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Abstract

We consider multiple queues in parallel with unlimited
waiting space to which jobs come either in separate in-
dependent streams or by assignment (either in random
or round robin order) from a single stream. Resource
sharing is achieved by periodically redistributing the
jobs among the queues. The performance of these sys-
tems of queues coupled by periodic load balancing de-
pends on the transient behavior of a single queue. We
focus on useful approximations obtained by consider-
ing a heavy load and a large number of homogeneous
queues. With these approximations, we show how per-
formance depends on the assumed arrival pattern of
jobs and the model parameters. We conduct simula-
tion experiments to show the accuracy of the approxi-
mations.

Keywords: load balancing, resource sharing, periodic
load balancing, heavy-traffic diffusion approximations,
reflected Brownian motion, transient behavior

1 Introduction

There is now a substantial literature on dynamic mul-
tiprocessor load balancing [5]. The basic scheme is to
move jobs from a highly loaded originating processor
to another more lightly loaded processor. There can
be significant overhead associated with this load bal-
ancing, but it is nevertheless often worthwhile. There
is a tradition in multiprocessor load balancing of only
moving entire jobs at the time they originate, but mi-
gration of jobs in process is now beginning to be used
as well. There is typically substantially more overhead
with migration of jobs in process, but it has been shown
to yield significant performance improvement [5].

A difficulty with any form of dynamic load balancing,
however, is that it involves real-time control, requir-
ing continuous maintenance of state information. It
is thus natural to consider whether it is possible to
achieve much of the load balancing benefit with less
work. Hence, we study the alternative of periodic load
balancing. With periodic load balancing, no elaborate
control is done for each arriving job or at each time. In-
stead, the loads are balanced only periodically, at each
T units of time for some appropriate T'.

Another motivation for this study is to lend support
for a notion of lightweight call setup, supporting con-
nection and connectionless services in communication
networks [6], [7]. The main idea is to quickly provide
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service to new connections at a low or moderate quality
and, over time, gradually mest higher quality-of-service
requirements as requested. In that context, the peri-
odic load balancing considered here is an abstraction
of slower-time-scale reconfiguring that might be done
in the network instead of quality-of-service routing im-
mediately upon arrival.

In this paper we study the performance of periodic load
balancing. Specifically, we consider m queues in paral-
lel with unlimited waiting space. Every T time units,
we redistribute the jobs among the queues to balance
the loads. We assume that the service discipline is first-
come first-served (FCFS), but our results for the FCFS
discipline may also serve as useful approximations for
other disciplines such as round robin (RR) or proces-
sor sharing (PS). When redistributing the jobs, we or-
der all the waiting jobs according to their arrival times
and assign the jobs to the queues in a round robin or-
der, assigning the older jobs first. Like other forms
of load balancing, periodic load balancing corrects for
systematic differences in the loads; e.g., when the ar-
rival rates or service requirements at some queues are
greater than at other queues. Load balancing also can
significantly improve performance in a system with ho-
mogeneous queues. Then the load balancing compen-
sates for stochastic fluctuations which make the loads
at some queues temporarily greater than the loads at
other queues. Here we only consider periodic load bal-
ancing with homogeneous queues, but we have also con-
sidered the case in which a proportion of the queues are
temporarily down (arrivals come but no service is pro-
vided); see Sec. 10 of [8], which is a longer version of
this paper. Consistent with intuition, load balancing is
even more important in unbalanced scenarios.

Our main contributions are analytical models and for-
mulas describing the performance of periodic load bal-
ancing. We describe the distribution of the number of
jobs at each queue as a function of time, especially just
before and just after each balancing. We describe how
the performance of periodic load balancing depends
upon the balancing interval T, the number of queues
m and the other model parameters. We show how the
performance depends on the arrival pattern. We con-
sider three possible arrival patterns: Each queue may
have its own arrival process or all arrivals may come in
a single arrival process, after which they are assigned
to the queues either at random or deterministically (in



a round robin order).

We obtain relatively tractable explicit formulas by
considering the limiting case in which the number of
queues, m, and the traffic intensity (or server utiliza-
tion), p, are both large, i.e., as m — oo and p = 1,
where p = 1 is the critical value for stability. The case
of large m is currently of great interest, e.g., for un-
derstanding large computers constructed from many
smaller computers. Moreover, the limit as m — oo
may serve as a useful approximation when m is not
too large, e.g., when m = 10. When there are many
servers, higher utilizations tend to be more feasible. We
consider the limit as p — 1 to generate approximations
for typical (not small) utilizations.

In addition to the literature on dynamic multiproces-
sor load ba.ancing, our work is also related to the lit-
erature on resource sharing within general queueing
theory [10], [11]. Quantitatively, the (great) advan-
tage of multi-server systems over a collection of sep-
arate single-server systems with common total load is
well described by approximation formulas for basic per-
formance measures. For example, the simple heavy-
traffic approximation (limit after normalization) for the
steady-state distribution of the waiting time before be-
ginning service in a GI/GI/s queue (in which inter-
arrival times and service times each come from i.i.d.
sequences) is an exponential distribution with mean
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where the raean service time is taken to be 1, the traf-
fic intensity (utilization of each server) is p and the
squared coeflicient of variations (SCV, variance divided
by the square of the mean) of the interarrival and ser-
vice times are ¢ and ¢2 [13]. Formula (1) shows that
the mean EW is inversely proportional to s for fixed
p. The expected number of jobs in the system, say
EN, is the expected number of jobs in service, sp, plus
the expected number of jobs in queue, AEW = spEW
(both by Little’s law), so that the expected number of
jobs in the system per server is p(1 + EW). The EW
component exhibits the strong dependence on s shown
above.

EW =~ (1)

Unfortunately, however, it is not always possible to
fully share resources. One way to partially share re-
sources when the queues are separate is to assign new
jobs upon arrival to the more lightly loaded queues.
When the service-time distribution is exponential or
has increasing failure rate, if jobs must be assigned
to queues upon arrival without further intervention,
then it is optimal to use the shortest queue; (SQ) rule
[12]. The advantage of the SQ rule is illustrated by
the heavy-traffic limit, which shows that SQ behaves
as well as the combined system as p — 1 [14].

Periodic redistribution has two potential advantages
over dynamic assignment of arrivals. First, the peri-
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odic redistribution gives an alternative way to balance
the loads, which may be more robust. Even with the
SQ rule, after a rare period of high congestion (with
very large queue lengths), a few queues may remain
very long after most queues have emptied (because of
especially long service times, e.g., when the servers at
one queue are temporarily unavailable). Then load bal-
ancing only through routing of new arrivals may be
less effective than periodically redistributing jobs. Sec-
ond, with periodic redistribution, we need not perform
any control upon arrival. Dynamic assignment of ar-
rivals may be very costly, because we need to constantly
maintain system state. In contrast, with periodic load
balancing, system state information is only needed at
redistribution times. Moreover, the most current state
is often not actually needed. Under relatively heavy
loads, it is possible to determine the appropriate re-
distribution during a short interval before the actual
redistribution time. Even less state information is re-
quired if redistribution is done with a large number of
queues. Then the required number at each queue can
be closely estimated without actually looking at the
queue lengths, provided one knows the queueing model
reasonably accurately. Even if the queueing model is
not known, the average number after the last redistri-
bution usually will be a good estimate for the number
that should be present after the next redistribution,
because these averages tend to evolve deterministically
when there are many queues. Given that the target
level is known in advance, local adjustments can be
made among the queues in a distributed manner.

Here is how the rest of this paper is organized. In Sec-
tion 2 we establish a heavy-traffic diffusion approxima-
tion for the case of general arrival and service processes.
In Section 3 we apply the new asymptotic results and
previous ones to compare the performance of load bal-
ancing to the performance of the two basic alterna-
tives: (1) m separate single-server queues and (2) one
combined m-server queue. In Section 4 we make com-
parisons between the approximation and simulations of
M/G/1 queues coupled by periodic load balancing. We
consider exponential and Pareto service-time distribu-
tions (with finite variance). We focus more on long-tail
service-time distributions in [8].

2 The Diffusion Approximation

We start with m separate independent and identically
distributed (i.i.d.) G/GI/s queueing systems. Each
queue has s servers, unlimited waiting room, the FCFS
service discipline and its own general arrival process
with finite arrival rate A. We assume that the service
times are independent of the arrival process, coming
from a sequence of i.i.d. random variables with a gen-
eral distribution having mean 1 and finite SCV c%. The
traffic intensity is p = A/s. We assume that p < 1, so
that the queue is stable, but we will let p 1 1 to obtain
a, diffusion approximation.



Let {A(t) : ¢ > 0} denote an arrival process to any
one queue, i.e., A(t) counts the number of arrivals in
[0,]. Assume that the arrival processes to different
queues are mutually independent. Assume that each
arrival process satisfies a functional central limit theo-
rem (FCLT), i.e.,

A(nt) — Ant
Vnic2

where {B(t) : t > 0} is standard (drift 0, diffusion
coefficient 1) Brownian motion (BM) and = denotes
weak convergence (convergence in distribution) in the
function space D = D[0,00) [4]. If {A(¢) :t >0} isa
renewal process, then to satisfy (2) it is necessary and
sufficient for the time between renewals to have a finite
SCV 2.
For each p with 0 < p < 1, let a queueing model with
traffic intensity p be defined by letting the arrival rate
be A = sp, in particular by scaling a rate-1 arrival
process {A(t) : t > 0} by A,(t) = A(pst), t > 0. In
this setting, the normalized queue length process in the
standard G/GI/s model converges to reflected Brown-
ian motion (RBM) as p — 1 [9]. In particular, if Q,(t)
denotes the queue length (number in system) at time ¢
in system p, then

o, + /s - ) = RO) (3)
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as p — 1, where {R(t) : t > 0} is canonical (drift -1
and diffusion coefficient 1) RBM. We insert the extra
p in the denominator of the initial multiplicative factor
in (3) as a heuristic refinement to make the formula ex-
act for the M/M/1 steady-state mean p/(1 — p). (The
steady-state RBM variable R(00) is exponentially dis-
tributed with mean 1/2.)

We now state the analog for periodic load balancing.
(Proofs of all theorems appear in [§8].) We assume that
the queues are balanced every T, time units, so that af-
ter balancing the queue lengths differ by at most one.
To obtain an interesting nondegenerate limit, it is es-
sential to let the length T), of the intervals between bal-
ancing depend on the traffic intensity p. Let Ni(;” )(¢)
denote the queue length in the i*" queue at time ¢ with
m queues and traffic intensity p. Let @ be the cdf of the
standard (mean 0 and variance 1) normal distribution
and let ¢ be its density. Let ®° be the complementary
cdf, e, let ®(z) =1 — &(x).

= B(t) asn — o0,

(2)

Theorem 2.1 Consider m G/GI/s queues controlled
by periodic load balancing. Make the assumptions above
on the arrival and service processes. If p — 1 with the
redistribution intervals T, satisfying

s(1=p)’T,/(ci+¢}) = T ()
and the initial queue lengths xo, satisfying
(1= p)zop/p(ch +¢3) — 2o, (5)
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then the queue-length processes converge to load-
balanced RBM, i.e.,

CEE N+ sl - 9 1< 6 < m)
= (Xi(t):1<i<m)in D™,

where {X;(t) : t > 0} are conditionally i.i.d. pro-
cesses giwen {(X1(nT),...,Xn(nT)) :n >0}, Y, =
Xi(nT) + ...+ Xn(nT), n > 0, is a stochastically
monotone, trreducible, aperiodic Markov process on R
with transition probabilities

PYot1 <ylYn=12z) =
P(32 Ri(T) < y|Ri(0) = z/m , 1 <4 <m)
and conditional Laplace transform
Be=¥+1|Y, = 2) = (Be~ /™ FD|R(0) = o/m)™
and {R;(t) : ¢ > 0} are m i.i.d. canonical RBMs, with
-y+z—1
P(R(t) > y|R(0) =2z) = ® | —r—
(RO > yIRO) = 2) = & (LEZZE)
_ —y—z+t
+e WP | ————— )
‘ ( Vi >
Xi(nT +t) £ (R(t)|R(0) =Y, /m), 0<t<T.

The evolution of the limiting stochastic process
{(X1(t),...,Xm(t) : t > 0} in Theorem 2.1 can be de-
scribed by first calculating the distribution of the vari-
ables Y,,. The Markov chain kernel (transition prob-
ability density function) giving the conditional den-
sity of Y,4; given Y,, can be found by numerically
inverting the displayed transform, exploiting the two-
dimensional Laplace transform

P(s,olz) = /0 - e E(e "M |R(0) = z)dt ,

which is given explicitly in (9.3) of [1]. The numeri-
cal transform inversion algorithm in [3] can be used to
calculate the transition kernel.

A more elementary approximation can be obtained by
considering the limit as p — 1 and then m — c©0. An
attractive feature of the following RBM limit is the
explicit form for the mean function below.

Theorem 2.2 In the setting of Theorem 2.1, if
m — oo after p = 1, then z, = X;:(nT) evolves de-
terministicelly as xn4+1 = fr(zy,), where

fr(z) M(t,z) = E[R(#)|R(0) = ]
- e (5) b ()
_%EZ:L@C (t\';zm> ,

{R(t) : t > 0} is canonical RBM, and

Xi(nT +t) £ (R)|RO) =2,), 0<t<T, i>1.



The approximation based on Theorem 2.1 is load-
balanced canonical RBM using a redistribution interval
T. The associated approximate redistribution interval
T, and levels z,, in the queueing system with traffic
intensity p are

_ P+ )y

(2 + )T
% and Tpn = 1—- P

s(1—p)?

s(1
Theorem 2.1 implies that we can study periodic load
balancing for canonical RBM and apply the results to
generate approximations for the general G/GI/s queue-
ing model, provided that p and m are suitably large.
The limit generates the approximation

T, ~ (6)

2 2
AL D) i1 9Pt/ + )

Nlp(t) ~ <
where (X1 (t),..., Xm(t)) is controlled canonical RBM,
as indicated in Theorem 2.1. Thus, invoking Theo-
rem 2.2 as well, the queue length just before and after
the nt" redistribution have the approximate form

plca +¢2)

Ni,(nT,—) = 1= X1(nT-)
4 plet+cd) _
£ ST (D)) = 2o)

p(c +c2)

: plea+ci)

1-p

Q

Nlp(n,Tp) Xl(nT) =

n -
Theorems 2.1 and 2.2 allow us to describe the impact
of the arrival pattern. If each queue has its own arrival
process initially, then the parameter c2 is just the one
associated with the arrival process. On the other hand,
suppose that there is a single arrival process to the sys-
tem (with stationary increments), with jobs assigned to
the queues upon arrival. As noted before, if the assign-
ment is random, then ¢2 = 1, because the split pro-
cesses to individual queues become independent, Pois-
son processes as m — 00. On the other hand, if the as-
signment is round robin, then ¢ = 0, because the split
processes tc¢ individual queues become deterministic as
m — oco. For finite m, we would let c2(m) = c2/m,
because thet is what happens with a renewal arrival
process. (The new interarrival time is the sum of m
i.i.d. original interarrival times.) Hence, the three pos-
sible arrival patterns are reflected by the single param-
eter c2. Since the total impact of the variability of the
arrival and service processes is reflected by the term
(2 + ¢2), the arrival pattern makes a bigger (relative)
difference when c?2 is small. When c2 = ¢2 = 0, the nor-
malized queue lengths are asymptotically negligible in
the limit. (It is an open problem to determine if there is
a nondegenerate limit with a different normalization.)

We now develop normal distribution refinement to the
deterministic sequence {z,}.
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Theorem 2.3 In the setting of Theorem 2.1,
Vmn(p) NG (nT,) — za) & N(0, > v)
k=1

as p = 1 and then m — oo for each n, where n(p) =

(1 =p)/p(ct +c2), z, is as in Theorem 2.2,
v = V(T,z1—1) = Var(R(#)|R(0) = zx-1) , k>1.

V(t,x) = My(t,z) — M(¢,z)%, M(t,z) as in (??) and

Ms(t,z) = % + ((z - D)VE-t3%)¢ (“7:)
H((E-2)? +t— 2)ae <t_~’”>

It is significant that the deterministic values z, =
X; (nT) converge to a limit z*(T'), which is the unique
fixed point of the function fr.

Theorem 2.4 The function fr is strictly increas-
ing and continuous. There is a unique fized point
z*(T) of the equation x = fr(z) for each T and
zn, = *(T) as n — oco. The fized point z*(T) is
a strictly increasing continuous function of T with
z(T) = 1/2 asT - o0 and z*(T) - 0 as T — 0.

The first-order approximation for the level in one queue
after balancing in the RBM model is z*(7") computed
from the fixed point equation associated with fr. A
refined approximation is a normal distribution, where
the mean and variance o2 are the solutions of a pair
of equations describing the mean p and variance for
RBM immediately after balancing. An approximation
for this stochastic normal fixed point is the normal dis-
tribution N(z*(T),V(T,z*(T))/m), which is the nor-
mal distribution we obtain after balancing at the end
of a single interval of length T', starting at =*(T").

We compare these approximation schemes in Tables 1
and 2. In Table 1 we compare the deterministic fixed
point z*(T) to the mean p = u(T) in the pair (g,0?)
obtained from the normal iteration for RBM for six
values of T (T' = 0.01,0.05,0.10,0.50,1.00, 5.00) and
four values of m (m = 2,4,16,64). The equations were
solved iteratively using numerical integration to calcu-
late the integrals. The iteration tended to converge
relatively quickly (3-20 iterations), starting from an
initial pair (u,02) = (0, €) for a small positive €.

As illustrated by the cases with m = 64 in Table 1,
u =~ z*(T) when m is suitably large. The agreement
in these cases also confirms that both calculations can
be performed with sufficient accuracy. When m is not
large, z*(T') underestimates p.

In Table 2 we compare the corresponding approxima-
tions for the standard deviation of the steady-state



queue content just before load balancing with m in-
dependent RBM processes. In particular, we compare
v/mo from the normal iteration to v = /V (T, z*(T)).
As with the mean, when m is suitably large, e.g., when
m = 64, /mo =~ /V(T,z*(T)), but the more ele-
mentary approximation +/V (T, z*(T')) underestimates
v/m o when m is small.)

T m=2 | m=4 | m=16 | m=64 | z*(T)
0.01 | 0.1756 | 0.1526 | 0.1358 | 0.1347 | 0.1336
0.05 | 0.2850 | 0.2504 | 0.2314 | 0.2274 | 0.2260
0.10 | 0.3321 | 0.2999 | 0.2812 | 0.2771 | 0.2758
0.50 | 0.4159 | 0.4139 | 0.4035 | 0.4009 | 0.4000
1.00 | 0.4638 | 0.4547 | 0.4484 | 0.4469 | 0.4464
5.00 | 0.4985 | 0.4982 | 0.4979 | 0.4979 | 0.4979

oo | 0.5000 | 0.5000 | 0.5000 | 0.5000 | 0.5000

Table 1: A comparison between the steady-state mean
content of each queue with m independent RBM pro-
cesses, using the normal iteration, and the determinis-
tic fixed point.

From our numerical experience, we conclude that for
large m (e.g.,, m > 64), it suffices to use the simple
normal approximation based on z*(T'); for moderate
m it is preferable to use the normal fixed point pair
(11, 02); and for very small m (e.g., for m < 4), it may
be better not to use the normal approximation. We
can interpolate from Tables 1 and 2 to obtain good
estimates of the pair (i, v/mo) for any m and T'.

3 Performance Comparisons

In this section we apply the diffusion approximation in
Section 2 to make comparisons between load balanc-
ing and two natural alternatives: m separate s-server
queues and 1 combined ms-server. For simplicity, we
now focus on the case of M/M/1 queues, so that s = 1.
(The advantage of resource sharing is larger when the
systems being combined have fewer servers.) We de-
velop approximations for the distribution of the steady-
state number of jobs in the system per server with each
scheme. We display our conclusions in Table 3. As in-
dicated in Section 1, the differences can be great.

Intuitively, it is evident that load balancing can achieve
both alternatives as well as a range of performance be-
havior in between. Clearly, if the balancing interval

T 'm=2|m=4|m=16 | m =64 0%
0.01 | 0.1105 | 0.0964 | 0.0881 | 0.0864 | 0.0858
0.05 | 0.2076 | 0.1842 | 0.1713 | 0.1686 | 0.1677
0.10 | 0.2597 | 0.2354 | 0.2213 | 0.2182 | 0.2172
0.50 | 0.3810 | 0.3719 | 0.3608 | 0.3581 | 0.3572
1.00 | 0.4383 | 0.4271 | 0.4194 | 0.4176 | 0.4170
5.00 | 0.4967 | 0.4962 | 0.4957 | 0.4956 | 0.4956

co | 0.5000 | 0.5000 | 0.5000 | 0.5000 [ 0.5000

Table 2: A comparison between the approximate stan-
dard deviation of the steady-state content with m in-
dependent RBM processes, using the normal iteration,
and the variance approximation.

scheme distrib. mean st. dev.
m separate
M/M/1 queues expon. e =
a single
M/M/m queue normal P +=
m M/M/1 queues
with load balancing | normal | v ( Tf—p ) N ( Tf—p)

Table 3: Approximations for the distribution of the
steady-state number of jobs in the system per server.

T, is very short, then load balancing is the same as
the combined M/M/m system. Indeed, for sufficiently
small T}, periodic load balancing outperforms joining
the shortest queue. On the other hand, if the balanc-
ing interval T, is very large, then except after the in-
frequent balancing times, the queues behave like sep-
arate M/M/1 queues. We focus on the intermediate
case, which can be characterized by the scaling in (4)
as p— 1.

Using heavy-traffic diffusion approximations, as de-
scribed at the beginning of Section 4, we conclude that
the steady-state number of jobs in a single M/M/1
queue for suitably high traffic intensity p has approx-
imately an exponential distribution with mean (and
thus also standard deviation) p/(1 — p).

For any fixed p, when m is suitably large, a single
M/M/m queue behaves like an infinite-server queue.
Thus the steady-state number of jobs in an M/M/m
queue with traffic intensity p and suitably large m has
approximately a Poisson distribution with mean (and
thus variance) mp. (More elaborate approximations
were described in Section 1.) The Poisson distribu-
tion in turn can be approximated by a normal distri-
bution. The steady-state number of jobs per server
in an M/M/m queue is the steady-state number in the
system divided by m. Thus, the steady-state number of
jobs per server in an M/M/m system is approximately
normally distributed with mean p and standard devia-

tion p/v/m.

Now consider the case of load balancing, where the
balancing intervals T, in the queues are chosen con-
sistently with the scaling in (4) for some reasonable
T, e.g., with .02 < T < 2. Our analysis in Section 2
leads us to conclude that the steady-state number of
jobs in one queue after load balancing has approxi-
mately a normal distribution with mean ~;p/(1 — p)
and standard deviation v2p/(1 — p)/m for some con-
stants y; and v2. We draw this conclusion because
the scaling in the heavy-traffic limit theorem is the
same as in the heavy-traffic limit theorem for a single
M/M/1 queue. For a single M/M/1 queue, the steady-
state number after normalization is approximated by
the exponentially-distributed random variable R(co).
Thus the constant -, is the ratio of the realized mean,
approximately z*(T'), to the mean ER(c0) = 1/2; i.e.,
v = 2z*(T) < 1. Similarly, the variance after nor-
malization is approximately V (T, z*(T))/m instead of



V(oc0,z) = 1/4, so that v = 24/V(T,2*(T)) < 1.

In summary. in what we regard as the typical case (con-
sistent with the scaling in (4) with high p and large m),
load balancing provides a modest gain over separate
M/M/1 queues in the mean by a factor 2z*(T") and a
substantlal zain in the standard deviation by a factor
of 2/V(T,=*(T))/\/m =~ 1/+/m and in the distribu-
tion — gmrg from exponential to normal. Thus, we
conclude that load balancing should be very effective
for reducing the likelihood of large queue lengths. This
conclusion is substantiated by simulation results.

4 Comparisons with Simulations

In this section we compare the RBM approximations
developed in Section 2 to simulations. We first simu-
lated m M/M/1 queues coupled by periodic load bal-
ancing for a range of values of m and p. To dramatically
show the advantage of the heavy-traffic limit and asso-
ciated scaling in Section 2, we scale so that each is to
be approximated by canonical RBM (drift —1, diffusion
cocfficient 1). For the results we display, we start by
picking a single time point for canonical RBM, T = 1.0.
We then choose balancing times T}, as a function of p
to satisfy (6). Since we are considering M/M/1 queues,
s=c2=ct=1and

T, =2T/(1 - p)* =2/(1 - p)*

We first corsider the case m = 64 for three values of
p:p= 08,09 and 0.95. For p = 0.8, 0.9 and 0.95,
T, = 50, 200 and 800, respectively. For each value of
p, the simulation was based on three independent repli-
cations of 64 x 108 arrivals (106 arrivals per queue). The
histograms of the normalized queue lengths just after
redistribution, (1 - p)Ni(;n)(nT,,)/Qp, are displayed for
p=0.8,0.9 and 0.95 in Figure 1. (When plotted, the
histograms for the three replications were barely dis-
tinguishable, demonstrating that the run length was
more than adequate to achieve high statistical preci-
sion.) Since the scaling was applied, the RBM fixed
point z*(1) = 0.446 becomes the initial approximation
to the normalized number at each queue after balanc-
ing. A second refined approximation is the normal ap-
proximation

1-—

ED N ut,) » N (1), V(T ) fm)
These two approximations are also shown in Figure 1.
From Figure 1, we see that the two RBM approxima-
tions perform quite well, with both slightly overesti-
mating the <rue distributions. Convergence toward the
approximations as p — 1 is also evident. For smaller
values of p, the queue lengths tend to be very small, and
the heavy-traffic approximation is not very accurate.

A third aporoximation is the normal approximation
N(u,0%), where the pair (u,0%) are obtained
by iteratively solving the pair of equations us-
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ing the RBM conditional mean and variance func-
tions M(t,z) and V(t,z). However, as shown
in Tables 1 and 2, the fixed point (u,0%) of
the normal iteration agrees closely with the pair
(z*(T),V(T,z*(T))/m) in this case. The differences
present in Figure 1 thus seem to primarily represent
the error in the heavy-traffic approximation.

Next, to describe the dependence upon m, we consider
the cases of m = 4, 16 and 64 with p = 0.95 for the
same case T' = 1.0. The deterministic fixed point z*(T')
is again 0.446. The sample means of the normalized
queue lengths after load balancing when m = 4, 16
and 64 were 0.4274, 0.4210 and 0.4209, respectively.

To describe the rest of the distribution beyond the
mean, we display in Figure 2 histograms of the normal-
ized and centered variables, \/m[(l—p)Ni(;n) (nT,)/2p—

ﬁ(.'”)], where nip)

ip
p)Nlp (nT )/2p given above. We add the factor v/m
so that three cases should have approximately the same
variance V (T, z*(T)) using the normal approximation.
The estimated sample standard deviations for m = 4,
16 and 64 were 0.4440, 0.4279 and 0.4434, respectively,
while \/V(1,z*(1)) = 0.4170.

Finally to consider non-Markovian queues, we consider
M/G/1 queues with a Pareto service-time distribution.
We let the service-time complementary cdf have the
specific form

is the sample mean of (1 —

Gt)=(1+bt)7% t>0,
where b = 1/(a — 1) to give the distribution mean 1.

The associated SCV is
Ed=1+2((a-1%/(a-2)-a) .

To keep within the heavy-traffic limit framework in Sec-
tion 4, we need a > 2, so that ¢ < co. In particular,
we choose a = 3, which makes ¢2 = 3. We then scale
as in (6), so that

T, = (2 +e)T/(1—p)* =4/(1-p)*.

When we balance, we do not move the customers in
service, so that all customers have their original service
times. We then consider the normalized queue lengths
just before redistribution, (1 — p)NV;; ™) (0T, —) /4p. We
compare the M/G/1 Pareto and exponentlal service-
time-distribution cases with p = 0.95, T' = 1.0 and
m = 64 in Figure 3. The Pareto and exponential
cases were scaled differently, so that the approxima-
tion for both involves canonical RBM. In Figure 3
we include the normal approximation N(u,mo?) =~
N(z*(1),V(1,2*(1))). The close agreement between
the exponential and Pareto simulation results shows
the remarkable power of the heavy-traffic scaling.
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Flgure 1 A comparlson between the RBM approxima-
tions and histograms of the normalized queue lengths
after load balancing, (1 — p)NJ™(nT,)/2p, in 64
M/M/1 queues for p = 0.80, 0.90 and 0.95 and 7,
scaled from T' = 1.0.
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Flgure 2 A comparison between the RBM approxi-
mations and histograms of the centered and normal-
ized queue lengths after load balancing, m!/2[(1 —

)N(m (nT,)/p — (m)] in m M/M/1 queues with
p = 0 95 for m = 4 16 and 64 and T, scaled from
T = 1.0. The approximating normal density, for the
RBM approximation is N(0, V (1.0, z*(1.0))).
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Flgure 3: A comparison between the RBM approxima-
tion and histograms of the normalized queue lengths
after load balancing, (1 — p)N(m) (nT,)/(1 + c2)p, in
64 M/G/1 queues with p = 0. 95 and T =1 for expo-
nential (¢2 = 1) and Pareto (@ = ¢2 = 3) service-time
distributions.



