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Abstract

In this paper we establish a joint central limit theorem for customer and time averages by
applying a martingale central limit theorem in a Markov framework. The limiting values of the
two averages appear in the trandation terms. This central limit theorem helps to construct
confidence intervals for estimators and perform statistical tests. It thus helps determine which
finite average is a more asymptotically efficient estimator of its limit. As abasis for testing for
PASTA (Poisson arrivals see time averages), we determine the variance constant associated with

the central limit theorem for the difference between the two averages when PASTA holds.

OR/MS Subject Classification: Queues, limit theorems: central limit theorems for customer
and time averages. Queues, statistical inference: estimating customer and time averages.

Statistics, estimation: averages over time and at embedded points.



This paper is concerned with estimating limiting time averages, customer (embedded)
averages and their differences. When the two limiting averages are known to agree, i.e., when
arrivals see time averages (ASTA); see Melamed and Whitt (1990a) and references cited there, we
want to know which finite average is a more asymptoticaly efficient estimator (i.e., produces
smaller confidence intervals with large samples). When the two limiting averages need not agree,

we want to estimate their difference and be able to test for ASTA.

To illustrate what happens when ASTA is known to hold, we give two examples.

Example1l: TheWaorkload in the M/M/1 Queue.

Let {U(t) : t = 0} be the continuous-time workload (or virtual waiting time) process in an
M/M/1 queue with servicerate 1 and arrival rate p < 1. Let { N(t) : t = 0} be the Poisson arrival
process with associated arrival times{T,, : n=1}. Then{U(T,-) : n= 1} is the sequence of

waiting times (before beginning service). Itiswell known that the time average

V(t) = %jot U(s)ds, t>0, 1)

and the customer average
W(t) = 1 T N 0 2
(t) _ngu( k=) (t) >0, 2

both converge with probability one (w.p.1) to p/(1 — p) ast — oo, so that we have ASTA.

There is no need to estimate the limit in this case, but it is interesting to ask which estimator
tends to produce smaller confidence intervals. We can easily decide, because it is known that

central limit theorems (CLTs) hold, i.e.,
tY2[V(t) - v] = N(0, 6?) ©)

and



tY2[W(t) - w] = N(O, o) (4)

ast — o, wherev = w = p/(1 - p), = denotes convergence in distribution and N(m, ¢?)

denotes a normally distributed random variable with mean m and variance 2. Moreover,

g2 = 2p(3-p) 2 _ (2+5p - 4p® +p°) 5)
(1-p)* ’

see Table 2 of Whitt (1989), so that

02 - o2 = (2 ;193(;);’ P 50, (6)

Hence, for this example, the time average V(t) is always asymptotically more efficient. (This
result may seem to contradict results for the M/G/1 model by Law (1975); he showed that W(t) is
superior to several indirect estimators, but V(t) was not an alternative considered there.)

Example2: A Uniformized Continuous-Time Markov Chain.

Let {X(t) :t=0} be an arbitrary irreducible finite-state continuous-time Markov chain,
uniformized so that the time between successive transitions has an exponential distribution
independent of the state. (From the general case, this is achieved by introducing extra transitions
from states to themselves; e.g., see Keilson (1979).) Let { N(t) : t = 0} be the Poisson process
counting the transition epochs T,. Then {X(T,-) : n= 1} is the embedded discrete-time
Markov chain. Let f be an arbitrary function on the state space of the chain and let
U(t) = f[X(t)]. Itiswell known that both V(t) in (1) and W(t) in (2), defined in terms of U(t)
and T, here, converge w.p.1 ast - o to Ef[X(o)] where X(e) has the unique stationary

distribution of { X(t) : t = 0}. Moreover, (3) and (4) hold withv = w = Ef[ X(e)].

Expressions for the variance constants 02 and 02 have been given by Kemeny and
Snell (1960, 1961) and Hordijk, Iglehart and Schassberger (1976); see adso Glynn (1984) and
Whitt (1991). Moreover, Theorem4.2 of Hordijket a. (1976) implies that o2 < o2.

(Hordijk et. al. (1976) do not work directly with the averagesin (1) and (2) but the subsequences



in which t is replaced by the random epoch of the n'" visit to a fixed state, i.e., regeneration
points. The comparison is fair because both processes have the same random number of
transitions. The comparison carries over to (1) and (2); see Lemmal on p. 210 of Glynn and
Whitt (1986) and 86 of Glynn and Whitt (1989). The comparison of (1) and (2) is fair because
both processes have the same expected number of transitions.) Hence, unlike Example 1, here the

customer average W(t) is always asymptotically more efficient. =

Estimating the averages is a so important when ASTA is not known to hold. We may want to
use a customer average as an approximation for a time average, or vice versa. Then we might
want to estimate the difference to see if the approximation is reasonable, and possibly make
corrections. For example, estimating time averages can be computationally intensive in discrete-
event simulation. Time averages can be estimated if we collect data at every event and use the
time intervals between these events. However, the total number of events may be prohibitively
large. An alternative procedure is to introduce extra independent events strictly for sampling.
However, it istypically easier to collect data only at time points in a subset of the original events.
We might routinely use such a potentially biased procedure to estimate time averages, and only
occasionally do a more complicated estimation as described here in order to estimate the bias to

seeif itisserious and, if so, make corrections.

As atheoretical basis for constructing confidence intervals for estimators of the two limiting
averages and their difference, we establish supporting central limit theorems. In 81 we specify
the model. In 82 we show that the desired CLT follows from a CLT for basic component
processes. In 83 we introduce martingale structure and give a sufficient condition for the CLT in
82. In 84 we show that the conditions in 83 are satisfied in a certain Markov framework. For this
purpose, we apply the martingale CLT on p. 339 of Ethier and Kurtz (1986). For additional
background on CLTs for general processes, see Chapter 4 of Billingsley (1968), Section 7.7 of

Durrett (1991) and Section 9.2 of Lipster and Shiryayev (1989).



In 85 we show how the martingale CLT in 84 can be applied to generalized semi-Markov
processes (GSMPs). In 86 we consider the special case of continuous-time Markov chains.

Finally, in 87 we draw conclusions.

This paper was partly motivated by Yao (1991). Yao (1991) noted that the martingale CLT
applies to a martingale associated with PASTA introduced by Wolff (1982). However, this
martingale is not the natural estimator for the difference of the two limits; see Propositions 5 and
6 below. The analysis here is aso similar in spirit to the analysis related to indirect estimation
viaL = AW, see Law (1975), Carson and Law (1980) and Glynn and Whitt (1986, 1987, 1988,
1989). A new paper which presents additional related results concerning comparisons of

estimators is Glasserman (1991).

1. TheModd

Consider a continuous-time stochastic process X = { X(t) : t = 0} taking values in a genera
space, and a stochastic point process on the interval [0, o), characterized by the counting process
N = {N(t) :t = 0} or, equivalently, the sequence of successive points {T,: n = 1}, i.e,
N(t) = sup{n=0:T, <t},t= 0, where T, = 0without there being a 0" point. Because of
the many applications in queueing theory, we refer to N as the arrival process, even though the
points need not be interpreted as arrivals. Let U(t) = f(X(t)) where f is a rea-valued
measurable function on the state space of X. We assume that the sample paths of U are |eft

continuous with right limits, while the sample paths of N are right continuous with left limits.

We are interested in the time average V(t) in (1) and the customer average W(t) in (2), within

the general framework here. Under appropriate regularity conditions,

where the limits v and w satisfy the bias formula



_ oov[p(t), U]
E[H(D)]

=

©)

with UP(t) = f(X"(t)), X" and N" being the stationary and stationary-increment versions of X
and N, and pu™(t) being the conditional intensity of a point from N at t conditional on X"(t); see
Brémaud (1989), Brémaud, Kannurpatti and Mazumdar (1991), Makowski, Melamed and
Whitt (1989) and Melamed and Whitt (1990a,b). See (17) below for an analog of (8) derived via

the CLTs.

Moreover, under appropriate regularity conditions (see Sections2-4), in this genera

framework, CLTs (3) and (4) hold plusajoint CLT for (W(t), V(t)), i.e.,
tY2(V(t)-v, W(t)- w) = N(0,3) ast » o (9)

where the covariance matrix X has diagonal elements (variances) o2 and 03, and off-diagonal

elements covariances 0 ,,. ASaconsequence,
tY2(W(t) - V(t) - (w - Vv)) = N(0,03) ast - o, (10)
where
03 = 02, + 02 — 20, . (11)

Note that the limiting averages v and w appear in the CLTsin the trandation terms.

In applications we will thus want to determine the variance constants 62, 632, 0,,, and 63 in

3), (4 and (99«11). In some cases we will be able to calculate the variance constants
analytically, but usually we must estimate them. For example, we might estimate 2, using batch

means, i.e.,

62 = _ 1 S (n[W(k/n) - W((k - 1)t/n)] - W(t))? .
n-1.,=

See Damerdji (1989ab), Glynn and Iglehart (1988), Goldsman and Meketon (1986) and



references cited there for more information about variance estimators.

2. A General Central Limit Theorem

We first give general conditions for the vector process [V(t), W(t)] and the difference
W(t) — V(t) toobey CLTs.

Proposition 1. (a) If there exist constantsv, w and A such that ast — o

t~ 2 got U(s)ds - vt , jot U(s)N(ds) - Awt , N(t) - Atg=> (L, L2, L), (12

then
tl/2 E{/(t) -V, W(t) — WED (Ll, )\_1(L2 - WL3)) ast - o (13)
and

20 - V() - (w-v)g = ATl - ATl Ly @t .ol (14)

(b) If, in addition, (L, L,, L3) is normally distributed with means 0, variances o? and

covariances g, then the limitsin (13) and (14) are normally distributed with

0%, 03 =\ 2(05 - 2wo, + w?0%) and

[e]
<
1

07 + A720% + A72w?03 - 220" top + 20T two gz - 20 T2woyg .
Proof. Notethat

D t ON(t) - atU
et d l d
W(t) = j U(s)N(ds) - DN(t) BE - BA I U(s)N(ds) ,

s0 that

0 ¢ N - aeD
1/2 _ _ O t N(t) —At=Z 1 ot
tY2(wW(t) - w) = ?2_5 U(s)N(ds) ~ Awtg - EN(I) ES I EWI" U(s) N(ds)

= AL, - AH(L)ATIAW) = A (L, —wh) ast - oo .



This convergence above jointly with the normalized version of V(t) follows from the

convergence in (12) jointly with

2t 1 [ U(SIN(ESD = (AL, w)
SN Ao . W

which holds by Theorem 4.4 of Billingsey (1968) and the continuous mapping theorem,
Theorem 5.1 of Billingsley (1968). =

Remark 2.1. The asymptotic efficiency of the estimator [V(t), W(t)] in (13) can be improved
by using a linear control estimator if A is known; see Section 8 of Glynn and Whitt (1989) and
references cited there. Moreover, if v = w, then we can further improve the asymptotic

efficiency by the same method.

3. Martingale Structure

We now proceed to exploit martingale structure; for background, see Brémaud (1981) and
Ethier and Kurtz (1986). Let{ A : t = 0} betheinterna history or filtration of (X, N); i.e,, N\
is the o-field generated by { [ X(s), N(s)] : O < s < t}. Recal that we assumed that U(t) is left
continuous, so that it is predictable. We also assume that the point process N(t) has a stochastic

intensity p(t). (The CLTs below extend to point processes with more general compensators.)

We now give a sufficient condition in this framework for the condition of Proposition 1 to
hold.

Proposition 2. The CLT (12) holds if there exist constants v, w and A such that

{- V2 gOtU(s) ds - vt jotu(s) ds - At, J'OtU(s)u(s) ds - Awt
(15)
t t 0
J'OU(S)[N(ds) - u(s)ds] , N(t) —_[O W(s)dsy= (Zy,....Zs) ast - o,

in which case L; = Z4, L, = Z3 +Z, and Ly = Z, + Z5. In addition, the asymptotic



normality condition of Proposition 1(b) is satisfied if (Y, ..., Yg) isnormally distributed.

Proof. Apply the continuous mapping theorem with addition. m

Since U is predictable and | is the intensity of N, the fourth and fifth components on the | eft
in (15) are martingales under the usual moment conditions. Hence, CLTs can be established for
these components directly, as Y ao (1989) did for the fourth component when p(t) =A w.p.1. (For
the CLT applications, it suffices to have f bounded and E[N(t)?] <  for all t.) The other three
processes are centered cumulative processes, which satisfy CLTs under extra conditions such as
appropriate mixing or regenerative structure, e.g., see Theorem 20 of Billingsley (1968) and
Glynn and Whitt (1987). We will establish the joint convergence of al five components in the
presence of extra Markov structure by showing that the vector process is asymptotically
equivalent to a martingale. This Markov structure applies to a large class of models, e.g., after
adding supplementary variables; see Glynn (1989a).

Remarks 3.1. Note that nothing is gained by going from Proposition 1 to Proposition 2 when
PASTA holds, because then p(t) = A w.p.1 and v = w; then the second term on the left in

Proposition 2 isidentically O, while the third term is A times the first.

3.2. Note that if the CLT (15) holds, then the limiting averages v and w can be identified
from the asymptotic behavior of [U(t), p(t)], without directly considering N(t). In particular, if

(15) holds, then
[V(t),t'lfotp(s)ds, t-lj’otU(s)p(s)ds] P v (16)

p
where — denotes convergence in probability, so that

[RVCTIOL
t - W ast - oo, (17)
_[0 H(s)ds

which “‘explains’ (8) and complements Melamed and Whitt (1990b) and Brémaud (1989).



4. A Markov Framework

In this section we assume that the basic processes X and N are defined in terms of an
underlying Markov process Y, which is assumed to have left-continuous sample paths. As
regularity conditions, let the state space of Y be a complete separable metric space and let the
sample paths be continuous from the left and have limits from the right. Let the filtration

{ A¢:t = 0} betheinternd filtration of Y.
In particular, we assume that there are measurabl e functions g and h so that
X(t) = g(Y(t)) , pu(t) = h(¥(t)) and U(t) = f(g(Y(t))) (18)

where f is the real-valued function defined in 81 and | is the stochastic intensity defined in 82.
Cases in which the intensity of N is a function of Y occur naturally when the points of N are
completely determined by jumps of Y; see Section 5 of Melamed and Whitt (1990a), (3.2) of

Melamed and Whitt (1990b) and p. 597 of Serfozo (1989).

As a conseguence, the three cumulative processin Proposition 2 can be represented as

"U(s)ds = [ ke(Y(s))d
[, U(e)ds = [ ki (Y(s))ds
t t
[, H(e)ds = [ ka(Y(s))ds (19)
t t
[, UGn(s)ds = [ ks(Y(s))ds
with k¢ (y) = f(g(y)), ka(y) = h(y) and k3(y) = f(g(y))h(y). We provide conditions under
which these cumulative processes are asymptotically equivalent to martingales. Let A be the
infinitesimal generator of Y and $ (A) its domain. We assume that there exist constants y; and

functions b; defined on the state space of Y and belonging to $ (A) satisfying Poisson’s equation,

i.e.,

Abj = = ki +; (20)



-10-

fori = 1, 2and 3. Typically
Yi = 1k = [ ki (x) mi(cx) (21)

where Tt is the unique invariant probability measure of Y. (Typically the Markov process will be
irreducible and positive recurrent.) See Glynn (1984, 1989b,c) and Whitt (1991) for further
discussion.

Remark 4.1. In this setting, the limiting averages v, A and Aw in (16) coincide with the steady-

statemeansy, Y, and y; obtained via(19)—21). =
Sinceb; O $ (A),
Mi (t) = bi(Y(1)) - Iot (Ab;)(Y(s))ds (22)

isamartingale with respect to the filtration of Y; see p. 162 of Ethier and Kurtz (1986).

Proposition 3. If (20) holdsand t™¥2b; (Y(t)) = Oast - wfori = 1, 2, 3, then
{12 got Ki(Y(9))ds - yit = M = 0 as t - w,

where M; isthe martingalein (22).

Proof. If (20) holds, then

[ k(Y ds - yit = = [ (Ab)(Y(9)ds
= = bi(Y() + b (Y(D) - [ (Ab)(Y(s))ds

Apply (22) and the condition. =
Note that if Y is assumed to be stationary, then one condition in Proposition 3 is automatically

satisfied, i.e.,

120, (Y(1) =t ¥2b,(Y(0) = 0 as t - o, (23)

d
where = denotes equality in distribution.
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Hence, to establish the CLT (15), it remains to establish the condition of Proposition 3 and the
conditions of a martingale CLT. We apply the martingale CLT on p. 339 of Ethier and
Kurtz (1986). For additional background on CLTs for general processes, see Chapter 4 of
Billingsley (1968), Section 7.7 of Durrett (1991) and Section 9.2 of Lipster and Shiryayev (1989).
In particular, by the convergence-together theorem (Theorem 4.1 of Billingdey (1968) or
Corollary 3.3 on p. 110 of Ethier and Kurtz (1986)), it suffices to apply the martingale CLT to the
five-dimensional process M (t) = [My(t),...,M5(t)] having the first three components in

(22), with (19), and the last two componentsin (15), i.e.,
My(t) = Iot U(S)[N(ds) — p(s)ds] and M5(t) = N(t) - Iot p(s)ds,t=0. (24)

Hence, we arein aposition to apply the martingale CLT. We state the martingale CLT for M asa
condition in our proposition. Sufficient conditions appear on p. 340 of Ethier and Kurtz (1986).
Proposition 4. If the conditions of Proposition 3 hold and t 2M (t) = Z' for M in (22) and

(24), thenthe CLT (15) holdsand Z; = Zj,1<i < 5.

Under the regularity conditions given on p. 340 of Ethier and Kurtz (1986), t"Y2M (t) is
asymptotically normally distributed as t — o with covariance elements determined by the
guadratic variation processes associated with M. In particular, suppose that M is square

integrable, i.e., E[[M (t)[f] < . Thenwe have

[Miv':/li](t) E oizast o oo (25)
and
[Mi1 Mj](t) E g ast » o, (26)

t

where [M;, M;] = [M;] is the quadratic variation and [M;, M;] is the cross variation; see

pp. 67, 79 of Ethier and Kurtz (1986).
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Remarks 4.2. Another convenient view of the variance and covariance terms for 1 <i <3
comes from considering a stationary process framework, which is achieved by letting Y(0) have

the unique invariant probability measure Tt. Then
oij = 2~ Covlki(Y(0)), kj(Y(V)]dt;

e.g., see Theorem 20.1 of Billingsley (1968) and Section 9.2 of Lipster and Shiryayev (1989).

4.3. TheCLT on p. 339 of Ethier and Kurtz (1986) is expressed in a stronger functional CLT
form. There a sequence of martingale processes {M,:n=1} is defined with
M,(t) = M(nt)/Vn, t=>0. The associated limit process is then five-dimensional Brownian
motion. We obtain the standard limit in R® referred to above by applying the continuous

mapping theorem with the projection map at timet = 1. =

From (24)—(26), it is easy to identify the limitsfor 4 < i, j < 5. For this purpose, consider the

typical caseinwhich

U(Ty) = W and E[U(T)?] - E[W?] ask - «, (27)
S0 that
E[U(T)] - E[W] =w ask - o . (29)
Then
& ° 0% = A
1 N
—t—kglU(Tk) - 045 = AE[W] = Aw (29)
1 N(t)
a S U(TW)? - 07 = AE[W?] ast — o .

Moreover, if fisan indicator function, then U(T,)? = U(Ty)and o3 = 045 = AW.

Our next result isa CLT for the difference W(t) — V(t) when PASTA holds. Equivalently,
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we assume that the stochastic intensity u(t) is constant (so that N must be Poisson).
Proposition 5. In addition to the conditions of Proposition 4, suppose that (7) holds, f is

bounded, E[N(t)?] < e and p(t) = A w.p.1 for all t. Thenthe CLT (14) holdswithv = w and
03 = A var[w] . (30)

Proof. ASTA holds because (7) holds, f is bounded and p(t) = A w.p.1; e.g., see Theorems 1
and 2 of Melamed and Whitt (1990b). Consequently, v = w, Z, = 0 and Z3 = AZq; see
Remark 3.1. The limit in (14) is A7*L, - A 'wLz; —L;, which coincides with

A"1Z, = N"1wZs under the extra assumptions here. Thus, by (29),
07 = A 20% + A 1w? - 20 2wous = ATVa[W] . m
Example 1 Revisited. As a consequence of Proposition 5, for the M/M/1 queue with arrival rate

equal to the traffic intensity p discussed at the outset,

2 _ y-1 _ 2-p
o5 = A Var[W]—W. (31)

Note that 03 in (31) is asymptotically negligible compared to 62, 62, and 62, — 62 in (5) and (6)

asp - 1. From(11) and (31),

_ 2
- P(32-260 +5p7) L (32)
2(1-p)

W

As a consequence of Proposition 5, when f is an indicator function, we obtain Yao's (1991)
CLT for M4(t) plusaspecia form for the CLT for the difference.
Proposition 6. In addition to the conditions of Proposition 5, suppose that f is an indicator

function. Then
tY2M4 (1) = N(O, Aw) ast - = (33)

and (14) holds with



-14 -

oF = A lw(@d -w) . (34)
Proof. Apply (29) and (30). =

Asasimple check of (33) and (34), let f beidentically 1. Then obviousy W(t) = V(t) = 1

forall t, sothat 65 = O.

Note that the relative standard error, defined by /03 /w, is

Voi _ T=®
= \/—"W , (35)

w

which becomes large as w gets small. Hence, the difference of small probabilities are hard to

estimate in the sense of (35). An example would be small blocking probabilitiesin aloss model.

5. Generalized Semi-M ar kov Processes

In applications to queues and related stochastic models, the underlying Markov process Y
often will be associated with a generalized semi-Markov process (GSMP); see Glynn (1989a). To
treat this case, suppose that the sample paths of Y are piecewise linear with jumps occurring at the
non-differentiable points of the sample paths. Let {S,, : n = 1} be the jump times of Y and let
J(t) count the number of jumps of Yin [0, t]. We assume that al the jump times of N are also
jump times for Y, i.e,, { T, : n = 1} isasubsequence of {S,, : n = 1}. Then the five quadratic

variation processes and the ten cross-variation processes associated with M are;
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J(1)
[Mi, Mi](t) = kzt [bi (Y(Sk+)) - bi(Y(S)I?, i=1,23,
=1
N(t)
[Myg, Mg](t) = . ki (Y(TW)?
=1
[Ms, Mg](t) = N(t) , (36)

J()
[Mi, M;I(t) = th [bi (Y(Sk+)) = bi (Y(Sk))]
=1

[ (Y(Sk+)) - bj(Y(S))] ., 1<i,j<3,i#],

N(t)
[Mi, Mg](t) = th [bi (Y(Tk+)) = bi(Y(Ti)Ike(Y(Tk)) , 1 <i<3,
=1
N(t)
[Mi, Ms](t) = kZ [bi (Y(Tk+)) = bi(Y(TW))] ,1<i<3,
=1

N(t)
[Mg, Ms](t) = kZ ki (Y(Tk)) -
=1

What we need, then, are weak laws of large numbers (WLLN) as specified in (25) and (26) for

the quadratic and cross variation processesin (36). Of course, we always have (29).

6. Continuous-Time Markov Chains

As a concrete application of 85, we now suppose that Y is an irreducible finite-state
continuous-time Markov chain (CTMC). Then A is the infinitesimal generator matrix and
Poisson’s equation (20) has a solution for y; defined by (21) for each i; see 84 of Whitt (1991).

Then all solutions of (20) are of the form
b; = zk; + (b)) e, (37)

where 1T is the unigque invariant measure, e is a column vector of 1's and Z is the fundamental

matrix with components

Zim = [ [Pim(t) = Tim] (38
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with P(t) being the time-dependent transition matrix associated with A; see (13) and
Proposition 4.2 of Whitt (1991). In this setting the conditions for the CLT are easy to verify.

Proposition 7. If Y is an irreducible finite-state CTMC, then the conditions of Proposition 4 are
satisfied so that the CLT (15) holds. The limit has a multivariate normal distribution with

covariance matrix elements given by (15), (26), (29) and (36).
Giventhat Y(Sy) = land Y(Sg+) = m,
bi (Y(Sk+)) = bi(Y(Sk)) = (Zki)1 = (Zki)m = J_Z(le - Zmj) ki (J) - (39)
From (36) and (39), we thus deduce familiar expressions for o? and oj; forl<i,j<3 eg, see
Remark 4.2 above and (12) of Whitt (1991). For ways to caculate o? and o, see

Proposition 4.2 and its Corallary 3 in Whitt (1991).

Proposition 8. For thefinitestate CTMCand1<i, j < 3,

0f =23 3 k(1) T Zmki (m)
| m

Oij ZIZ %ki(l)nlzlmkj(m) :

Proof. We only derive the expression for 6?; the derivation for ojj issimilar. Let A be the sum
of the off-diagonal elements of the I row of A. Since A, j/A isthe transition probability of the

embedded chain in state | at epochs Sy,

P(Y(Sk) = 1) - T[|A|/Z T[jAJ ask - o«
i

and

j

Hence, by (36) and (39),



6? = T mA % A D [[(Zk) (ZKi ) m]2
I_Iz | IIZ%BZT[J_AJBDAI | i/m
J

|Z S mAm(ZKi)1 = (ZKi)m]?

|Z > MAMI(ZK)E = 2(ZKi) 1 (ZKi)m + (ZKi)a]

-2 z Z T[|A|m(Zki)|(Zki)m (explanatlon bEIOW)
I m

= —ZIZ > 2 2 MAIm Zjjki () Zmki(n)
m j n

23 3 ki()mzjki(j) (explanation below) .
I

The fourth equality above holds because TTA = 0 and Ae = 0. The final equality holds

because

> 2 AmZmki(n) = = ki(l),

which holdsby (20) and (37). =

By similar reasoning, we can also obtain expressions for o, and 05, 1 < i < 3, if we make
some additional assumptions. Suppose that the subsequence { T} corresponds to all transitions
from | to mfor a set of pairs (I, m). Then {Y(Ty)} is adiscrete-time Markov chain (DTMC)
with stationary distribution say .

Proposition 9. If{ T,} and i are defined asaboveandt *N(t) — A ast — oo, then

=AY ¥ EI_[[(ZK i) = (Zki)m] U(I)
I m
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and
(DA O
Ois =AY > T DA—E[(Zki)| = (Zki)ml
I m o~ O
forl<i<3.

7. Conclusion

We have provided a general framework for establishing central limit theorems for time and
customer averages. The value of this approach is demonstrated by the explicit formula for the
difference variance constant when PASTA holds in (30). The explicit expressions for the
guadratic variation and cross variation processes in a GSMP framework in (36) should also assist
further study.
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Problems to do:

Gives good general conditions for all the conditions of Proposition 4 to be satisfied in

GSMP case (Sec. 5).
Determine conditions to have 63, < 62. What about CTMC case using Proposition 8?

Give better expressions than Prop. 9 in interesting cases. (Use explicit form of 1’ and

simplify.)
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