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Abstract

We propose an enhancement to the parametric-decomposition method for calculating

approximate steady-state performance measures of open queueing networks with non-Poisson

arrival processes and non-exponential service-time distributions. Instead of using a variability

parameter ca
2 for each arrival process, we suggest using a variability function

ca
2 (ρ) , 0 < ρ < 1, for each arrival process; i.e., the variability parameter should be regarded as

a function of the traffic intensity ρ of a queue to which the arrival process might go. Variability

functions provide a convenient representation of different levels of variability in different time

scales for arrival processes that are not nearly renewal processes. Variability functions enable the

approximations to account for long-range effects in queueing networks that cannot be addressed

by variability parameters. For example, the variability functions provide a way to address the

heavy-traffic bottleneck phenomenon, in which exceptional variability (either high or low) in the

input has little impact in a series of queues with low-to-moderate traffic intensities, and then has a

big impact when it reaches a later queue with a relatively high traffic intensity. The variability

functions also enable the approximations to characterize irregular periodic deterministic external

arrival processes in a reasonable way; i.e., if there are no batches, then ca
2 (ρ) should be 0 for ρ

near 0 or 1, but ca
2 (ρ) can assume arbitrarily large values for appropriate intermediate ρ. We

present a full network algorithm with variability functions, showing that the idea is

implementable. We also show how simulations of single queues can be effectively exploited to

determine variability functions for difficult external arrival processes.

Key words: queueing networks, tandem queues, approximations, parametric-decomposition

approximations, two-moment approximations, heavy traffic, squared coefficient of variation.



1. Introduction and Summary

The parametric-decomposition approximation method is an approach to approximating the

steady-state performance measures of open queueing networks with non-Poisson arrival processes

and non-exponential service-time distributions; see Whitt (1983, 1994), Segal and Whitt (1989),

Buzacott and Shanthikumar (1992), Suri, Sanders and Kamath (1993), and references therein.

The idea is to analyze the individual queues separately after approximately characterizing the

arrival processes. So far, the arrival processes have been characterized by a few parameters,

usually two, one to represent the rate and the other to represent the variability. The arrival rates

are obtained as the solution to the familiar traffic rate equations, and are exact. In most schemes,

the variability parameters can be regarded as squared coefficients of variation (SCVs, i.e., the

variance divided by the square of the mean) of an interarrival time in an approximating renewal

process, i.e., assuming the interarrival times are i.i.d. (independent and identically distributed).

The approximating variability parameters are obtained as the solution to a second set of equations

called the traffic variability equations; that is the major approximation. Computing performance

measures for each queue given its parameters also involves an approximation, but the quality of

this approximation is relatively well understood, and is pretty good; e.g., see Whitt (1993). The

greatest difficulty with the parametric-decomposition method is determining appropriate

variability parameters for the arrival processes to the queues.

There also is a problem in combining the performance measures of the individual queues to

describe the total network performance. There obviously is no problem with means, because the

mean of a sum is always the sum of the means, but there can be problems with variances and

distributions because the steady-state queue-length distributions at different queues are in general

not independent. The standard approach is to act as if the queues are mutually independent when

computing total network performance measures, but this can be a source of error. We do not

attempt to address this problem here. We note that the Brownian model approximations in
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Harrison and Nguyen (1990, 1993) and Dai, Nguyen and Reiman (1994) do directly address this

problem.

Another problem is properly treating different classes in multi-class queueing networks; see

Bitran and Tirupati (1988), Fendick, Saksena and Whitt (1989, 1991) and Whitt (1994). For the

multi-class case, we ideally should have parameters characterizing the arrival process of each

class at each queue. We do not address this problem here either; here we consider only the

aggregate arrival process at each queue.

All two-parameter approximation methods assume that the external arrival processes and

service-time distributions can be approximately characterized by rates and variability parameters

at the outset. As before, there tends to be little difficulty with the rates providing that the

processes are stationary (which is a nontrivial assumption). We assume that the arrival and

service processes can indeed be regarded as stationary, so that the rates are relatively easy to

specify.

However, significant difficulties can arise with the variability parameters. The standard

approach is to assume that the sequences of service times and interarrival times (in the external

arrival processes) are mutually independent sequences of i.i.d. random variables. Then we let the

variability parameter for each process be the SCV. For service times, this independence property

is often reasonable. (For exceptions, see Fendick, Saksena and Whitt (1989).) However, for the

external arrival processes, this independence is less reasonable. Unfortunately, experience

indicates that arrival processes that are not nearly Poisson (M) or deterministic (D) are often not

nearly renewal processes either. The Poisson process is often a good arrival process model, but

non-deterministic arrival processes often tend to be non-Poisson in large part because of

significant dependence among the interarrival times. This is particularly true when the variability

is substantially greater than in a Poisson process.
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The practical consequence of dependence among interarrival times is that it may not be

possible to characterize the variability of the external arrival process well by a single parameter.

Indeed, even for renewal arrival processes the variability may not be well characterized by the

SCV; e.g., see Whitt (1989). However, the difficulty is much greater with non-renewal processes;

e.g., see Fendick and Whitt (1989). Dependence among the interarrival times can often be

detected by observing, in the terminology of Whitt (1982), that there is a significant difference

between the stationary-interval and the asymptotic-method approximations for stationary point

processes. The stationary-interval method lets the arrival-process variability parameter ca
2 simply

be the SCV of an interarrival time (ignoring any dependence). The asymptotic method lets ca
2 be

the limit of the normalized variance of the partial sums, i.e.,

cAM
2 =

n→ ∞
lim

n(EX 1 )2

Var (S n )________ , (1)

where S n = X 1 + . . . + X n with X i being the interarrival times. For a renewal process, these

methods agree, but in general they are different because Var (S n ) includes the covariance terms,

i.e.,

Var (S n ) = n Var (X 1 ) +
i = 1
Σ
n

j ≠ i
j = 1
Σ
n

Cov (X i ,X j ) . (2)

The limit in (1) means that the asymptotic method incorporates all the covariance terms. Fendick

and Whitt (1989) discuss ways to incorporate only some of the covariance terms.

With Brownian models, it is customary to exploit heavy-traffic limit theorems to determine

variability parameters. Then the variability parameter of an external arrival process can be

thought of as being determined by the asymptotic method in (1). Our point is that for some

models neither the asymptotic method nor the stationary-interval method is appropriate.

Moreover, for some models no single variability parameter is appropriate.
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The importance of dependence in external arrival processes deserves further emphasis,

because proposed queueing network approximation methods are typically evaluated only for

renewal arrival processes. The approximations are introduced to capture the effects of non-

Poisson arrival processes, but it is tacitly assumed that this non-Poisson variability appears in the

form of non-Poisson renewal processes. We contend that this is typically not the case.

Considerable work has been done on superpositions of large numbers (e.g., 100) of non-

Poisson arrival processes, motivated by the fact that typically the stationary-interval method

dictates that ca
2 ∼∼ 1, while the asymptotic method can dictate something very different (e.g.,

ca
2 ∼∼ 20), and the actual appropriate value is somewhere in between; see Whitt (1982, 1983,

1985), Albin (1982, 1984), Newell (1984), Sriram and Whitt (1986), Heffes and Lucantoni

(1986), Fendick, Saksena and Whitt (1989, 1991) and Fendick and Whitt (1989). Hence, if a

given external arrival process to which we wish to assign a variability parameter happens to be

such a superposition of non-Poisson processes, then it is quite likely to have substantial

dependence among its interarrival times. Moreover, even if all external arrival processes are

renewal processes, network operations can make internal arrival processes not nearly renewal

processes.

We have also encountered the arrival-process variability-parameter problem several times in

honest efforts to choose the variability parameters of external arrival processes by working with

arrival process data. In each case the modeller simply estimated the SCV directly by using the

sample mean and the sample variance (but ignoring the dependence). The modellers obtained

estimates of SCVs that seemed to them much smaller than they would have predicted based on

their ‘‘intuitive feel’’ for the level of variability. A priori, it seemed that the variability was

significantly greater than in a Poisson process, but the direct SCV estimation yielded an SCV

value much less than 1. After doing estimates related to (1), it became clear that this was due to

dependence, in particular, positive correlations among the interarrival times. A specific striking
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example (involving other issues as well) is discussed in Fendick, Saksena and Whitt (1989); see

especially Sections II.B and III.

Expressed another way, if the arrival process is a renewal process, then it is usually reasonable

to regard the SCV as the appropriate variability parameter, but if the arrival process is not nearly a

renewal process, then the appropriate variability parameter typically depends on the traffic

intensity of the queue to which the arrival process goes. In light traffic the stationary-interval

method tends to be good, while in heavy-traffic the asymptotic method tends to be good. Indeed,

it is known that the asymptotic method is asymptotically correct as the traffic intensity of the

queue approaches its critical value. (This is implied by Theorem 1(a) of Iglehart and Whitt

(1970).) However, at typical traffic intensities, something in between is needed. Thus, the

approach to superposition in Albin (1984) and Whitt (1983) was to make the variability parameter

depend on the traffic intensity of the queue to which the superposition process goes. This

approach is fine for one queue, but it can fail when the superposition arrival process feeds into

two queues in series. Current methods can make big errors at the second queue if the traffic

intensity at the first queue is much less than the traffic intensity at the second queue. Then the

actual congestion at the second queue is approximately the same as if the first queue were not

there, but previous approximations do not consistently predict that; see §5 below.

The important point is that there can be long-range variability effects. As shown by Whitt

(1988) and Suresh and Whitt (1990a,b), exceptional variability (either high or low) in an external

arrival process can have relatively little impact upon an initial series of queues with low-to-

moderate traffic intensities, and then later have a big impact upon a distant queue with a relatively

high traffic intensity. Simulations reveal the heavy-traffic bottleneck phenomenon: A queue with

a relatively high traffic intensity in a queueing network can be influenced by an external arrival

process entering several queues away essentially the small as if the other intermediate queues

were not there. (See Section 6 for more discussion.) Clearly, local adjustment of variability
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parameters is inadequate for addressing this problem.

Variability functions provide a means to address long-range variability effects. We propose

characterizing each arrival process by its rate and a variability function ca
2 (ρ), 0 < ρ < 1,

indicating the approximate SCV as a function of the traffic intensity ρ at a queue to which the

arrival process might go. We are still thinking of ca
2 (ρ) as the SCV of an interarrival time in an

approximating renewal process, but now with the value depending on ρ.

For this extension to be useful, we need to do two things. First, we need to develop a calculus

for transforming variability functions when we encounter the familiar network operations of

flowing through a queue (departure), superposition (merging) and splitting, paralleling Section IV

of Whitt (1983). Second, we need to develop a method for assigning variability functions to

non-renewal external arrival processes. We indicate how to do these things here in Sections 2 and

3.

In Section 4 we show how the variability functions enable us to treat irregular periodic

deterministic arrival processes in a reasonable way; these are periodic deterministic arrival

processes with non-constant interarrival times (e.g., the interarrival-times 2/3, 4/3, 2/3, 4/3 , . . .).

The asymptotic method yields ca
2 = 0, but we often want ca

2 (ρ) > 0. These irregular periodic

deterministic arrival processes dramatically show that variability functions can provide a big

improvement.

In Section 5 we show how variability functions enable us to reasonably treat two queues in

series with a non-renewal arrival process such as a superposition process. In Section 6 we show

that the variability functions may enable us to obtain reasonable approximations for the difficult

tandem-queue networks in Suresh and Whitt (1990a) exhibiting the heavy-traffic bottleneck

phenomenon. In Section 7 we discuss ways to estimate how accurate are the approximations,

both before and after applying a network algorithm. We suggest providing estimates for the range
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of possible congestion values due to variability uncertainty (not being sure of the appropriate

approximating SCVs). In Section 8 we state our conclusions.

2. An Extended Calculus for Network Operations

In this section we develop an algorithm for producing the variability functions of the internal

(net) arrival processes in an open queueing network, given the internal arrival rates, the external-

arrival-process variability functions and the service-time variability parameters. The internal

arrival rates plus the service-time means yield the traffic intensities at all queues. We assume that

all queues have unlimited waiting space and the first-in first-out service discipline. In this paper

we consider only a single-class network of multi-server queues, but the procedure can be

extended to multiple classes (by aggregation) as in Whitt (1983). (A more careful treatment of

multiple classes is still needed though.) We regard the service-time variability parameters as

being independent of the traffic intensity or, stated differently, dependent only upon the fixed

traffic intensity prevailing at that queue.

This section extends Section IV of Whitt (1983). We treat superposition, splitting and

departure in the first three subsections and then discuss their synthesis into traffic variability

equations in the final subsection. We do not do new experimental testing here. For each

operation, we propose a variability function transformation that has already been tested quite

extensively. The new network calculus is constructed and supported by applying previous results

for variability parameters. Consequently, the new algorithm would be the same for one queue,

but the new algorithm is very different for networks.

We point out that the procedures below make the variability function cai
2 (ρ i ) at queue i be

asymptotically correct in heavy traffic, i.e., as the traffic intensity ρ i at queue i approaches 1.

Thus, cai
2 ( 1 − ) ≡

ρ ↑1
limca

2 (ρ) agrees with the asymptotic method in Whitt (1982) and the

individual bottleneck approximation in Reiman (1990).
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2.1 Superposition

To a large extent, a reasonable way to treat superposition processes is already indicated in

Whitt (1983). There the variability parameter assigned to the superposition process is allowed to

depend on the traffic intensity of the following queue. We now just let all the variability

parameters depend upon ρ.

In particular, suppose that n streams with rates λ i and variability functions cai
2 (ρ), 1 ≤ i ≤ n,

are to be superposed. The rate of the superposition process is of course λ =
i = 1
Σ
n

λ i . We let the

approximating variability function ca
2 (ρ) for the superposition process be

ca
2 (ρ) = w(ρ)

i = 1
Σ
n

(λ i /λ) cai
2 (ρ) + 1 − w(ρ) , 0 < ρ < 1 , (3)

where

w(ρ) = [ 1 + 4 ( 1 − ρ)2 ν] − 1 (4)

ν = [
i = 1
Σ
n

(λ i /λ)2 ] − 1 . (5)

When the component streams have equal rates, ν in (5) is the number of streams. More

generally, ν is reduced to account for uneven rates. Note that w(ρ) → 0 as ν increases, but ν

needs to be larger as ρ increases. When w(ρ) is small, ca
2 (ρ) ∼∼ 1 reflecting the convergence of

superposition processes to a Poisson process as the number of component streams increases.

Note that (3)–(5) agrees with Section 4.3 of Whitt (1983), except that cai
2 (ρ) and ca

2 (ρ) in (3)

are allowed to depend on ρ. For superpositions of renewal processes at a single queue, the

method here coincides with Whitt (1983). This approximation has already been studied quite

extensively; e.g., see Albin (1982, 1984) and Sriram and Whitt (1986).
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2.2 Independent Splitting

Since independent splitting of a renewal process is exactly a renewal process, it is natural to

use the exact formula for the SCV, as in Section 4.4 of Whitt (1983). In particular, if a stream

with variability function c 2 (ρ) is split into n streams, with each point being assigned to stream i

with probability p i , and successive selections being independent, then we let the variability

function of the i th split stream be

ci
2 (ρ) = p i c 2 (ρ) + 1 − p i . (6)

It is important to note, however, that if the routing is not independent (or Markovian)

splitting, then (6) may be not nearly appropriate. In particular, this is true with multiple classes

and deterministic routing; see Bitran and Tirupati (1988) and Whitt (1994).

2.3 Departure

Recent experience with departure processes in Suresh and Whitt (1990a,b) indicates that we

need to make significant changes from the procedure in Whitt (1983). The formula

cd
2 = ρ∗

2 cs
2 + ( 1 − ρ∗

2 ) ca
2 (7)

in (38) of Whitt (1983), where ρ ∗ is the traffic intensity at the queue from which the customers

depart, describes the effect on following queues reasonably well when the following queue has a

traffic intensity less than or equal to ρ ∗ , but not so well otherwise. Indeed, the nine-queue and

ten-queue tandem network examples in Suresh and Whitt (1990b) (and similar 100-queue

examples) show that the original arrival process can have a big impact on even a distant later

queue with a substantially higher traffic intensity.

Hence, we propose the following class of departure variability functions for an arrival process

coming to a single-server queue with traffic intensity ρ ∗ and service-time SCV cs
2 (which we

assume does not depend on ρ ∗):
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cd
2 (ρ ∗ ,ρ) = α(ρ ∗ ,ρ) cs

2 + ( 1 − α(ρ ∗ ,ρ) ) ca
2 (ρ) , (8)

where α(ρ ∗ ,ρ) is a function that is decreasing in ρ and increasing in ρ ∗ . (Here ρ is the traffic

intensity at the following queue.) A specific function α(ρ ∗ ,ρ) in (8) that was developed for two

queues in series is

α(ρ ∗ ,ρ) = ρ∗
2 ( 1 − ρ10 ) ; (9)

see (4.2) of Suresh and Whitt (1990a).

The sequential bottleneck method in Reiman (1990) is implemented by having

α(ρ ∗ ,ρ) =


0 ,

1 ,

ρ ≥ ρ ∗ .

ρ < ρ ∗
(10)

It is intuitively clear that an appropriate function α should change more smoothly than in (10). It

is also evident that we should have α(ρ ∗ ,ρ) → 0 as ρ → 1 with 0 < ρ ∗ < 1 and

α(ρ ∗ ,ρ) → 1 as ρ ∗ → 1 with 0 < ρ < 1. Note that (10) satisfies this condition, but (9) does

not.

Another alternative is

α(ρ ∗ ,ρ) = ρ ∗ min { 1 , ( 1 − ρ) r /( 1 − ρ ∗ ) r } ; (11)

e.g., for r = 2. Formula (11) reduces to (7) for ρ < ρ ∗ , but smoothly approaches (10) for

ρ > ρ ∗ .

We have not yet carefully studied the case of departure processes from queues with more than

one server. We anticipate that a modification of (39) of Whitt (1983) similar to (8) should be

reasonable, e.g.,

cd
2 (ρ ∗ ,ρ) = 1 +

√ m
α(ρ ∗ ,ρ)_ _______ (cs

2 − 1 ) + ( 1 − α(ρ ,ρ ∗ ) ) (ca
2 (ρ) − 1 ) (12)

for α(ρ ∗ ,ρ) in (9) or (11).
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We have assumed that the service-time variability parameter cs
2 does not depend on ρ ∗ in (8)

and (12). If we believed that the service times were not mutually independent, then it would be

natural to work with service-time variability functions cs
2 (ρ) too. We would then modify (8) and

(12) simply by replacing cs
2 by cs

2 (ρ ∗ ). This would make the service-time influence the arrival

variability function only via the value cs
2 (ρ ∗ ) at the actual traffic intensity ρ ∗ of the queue, which

is fixed and known.

2.4 Synthesis in a Network

Paralleling Section 4.7 of Whitt (1983), the operations above lead to systems of linear

equations to determine the arrival variability functions at each queue. Here, however, there is a

system of linear equations for each traffic intensity ρ, 0 < ρ < 1. For practical purposes, we

could consider only the 99 traffic intensity values 0. 01 , 0. 02 , . . . , 0. 99. In fact, for a network of

n nodes with traffic intensities ρ i , 1 ≤ i ≤ n, it suffices to consider only the n systems of linear

equations with the n given traffic intensities ρ i , 1 ≤ i ≤ n. At queue i, we only need to know the

arrival variability function ca
2 (ρ) evaluated at ρ = ρ i . Note that the traffic intensities can be

computed prior to determining the arrival variability functions, so these values of ρ i are indeed

known.

In particular, just as in Whitt (1983), the traffic-rate equations are

λ j = λ 0 j +
i = 1
Σ
n

λ i q i j , 1 ≤ j ≤ n , (13)

where λ j is the net arrival rate to queue j, λ 0 j is the external arrival rate to queue j and q i j is the

proportion of departures from queue i that go next to queue j. (We do not consider the customer

creation factors γ j here.) The associated traffic intensity at queue j is

ρ j = λ j τ j / s j , 1 ≤ j ≤ n , (14)

where s j is the number of servers at queue j and τ j is the mean service time at queue j.
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Next, for each value of the traffic intensity ρ, the new traffic-variability equations are

ca j
2 (ρ) = w j (ρ) [ (λ 0 j /λ j ) c0 j

2 (ρ) +
i = 1
Σ
n

(λ i q i j /λ j ) ci j
2 (ρ) ] + 1 − w j (ρ) , 1 ≤ j ≤ n , (15)

where

w j (ρ) = [ 1 + 4 ( 1 − ρ)2 ν j ] − 1 , (16)

ν j = [ (λ 0 j /λ j )2 +
i = 1
Σ
n

(λ i q i j /λ j )2 ] − 1 , (17)

ci j
2 (ρ) = q i j cdi

2 (ρ i ,ρ) + 1 − q i j , (18)

and

cdi
2 (ρ i ,ρ) = 1 +

√ s i

α(ρ i ,ρ)_ _______ (csi
2 − 1 ) + ( 1 − α(ρ i ,ρ) ) (cai

2 (ρ) − 1 ) (19)

for α(ρ ∗ ,ρ) in (11) with r = 2. Equivalently,

ca j
2 (ρ) = A j (ρ) +

i = 1
Σ
n

B i j (ρ) cai
2 (ρ) , 1 ≤ j ≤ n , (20)

where

A j (ρ) = 1 + w j (ρ) [ (λ 0 j /λ j ) c0 j
2 (ρ) − 1 ] +

i = 1
Σ
n

(λ i q i j /λ j ) ( 1 − q i j )

+
i = 1
Σ
n

(λ i qi j
2 /λ j ) ( 1 +

√ s i

α(ρ i ,ρ)_ _______ (csi
2 − 1 ) − 1 + α(ρ i ,ρ) ) (21)

and

B i j (ρ) = w j (ρ) (λ i qi j
2 /λ j ) ( 1 − α(ρ i ,ρ) ) . (22)

3. Assigning Variability Functions to External Arrival Processes

Introducing a more complicated characterization of arrival processes obviously makes initial
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model specification more difficult. Now a user of a software package implementing a network

algorithm such as partially described in Section 2 must specify an entire variability function for

each external arrival process instead of just a variability parameter, but having the input in this

form communicates some important information. Just as having variability parameters in the

model communicates their potential importance, so does having variability functions in the model

communicate their potential importance.

The obvious default values for variability functions in the model input are the constant

variability functions of renewal processes. In other words, if we are willing to assume that the

external arrival processes are renewal processes, then nothing more need be done. Then we can

let the external arrival variability functions c0 j
2 (ρ) be constant functions with the value of the

SCV. However, we recommend being careful at this step.

We now suggest procedures for specifying variability functions for non-renewal external

arrival processes. For this purpose, we suggest applying the indirect methods in Whitt (1981),

Fendick and Whitt (1989), and Fendick, Saksena and Whitt (1991). The idea is to characterize

the arrival process by observing the congestion it produces in a convenient test queue. In

particular, we suggest choosing measurement units so that the arrival rate is fixed at 1, then

estimating or calculating the mean steady-state waiting time (before beginning service) EW(ρ) in

a convenient single-server queue with i.i.d. service times having a known distribution with mean

ρ and SCV cs
2 , and then letting ca

2 (ρ) be the value of the interarrival-time SCV that makes a

reasonable approximation for EW(ρ) correct, as a function of ρ. Here we let the approximation

be

EW(ρ) =
2 ( 1 − ρ)

ρ2 (ca
2 (ρ) + cs

2 ) g(ρ ,ca
2 (ρ) ,cs

2 )_ ___________________________ , (23)

where
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g(ρ ,ca
2 (ρ) ,cs

2 ) =






exp { − ( 1 − ρ) ( [ca

2 (ρ) − 1 ]/[ca
2 (ρ) + 4cs

2 ] ) } , ca
2 (ρ) ≥ 1 ,

exp { − 2 ( 1 − ρ)/3ρ) ( [ 1 − ca
2 (ρ) ]2 /[ca

2 (ρ) + cs
2 ] ) } , ca

2 (ρ) ≤ 1 ,
(24)

as in Kra
..
mer and Langenbach-Belz (1976); see Section 3 of Whitt (1981) and (44) of Whitt

(1983). For simplicity, we might replace g above by 1. Values of g quite different from 1 occur

when ρ is small.

Since the formula for EW(ρ) in (23) is strictly increasing in ca
2 (ρ) for each pair (ρ ,cs

2 ) with

0 < ρ < 1, it is not difficult to find the appropriate value ca
2 (ρ) for each ρ. A simple specific

procedure is, for each ρ, to initially let ca
2 (ρ) = 1 (which makes g(ρ ,ca

2 (ρ) ,cs
2 ) = 1) and then

solve for ca
2 (ρ) explicitly by

ca
2 (ρ) =



 ρ2 g(ρ ,ca

2 (ρ) ,cs
2 )

2 ( 1 − ρ) EW(ρ)_ _______________ − cs
2




+

, 0 < ρ < 1 , (25)

where [x] + = max {x, 0 }. We then successively calculate g(ρ ,ca
2 (ρ) ,cs

2 ) (using (24) and the

most recent estimate of ca
2 (ρ)) and ca

2 (ρ) (using (25) and the most recent estimate of g) until

there is negligible change.

The most natural choices of service-time distributions are exponential and deterministic. We

can often obtain EW(ρ) as a function of ρ analytically. This is the case for many BMAP/G/1

queues, where the arrival process is a batch Markovian arrival process (BMAP); see Lucantoni

(1991, 1993) and Abate, Choudhury and Whitt (1994). Such algorithms provide a basis for

numerically calculating EW(ρ) for a very large class of arrival processes (models). Since the

service-time distribution can be general in this algorithm, it is natural to use a scaled version of a

representative service-time distribution in the actual network.

From data, we suggest estimating EW(ρ) as a function of ρ by simulating a G/G/1 queue with

the given arrival process (with units chosen so that it has rate 1) and general service times of
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length ρ, as a function of ρ. For greater realism, it is natural to choose the service-time

distribution prevailing at the first queue or one close to it, but for computational speed and

simplicity it is natural to use deterministic service times. Note that the simulation must be

performed for each arrival process and each traffic intensity of interest, but the simulations

involve only a single queue, which typically is much easier than simulating an entire queueing

network. Moreover, it is useful to have a good characterization of the arrival process, for better

understanding as well as further analysis.

The procedure for obtaining the external-arrival-process variability function above is closely

related to the characterizations of input to queues (service times plus arrival process) in Fendick

and Whitt (1989). The focus there is on the steady-state workload (remaining service time at an

arbitrary time or virtual waiting time) Z(ρ). By Brumelle’s formula ((72) in Fendick and Whitt),

EZ(ρ) is related to EW(ρ) exactly by

EZ(ρ) = ρEW(ρ) +
2

ρ2 (cs
2 + 1 )_ __________ , (26)

assuming that the arrival rate is 1, that the mean service time is ρ and that the service times are

i.i.d. and independent of the arrival process. Hence, given EZ(ρ), we can calculate EW(ρ) using

(26). Fendick and Whitt (1989) focus on the normalized mean workload, defined by

cz
2 (ρ) = 2 ( 1 − ρ) EZ(ρ)/ρ2 . (27)

They use the index of dispersion for work (IDW), which describes the total input process of work,

to obtain an estimate of cz
2 (ρ). Those methods can be applied to produce first cz

2 (ρ) and then

successively EZ(ρ), EW(ρ) and ca
2 (ρ) using (27), (26) and (23). When the service times are

i.i.d. and independent of the arrival process, the IDW I w (t) is simply related to the index of

dispersion for counts (IDC) I c (t) by I w (t) = I c (t) + cs
2 . If A(t) counts the number of arrivals

in the interval [ 0 ,t], then the IDC is the function
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I c (t) =
EA(t)

Var A(t)_ _______ , t > 0 , (28)

which can be estimated from data or calculated numerically. In summary, we can apply the

previous methods in Fendick and Whitt (1989) to convert an estimate of the IDC I c (t) into the

desired variability function ca
2 (ρ).

If we focus on the waiting times (at arrival epochs), then it is natural to use the index of

dispersion for intervals (IDI), which is defined by

I i (n) =
(ES n )2

nVar S n_ _______ , (29)

for positive integers n. Paralleling (9) and (13) of Fendick and Whitt (1989), we could

approximate ca
2 (ρ) by I i (n(ρ) ) where n(ρ) is an approximate customer index as a function of ρ,

which might be

n(ρ) = 
ρI i (∞)/2 ( 1 − ρ)2

 , (30)

where x is the least integer greater than or equal to x.

4. Irregular Periodic Deterministic Arrival Processes

In the next three sections we provide concrete evidence showing that variability functions can

provide significant improvements in parametric-decomposition approximations. In this section

we consider a class of arrival processes for which it is easy to see that variability functions instead

of variability parameters are desirable. This is the class of irregular periodic deterministic arrival

processes. Related stochastic processes appear in manufacturing and communication networks.

The periodic deterministic character implies that we should have ca
2 (ρ) → 0 as ρ → 1, but we

need ca
2 (ρ) > 0 for ρ < 1. Moreover, if there are no batch arrivals, then we should also have

ca
2 (ρ) → 0 as ρ → 0.
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The standard periodic deterministic arrival process is the D process with constant interarrival

times. By ‘‘irregular periodic deterministic’’ arrival processes, we mean all other periodic

deterministic arrival processes. A simple example has successive interarrival times

3/2 , 1/2 , 1 , 3/2 , 1/2 , 1 , . . .. This arrival process has period 3 and arrival rate 1.

In this section we consider a special case of these deterministic arrival processes, which we

denote by D(α ,k). Let the parameter k be a positive integer and let the parameter α be a real

number with 0 < α < 1. Let there be single arrivals at epochs nk + jα for integers n and j,

where 0 ≤ j ≤ k − 1 and n ≥ 0. it is easy to see that this arrival process is periodic with period k.

There are k arrivals in interval [nk, (n + 1 ) k) for every n, so that the arrival rate is 1. The D(α ,k)

process is a special case of processes considered in Sections VI. C and VII of Fendick, Saksena

and Whitt (1989).

We now apply the method of Section 3 to determine appropriate variability functions for

D(α ,k) arrival processes. For the D (α , k )/D/1 queue, it is easy to compute the exact mean

steady-state (long-run average) waiting time EW(ρ) for any deterministic service time ρ,

0 ≤ ρ ≤ 1. It suffices to consider a single cycle, since the deterministic waiting-time process

starts empty before the arrivals at times nk, n ≥ 0. Indeed, here

EW(ρ) =





 2

(k − 1 )_ ______ (ρ − α) ,

0 ,

α < ρ ≤ 1 .

0 ≤ ρ ≤ α
(31)

Using (25) with g ≡ 1, we see that ca
2 (ρ) = 0 for ρ ≤ α and

ca
2 (ρ) =

ρ2

( 1 − ρ) (k − 1 ) (ρ − α)_ _________________ , α < ρ ≤ 1 , (32)

so that ca
2 (ρ) → 0 as ρ → 1, but that ca

2 (ρ) > 0 for α < ρ < 1. Moreover, (32) indicates that

ca
2 (ρ) is directly proportional to k − 1, so that it can be arbitrarily large.
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In summary, the variability function ca
2 (ρ) in (32) yields the correct answer in D(α ,k)/ D /1

queues, and it is not nearly constant. For a specific example, let α = 1/4 and ρ = 1/2. Then

(31) yields ca
2 ( 1/2 ) = (k − 1 )/2. For k = 21, we have ca

2 ( 1/2 ) = 10, while

ca
2 ( 0 + ) = ca

2 ( 1/4 ) = ca
2 ( 1 − ) = 0.

We now consider a small network example to demonstrate the importance of using variability

functions in a network context. Suppose that we consider the D(α ,k)/ D /1 → D /1 model, i.e.,

two deterministic queues in series with this periodic irregular deterministic arrival process having

α = 1/4 and k = 21. Suppose that the arrival rate is 1 and that the service times at queues 1 and

2 are 1/4 and 1/2. Both the new variability-function and old variability-parameter approaches

yield ca1
2 ( 0. 25 ) = 0. 0 and the exact mean waiting time at queue 1, EW 1 = 0. 0. The

variability-parameter approach thus yields ca2
2 = 0 and EW 2 = 0 using (8) with ca

2 (ρ 1 ) = 0

and any choice of α. On the other hand, the variability-function approach using (11) with r = 2

yields ca1
2 ( 0. 5 ) = 10. 0. Then, using (8) and (11) with r = 2, we obtain α(ρ 1 ,ρ 2 ) = 1/9 and

cd
2 (ρ 1 ,ρ 2 ) = 80/9. Next using (23) with g = 1, we obtain EW 2 = 20/9 ∼∼ 2. 22. Clearly the

variability-function value of 2.22 is a much better approximation for the exact value EW 2 = 2. 50

than 0.0.

5. The Case of the Disappearing Queue

The example at the end of the last section illustrates a general phenomenon. To see the

importance of variability functions, it suffices to consider two queues in series with a non-renewal

arrival process. Let cai
2 (ρ) , i = 1 , 2, be the variability functions at the two queues and let the

traffic intensities at the two queues by ρ 1 and ρ 2 where ρ 1 << ρ 2 . Using variability parameters

with decomposition is tantamount to using ca1
2 (ρ 1 ) to characterize the arrival process to the first

queue. However, if ρ 1 is small and we use (7), then the fixed variability parameter at the second

queue will be approximately ca1
2 (ρ 1 ). However, if ρ 1 is very small, then the actual congestion at
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the second queue will be obviously approximately the same as if the first queue were not there;

e.g., see Whitt (1988) and Suresh and Whitt (1990b). In other words, we should have

approximately ca2
2 (ρ 2 ) = ca1

2 (ρ 2 ). If ca1
2 (ρ 1 ) is not nearly equal to ca1

2 (ρ 2 ), then we will

make a big error at the second queue. In contrast, variability functions allow us to have

ca2
2 (ρ 2 ) = ca1

2 (ρ 2 ).

This situation can easily occur with a superposition arrival process to two queues in series.

Then ca1
2 (ρ) can change greatly as ρ changes. Hence, if ρ 1 << ρ 2 , then we can make a big error

at the second queue. This specific phenomenon was considered by Albin and Kai (1986), but

they did not propose variability functions.

We now consider a simple concrete example to demonstrate the potential benefit of variability

functions. Our example has two queues in series with exponential service times and an external

arrival process that is the superposition of 20 i.i.d. renewal processes each with interarrival-time

SCV = 20. Each interarrival-time distribution in a component renewal process is a mixture of

two exponentials (with balanced means). The total arrival rate is 1 and the mean service times at

queues 1 and 2 are 0.6 and 0.9. Using simulation and (25) with g ≡ 1 we obtain estimated

appropriate variability functions ca1
2 ( 0. 6 ) ∼∼ 2. 2, ca1

2 ( 0. 9 ) ∼∼ 13. 3 and ca2
2 ( 0. 9 ) ∼∼ 11. 8. (In our

experiment the 90% confidence intervals were about ±20%.) Using variability parameters with

ca1
2 = 2. 2 plus (8) and (9), we obtain ca2

2 = 1. 9. Using variability functions with

ca1
2 ( 0. 9 ) = 13. 3 plus (8) and (9), we obtain ca2

2 ( 0. 9 ) ∼∼ 10. 5. Obviously 10.5 is much closer to

11.8 than 1.9.

In summary, it is desirable for the overall approximation scheme to pass the test of the

disappearing queue; i.e., it is desirable for the approximation to perform reasonably well in the

reduced network obtained by letting the mean service times at any queue decrease to 0. The

approximation with the queue present with 0 service times should be approximately the same as
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the approximation for the reduced network with the queue in question removed from the network.

6. The Heavy-Traffic Bottleneck Phenomenon

Variability functions offer a way to approach the heavy-traffic bottleneck phenomenon

discussed by Suresh and Whitt (1990b). Suresh and Whitt consider a network of nine queues in

series with exponential service times and a renewal external arrival process having rate 1. The

mean service times at the first eight queues are all 0.6, while the mean service time at the ninth

queue is 0.9. Simulation results show that non-Poisson variability in the internal arrival process

is hardly evident at the eighth queue, but reappears strongly at the ninth queue; see Table 1.

When the external arrival-process SCV is 8.0 (0.0), the mean steady-state waiting time at the

ninth queue is significantly greater (less) than if the arrival process to the ninth queue were

Poisson.

Since heavy-traffic theory predicts that the congestion at the last queue would be

asymptotically the same as if the previous eight queues were not there, as the traffic intensity ρ at

the last queue approaches the critical value 1, we call this the heavy-traffic bottleneck

phenomenon. It is significant that variability functions provide a possible way to address this

problem. However, this difficulty with a large number of queues in series is not easily resolved.

For example, approximation (9), which works well for two queues in series, provides essentially

the same approximations as the previous parametric-decomposition approximations at queues 8

and 9. It still predicts that by queue 8 the remaining weight on the external arrival process SCV

should be negligible.

On the other hand, the heavy-traffic approximation (10) also does not perform so well,

because the eight queues do decrease the variability of the arrival process to queue 9 somewhat.

We can do reasonably well for this example by using approximation (11) with r = 2, but this

approximation does not perform so well for only two queues in series. We give the values for



- 21 -

approximation (11) with r = 2 in Table 1 as well.

Upon reflection, it seems unreasonable to expect great accuracy for approximations with the

heavy-traffic bottleneck phenomenon. The reason is that the appropriate variability function is

very steep near 1 at the last queue. This means that slight perturbations of the model (e.g., the

traffic intensity) can lead to big changes in the performance measures. In such situations, we

contend that it is probably more useful to identify this instability and indicate the range of

possible performance measures than it is to predict the particular performance measure accurately.

We turn to this issue in the next section.

7. Diagnosing Possible Approximation Errors

In this section we consider how we can diagnose possible significant errors in the parametric-

decomposition approximation for open queueing networks. We first consider anticipating errors

before applying the algorithm, then we consider estimating errors after applying the algorithm.

Before applying the algorithm, we first see if any of the external arrival processes need to be

specified by non-constant variability functions c0i
2 (ρ). If c0i

2 (ρ 1 ) needs to be very different from

c0i
2 (ρ 2 ) for two traffic intensity values ρ 1 and ρ 2 , then that should be regarded as an initial

warning sign. Given that c0i
2 (ρ 1 ) is quite different from c0i

2 (ρ 2 ), then we should look at the

actual traffic intensities prevailing at the queues within the network. If the set of traffic intensities

does not include two values at which c0i
2 (ρ) assumes very different values, then there should be

no major problem. However, if there are two queues j and k with traffic intensities ρ j and ρ k for

which c0i
2 (ρ j ) is very different from c0i

2 (ρ k ), then there is a potential problem. If external

arrivals to queue i cannot reach both queues j and k, then this is not a real problem.

If the external variability function values c0i
2 (ρ) and service-time variability parameter values

csi
2 are all relatively close to 1, then the approximation should be relatively well behaved. We call

this the nearly-Jackson case. In the nearly-Jackson case, the formulas in subsections 2.1–2.4
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make all the internal arrival-process variability functions nearly 1. Since the algorithm is exact in

the Jackson case, the approximation tends to be excellent in the nearly-Jackson case.

If some variability values are not near 1, then superposition is a source of difficulty because

for ρ ∼∼ 1, the variability function value obtained from (3) is just the convex combination of the

variability function values of the component streams, while for lower traffic intensities (3) makes

the superposition variability-function values closer to 1. Hence, a network with superpositions of

many streams that can have variability-function values quite different from 1 should be regarded

as a warning sign.

From (8), we see that departure tends to cause difficulty at a queue with traffic intensity ρ

only if ca
2 (ρ) is not nearly equal to cs

2 . Moreover, this can cause significant fluctuations of

variability functions only if there are other queues with significantly higher traffic intensities.

Thus, the presence of both significantly different variability values and significantly different

traffic intensities is a warning sign for the departure operation.

The discussion above indicates how we can anticipate significant errors in the approximation

before applying a network algorithm. After applying a network algorithm, we can detect possible

errors by looking at fluctuations in the internal-arrival variability functions cai
2 (ρ). At a queue

with traffic intensity ρ, significant errors are unlikely if cai
2 (ρ) does not fluctuate much for traffic

intensity values in a neighborhood of ρ, e.g., for ρ in the interval (ρ − , ρ + ), where

ρ − = max { 0 ,ρ − 0. 1 } and ρ + = min { 1 ,ρ + 0. 1 } . (33)

To reveal possible errors in the approximation we suggest computing approximate lower and

upper bounds for performance measures based on approximate lower and upper ‘‘bounds’’ for the

variability function value cai
2 (ρ), defined by

caiL
2 (ρ) = inf {cai

2 (ρ) : ρ − ≤ ρ ≤ ρ + } (34)
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and

caiU
2 (ρ) = sup {cai

2 (ρ) : ρ − ≤ ρ ≤ ρ + } (35)

8. Conclusions

In this paper we have proposed replacing variability parameters of arrival processes in

parametric-decomposition approximations for open queueing networks by variability functions.

The proposed variability functions ca
2 (ρ) are squared coefficients of variation (SCVs) of

interarrival times in renewal-process approximations, where the SCV is regarded as a function of

the traffic intensity ρ in a following single-server queue. When the arrival process is actually a

renewal process, we would simply let ca
2 (ρ) be the SCV of an interarrival time for all ρ. The

greater generality is intended for non-renewal processes.

Having ca
2 (ρ) depend on ρ reflects the fact that the level of variability of a non-renewal

stationary point process depends on the time scale. As ρ increases (up to the critical value 1) in a

following queue, the relevant time scale for determining congestion increases as well. Since we

are concerned with queueing applications, it is natural to make the independent variable ρ instead

of the customer n or time t. We suggest drawing upon previous work by Fendick and Whitt

(1989) and Fendick, Saksena and Whitt (1991) to relate ca
2 (ρ) to indices of dispersion (for counts

and intervals).

In Section 2 we showed that the traffic variability equations for variability parameters in

Section IV of Whitt (1983) can easily be extended to the setting of variability functions. For a

network with n nodes, it is only necessary to solve at most n systems of linear traffic variability

equations in order to obtain the relevant variability function values for the network.

In Section 3 we suggested determining the variability function ca
2 (ρ) from models or data by

first choosing the measuring units so that the arrival rate is fixed at 1, then calculating or
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estimating the expected steady-state waiting time (before beginning service) in a G/G/1 or G/D/1

queue with this arrival process and service times having mean ρ, and finally finding the value of

ca
2 (ρ) such that a standard approximation for this mean steady-state waiting time yields the

observed value, i.e., by using formula (23).

The variability functions lead to a significantly different treatment of departure processes. In

Sections 4–6 we showed that the variability functions enable us to obtain reasonable

approximations for some difficult small models, including the heavy-traffic bottleneck

phenomenon in tandem networks discussed by Suresh and Whitt (1990b). In Section 7 we

discussed how we can diagnose possible errors in the approximation.

We think that variability functions provide an improved framework for parametric-

decomposition approximations. Thus we think that they warrant further study. For multiclass

queues, it seems desirable to work with the variability functions for each class (instead of

aggregating into a single class, as in Whitt (1983)).
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high low
variability variability

ca
2 (ρ) = 8. 0 ca

2 (ρ) = 0. 0
for all ρ for all ρ_ _________________________________________________

queue 9 simulation
estimate 30.0 ± 5.1 5.03 ± 0.22

M/M/1
approximation 8.1 8.1

old parametric-
decomposition 8.9 8.0
approximation

heavy-traffic
approximation 36.5 4.05

ca9
2 = ca1

2

new
approximation 31.7 4.72

(11) with r = 2_ _________________________________________________
queue 8 simulation

estimate 1.42 ± 0.07 0.775 ± 0.013

M/M/1
approximation 0.90 0.90

old and new
parametric- 1.04 0.88

decomposition
approximations

heavy-traffic
approximation 4.05 0.45

ca8
2 = ca1

2 











































Table 1. A comparison of approximations with simulation estimates at queues 9 and 8 in the
tandem network of nine queues in Section 6.


