasing sample paths and is called a stable subordinator. For 1 6 α < 2,
the stable law Sα(σ, 1, 0) has support on the entire real line, but it decays suffi-
ciently fast on the negative real line that the bilateral Laplace transform is well de-
fined. If Y is distributed as Sα(σ, 1, 0) then the logarithm of the Laplace transform
is

ψα(s) ≡ logE e−sY =


− σαsα

cos(πα/2)
, α 6= 1,

2σs ln(s)
π

, α = 1,

(3.12)

for Re(s) > 0.
Closed-form representations for stable pdf’s and cdf’s are available in only a few

cases, but numerical calculations can easily be done exploiting finite-interval integral
representations in Zolotarev [76, section 2.2]. These integral representations have been
applied to generate tables and graphs of stable pdf’s, cdf’s and fractiles, as indicated
in Samorodnitsky and Taqqu [60, section 1.6].

With this background, we can state a stable-process analog of theorem 6. We
omit discussion of the somewhat pathological boundary case α = 1. Let e denote the
identity map on [0,∞), i.e., e(t) = t, t > 0.
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Theorem 7. Let {(A1(k),B1(k)): k > 1} be an i.i.d. sequence with E[B1(1)2] < ∞
and EA1(1) = EB1(1) = 1. Then the FCLT (3.4) holds with cn = n1/α for 1 < α < 2
if and only if there exists a positive constant K for which

lim
x→∞

xαP
(
A1(1) > x

)
= K, (3.13)

in which case the limit process [Sa(t),Sb(t)] in (3.4) has Sb(t) = 0 and Sa(t) a stable
Lévy motion with marginal distribution Sα(σt1/α, 1, 0) for σ = (K/Kα)1/α, K in
(3.13) and Kα in (3.11). If also (an − bn)n1−α−1 → c, −∞ < c < ∞, then the
conditions of theorems 5, 4 and 1 are satisfied and the limit of the queue-content
processes is the reflected stable process {R(Sa + ce)(t): t > 0}, where Sa(t) is a
stable Lévy motion with Sa(1) distributed as Sα(σ, 1, 0).

Proof. Since EB1(1)2 < ∞, the partial sums of {B1(k)} satisfy a FCLT with nor-
malization constant cn = n1/2. Thus, multiplying by n(α−2)/2α yields

n−1/α
bntc∑
i=1

(
B1(k)− 1

)
⇒ 0 in D as n→∞. (3.14)

By Billingsley [10, theorems 4.1 and 4.4], we can focus on the sequence {A1(k)}
alone. The equivalence of (3.13) with the limits for the one-dimensional marginal
distributions follows from the classical theory of Feller [28, section XVII.5]. Since
A1(k) is nonnegative, the limiting stable law is totally skewed to the right. Given that
we have centered by subtracting the means, the stable law is centered as well. The
one-dimensional limits extend immediately to convergence of all finite-dimensional
distributions because of the i.i.d. assumptions. Moreover, in this setting that implies
convergence in the function space D with the standard Skorohod [61] J1 topology. For
this last step, we can apply theorems 2.52 and 3.4 of Jacod and Shiryaev [39, pp. 368
and 373, respectively]. Condition 2.48 in [39, p. 368] holds because the normalized
partial sum process with summands (A1(k)− 1)/n1/α is both a semimartingale and a
process with independent increments (PII) (but not a process with stationary indepen-
dent increments – PIIS), and the limiting stable process has no fixed discontinuities.
Condition 2.53 in [39, p. 368] holds because it is equivalent to

lim
n→∞

P
(∣∣A1(1)− 1

∣∣ > εn1/α) = 0 (3.15)

for every ε > 0. The property [β3 −D] in theorem 2.52 is

lim
n→∞

nE

[
h

(
A1(1)− 1

n1/α

)]
= b, (3.16)

where h is the truncation or centering function, so that in this setting it is [Sup-β3] in
theorem 3.4 of [39, p. 373], i.e., the condition becomes

lim
n→∞

sup
06s6t

∣∣∣∣bnscE[h(A1(1)− 1

n1/α

)]
− bs

∣∣∣∣. (3.17)
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Remark 8. If we allow more general normalization constants cn instead of n1/α, then
theorem 7 still holds with condition (3.13) replaced by the truncated second moment
of A1(1) being regularly varying at infinity with index α, i.e.,

lim
x→∞

xα−2L(x)µ(x) = 1, (3.18)

for 1 < α < 2, where

µ(x) ≡
∫ x

0
y2 dP

(
A1(1) 6 y

)
(3.19)

and L(x) is a slowly varying function; see Feller [28, chapters VIII and XVII]. Exam-
ples of slowly varying functions are a constant and log x. Given (3.18), we have

lim
x→∞

xαL(x)P
(
A1(1) > x

)
=

2− α
α

. (3.20)

Then the normalizing constants cn must satisfy

lim
n→∞

nµ(cn)
c2
n

= K (3.21)

and we have

lim
n→∞

nP
(
A1(1) > cnx

)
= K

(2− α)
α

x−α, (3.22)

see Feller [28, section XVII.5]. We did not express this more general result in the-
orem 7 because we do not believe the extension has great applied value. It seems
difficult to distinguish between the regularly varying tail in (3.20) and the power tail
in (3.13) in applications. However, the negative result is instructive: Within the single-
model framework (with i.i.d. summands), there are no normalization constants yielding
a CLT with convergence to a non-normal limit unless the cdf of A1(1) has a regularly
varying tail. Moreover, in that case, the limit must be a stable Lévy motion. In sum-
mary, the only possible limit process for the net input process is the stable process in
theorem 7. This limit can also be obtained, at the expense of changing the normaliza-
tion constants cn, if the power tail condition (3.13) is replaced by regular variation,
but it can be obtained in no other way. �

Remark 9. In Donsker’s FCLT supporting theorem 6, we can work with either the
original scaled partial sums c−1

n [Sa1 (bntc)− nt] or the associated continuous linearly-
interpolated, process as in Billingsley [10, sections 10 and 16]. Here, however, to work
with the linearly interpolated process we would have to shift from Skorohod’s [61]
J1 to his M1 topology, because the maximum jump functional is continuous in the
J1 topology; see Jacod and Shiryaev [39, section VI.2]. For our limit theorems, it
suffices to use the J1 topology, but in some settings it may be necessary to use the
M1 or M2 Skorohod [61] topologies; e.g., see Kella and Whitt [40], Konstantopoulos
and Lin [47] and Whitt [70,71].
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For applications, it is important that the reflected stable process be relatively
tractable. Fortunately, much is known about reflected stable processes and more general
reflected Lévy processes, because they play a key role in their fluctuation theory; e.g.,
see Bertoin [9, chapter VI], Bingham [11], Kella and Whitt [41] and Takács [62,
section 24]. Very nice results are available in our case in which the stable process has
no negative jumps. The next result is contained in all the sources above.

Theorem 10. Let R(Sa + ce)(t) be the reflected stable process arising as a limit in
theorem 7, where c < 0 and Sa(1) is distributed as Sα(σ, 1, 0) for 1 < α < 2.

(a) If C =∞, then

lim
t→∞

P
(
R
(
Sa + ce

)
(t) 6 x

)
= H(x), (3.23)

where the cdf H(x) has pdf h(x) with Laplace transform

ĥ(s) ≡
∫ ∞

0
e−sxh(x) dx =

1
1 + (νs)α−1 (3.24)

and scaling constant ν, defined by

να−1 =
−σα

c cos(πα/2)
> 0. (3.25)

The associated ccdf Hc(x) ≡ 1−H(x) has Laplace transform

Ĥc(s) ≡
∫ ∞

0
e−sxHc(x) dx =

1− ĥ(s)
s

=
ν

(νs)2−α(1 + (νs)α−1)
. (3.26)

(b) If C <∞, then

lim
t→∞

P
(
R
(
Sa + ce

)
(t) 6 x

)
=
H(x)
H(C)

, 0 6 x 6 C, (3.27)

for H in (3.23).

Note that ν defined by (3.25) is indeed a scaling factor. To see this, let Yν be
a random variable with cdf Hν(x) and pdf hν (x), showing the dependence upon ν.
Then formulas (3.24) and (3.26) are equivalent to

Yν
d
= νY1, Hν(x) = H1

(
x

ν

)
and hν(x) =

1
ν
h1

(
x

ν

)
. (3.28)

For the special case α = 3/2, the limiting pdf h and cdf H can be expressed in
convenient closed form. We can apply [5, 29.3.37 and 29.3.43] to invert the Laplace
transforms analytically.

Theorem 11. For α = 3/2 and ν = 1, the limiting pdf and ccdf in theorem 10 are

h(x) =
1√
πx
− ex erfc

(√
x
)
, x > 0, (3.29)
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and

Hc(x) = ex erfc
(√
x
)
, x > 0, (3.30)

where

erfc(x) ≡ 2√
π

∫ x

0
e−u

2
du = 2Φ

(
x
√

2
)
− 1 (3.31)

and Φ(x) ≡ P (N (0, 1) 6 x).

For the special case of C = ∞, the heavy-traffic approximation for the steady-
state queue content obtained from theorems 7 and 10 coincides with direct heavy-traffic
limits for the steady-state waiting time in the M/GI/1/∞ and GI/GI/1/∞ queues
obtained by Boxma and Cohen [14–16], Cohen [25] and Abate and Whitt [4]. Explicit
results are also given there for the M/G/1 steady-state distributions for the tractable
case α = 3/2.

For any α, 1 < α < 2, we can apply Heaviside’s theorem, of Doetsch [26, p. 254]
to deduce the asymptotic form of the limiting pdf h(x) and ccdf Hc(x). We display
two terms; more can be obtained in the same way.

Theorem 12. For ν = 1, the limiting pdf and ccdf in theorem 10 satisfy

h(x)∼


−1

Γ(1− α)xα
+

1
Γ(2− 2α)x2α−1 , α 6= 3

2
,

1
2
√
πx3/2

− 3
4
√
πx5/2

, α =
3
2

,
(3.32)

Hc(x)∼


1

Γ(2− α)xα−1 −
1

Γ(3− 2α)x2(α−1) , α 6= 3
2

,

1√
πx
− 1

2
√
πx3

, α =
3
2

,
(3.33)

as x→∞.

From (3.33), we see that the limiting cdf H fails to have a finite mean for
1 < α < 2. Theorems 7–12 imply the following iterated limit for the queue-content
tail probabilities.

Corollary 13. Under the assumptions of theorem 7 including (3.13), if C = ∞ and
c < 0, then

lim
x→∞

lim
t→∞

lim
n→∞

xα−1P
(
n−1/αQn

(
bntc

)
> x

)
=

K

c(1− α)
. (3.34)

Proof. First, theorem 7 implies that

lim
n→∞

P
(
n−1/αQn

(
bntc

)
> x

)
= P

(
R
(
Sa + ce

)
(t) > x

)
, (3.35)
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where Sa(t)
d
= t1/αSa(1) and Sa(1)

d
= Sα(σ, 1, 0) for σ = (K/Kα)1/α. Then theo-

rem 10 implies that

lim
t→∞

P
(
R
(
Sa + ce

)
(t) > x

)
= Hc

(
x

ν

)
(3.36)

for ν in (3.25). By theorem 12,

lim
x→∞

xα−1Hc

(
x

ν

)
=

να−1

Γ(2− α)
=

K

c(1− α)
> 0 (3.37)

because σ = (K/Kα)1/α for Kα in (3.11). �

Remark 14. Theorem 12 expresses the iterated limit in which first ρ→ 1 via n→∞
(in the manner of theorem 5) and then t → ∞ and x → ∞. We can apply [23] to
consider the iterated limit in a different order. We first let t → ∞ and then x → ∞.
For fixed ρ (an and bn), Cohen showed that condition (3.13) is equivalent to

lim
x→∞

xα−1P
(
Qn(∞) > x

)
=

ρnK

(1− ρn)an(α− 1)
=

K

(bn − an)(α− 1)
. (3.38)

We now consider n−1/αQn(∞), which is supposed to approach the limiting distribution
of the reflected stable process as n→∞. By (3.38),

lim
n→∞

lim
x→∞

xα−1P
(
n−1/αQn(∞) > x

)
= lim
n→∞

lim
x→∞

(xn1/α)α−1

n(α−1)/α
P
(
Qn(∞) > xn1/α)

= lim
n→∞

K

n(α−1)/α(bn − an)(α− 1)
=

K

c(α − 1)
.

(3.39)

Hence, (3.39) agrees with (3.34). Thus, if we want to approximate the ccdf P (Q(∞)
> x) when C = ∞, a simple approximation under condition (3.13) based on the
tail asymptotics (x → ∞) is Ax1−α, where the asymptotic constant A can be taken
from (3.38), where we do not yet do the limit ρn → 1. A more refined approximation
exploiting the limit ρn → 1, that essentially preserves the asymptotics, is obtained from
the heavy-traffic limit theorem 10, part (a). Except in the case α = 3/2, that requires a
numerical transform inversion to calculate the ccdf Hc(x). The inversion to calculate
Hc(x) from Ĥc(s) in (3.26) is somewhat easier than directly calculating the original
ccdf P (Q > x) in the GI/G/1 model, but both can be done. The main advantage
of the heavy-traffic limit is that, in that regime, it is not necessary to know the full
distributions of the model variables A1(1) and B1(1). Only the two parameters ν and α
matter in the heavy-traffic limit. The heavy-traffic limit reveals a statistical regularity
(simplification) that occurs in the heavy-traffic limit.

By comparing the second term to the first term of the asymptotic expansion of
the ccdf Hc(x) in theorem 12, we can see that the one-term asymptote should tend
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Table 1
A comparison of the limiting ccdf Hc(x) in theorem 10 for α = 1.5 and ν = 1
with the one-term asymptote and the alternative exact values for α = 1.49

and α = 1.40.

Hc(x) for α = 1.5 (ν = 1)

x Exact α = 1.5 One-term Exact α = 1.49 Exact α = 1.40
asymptote

10−1 0.7236 1.78 0.7190 0.6778
100 0.4276 0.5642 0.4290 0.4421
101 0.1706 0.1784 0.1760 0.2278
102 0.5614e−1 0.5642e−1 0.5970e−1 0.1004
103 0.1783e−1 0.1784e−1 0.1946e−1 0.4146e−1
104 0.5641e−2 0.5642e−2 0.6304e−2 0.1673e−1
105 0.1784e−2 0.1784e−2 0.2041e−2 0.6693e−2
106 0.5642e−3 0.5642e−3 0.6604e−3 0.2670e−2
107 0.1784e−3 0.1784e−3 0.2137e−3 0.1064e−2
108 0.5642e−4 0.5642e−4 0.6916e−4 0.4236e−3
1016 0.5642e−8 0.5642e−8 0.8315e−8 0.2673e−6

to be an upper bound for α < 1.5 and a lower bound for α > 1.5. We also should
anticipate that the one-term asymptote should be more accurate for α near 3/2 than
for other values for α. We draw this conclusion for two reasons: first, at α = 3/2
a potential second term in the expansion does not appear; so that the relative error
(ratio of appearing second term to first term) is of order x−2(α−1) instead of x−(α−1)

for α 6= 3/2. Second, for α 6= 3/2 but α near 3/2, the constant Γ(3 − 2α) in the
denominator of the second term tends to be large, i.e., Γ(x)→∞ as x→ 0.

We now show that the anticipated structure deduced from examining theorem 12
actually holds by making numerical comparisons with exact values computed by nu-
merically inverting the Laplace transform in (3.26). To do the inversion, we use the
Fourier series method in Abate and Whitt [3]. We display results for α = 1.5, α = 1.9
and α = 1.1 in tables 1–3.

For α = 1.5, table 1 shows that the one-term asymptote is a remarkably accurate
approximation for x such that Hc(x) 6 0.20. In table 1 we also demonstrate a strong
sensitivity to the value of α by showing the exact values for α = 1.49 and α = 1.40.
For x = 104 when Hc(x) = 0.056 for α = 1.50, the corresponding values of Hc(x)
for α = 1.49 and α = 1.40 differ by about 12% and 200%, respectively.

Tables 2 and 3 show that the one-term asymptote is a much less accurate approx-
imation for α away from 1.5. In the case α = 1.9 (α = 1.1), the one-term asymptote
is a lower (upper) bound for the exact value, as anticipated. For α = 1.9, we also
compare the ccdf values Hc(x) to the corresponding ccdf values for a mean-1 expo-
nential variable (the case α = 2). The ccdf values differ drastically in the tail, but
are quite close for small x. A reasonable rough approximation for Hc(x) for all x
when α is near (but less than) 2 is the maximum of the one-term asymptote and the
exponential ccdf e−x. It is certainly far superior to either approximation alone.
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Table 2
A comparison of the reflected stable ccdf Hc(x) in theorem 10 for α = 1.9
and ν = 1 with the one-term asymptote and the mean-1 exponential ccdf

corresponding to α = 2.

Hc(x) for α = 1.9 (ν = 1)

x Exact One-term Exponential
asymptote α = 2

0.1× 20 = 0.1 0.878 0.835 0.905
0.1× 21 = 0.2 0.786 0.447 0.819
0.1× 22 = 0.4 0.641 0.240 0.670
0.1× 24 = 1.6 0.238 0.069 0.202
0.1× 26 = 6.4 0.312e−1 0.198e−1 0.166e−2
0.1× 28 = 25.6 0.626e−2 0.568e−2 0.76e−11

0.1× 212 = 409.6 0.472e−3 0.468e−3 ≈ 0
0.1× 216 = 6553.6 0.386e−4 0.386e−4 ≈ 0

Table 3
A comparison of the reflected stable ccdf Hc(x) in theorem 10 for α = 1.1

and ν = 1 with the one-term and two-term asymptotes from theorem 12.

Hc(x) for α = 1.1 (ν = 1)

x Exact One-term Two-term
asymptote asymptote

10−1 0.543 1.18 −0.19
100 0.486 0.94 0.08
101 0.428 0.74 0.20
102 0.373 0.59 0.25
104 0.272 0.373 0.237
106 0.191 0.235 0.181
108 0.129 0.148 0.126
1012 0.558e−1 0.590e−1 0.555e−1
1016 0.230e−1 0.235e−1 0.230e−1
1024 0.371e−2 0.373e−2 0.371e−2
1032 0.590e−3 0.590e−3 0.590e−3

Since α = 2 is a critical boundary point for the ccdf tail behavior, one might say
that a tail probability catastrophe occurs at α = 2. Suppose that the random variable
A1(1) has a power tail decaying as x−α. If α > 2, then the limiting ccdf Hc(x) is
exponential, i.e., Hc(x) = e−x, but for α < 2 the ccdf decays as x−(α−1). This drastic
change can be seen at the large x values in table 2.

Table 3 also illustrates how we can use the asymptotics to numerically determine
its accuracy. We can conclude that the one-term asymptote is accurate at those x
for which the one-term and two-term asymptotes are very close. Similarly, we can
conclude that the two-term asymptote is accurate at those x for which the two-term
and three-term asymptotes are close, and so on.
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We now consider the case 0 < α < 1. We note that α = 1 is another critical
boundary point, because if (3.13) holds for α > 1, then the queue-content process
has a proper steady-state distribution, but if (3.13) holds for α < 1, then the queue-
content process {Q1(k): k > 1} will fail to have a proper steady-state distribution, in
particular,

Q1(k)→∞ as k →∞ w.p. 1. (3.40)

When (3.40) holds, we can use the heavy-traffic limit to show how the queue content
should grow over finite time intervals.

Theorem 15. Let {(A1(k),B1(k)): k > 1} be an i.i.d. sequence with EB1(1) < ∞.
Then, for 0 < α < 1,

n−1/α(Sa1 (bntc),Sb1(bntc))⇒ (
Sa(t), 0

)
in D2 as n→∞ (3.41)

if and only if (3.13) holds, in which case Sa(t) is a stable subordinator with marginal
distribution Sα(σt1/α, 1, 0) for σ = (K/Kα)1/α, K in (3.13) and Kα in (3.11). Without
further assumptions, condition (2.6) of theorem 1 is satisfied, so that if Qn(0)/n1/α ⇒
Q(0), then

n−1/αQ
(
bntc

)
⇒ R

(
Sa
)
(t) in D as n→∞, (3.42)

where

R
(
Sa
)
(t) = Q(0) + Sa(t) if C =∞ (3.43)

and

R
(
Sa
)
(t)⇒ C as t→∞ (3.44)

otherwise.

Proof. Since EB1(1) <∞, {B1(k): k > 1} obeys the strong law of large numbers,
which in turn implies a functional strong law, see Glynn and Whitt [32, theorem 4],

n−1Sb1
(
bntc

)
→ tEB1(1) in D w.p. 1 as n→∞. (3.45)

Hence, for 0 < α < 1,

n−1/αSb1
(
bntc

)
→ 0 in D w.p. 1 as n→∞. (3.46)

By Billingsley [10, theorem 4.4], it thus suffices to consider the process {A1(k): k > 1}
alone. From this point, the reasoning is just as in theorem 7, but without any translation.
Since we have no translation terms in (3.41), we can directly apply theorem 1 to treat
the queue-content process. Properties (3.43) and (3.44) hold because {Sa(t): t > 0}
has nondecreasing paths. �

As a consequence, of theorem 15, for C =∞ we can approximate the transient
queue-content by

Q1(k) ≈ n1/αSa(k/n), k > 0 (3.47)
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Table 4
Tail probabilities of the stable law Sα(1, 1, 0) for α = 0.2, 0.5 and 0.8 com-

puted by numerical transform inversion.

Gcα ccdf of Sα(1, 1, 0)

x α = 0.2 α = 0.5 α = 0.8

(0.01)20 = 0.01 0.9037 1.0000 1.0000
(0.01)21 = 0.02 0.8672 1.0000 1.0000
(0.01)22 = 0.04 0.8251 0.9996 1.0000
(0.01)24 = 0.16 0.7282 0.9229 1.0000
(0.01)26 = 0.64 0.6233 0.6232 0.7371
(0.01)28 = 2.56 0.5197 0.3415 0.1402

(0.01)210 = 10.24 0.4242 0.1749 0.3739e−1
(0.01)212 = 40.96 0.3404 0.8798e−1 0.1154e−1
(0.01)216 = 655.36 0.2112 0.2204e−1 0.1220e−2
(0.01)220 = 10,486 0.1269 0.5510e−2 0.1324e−3
(0.01)224 = 167,772 0.7477e−1 0.1377e−2 0.1440e−4
(0.01)228 = 2,684,000 0.4359e−1 0.3444e−3 0.1567e−5
(0.01)232 = 42,949,000 0.2525e−1 0.8609e−4 0.1705e−6

for any k. We now consider calculating the Sα(σ, 1, 0) pdf and cdf for 0 < α < 1.
Paralleling the case α = 3/2 described in theorem 11, the case α = 1/2 is especially
tractable. For α = 1/2, the Sα(1, 1, 0) distribution has cdf

G1/2(x) = 2Φc

(
1√
x

)
, x > 0, (3.48)

where Φc(x) ≡ P (N (0, 1) > x) and pdf

g1/2(x) =
1√

2πx3
e−1/2x, x > 0 (3.49)

see Feller [28, p. 52].
More generally, we can apply numerical inversion of Laplace transforms again

to calculate the pdf and ccdf of the stable subordinator Sα(t). We exploit the fact that
the distribution Sα(σ, 1, 0) of Sα(1) has support on the positive halfline. We exploit
self-similarity to relate the distribution at any time t to the distribution at time 1, i.e.,

Sa(t)
d
= t1/αSα(1). (3.50)

Hence, it suffices to consider the single-parameter family of distributions Sα(1, 1, 0).
By (3.10), we know that the ccdf of Sα(1, 1, 0) decays as x−α. Hence, for 0 < α < 1,
Sa(t) has infinite mean. By (3.50), we expect Sα(t) to grow like t1/α as t increases.
However, we should expect much of the growth to be in large jumps. To illustrate
the form of the ccdf’s, we give the ccdf values of Sα(1, 1, 0) for three values of α in
table 4.

We can exploit the convergence to a stable subordinator to show, asymptotically,
how the queue-length process reaches new levels when the input distribution has such
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a heavy tail (0 < α < 1). It is interesting to describe the values immediately before
and after first passing some high level. The results show that very large jumps should
be expected. These results are related to the generalized arc sine laws; see Bertoin [9,
sections III and VIII]. For z > 0, let τz be the first passage time to a level beyond z;
i.e., for x ∈ D,

τz(x) = inf
{
t > 0: x(t) > z

}
(3.51)

with τz(x) =∞ if x(t) 6 z for all t. Let γz be the associated overshoot; i.e.,

γz(x) = x
(
τz(x)

)
− z. (3.52)

Let x(τz(x)−) be the value just before the first passage.

Theorem 16. Under the conditions of theorem 15, including (3.13) with 0 < α < 1,
for z > 0,

n−1τzn1/α(Q)⇒ τz
(
Sa
)

in R as n→∞, (3.53)

so that

lim
n→∞

P
(
τzn1/α(Q) > nx

)
= P

(
Sa(x) 6 z

)
, (3.54)

n−1/αγzn1/α(Q)⇒ γz
(
Sa
)

in R as n→∞, (3.55)

so that, for b > z,

lim
n→∞

P
(
γzn1/α(Q) > (b− z)n1/α) =

1
Γ(α)Γ(1 − α)

∫ z

0
xα−1(b− x)−α dx, (3.56)

n−1/αQ
(
τzn1/α(Q)−

)
⇒Sa

(
τz
(
Sa
)
−
)

(3.57)

and, for 0 < b < 1,

lim
z→∞

P
(
Sa
(
τz
(
Sa
)
−
)
> zb

)
=

∫ 1

b

sin(απ) dt
πt1−α(1− t)α . (3.58)

Proof. Since the first-passage time, overshoot and last-value functions are continu-
ous functions on D, we can apply the continuous mapping theorem; see Jacod and
Shiryaev [39, section VI]. Note that

τz
(
n−1/αQ(n·)

)
=n−1τzn1/α(Q), (3.59)

γz
(
n−1/αQ(n·)

)
=n−1/αQ

(
τzn1/α(Q)

)
− z = n−1/αγzn1/α(Q) (3.60)

and

n−1/αQ
(
τzn1/α(Q)−

)
= n−1/αQ

(
nτz
(
n−1/αQ(n·)−

))
. (3.61)

For (3.56), see Bertoin [9, exercise 3, pp. 238, 241]. For (3.58), see Bertoin [9,
theorem 6, p. 81]. �
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Note that the scale parameter σ enters in simply to the first passage time, i.e., for
y > 0

τz
(
Sa(y·)

)
= y−1τz

(
Sa
)
,

and does not appear at all in the overshoot or the last value before passage (because
σ corresponds to a simple time scaling).

4. A sequence of models with weak dependence

In section 3 we saw that there only few possible limits for the queue-content
process in the framework of essentially a single model with weak dependence. In
addition to the familiar RBM limit in theorem 6, there are the reflected stable process
limits in theorems 7–15. Each of these limit processes is characterized by only a
few parameters. There are many more possibilities when we consider a sequence of
models.

When we consider a sequence of models we can of course obtain the same limits
described in section 3, and clearly those are important special cases, but we can also
obtain different limits. The most important generalization is that the queue need not
be in heavy traffic. As noted in the beginning of section 3, for a single model the
translation terms in the limit for the arrival and service processes imply that we must
have ρ = 1 in order to have a nondegenerate limit for the queue-content process. When
we generalize to essentially a single model, using the scaling in (1.3) and theorem 5,
we can have ρn → 1 as n → ∞, which we still regard as heavy traffic. However,
when we consider a general sequence of models, the translation and normalization can
be absorbed in the basic variables, so that we do not need the assumption ρn → 1.

With a sequence of models, we can apply theorem 1 directly, which has the
condition of convergence of the net-input processes c−1

n Sn(bntc) without translation.
In order to obtain a continuous-time limit process, we want to scale time, but there
is great freedom in the way the model sequence {(An(k),Bn(k): k > 1} can change
with n. Given a limit for the sequence of net-input processes, we immediately get a
limit for the associated queue-content processes.

We will focus on special case in which the sequence {Xn(k): k > 1} is i.i.d.
for each n. As before, similar limits will hold when there is only weak dependence.
The i.i.d. setting involves the classical limits for triangular arrays of partial sums,
as in Gnedenko and Kolmogorov [33] and Feller [28, chapters IX and XVII]. In the
i.i.d. setting, the possible one-dimensional limit in R for the net-input process are the
infinitely divisible laws. The corresponding possible process limits are Lévy processes;
see Jacod and Shiryaev [39].

By a Lévy process, we mean a random element {L(t): t > 0} of D with
L(0) = 0 and stationary and independent increments. The random variable L(1) has
an infinitely divisible (ID) distribution. Given the truncation (or centering) function
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h(x) = sgn(x)(min{|x|, 1}) and the Lévy measure µ on R satisfying

µ
(
(−∞,−1) ∪ (1,∞)

)
<∞, µ

(
{0}
)

= 0 and
∫ 1

−1
x2µ(dx) <∞,

the characteristic function of L(1) is given by the Lévy–Khinchine formula

E eict = etψ(ξ) (4.1)

where the exponent is

ψ(ξ) ≡ logE eiξL(1) = ibξ − σ2ξ2

2
+

∫ ∞
−∞

(
exp(iξx)− 1− iξh(x)

)
µ(dx). (4.2)

We call the triple (b,σ2,µ) the characteristics of the Lévy process. If L(1) has finite
mean, then it is

EL(1) =
ψ′(0)

i
= b+

∫ ∞
−∞

[
x− h(x)

]
µ(dx), (4.3)

where, because of the definition of h, the integrand in the second term is nonzero only
in (−∞,−1) ∪ (1,∞), so that the integral is finite.

With a sequence of models, we can drop the common distribution assumptions
if the summands are infinitesimal, i.e., if

lim
n→∞

sup
k>1

P

(∣∣∣∣Xn(k)
cn

∣∣∣∣ > ε

)
= 0, (4.4)

e.g., see Jacod and Shiryaev [39, 2.33, p. 362].

Theorem 17. Consider a sequence of queueing models and suppose that the net-input
sequence {Xn(k): k > 1} is i.i.d. for each n. Assume that (4.4) holds. Then

c−1
n Sn

(
bntc

)
⇒ S∗(t) in D as n→∞, (4.5)

i.e., condition (2.6) of theorem 1 holds, if and only if there are nonnegative constants
b and σ2 and a Lévy measure µ such that

(i) lim
n→∞

nE

[
h

(
Xn(1)
cn

)]
= b, (4.6)

(ii) lim
n→∞

nVar

[
h

(
Xn(1)
cn

))]
= σ2, (4.7)

(iii) lim
n→∞

nE

[
g

(
Xn(1)
cn

)]
=

∫ ∞
−∞

g(x)µ(dx) (4.8)

for all continuous bounded real-valued functions g on R with g(x) = 0 in a neighbor-
hood of x = 0 and g(x) → y, −∞ < y < ∞, as x → ±∞, in which case the limit
process S∗ is a Lévy process with characteristics (b,σ2,µ).
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Proof. It is well known that the possible one-dimensional limits in R are the ID
laws; see Feller [28, p. 303]. For the necessity and sufficiency of (i)–(iii), see Jacod
and Shiryaev [39, 2.35, p. 362]. The extension to convergence in D follows by the
same reasoning as in theorem 7. In this case, Jacod and Shiryaev [39, condition 2.53,
p. 368] is equivalent to (4.4). �

Remark 18. Conditions (i)–(iii) in theorem 17 are similar to the necessary and sufficient
conditions for ID cdf’s Fn with characteristics (bn,σ2

n,µn) to converge to an ID cdf
F with characteristics (b,σ2,µ). The necessary and sufficient conditions are:

(i) bn → b as n→∞,

(ii) σ2
n +

∫∞
−∞ h(x)2µn(dx)→ σ2 +

∫∞
−∞ h(x)2µ(dx) as n→∞,

(iii)
∫∞
−∞ g(x)µn(dx)→

∫∞
−∞ g(x)µ(dx) as n→∞

for the same class of functions g as in (4.8); see Jacod and Shiryaev [39, p. 355].

As indicated above, similar theorems hold when the basic sequences {Xn(k):
k > 1} are only weakly dependent; see Jacod and Shiryaev [39, chapter VIII]; a
martingale functional limit theorem is theorem 2.29 on p. 426.

Similar theorems also hold for single-class networks of queues, using the multidi-
mensional reflection map. The limit theorems in Jacod and Shiryaev [39] are stated for
multidimensional processes. Properties of multidimensional (non-Brownian) reflected
Lévy processes are discussed in Kella and Whitt [42], Konstantopoulos et al. [48] and
references therein.

In order to apply theorem 17, we want the reflected Lévy process to be rela-
tively tractable. Fortunately, there are practically important cases in which a reflected
Lévy process is tractable. Closely paralleling section 3, a reflected Lévy process is
tractable if the associated Lévy process has no negative jumps. For some recent
results in the general case, see Konstantopoulos et al. [48]. The original result for
the case with no negative jumps is due to Zolotarev [75]; also see Takács [62, sec-
tion 24], Bingham [11] and Kella and Whitt [41], especially section 4(a). When a
Lévy process L has no negative jumps, the Lévy measure µ concentrates on (0,∞)
and the bilateral Laplace–Stieltjes transform of L(1) is well defined, with Laplace
exponent

φ(s)≡ logE e−sL(1) = −bs+
σ2s2

2
+

∫ ∞
0

(
exp(−sx)− 1 + sh(x)

)
µ(dx). (4.9)

An important special case is a subordinator plus a negative drift, which is just (4.9)
without the second Brownian term. Storage models with such Lévy net-input processes
are analyzed directly in Prabhu [54, chapter 3]. With (4.9), we can conveniently char-
acterize the Laplace transform of the steady-state distribution. The following is a
generalization of theorem 10, part of Lévy process theory.
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Theorem 19. Let R(S∗)(t) be the reflected Lévy process arising as the limit in the-
orems 1 and 17. Assume that R(S∗) has no negative jumps, so that S∗ has Laplace
exponent φ in (4.9).

(a) If C =∞, then

lim
t→∞

P
(
R
(
S∗
)
(t) 6 x

)
= H(x), (4.10)

where H is a proper cdf with Laplace–Stieltjes transform

ĥ(s) ≡
∫ ∞

0
e−sx dH(x) =

sφ′(0)
φ(s)

, (4.11)

with φ being the Laplace exponent in (4.9).

(b) If C <∞, then

lim
t→∞

P
(
R
(
S∗
)
(t) 6 x

)
=
H(x)
H(C)

, 0 6 x 6 C (4.12)

for H in (4.10).

Remark 20. Unlike section 3, the Lévy process approximation is not much more ele-
mentary than the original model. Focusing on one value of n, we start with essentially
a GI/G/1 model depending on the probability law of Xn(1), for which the transform
of the steady-state distribution has been determined. The Lévy process S∗ and the
steady-state cdf H of the reflected Lévy process depend on the Laplace exponent φ(s)
and thus on the triple (b,σ2,µ). We can identify the two parameters b and σ2 by
assuming that (4.6) and (4.7) hold as equalities for a fixed n, but we must have (4.8)
hold for a whole set of functions g, so that the Lévy measure µ is harder to identify
from (4.8). As indicated in Jacod and Shiryaev [39, theorem 2.35, p. 362], it is pos-
sible to restrict attention to a more convenient countable collection of test functions,
their C1(R), so that approximate fitting by this route can be contemplated. We can also
identify the Lévy measure µ by the limits

lim
n→∞

nP
(
Xn(1) > cnx

)
= µ

(
(x,∞)

)
(4.13)

and

lim
n→∞

nP
(
Xn(1) < −cnx

)
= µ

(
(−∞,−x)

)
, (4.14)

which should hold for all x such that µ({x}) and µ({−x}) = 0. We can approximate
µ by assuming that (4.13) and (4.14) hold as equalities for x outside of the interval
(−ε, ε) for suitably large fixed n and for suitably small ε. Even if µ((−ε, ε)) =∞, the
contribution to the process associated with µ on (−ε, ε) is asymptotically negligible,
as ε → 0; e.g., see Bertoin [9, p. 14]. Ignoring µ on (−ε, ε) makes the overall Lévy
process the sum of a (b′1,σ2)-Brownian motion with drift

b′ = b+

∫ ∞
−∞

[
x− h(x)

]
µ(dx), (4.15)
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as in (4.3), and a compound Poisson process with Poisson arrival rate λ =
µ((−∞,−ε)) + µ((ε,∞)) <∞ and jump-size distribution

P (jump < −x) =
µ((−∞,−x))

λ
and P (jump > x) =

µ((x,∞))
λ

. (4.16)

The Lévy process provides more simplification when the original queueing model
has some dependence, as in the case of the semi-martingale triangular array of Jacod
and Shiryaev [39, section VIII.2e]. Then the approximation steps again involve the
identification of the triple (b,σ2,µ) but from the appropriate conditional distributions.

The generalization of theorem 15 occurs when the Lévy process S∗ in (4.4) is
a subordinator, i.e., has nondecreasing sample paths. If C = ∞, then R(S∗) = S∗,
so that c−1

n Qn(bntc)⇒ S∗(t) in D. We can then use the limit to generate approxima-
tions for the transient behavior. Similarly, we have generalizations of (3.53)–(3.55) in
theorem 16.

Example 21. The workload in unfinished service time in the M/G/1 queue is a re-
flected Lévy process. If V is a service time and λ is the arrival rate, then the Laplace
exponent of the compound-Poisson net-input process is

φ(s) = s− λ
(
1−E

[
exp(−sV )

])
. (4.17)

Example 22. A possible subordinator is the gamma process, which can be expressed
via the Laplace exponent

φ(s) =

∫ ∞
0

(
e−sx − 1

)e−x/η

x
dx = − log(1 + ηs)

for constant η; e.g., see Prabhu [54, p. 72]. (The centering function is not needed
in this case.) If we add a constant negative drift to the gamma process then we
obtain a Lévy process with negative drift but without negative jumps, having Laplace
exponent φ(s) = bs − log(1 + ηs). If b > η, then ES∗(1) < 0 and we can apply
theorem 19. In this case, the steady-state ccdf Hc is easy to compute from its Laplace
transform Hc(s) = [1−h(s)]/s by numerical inversion. The gamma process is a Lévy
process without Brownian component; i.e., b = σ2 = 0. The Lévy measure has density
µ(dx) = x−1 e−x/η, x > 0. As in remark 20, we can approximate the gamma process
by a compound Poisson process by restricting µ to [ε,∞) for some ε > 0.

5. Gaussian approximations to capture dependence

The functional limit theorems in sections 3 and 4 depend critically on having
only weak dependence. We stated results for the i.i.d. case, and mentioned that there
are extensions to various forms of weak dependence, e.g., as covered by martingale
FCLTs. However, in some applications there is strong dependence.
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We can still exploit the basic FCLT, theorem 1, with strong dependence, but to be
of use we must find some way for the limit processes S∗ and R(S∗) in (2.6) and (2.7)
to simplify. One way this can occur is for the input process to be the superposition of
many independent, or nearly independent, component input processes. Then, assuming
finite variances, we can use the central limit theorem to justify approximating the
input sequence {An(k): k > 1} by a Gaussian process. Then there is simplification,
because the marginal distributions are normal (Gaussian) with the dependence being
represented via the autocovariance function. If we can also justify approximating the
potential service sequence {Bn(k): k > 1} by a Gaussian process, then the net-input
sequence {X(k): k > 1} can also be approximated by a Gaussian process, which
is characterized by its mean and autocovariance function. One way Bn(k) can be
Gaussian is for the service capacity to be constant, as in a communication switch with
steady output whenever there is work to be done.

It is possible to carry out this Gaussian process approximation in the original
discrete-time framework of (1.1) and (1.2). Then the relevant function (sequence) space
is R∞. Convergence in R∞ is characterized by convergence of all finite-dimensional
distributions; see Billingsley [10, p. 19]. Then the reflection map is as defined in (1.1).

Theorem 23. Consider a sequence of models indexed by n of the form (1.1) and (1.2)
where {An(k): k > 1} is the superposition of n independent component processes
and Bn(k) = bn such that

Xn ⇒ Y in R∞ as n→∞, (5.1)

where {Y (k): k > 1} is a Gaussian process. Then

Sn ⇒ S∗ in R∞ as n→∞, (5.2)

where S∗(k) = Y (1) + · · ·+ Y (k), k > 1; where R(S∗)(0) = 0.

We can regard the stationary Gaussian process Y in the limit (5.1) as being
defined on {k: −∞ < k < ∞}. If there is unlimited waiting room, i.e., if C = ∞,
then we can characterize the steady-state distribution of the reflected Gaussian process
by

R
(
S∗
)
(∞)

d
= sup{0,Y−1 + · · ·+ Y−k: k > 1}. (5.3)

As in Norros [53], Addie and Zukerman [6] and Choe and Shroff [21,22] we can then
approximate the probability of a supremum exceeding a level by the supremum of the
probabilities of exceeding that level, i.e.,

P
(
R
(
S∗
)
(∞) > x

)
≈ sup

k>1
P (Sk > x) = sup

k
P

(
Sk − km
x− km > 1

)
, (5.4)

where m = EY (1) < 0. However, the supremum of the mean-0 Gaussian tail prob-
abilities occurs at the k maximizing the variance of (S∗k − km)/(x − km), which
can be computed given the autocovariance function of Y . That maximum Gaussian
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tail probability in (5.4) is the candidate approximation (which has been shown to be
remarkably accurate).

Given the approximating Gaussian process {S∗(k): k > 1} and the associated
reflected process, we might elect to scale space and time and then take further limits
to obtain further simplification. Willinger et al. [74] and Taqqu et al. [63] do this.
They actually start by considering on-off component arrival processes with power-tail
(or more general regularly varying) on-time and/or off-time distributions, where the
index α satisfies 1 < α < 2. They show that this produces an associated power-tail
autocovariance function for the Gaussian process in the analog of theorem 23. When
they scale time and space appropriately, they obtain convergence of the Gaussian net-
input to fractional Brownian motion. This second limit describes the large-time-scale
behavior of the autocovariance function.

Just as in section 4, the limit in theorem 23 does not require that the queue be in
heavy traffic. However, we might also want to consider queues with superposition ar-
rival processes in heavy traffic. A key point then is how the traffic intensity ρn changes
with n, where model n has a superposition of n component inputs (n i.i.d. component
processes in the basic case). In fact, a FCLT for the

∑n
i=1GI/G/1 model in the heavy-

traffic case was already established by Whitt [69]; then the number n of component
arrival streams is allowed to increase so that n(1−ρn)2 → c as n→∞ for 0 < c <∞.
Then Bn(k) was allowed to be non-deterministic and contributes a Brownian motion
component to the limiting Gaussian net input process. Approximation (5.4) can also be
applied there when C = ∞. (Variants of this heavy-traffic limiting regime were also
subsequently considered by Knessl and Morrison [46], Kushner and Martins [50] and
Kushner et al. [51], the last with control considerations. By restricting attention to ex-
ponential on and off times and by keeping track of appropriate system state variables,
they obtain a Markov limit process.)

These previous limits were for continuous-time processes. To extend convergence
of finite-dimensional distributions to convergence in distribution in function space, we
need to establish tightness in the superposition limit. As in Whitt [69], this can be
done by applying central limit theorems for processes in D, as was done by Hahn [34].
For the renewal component arrival processes considered in Whitt [69], this places a
constraint on the behavior of the interrenewal-time cdf at the origin, but not in the
tail, so that the limit holds for heavy-tail interrenewal cdf’s. That same argument ap-
plies to non-renewal component arrival processes too, such as considered by Willinger
et al. [74] and Taqqu et al. [63].

6. Conclusions

We have reviewed FCLTs for the single-server queue, emphasizing non-Brownian
FCLTs that hold with heavy-tailed probability distributions and strong dependence. We
reviewed the continuous-mapping approach to obtain general limits in section 2. In
section 3 we focused on the case of essentially a single model, as defined in (1.3),
under weak dependence. In addition to the standard RBM limit in theorem 6, in
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theorem 7 we described the convergence to a reflected stable process when the single-
period inputs have a power tail or, more generally, are regularly varying. We devoted
much of section 3 showing that the limit can yield useful practical insights; e.g., we
showed that the steady-state distribution of the limit process can readily be computed
using numerical transform inversion. We also used the numerical results to explore
the structure of the approximating distributions.

Section 4 was devoted to the case of a general sequence of models. Theorem 17
describes the convergence to a reflected Lévy process. Theorem 19 reviews the classic
result by Zolotarev [75] concluding that the steady-state distribution has a relatively
simple Laplace transform (the generalized Pollaczek–Khintchine formula) when the
Lévy process has no negative jumps. Takács [62] also focused on this important case,
but it has not yet received the attention it deserves.

Finally, in section 5 we discussed Gaussian approximations for the case in which
the input is the superposition of inputs from a large number of independent sources,
where the input from each source may have strong (e.g., long-range) dependence. For
practical applications, it is significant that there is a relatively simple approximation
associated with a bound. A main theme overall is the remarkable tractability of the
results obtained from the limits.
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[9] J. Bertoin, Lévy Processes (Cambridge Univ. Press, Cambridge, UK, 1996).
[10] P. Billingsley, Convergence of Probability Measures (Wiley, New York, 1968).
[11] N.H. Bingham, Fluctuation theory in continuous time, Adv. in Appl. Probab. 7 (1975) 705–766.
[12] L. Bondesson, Generalized Gamma Convolutions and Related Classes of Distributions and Densities

(Springer, New York, 1992).
[13] A.A. Borovkov, Some limit theorems in the theory of mass service, II, Theory Probab. Appl. 10

(1965) 375–400.
[14] O.J. Boxma and J.W. Cohen, The M/G/1 queue with heavy-tailed service time distribution, IEEE

J. Selected Areas Commun. 16 (1998) 749–763.



68 W. Whitt / Overview of Brownian and non-Brownian FCLTs

[15] O.J. Boxma and J.W. Cohen, Heavy-traffic analysis for the GI/G/1 queue with heavy-tailed distri-
butions, Queueing Systems 33 (1999) 177–204.

[16] O.J. Boxma and J.W. Cohen, The M/G/1 queue: Heavy tails and heavy traffic, in: Self-Similar
Network Traffic and Performance Evaluation, eds. K. Park and W. Willinger (Wiley, New York,
2000) to appear.

[17] M. Bramson, State space collapse with application to heavy traffic limits for multiclass queueing
networks, Queueing Systems 30 (1998) 89–148.

[18] D.Y. Burman and D.R. Smith, An asymptotic analysis of a queueing system with Markov-modulated
arrivals, Oper. Res. 34 (1986) 105–119.

[19] H. Chen and A. Mandelbaum, Stochastic discrete flow networks: diffusion approximations and
bottlenecks, Ann. Probab. 19 (1991) 1463–1519.

[20] H. Chen and A. Mandelbaum, Leontief systems, RBVs and RBMs, in: Proc. Imperial College
Workshop on Applied Stochastic Processes, eds. M.H.A. Davis and R.J. Elliott (Gordon and Breach,
New York, 1991).

[21] J. Choe and N.B. Shroff, A central limit theorem based approach for analyzing queue behavior in
high-speed networks, IEEE/ACM Trans. Networking 6 (1998) 659–671.

[22] J. Choe and N.B. Shroff, On the supremum distribution of integrated stationary Gaussian processes
with negative linear drift, Adv. in Appl. Probab. 31 (1999) 135–157.

[23] J.W. Cohen, Some results on regular variation for distributions in queueing and fluctuation theory,
J. Appl. Probab. 10 (1973) 343–353.

[24] J.W. Cohen, The Single Server Queue, revised ed. (North-Holland, Amsterdam, 1982).
[25] J.W. Cohen, A heavy-traffic theorem for the GI/G/1 queue with a Pareto-type service time distri-

bution, Special issue dedicated to R. Syski of J. Appl. Math. Stochastic Anal. 11 (1998) 247–254.
[26] G. Doetsch, Introduction to the Theory and Application of the Laplace Transformation (Springer,

New York, 1974).
[27] S.N. Ethier and T.G. Kurtz, Markov Processes, Characterization and Convergence (Wiley, New

York, 1986).
[28] W. Feller, An Introduction to Probability Theory and its Applications, Vol. II, 2nd ed. (Wiley, New

York, 1971).
[29] K.W. Fendick, V.R. Saksena and W. Whitt, Dependence in packet queues, IEEE Trans. Commun.

37 (1989) 1173–1183.
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