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Abstract

In this paper we establish a joint central limit theorem for customer and time averages by

applying a martingale central limit theorem in a Markov framework. The limiting values of the

two averages appear in the translation terms. This central limit theorem helps to construct

confidence intervals for estimators and perform statistical tests. It thus helps determine which

finite average is a more asymptotically efficient estimator of its limit. As a basis for testing for

PASTA (Poisson arrivals see time averages), we determine the variance constant associated with

the central limit theorem for the difference between the two averages when PASTA holds.

OR/MS Subject Classification: Queues, limit theorems: central limit theorems for customer

and time averages. Queues, statistical inference: estimating customer and time averages.

Statistics, estimation: averages over time and at embedded points.



This paper is concerned with estimating limiting time averages, customer (embedded)

averages and their differences. When the two limiting averages are known to agree, i.e., when

arrivals see time averages (ASTA); see Melamed and Whitt (1990a) and references cited there, we

want to know which finite average is a more asymptotically efficient estimator (i.e., produces

smaller confidence intervals with large samples). When the two limiting averages need not agree,

we want to estimate their difference and be able to test for ASTA.

To illustrate what happens when ASTA is known to hold, we give two examples.

Example 1: The Workload in the M/M/1 Queue.

Let {U(t) : t ≥ 0 } be the continuous-time workload (or virtual waiting time) process in an

M/M/1 queue with service rate 1 and arrival rate ρ < 1. Let {N(t) : t ≥ 0 } be the Poisson arrival

process with associated arrival times {T n : n ≥ 1 }. Then {U(T n − ) : n ≥ 1 } is the sequence of

waiting times (before beginning service). It is well known that the time average

V(t) =
t
1_ _ ∫

0

t
U(s) ds , t > 0 , (1)

and the customer average

W(t) =
N(t)

1_ ____
k = 1
Σ

N(t)
U(T k − ) , N(t) > 0 , (2)

both converge with probability one (w.p.1) to ρ /( 1 − ρ) as t → ∞, so that we have ASTA.

There is no need to estimate the limit in this case, but it is interesting to ask which estimator

tends to produce smaller confidence intervals. We can easily decide, because it is known that

central limit theorems (CLTs) hold, i.e.,

t 1/2 [V(t) − v] = = > N( 0 , σv
2 ) (3)

and



- 2 -

t 1/2 [W(t) − w] = = > N( 0 , σw
2 ) (4)

as t → ∞, where v = w = ρ/( 1 − ρ), = = > denotes convergence in distribution and N(m , σ2 )

denotes a normally distributed random variable with mean m and variance σ2 . Moreover,

σv
2 =

( 1 − ρ)4

2ρ( 3 − ρ)_ _________ and σw
2 =

( 1 − ρ)4

( 2 + 5ρ − 4ρ2 + ρ3 )_ ___________________ , (5)

see Table 2 of Whitt (1989), so that

σw
2 − σv

2 =
( 1 − ρ)3

( 2 − ρ) ( 1 + ρ)_ _____________ > 0 . (6)

Hence, for this example, the time average V(t) is always asymptotically more efficient. (This

result may seem to contradict results for the M/G/1 model by Law (1975); he showed that W(t) is

superior to several indirect estimators, but V(t) was not an alternative considered there.)

Example 2: A Uniformized Continuous-Time Markov Chain.

Let {X(t) : t ≥ 0 } be an arbitrary irreducible finite-state continuous-time Markov chain,

uniformized so that the time between successive transitions has an exponential distribution

independent of the state. (From the general case, this is achieved by introducing extra transitions

from states to themselves; e.g., see Keilson (1979).) Let {N(t) : t ≥ 0 } be the Poisson process

counting the transition epochs T n . Then {X(T n − ) : n ≥ 1 } is the embedded discrete-time

Markov chain. Let f be an arbitrary function on the state space of the chain and let

U(t) = f [X(t) ]. It is well known that both V(t) in (1) and W(t) in (2), defined in terms of U(t)

and T n here, converge w.p.1 as t → ∞ to Ef [X(∞) ] where X(∞) has the unique stationary

distribution of {X(t) : t ≥ 0 }. Moreover, (3) and (4) hold with v = w = Ef [X(∞) ].

Expressions for the variance constants σv
2 and σw

2 have been given by Kemeny and

Snell (1960, 1961) and Hordijk, Iglehart and Schassberger (1976); see also Glynn (1984) and

Whitt (1991). Moreover, Theorem 4.2 of Hordijk et al. (1976) implies that σw
2 < σv

2 .

(Hordijk et. al. (1976) do not work directly with the averages in (1) and (2) but the subsequences
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in which t is replaced by the random epoch of the n th visit to a fixed state, i.e., regeneration

points. The comparison is fair because both processes have the same random number of

transitions. The comparison carries over to (1) and (2); see Lemma 1 on p. 210 of Glynn and

Whitt (1986) and §6 of Glynn and Whitt (1989). The comparison of (1) and (2) is fair because

both processes have the same expected number of transitions.) Hence, unlike Example 1, here the

customer average W(t) is always asymptotically more efficient.

Estimating the averages is also important when ASTA is not known to hold. We may want to

use a customer average as an approximation for a time average, or vice versa. Then we might

want to estimate the difference to see if the approximation is reasonable, and possibly make

corrections. For example, estimating time averages can be computationally intensive in discrete-

event simulation. Time averages can be estimated if we collect data at every event and use the

time intervals between these events. However, the total number of events may be prohibitively

large. An alternative procedure is to introduce extra independent events strictly for sampling.

However, it is typically easier to collect data only at time points in a subset of the original events.

We might routinely use such a potentially biased procedure to estimate time averages, and only

occasionally do a more complicated estimation as described here in order to estimate the bias to

see if it is serious and, if so, make corrections.

As a theoretical basis for constructing confidence intervals for estimators of the two limiting

averages and their difference, we establish supporting central limit theorems. In §1 we specify

the model. In §2 we show that the desired CLT follows from a CLT for basic component

processes. In §3 we introduce martingale structure and give a sufficient condition for the CLT in

§2. In §4 we show that the conditions in §3 are satisfied in a certain Markov framework. For this

purpose, we apply the martingale CLT on p. 339 of Ethier and Kurtz (1986). For additional

background on CLTs for general processes, see Chapter 4 of Billingsley (1968), Section 7.7 of

Durrett (1991) and Section 9.2 of Lipster and Shiryayev (1989).
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In §5 we show how the martingale CLT in §4 can be applied to generalized semi-Markov

processes (GSMPs). In §6 we consider the special case of continuous-time Markov chains.

Finally, in §7 we draw conclusions.

This paper was partly motivated by Yao (1991). Yao (1991) noted that the martingale CLT

applies to a martingale associated with PASTA introduced by Wolff (1982). However, this

martingale is not the natural estimator for the difference of the two limits; see Propositions 5 and

6 below. The analysis here is also similar in spirit to the analysis related to indirect estimation

via L = λW; see Law (1975), Carson and Law (1980) and Glynn and Whitt (1986, 1987, 1988,

1989). A new paper which presents additional related results concerning comparisons of

estimators is Glasserman (1991).

1. The Model

Consider a continuous-time stochastic process X ≡ {X(t) : t ≥ 0 } taking values in a general

space, and a stochastic point process on the interval [ 0 , ∞), characterized by the counting process

N ≡ {N(t) : t ≥ 0 } or, equivalently, the sequence of successive points {T n : n ≥ 1 }; i.e.,

N(t) = sup {n ≥ 0 : T n ≤ t}, t ≥ 0, where T 0 = 0 without there being a 0th point. Because of

the many applications in queueing theory, we refer to N as the arrival process, even though the

points need not be interpreted as arrivals. Let U(t) = f (X(t) ) where f is a real-valued

measurable function on the state space of X. We assume that the sample paths of U are left

continuous with right limits, while the sample paths of N are right continuous with left limits.

We are interested in the time average V(t) in (1) and the customer average W(t) in (2), within

the general framework here. Under appropriate regularity conditions,

V(t) → v and W(t) → w w. p. 1 as t → ∞ (7)

where the limits v and w satisfy the bias formula
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w − v =
E[µ∗ (t) ]

cov [µ∗ (t) , U ∗ (t) ]_ ________________ , (8)

with U ∗ (t) = f (X ∗ (t) ), X ∗ and N ∗ being the stationary and stationary-increment versions of X

and N, and µ∗ (t) being the conditional intensity of a point from N ∗ at t conditional on X ∗ (t); see

Bre ́ maud (1989), Bre ́ maud, Kannurpatti and Mazumdar (1991), Makowski, Melamed and

Whitt (1989) and Melamed and Whitt (1990a,b). See (17) below for an analog of (8) derived via

the CLTs.

Moreover, under appropriate regularity conditions (see Sections 2–4), in this general

framework, CLTs (3) and (4) hold plus a joint CLT for (W(t) , V(t) ), i.e.,

t 1/2 (V(t) − v , W(t) − w) = = > N( 0 , Σ) as t → ∞ (9)

where the covariance matrix Σ has diagonal elements (variances) σv
2 and σw

2 and off-diagonal

elements covariances σ vw . As a consequence,

t 1/2 (W(t) − V(t) − (w − v) ) = = > N( 0 , σd
2 ) as t → ∞ , (10)

where

σd
2 = σw

2 + σv
2 − 2σ vw . (11)

Note that the limiting averages v and w appear in the CLTs in the translation terms.

In applications we will thus want to determine the variance constants σv
2 , σw

2 , σ vw and σd
2 in

(3), (4) and (9)–(11). In some cases we will be able to calculate the variance constants

analytically, but usually we must estimate them. For example, we might estimate σw
2 using batch

means, i.e.,

σ̂w
2

=
n − 1

1_ ____
k = 1
Σ
n

(n[W(kt / n) − W( (k − 1 ) t / n) ] − W(t) )2 .

See Damerdji (1989a,b), Glynn and Iglehart (1988), Goldsman and Meketon (1986) and
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references cited there for more information about variance estimators.

2. A General Central Limit Theorem

We first give general conditions for the vector process [V(t) , W(t) ] and the difference

W(t) − V(t) to obey CLTs.

Proposition 1. (a) If there exist constants v , w and λ such that as t → ∞

t − 1/2 
∫

0

t
U(s) ds − vt , ∫

0

t
U(s) N(ds) − λwt , N(t) − λt = = > (L 1 , L 2 , L 3 ) , (12)

then

t 1/2 
V(t) − v , W(t) − w

 = = > (L 1 , λ − 1 (L 2 − wL 3 ) ) as t → ∞ (13)

and

t 1/2 
W(t) − V(t) − (w − v) = = > λ − 1 L 2 − λ − 1 wL 3 − L 1 as t → ∞ . (14)

(b) If, in addition, (L 1 , L 2 , L 3 ) is normally distributed with means 0, variances σi
2 and

covariances σ i j , then the limits in (13) and (14) are normally distributed with

σv
2 = σ1

2 , σw
2 = λ − 2 (σ2

2 − 2wσ 23 + w 2 σ3
2 ) and

σd
2 = σ1

2 + λ − 2 σ2
2 + λ − 2 w 2 σ3

2 − 2λ − 1 σ 12 + 2λ − 1 wσ 13 − 2λ − 2 wσ 23 .

Proof. Note that

W(t) =
λ t
1_ __ ∫

0

t
U(s) N(ds) −



 N(t)

t_ ____






 t

N(t) − λt_ _________


 λ t

1_ __ ∫
0

t
U(s) N(ds) ,

so that

t 1/2 (W(t) − w) =
λ t 1/2

1_ ____ 
∫

0

t
U(s) N(ds) − λwt −



 N(t)

t_ ____






 t 1/2

N(t) − λt_ _________


 λ t

1_ __ ∫
0

t
U(s) N(ds)

= = > λ − 1 L 2 − (λ − 1 ) (L 3 ) (λ − 1 λw) = λ − 1 (L 2 − wL 3 ) as t → ∞ .
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This convergence above jointly with the normalized version of V(t) follows from the

convergence in (12) jointly with



 N(t)

t_ ____ ,
λ t
1_ __ ∫

0

t
U(s) N(ds)





= = > (λ − 1 , w) ,

which holds by Theorem 4.4 of Billingsley (1968) and the continuous mapping theorem,

Theorem 5.1 of Billingsley (1968).

Remark 2.1. The asymptotic efficiency of the estimator [V(t) , W(t) ] in (13) can be improved

by using a linear control estimator if λ is known; see Section 8 of Glynn and Whitt (1989) and

references cited there. Moreover, if v = w, then we can further improve the asymptotic

efficiency by the same method.

3. Martingale Structure

We now proceed to exploit martingale structure; for background, see Bre ́ maud (1981) and

Ethier and Kurtz (1986). Let { ^ t : t ≥ 0 } be the internal history or filtration of (X , N); i.e., ^ t

is the σ-field generated by { [X(s) , N(s) ] : 0 ≤ s ≤ t}. Recall that we assumed that U(t) is left

continuous, so that it is predictable. We also assume that the point process N(t) has a stochastic

intensity µ(t). (The CLTs below extend to point processes with more general compensators.)

We now give a sufficient condition in this framework for the condition of Proposition 1 to

hold.

Proposition 2. The CLT (12) holds if there exist constants v, w and λ such that

t − 1/2 
∫

0

t
U(s) ds − νt , ∫

0

t
µ(s) ds − λt , ∫

0

t
U(s) µ(s) ds − λwt ,

(15)

∫
0

t
U(s) [N(ds) − µ(s) ds] , N(t) − ∫

0

t
µ(s) ds

 = = > (Z 1 , . . . , Z 5 ) as t → ∞ ,

in which case L 1 = Z 1 , L 2 = Z 3 + Z 4 and L 3 = Z 2 + Z 5 . In addition, the asymptotic
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normality condition of Proposition 1(b) is satisfied if (Y 1 , . . . , Y 5 ) is normally distributed.

Proof. Apply the continuous mapping theorem with addition.

Since U is predictable and µ is the intensity of N, the fourth and fifth components on the left

in (15) are martingales under the usual moment conditions. Hence, CLTs can be established for

these components directly, as Yao (1989) did for the fourth component when µ(t) = λ w.p.1. (For

the CLT applications, it suffices to have f bounded and E[N(t)2 ] < ∞ for all t.) The other three

processes are centered cumulative processes, which satisfy CLTs under extra conditions such as

appropriate mixing or regenerative structure, e.g., see Theorem 20 of Billingsley (1968) and

Glynn and Whitt (1987). We will establish the joint convergence of all five components in the

presence of extra Markov structure by showing that the vector process is asymptotically

equivalent to a martingale. This Markov structure applies to a large class of models, e.g., after

adding supplementary variables; see Glynn (1989a).

Remarks 3.1. Note that nothing is gained by going from Proposition 1 to Proposition 2 when

PASTA holds, because then µ(t) = λ w.p.1 and v = w; then the second term on the left in

Proposition 2 is identically 0, while the third term is λ times the first.

3.2. Note that if the CLT (15) holds, then the limiting averages v and w can be identified

from the asymptotic behavior of [U(t) , µ(t) ], without directly considering N(t). In particular, if

(15) holds, then

[V(t) , t − 1 ∫
0

t
µ(s) ds , t − 1 ∫

0

t
U(s) µ(s) ds] →

p
[v, λ , λw] , (16)

where →
p

denotes convergence in probability, so that

∫
0

t
µ(s) ds

∫
0

t
U(s) µ(s) ds

_ ____________ →
p

w as t → ∞ , (17)

which ‘‘explains’’ (8) and complements Melamed and Whitt (1990b) and Bre ́ maud (1989).
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4. A Markov Framework

In this section we assume that the basic processes X and N are defined in terms of an

underlying Markov process Y, which is assumed to have left-continuous sample paths. As

regularity conditions, let the state space of Y be a complete separable metric space and let the

sample paths be continuous from the left and have limits from the right. Let the filtration

{ ^ t : t ≥ 0 } be the internal filtration of Y.

In particular, we assume that there are measurable functions g and h so that

X(t) = g(Y(t) ) , µ(t) = h(Y(t) ) and U(t) = f (g(Y(t) ) ) , (18)

where f is the real-valued function defined in §1 and µ is the stochastic intensity defined in §2.

Cases in which the intensity of N is a function of Y occur naturally when the points of N are

completely determined by jumps of Y; see Section 5 of Melamed and Whitt (1990a), (3.2) of

Melamed and Whitt (1990b) and p. 597 of Serfozo (1989).

As a consequence, the three cumulative process in Proposition 2 can be represented as

∫
0

t
U(s) ds = ∫

0

t
k 1 (Y(s) ) ds

∫
0

t
µ(s) ds = ∫

0

t
k 2 (Y(s) ) ds (19)

∫
0

t
U(s) µ(s) ds = ∫

0

t
k 3 (Y(s) ) ds

with k 1 (y) = f (g(y) ), k 2 (y) = h(y) and k 3 (y) = f (g(y) ) h(y). We provide conditions under

which these cumulative processes are asymptotically equivalent to martingales. Let A be the

infinitesimal generator of Y and $ (A) its domain. We assume that there exist constants γ i and

functions b i defined on the state space of Y and belonging to $ (A) satisfying Poisson’s equation,

i.e.,

Ab i = − k i + γ i (20)
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for i = 1 , 2 and 3. Typically

γ i = πk i ≡ ∫ k i (x) π(dx) (21)

where π is the unique invariant probability measure of Y. (Typically the Markov process will be

irreducible and positive recurrent.) See Glynn (1984, 1989b,c) and Whitt (1991) for further

discussion.

Remark 4.1. In this setting, the limiting averages v, λ and λw in (16) coincide with the steady-

state means γ 1 , γ 2 and γ 3 obtained via (19)–(21).

Since b i ∈ $ (A),

M i (t) ≡ b i (Y(t) ) − ∫
0

t
(Ab i ) (Y(s) ) ds (22)

is a martingale with respect to the filtration of Y; see p. 162 of Ethier and Kurtz (1986).

Proposition 3. If (20) holds and t − 1/2 b i (Y(t) ) = = > 0 as t → ∞ for i = 1 , 2 , 3, then

t − 1/2 
∫

0

t
k i (Y(s) ) ds − γ i t − M i (t) = = > 0 as t → ∞ ,

where M i is the martingale in (22).

Proof. If (20) holds, then

∫
0

t
k i (Y(s) ) ds − γ i t = − ∫

0

t
(Ab i ) (Y(s) ) ds

= − b i (Y(t) ) + b i (Y(t) ) − ∫
0

t
(Ab i ) (Y(s) ) ds .

Apply (22) and the condition.

Note that if Y is assumed to be stationary, then one condition in Proposition 3 is automatically

satisfied, i.e.,

t − 1/2 b i (Y(t) ) =
d

t − 1/2 b i (Y( 0 ) ) = = > 0 as t → ∞ , (23)

where =
d

denotes equality in distribution.
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Hence, to establish the CLT (15), it remains to establish the condition of Proposition 3 and the

conditions of a martingale CLT. We apply the martingale CLT on p. 339 of Ethier and

Kurtz (1986). For additional background on CLTs for general processes, see Chapter 4 of

Billingsley (1968), Section 7.7 of Durrett (1991) and Section 9.2 of Lipster and Shiryayev (1989).

In particular, by the convergence-together theorem (Theorem 4.1 of Billingsley (1968) or

Corollary 3.3 on p. 110 of Ethier and Kurtz (1986)), it suffices to apply the martingale CLT to the

five-dimensional process M(t) = [M 1 (t) , . . . , M 5 (t) ] having the first three components in

(22), with (19), and the last two components in (15), i.e.,

M 4 (t) = ∫
0

t
U(s) [N(ds) − µ(s) ds] and M 5 (t) = N(t) − ∫

0

t
µ(s) ds , t ≥ 0 . (24)

Hence, we are in a position to apply the martingale CLT. We state the martingale CLT for M as a

condition in our proposition. Sufficient conditions appear on p. 340 of Ethier and Kurtz (1986).

Proposition 4. If the conditions of Proposition 3 hold and t − 1/2 M(t) = = > Z′ for M in (22) and

(24), then the CLT (15) holds and Z i = Z i′ , 1 ≤ i ≤ 5.

Under the regularity conditions given on p. 340 of Ethier and Kurtz (1986), t − 1/2 M(t) is

asymptotically normally distributed as t → ∞ with covariance elements determined by the

quadratic variation processes associated with M. In particular, suppose that M is square

integrable, i.e., E[M(t)2 ] < ∞. Then we have

t

[M i , M i ] (t)_ __________ →
p

σi
2 as t → ∞ (25)

and

t

[M i , M j ] (t)_ __________ →
p

σ i j as t → ∞ , (26)

where [M i , M i ] ≡ [M i ] is the quadratic variation and [M i , M j ] is the cross variation; see

pp. 67, 79 of Ethier and Kurtz (1986).
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Remarks 4.2. Another convenient view of the variance and covariance terms for 1 ≤ i ≤ 3

comes from considering a stationary process framework, which is achieved by letting Y( 0 ) have

the unique invariant probability measure π. Then

σ i j = 2∫
0

∞
Cov[k i (Y( 0 ) ) , k j (Y(t) ) ] dt ;

e.g., see Theorem 20.1 of Billingsley (1968) and Section 9.2 of Lipster and Shiryayev (1989).

4.3. The CLT on p. 339 of Ethier and Kurtz (1986) is expressed in a stronger functional CLT

form. There a sequence of martingale processes {M n : n ≥ 1 } is defined with

M n (t) = M(nt)/√ n , t ≥ 0. The associated limit process is then five-dimensional Brownian

motion. We obtain the standard limit in R 5 referred to above by applying the continuous

mapping theorem with the projection map at time t = 1.

From (24)–(26), it is easy to identify the limits for 4 ≤ i, j ≤ 5. For this purpose, consider the

typical case in which

U(T k ) = = > W and E[U(T k )2 ] → E[W 2 ] as k → ∞ , (27)

so that

E[U(T k ) ] → E[W] = w as k → ∞ . (28)

Then

t
N(t)_ ____ →

p
σ5

2 = λ

t
1_ _

k = 1
Σ

N(t)
U(T k ) →

p
σ 45 = λE[W] = λw (29)

t
1_ _

k = 1
Σ

N(t)
U(T k )2 →

p
σ4

2 = λE[W 2 ] as t → ∞ .

Moreover, if f is an indicator function, then U(T k )2 = U(T k ) and σ4
2 = σ 45 = λw .

Our next result is a CLT for the difference W(t) − V(t) when PASTA holds. Equivalently,
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we assume that the stochastic intensity µ(t) is constant (so that N must be Poisson).

Proposition 5. In addition to the conditions of Proposition 4, suppose that (7) holds, f is

bounded, E[N(t)2 ] < ∞ and µ(t) = λ w.p.1 for all t. Then the CLT (14) holds with v = w and

σd
2 = λ − 1 Var [W] . (30)

Proof. ASTA holds because (7) holds, f is bounded and µ(t) = λ w.p.1; e.g., see Theorems 1

and 2 of Melamed and Whitt (1990b). Consequently, v = w, Z 2 = 0 and Z 3 = λZ 1; see

Remark 3.1. The limit in (14) is λ − 1 L 2 − λ − 1 wL 3 − L 1 , which coincides with

λ − 1 Z 4 − λ − 1 wZ 5 under the extra assumptions here. Thus, by (29),

σd
2 = λ − 2 σ4

2 + λ − 1 w 2 − 2λ − 2 wσ 45 = λ − 1 Var [W] .

Example 1 Revisited. As a consequence of Proposition 5, for the M/M/1 queue with arrival rate

equal to the traffic intensity ρ discussed at the outset,

σd
2 = λ − 1 Var [W] =

( 1 − ρ)2

2 − ρ_ ________ . (31)

Note that σd
2 in (31) is asymptotically negligible compared to σv

2 , σw
2 and σw

2 − σv
2 in (5) and (6)

as ρ → 1. From (11) and (31),

σ vw =
2 ( 1 − ρ)4

ρ( 32 − 26ρ + 5ρ2 )_ _________________ > 0 . (32)

As a consequence of Proposition 5, when f is an indicator function, we obtain Yao’s (1991)

CLT for M 4 (t) plus a special form for the CLT for the difference.

Proposition 6. In addition to the conditions of Proposition 5, suppose that f is an indicator

function. Then

t 1/2 M 4 (t) = = > N( 0 , λw) as t → ∞ (33)

and (14) holds with
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σd
2 = λ − 1 w( 1 − w) . (34)

Proof. Apply (29) and (30).

As a simple check of (33) and (34), let f be identically 1. Then obviously W(t) = V(t) = 1

for all t, so that σd
2 = 0.

Note that the relative standard error, defined by √ σd
2 / w, is

w
√ σd

2
_ ____ = √ w

λ − 1 ( 1 − w)_ __________ , (35)

which becomes large as w gets small. Hence, the difference of small probabilities are hard to

estimate in the sense of (35). An example would be small blocking probabilities in a loss model.

5. Generalized Semi-Markov Processes

In applications to queues and related stochastic models, the underlying Markov process Y

often will be associated with a generalized semi-Markov process (GSMP); see Glynn (1989a). To

treat this case, suppose that the sample paths of Y are piecewise linear with jumps occurring at the

non-differentiable points of the sample paths. Let {S n : n ≥ 1 } be the jump times of Y and let

J(t) count the number of jumps of Y in [ 0 , t]. We assume that all the jump times of N are also

jump times for Y, i.e., {T n : n ≥ 1 } is a subsequence of {S n : n ≥ 1 }. Then the five quadratic

variation processes and the ten cross-variation processes associated with M are:
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[M i , M i ] (t) =
k = 1
Σ
J(t)

[b i (Y(S k + ) ) − b i (Y(S k ) ) ]2 , i = 1 , 2 , 3 ,

[M 4 , M 4 ] (t) =
k = 1
Σ

N(t)
k 1 (Y(T k ) )2 ,

[M 5 , M 5 ] (t) = N(t) , (36)

[M i , M j ] (t) =
k = 1
Σ
J(t)

[b i (Y(S k + ) ) − b i (Y(S k ) ) ] .

[b j (Y(S k + ) ) − b j (Y(S k ) ) ] , 1 ≤ i , j ≤ 3 , i ≠ j ,

[M i , M 4 ] (t) =
k = 1
Σ

N(t)
[b i (Y(T k + ) ) − b i (Y(T k ) ) ] k 1 (Y(T k ) ) , 1 ≤ i ≤ 3 ,

[M i , M 5 ] (t) =
k = 1
Σ

N(t)
[b i (Y(T k + ) ) − b i (Y(T k ) ) ] , 1 ≤ i ≤ 3 ,

[M 4 , M 5 ] (t) =
k = 1
Σ

N(t)
k 1 (Y(T k ) ) .

What we need, then, are weak laws of large numbers (WLLN) as specified in (25) and (26) for

the quadratic and cross variation processes in (36). Of course, we always have (29).

6. Continuous-Time Markov Chains

As a concrete application of §5, we now suppose that Y is an irreducible finite-state

continuous-time Markov chain (CTMC). Then A is the infinitesimal generator matrix and

Poisson’s equation (20) has a solution for γ i defined by (21) for each i; see §4 of Whitt (1991).

Then all solutions of (20) are of the form

b i = Zk i + (πb i ) e , (37)

where π is the unique invariant measure, e is a column vector of 1’s and Z is the fundamental

matrix with components

Z lm = ∫
0

∞
[P lm (t) − π m ] dt , (38)
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with P(t) being the time-dependent transition matrix associated with A; see (13) and

Proposition 4.2 of Whitt (1991). In this setting the conditions for the CLT are easy to verify.

Proposition 7. If Y is an irreducible finite-state CTMC, then the conditions of Proposition 4 are

satisfied so that the CLT (15) holds. The limit has a multivariate normal distribution with

covariance matrix elements given by (15), (26), (29) and (36).

Given that Y(S k ) = l and Y(S k + ) = m,

b i (Y(S k + ) ) − b i (Y(S k ) ) = (Zk i ) l − (Zk i ) m =
j
Σ (Z l j − Z m j ) k i ( j) . (39)

From (36) and (39), we thus deduce familiar expressions for σi
2 and σ i j for 1 ≤ i , j ≤ 3; e.g., see

Remark 4.2 above and (12) of Whitt (1991). For ways to calculate σi
2 and σ i j , see

Proposition 4.2 and its Corollary 3 in Whitt (1991).

Proposition 8. For the finite-state CTMC and 1 ≤ i , j ≤ 3,

σi
2 = 2

l
Σ

m
Σ k i (l) π l Z lm k i (m)

σ i j = 2
l
Σ

m
Σ k i (l) π l Z lm k j (m) .

Proof. We only derive the expression for σi
2; the derivation for σ i j is similar. Let A l be the sum

of the off-diagonal elements of the l th row of A. Since A l j / A l is the transition probability of the

embedded chain in state l at epochs S k ,

P(Y(S k ) = l) → π l A l /
j
Σ π j A j as k → ∞

and

t
J(t)_ ___ →

j
Σ π j A j w. p. 1 as t → ∞ .

Hence, by (36) and (39),
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σi
2 =

l
Σ π l A l

l
Σ

m
Σ




 j

Σ π j A j

π l A l_ _______







 A l

A l j_ ___




[ (Zk i ) l − (Zk i ) m ]2

=
l
Σ

m
Σ π l A lm [ (Zk i ) l − (Zk i ) m ]2

=
l
Σ

m
Σ π l A lm [ (Zk i )l

2 − 2 (Zk i ) l (Zk i ) m + (Zk i )m
2 ]

= − 2
l
Σ

m
Σ π l A lm (Zk i ) l (Zk i ) m ( explanation below )

= − 2
l
Σ

m
Σ

j
Σ

n
Σ π l A lm Z l j k i ( j) Z mn k i (n)

= 2
l
Σ

j
Σ k i (l) π l Z l j k i ( j) ( explanation below ) .

The fourth equality above holds because πA = 0 and Ae = 0. The final equality holds

because

m
Σ

n
Σ A lm Z mn k i (n) = − k i (l) ,

which holds by (20) and (37).

By similar reasoning, we can also obtain expressions for σ i4 and σ i5 , 1 ≤ i ≤ 3, if we make

some additional assumptions. Suppose that the subsequence {T k } corresponds to all transitions

from l to m for a set of pairs (l , m). Then {Y(T k ) } is a discrete-time Markov chain (DTMC)

with stationary distribution say π∗ .

Proposition 9. If {T k } and π∗ are defined as above and t − 1 N(t) → λ as t → ∞, then

σ i4 = λ
l
Σ

m
Σ πl

∗ 

 A l

A lm_ ___




[ (Zk i ) l − (Zk i ) m ] U(l)
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and

σ i5 = λ
l
Σ

m
Σ πλ

∗ 

 A l

A lm_ ___




[ (Zk i ) l − (Zk i ) m ]

for 1 ≤ i ≤ 3.

7. Conclusion

We have provided a general framework for establishing central limit theorems for time and

customer averages. The value of this approach is demonstrated by the explicit formula for the

difference variance constant when PASTA holds in (30). The explicit expressions for the

quadratic variation and cross variation processes in a GSMP framework in (36) should also assist

further study.

Acknowledgment. We thank David Yao for sending us his paper, which was a source of

motivation.
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Problems to do:

1. Gives good general conditions for all the conditions of Proposition 4 to be satisfied in

GSMP case (Sec. 5).

2. Determine conditions to have σw
2 < σv

2 . What about CTMC case using Proposition 8?

3. Give better expressions than Prop. 9 in interesting cases. (Use explicit form of πl
∗ and

simplify.)
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