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Abstract

Diffusion processes are often regarded as among the more abstruse stochastic processes, but

diffusion processes are actually relatively elementary, and thus are natural first candidates to

consider in queueing applications. To help demonstrate the advantages of diffusion processes, we

show that there is a large class of one-dimensional diffusion processes for which it is possible to

give convenient explicit expressions for the steady-state distribution, without writing down any

partial differential equations or performing any numerical integration. We call these tractable

diffusion processes piecewise linear; the drift function is piecewise linear, while the diffusion

coefficient is piecewise constant. The explicit expressions for steady-state distributions in turn

yield explicit expressions for long-run average costs in optimization problems, which can be

analyzed with the aid of symbolic mathematics packages. Since diffusion processes have

continuous sample paths, approximation is required when they are used to model discrete-valued

processes. We also discuss strategies for performing this approximation, and we investigate when

this approximation is good for the steady-state distribution of birth-and-death processes. We

show that the diffusion approximation tends to be good when the differences between the birth

and death rates are small compared to the death rates.

Keywords: diffusion process; steady-state distribution; diffusion approximation; birth-and-

death process.



1. Introduction and Summary

In the natural sciences, diffusion processes have long been recognized as relatively simple

stochastic processes that can help describe the first-order behavior of important phenomena. This

simplicity is illustrated by the relatively quick way that the model is specified in terms of a drift

function and a diffusion function (plus boundary behavior, which here we will take to be

standard). However, the analysis of diffusion processes can involve some formidable

mathematics, which can reduce the appeal, and evidently has impeded applications to queueing

problems. Our purpose here is to circumvent the formidable mathematics, and focus solely on

creating the model and obtaining the answer, which here is regarded as the steady-state

distribution. From a theoretical standpoint, very little here is new. Our goal is to show that

diffusion processes are easier to work with than often supposed.

For accessible introductory accounts of diffusion processes, are Glynn (1990), Harrison

(1985), §9.4 and §13.2 of Heyman and Sobel (1982), Chapter 15 of Karlin and Taylor (1981) and

Chapter 7 of Newell (1982). For accessible advanced treatments, see Billingsley (1968), Breiman

(1968), Ethier and Kurtz (1986), Karatzas and Shreve (1991) and Mandl (1968).

A diffusion process is a continuous-time Markov process {X(t) : t ≥ 0 } with continuous

sample paths. We will consider only real-valued time-homogeneous diffusion processes. Such a

diffusion process is characterized by its drift function or infinitesimal mean

µ(x) =
ε ↓0
limE[X(t + ε) − X(t)X(t) = x] , (1)

its diffusion function or infinitesimal variance

σ2 (x) =
ε ↓0
limE[ (X(t + ε) − X(t) )2X(t) = x] (2)

and its boundary behavior. We assume that the state space is the subinterval (s 0 ,s k ), where

− ∞ ≤ s 0 < s k ≤ + ∞. If the boundaries s 0 and s k are finite, then we assume that the
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boundaries are reflecting. It is easy to understand what reflecting means by thinking of what

happens with an approximating simple random walk; from the boundary the next step is back into

the interior. If the boundary points are not finite, then we assume that they are inaccessible

(cannot be reached in finite time). The boundary behavior can be subtle, and nonstandard

variations can be relevant for applications, e.g., see Harrison and Lemoine (1981), Kella and

Whitt (1990) and Kella and Taksar (1993). However, here we consider only the standard case.

We call the diffusion processes that we consider piecewise-linear diffusions, because we

assume that the drift function µ(x) is piecewise-linear and the diffusion function σ2 (x) is

piecewise-constant in the state x. These piecewise-linear diffusion processes are of interest both

as models in their own right and as approximations. The piecewise-linear diffusions can serve as

approximations for both non-diffusion processes (e.g., birth-and-death processes, see §2) and

diffusion processes with more general piecewise-continuous drift and diffusion functions. In

some of the literature on diffusion processes it is assumed that the drift function and diffusion

coefficient are continuous, e.g., see p. 159 of Karlin and Taylor (1981), but this stronger

assumption is actually not necessary, as can be seen from pp. 13, 25, 90 of Mandl (1968) and

other references.

An example of a piecewise-linear diffusion process is the heavy-traffic diffusion

approximation for the GI/M/s queue developed by Newell (1973), Halachmi and Franta (1978)

and Halfin and Whitt (1981). This diffusion approximation plays an important role in

approximations for the general GI/G/s queue in Whitt (1985, 1992a, 1994). In this diffusion

process, the drift is constant when all servers are busy and linear otherwise, while the variance is

constant throughout. In the context of this GI/M/s example, our purpose is to show that the

steady-state distribution can be immediately written down and understood. For this example, it

will become evident that the steady-state distribution of the diffusion process has a density that is

a piece of an exponential density connected to a piece of a normal density.
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Another example of a piecewise linear diffusion process occurs in the diffusion approximation

for large trunk groups in circuit-switched networks with trunk reservation; see Reiman (1989,

1991). These papers illustrate optimization applications, which we discuss in §7. All these

examples involve queues with state-dependent arrival and service processes; for more examples

of this kind see Whitt (1990) and references cited there. A non-queueing example is the two-drift

skew Brownian motion in the control problem of Benes∨, Shepp and Witsenhausen (1980); see

§6.5 of Karatzas and Shreve (1991).

It should be clear that when we use a diffusion approximation for a queueing process, we are

assuming that we can disregard the detailed discrete behavior of the queueing process. The

diffusion approximation tends to be appropriate when the jumps are relatively small compared to

the magnitude of the process, which tends to occur under heavy loads. Formally, diffusion

approximations can be justified by heavy-traffic limit theorems, in which we consider a sequence

of models with an associated sequence of traffic intensities approaching the critical value for

stability from below; e.g., see Halfin and Whitt (1981).

We now specify in more detail what we mean by piecewise linear. We assume that there are

k + 1 real numbers s i such that − ∞ ≤ s 0 < s 1 < ... < s k ≤ ∞. Then the state space is

(s 0 , s k ) with µ(x) = a i x + b i and σ2 (x) = σi
2 > 0 on the interval (s i − 1 , s i ), 1 ≤ i ≤ k.

(Often the variance function can be regarded as constant overall, but we will consider the general

case; motivation is given in §2). As indicated above, if the boundary points s 0 and s k are finite,

then we assume that they are reflecting. Otherwise, we assume that they are inaccessible.

Moreover, if s 0 = − ∞, then we require that either a 1 > 0 or (a 1 = 0 and b 1 > 0). Similarly,

if s k = + ∞, then we require that a k < 0 or (a k = 0 and b k < 0). From pp. 13, 25, 90 of

Mandl (1968), these conditions guarantee the existence of a proper steady-state limit

(convergence in distribution).
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The important point is that the steady-state limit has a density of the form

f (x) = p i f i (x) , s i − 1 ≤ x < s i , (3)

where
i = 1
Σ
k

p i = 1, ∫s i − 1

s i
f i (x) dx = 1, f i has a known relatively simple form and p i can be easily

computed. Consequently, the steady-state mean is

m ≡ ∫s 0

s k
x f (x) dx =

i = 1
Σ
k

p i m i , (4)

where m i is the mean of f i , and similarly for higher moments. In particular, in §3 we show that

p i = r i /
j = 1
Σ
k

r j , 1 ≤ i ≤ k , (5)

where r 1 = 1 and

r i =
j = 2
Π
i

σj
2 f j (s j − 1 + )

σj − 1
2 f j − 1 (s j − 1 − )_ _______________ , 2 ≤ i ≤ k . (6)

Since the component densities f i are all continuous, the overall density f is continuous if and only

if σi
2 = σ1

2 for all i. In all cases the cumulative distribution function is continuous. Our

experience indicates that for most queueing applications it is appropriate to have σi
2 = σ1

2 and

thus a continuous steady-state density f.

For piecewise-linear diffusions with a i ≤ 0 for all i, the component densities f i in (3) have a

relatively simple form, so that it is easy to calculate the component means m i (and second

moments) and the probability weights p i without performing any integrations. This makes the

characterization attractive as an algorithm when k is large, as well as an insightful representation

when k is small. In particular, if a i ≤ 0 for all i, then the component densities are all truncated

and renormalized pieces of normal, exponential and uniform densities. The relatively simple

form for the steady-state distribution follows quite directly from the general theory, as we indicate

in §4, but it does not seem to be well known (among non-experts).
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Conceptually, the characterization can be explained by the properties of truncated reversible

Markov processes; see §1.6 of Kelly (1979). If the state space of a reversible Markov process is

truncated (and given reflecting boundaries), then the truncated process is reversible with a

steady-state distribution which is a truncated and renormalized version of the original steady-state

distribution, i.e., the truncated steady-state distribution is the conditional steady-state distribution

of the unrestricted process given the truncation subset. This property holds for multi-dimensional

reversible Markov processes, but we restrict attention here to real-valued processes. For a multi-

dimensional diffusion process application, see Fendick and Hernandez-Valencia (1992). This

truncation property is also a natural approximation more generally, e.g., see Whitt (1984).

For example, if a diffusion process on the real line behaves like an Ornstein-Uhlenbeck (OU)

diffusion process over some subinterval of the state space, then its steady-state distribution

restricted to that subinterval is a truncation and renormalization of the normal steady-state

distribution of the full OU process with those parameters. Moreover, by exploiting basic

properties of the normal distribution, it is possible to give explicit expressions for the moments of

the conditional distribution restricted to this subinterval; see Proposition 1 below. These explicit

expressions in turn help produce closed-form expressions for long-run average costs in

optimization problems; see §7. This makes it possible to tackle the optimization problems with

symbolic mathematics packages such as Maple V; see Char et al. (1992).

Here is how the rest of the paper is organized. In §2 we discuss diffusion approximations for

birth-and-death processes and give some examples showing how piecewise-linear diffusions can

naturally arise. In §3 we present the steady-state distribution of a piecewise-continuous diffusion,

drawing on the basic theory in Karlin and Taylor (1981) and Mandl (1968). In §4 we present four

basic linear diffusion processes whose restrictions will form the pieces of the piecewise-linear

diffusion process. In the cases with a i ≤ 0 we exhibit the appropriate conditional distribution

and its first two moments. In §5 we establish a stochastic comparison that can be used to show
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that piecewise-linear diffusions which serve as approximations for a more general piecewise-

continuous diffusion actually are stochastic bounds. In §6 we investigate when the simple

diffusion approximation for birth-and-death processes introduced in §2 should be reasonable. In

§7 we discuss optimization. Finally, we state our conclusions in §8.

In this paper, we only consider steady-state distributions. However, it should be noted that

diffusion processes can also help us understand transient phenomena, such as arise in simulation

experiments; e.g., see Whitt (1989, 1992b).

2. Diffusion Approximations

We often can obtain a diffusion process as an approximation of another process. In this

section we briefly discuss how.

2.1 Diffusion Approximations of Birth-and-Death Processes

We first discuss diffusion approximations of birth-and-death (BD) processes. As we indicate

in §6 below, the steady-state distribution of a BD process is not difficult to calculate directly.

However, in some cases it may be desirable to have the closed-form formulas (3)-(6), especially

when the number k of pieces is small.

We begin by showing how a diffusion process can arise as a limit of a sequence of BD

processes. To express the limiting behavior, let x be the greatest integer less than or equal to x.

For each positive integer n, let {B n (t) : t ≥ 0 } be a BD process on the integers from


c n + l n √ n 

 to 
c n + u n √ n 

 with state-dependent BD rates β n ( j) and δ n ( j), respectively.

Let the boundary behavior be the same as assumed for the diffusion processes. Let

X n (t) =
√ n

B n (t) − c n_ __________ , t ≥ 0 . (7)
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In the context of (7), the drift and diffusion functions of X n (t) are

µ n (x) ≡
ε ↓0
limE[X n (t + ε) − X n (t)X n (t) = x]

=
√ n

β n ( 
c n + x√ n 

) − δ n ( 
c n + x√ n 

)
_ _______________________________ (8)

and

σn
2 (x) ≡

ε ↓0
limE[ (X n (t + ε) − X n (t) )2X n (t) = x]

=
n

β n ( 
c n + x√ n 

) + δ n ( 
c n + x√ n 

)
_ _______________________________ . (9)

If l n → l, u n → u, µ n (x) → µ(x) and σn
2 (x) → σ2 (x) as n → ∞, then X n (t) can be said to

converge to the diffusion process on (l ,u) with drift function µ(x) and diffusion function σ2 (x);

see Stone (1963) and Iglehart (1965). This convergence is in a strong sense, including the finite-

dimensional distributions of the stochastic processes and more, see Billingsley (1968), but we

will consider only the steady-state distributions. Convergence of the steady-state distributions

can be shown directly by a modification of the argument in §6 below.

Example 2.1 The M/M/s queue.

The number of customers in the system in the classical M/M/s queue is a BD process with

birth (arrival) rate β( j) = β 0 and death rate δ( j) = η min { j ,s} in state j, where η is the

individual service rate. For states in the interval [ 0 ,s], we have δ( j) = η j, while for states in the

interval (s,∞) we have δ( j) = ηs. Consider a sequence of M/M/s queueing models indexed by n.

In model n, let the number of servers be s n = n, let the arrival rate be β n ( j) = n − a√ n for all j,

and let the individual service rate be 1, so that the death rate is δ n ( j) = min { j ,n}. Then it is

natural to let c n = n, so that l n = − √ n and u n = + ∞ Then we have convergence to a

diffusion process, as shown in Halfin and Whitt (1981).
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Of course, in applications we typically have only one BD process. Then we can form the

diffusion approximation by letting l = l n , u = u n , µ(x) = µ n (x) and σ2 (x) = σn
2 (x) where

µ n (x) and σn
2 (x) are defined by (6) and (7) for some given n, which we can take as n = 1.

Setting n = 1 corresponds to simply matching the infinitesimal means and variances. Based on

Berger and Whitt (1992), §8.5, we suggest refining this direct diffusion approximation by making

the state space for the diffusion process (l − 1/2 , u + 1/2 ) instead of (l ,u). This corresponds to

the familiar refinement when a continuous (e.g., the normal) distribution is used to approximate

an integer-valued probability distribution; see p. 185 of Feller (1968).

Henceforth here we will concentrate on the direct approximation for the steady-state

distribution of a BD process based on n = 1. We hasten to point out that a user should check

whether the accuracy of the approximation is adequate for the intended application. We

investigate when the crude direct approximation for the steady-state distribution is reasonable in

§6.

Suppose that the BD parameters β and δ are both linear; i.e., β( j) = β 0 + β 1 j and δ( j) =

δ 0 + δ 1 j for l ≤ j ≤ u. Instead of (8) and (9), we can use the linear approximations

µ(x) ∼∼ β 0 + β 1 x − δ 0 − δ 1 x (10)

and

σ2 (x) ∼∼ β 0 + β 1 x + δ 0 + δ 1 x (11)

for l − 1/2 ≤ x ≤ u + 1/2. Furthermore, assuming that the process will mostly be in the region of

x 0 in which µ(x 0 ) ∼∼ 0, we can further approximate the variance by

σ2 (x) ∼∼ β 0 + δ 0 + (β 1 + δ 1 ) x 0 , (12)

provided that µ(x 0 ) ∼∼ 0 for some x 0 with l − 1/2 ≤ x 0 ≤ u + 1/2. Otherwise we let σ2 (x) be

either σ2 (l) or σ2 (u), whichever is closer.
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Finally, even when β and δ are not linear, we may be able to produce (10) and (12) over

subintervals by making a piecewise-linear approximation.

Example 2.1 continued.

Returning to the M/M/s queue, we apply (10) and (12) to obtain µ(x) = β 0 − ηx and σ2 (x) =

2β 0 over ( − 1/2 , s + 1/2 ), and µ(x) = β 0 − ηs and σ2 (x) = β 0 + ηs over (s + 1/2 ,∞). To have

constant variance overall, we argue that µ(x) ∼∼ 0 for x ∼∼ s, so that β 0 ∼∼ ηs; thus we have the

further approximation σ2 (x) = 2β 0 for x∈(s ,∞) as well as for x∈[ 0 ,s]. The relevant values of

x are s + c√ s for some constant c. For this example, the exact steady-state distribution of the BD

process combines a truncated Poisson distribution below s with a geometric distribution above s,

while the diffusion approximation yields a truncated normal distribution below s and an

exponential distribution above s; see Halfin and Whitt (1981). These approximations often tend

to be good, as is well known.

Example 2.2. Secondary Servers with a Buffer.

We now consider an example of a BD process with three linear regions. There is a service

facility with one primary server plus a buffer of capacity c 1 . There are s secondary servers that

accept overflows from the primary buffer. There is an additional buffer of capacity c 2 to hold

arrivals when all servers are busy. The secondary system is costly, so that whenever space opens

up in the primary buffer, a customer in service in the secondary system immediately leaves and

enters the primary buffer. With this last feature, the number of customers in the system can be

modelled as a BD process.

Let the arrival rate be constant, so that β( j) = β 0 for all j. The service rate is linear in the

three regions
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δ(k) =





η 1 + sη 2 ,

η 1 + (k − c 1 − 1 ) η 2 ,

η 1 ,

c 1 + s + 1 ≤ k ≤ c 1 + c 2 + s + 1 .

c 1 + 2 ≤ k ≤ c 1 + s

1 ≤ k ≤ c 1 + 1

(13)

The resulting direct diffusion approximation has drift function

µ(x) =





β 0 − η 1 − sη 2 ,

β 0 − η 1 − (x − c 1 − 1 ) η 2 ,

β 0 − η 1 ,

c 1 + s + 3/2 ≤ x ≤ c 1 + c 2 + s + 3/2

c 1 + 3/2 ≤ x < c 1 + s + 3/2

− 1/2 ≤ x < c 1 + 3/2

(14)

and diffusion function

σ2 (x) =





β 0 + η 1 + sη 2 ,

β 0 + η 1 + (x 0 − c 1 − 1 ) η 2 ,

β 0 + η 1 ,

c 1 + s + 3/2 ≤ x ≤ c 1 + c 2 + s + 3/2

c 1 + 3/2 ≤ x < c 1 + s + 3/2

− 1/2 ≤ x < c 1 + 3/2

(15)

provided that

µ(x 0 ) = β 0 − η 1 − (x 0 − c 1 − 1 ) η 2 ∼∼ 0 . (16)

for c 1 + 3/2 ≤ x 0 ≤ c 1 + s + 3/2. If µ(x) > 0 ( < 0 ) for all x in this region, then we can set

σ2 (x) = σ2 (c 1 + s + 3/2 ) (σ2 (x) = σ2 (c 1 + 3/2 )).

Note that (15) and (16) lead to a piecewise-constant diffusion function. We can further

simplify (15) by just letting σ2 (x) ∼∼ 2β 0 , assuming that µ(x) ∼∼ 0 over the entire range of

relevant values.

2.2 Diffusion Approximations for General Integer-Valued Processes

Diffusion approximations are even more important when the stochastic process being

approximated is not a BD process, because then there may be no alternative formula for the

steady-state distribution. The crude direct approximation above easily generalizes; we just match

the infinitesimal means and variances as in (8) and (9). However, the infinitesimal means and

variances are often hard to determine. An alternative approach is to match the large-time
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behavior, as discussed in Whitt (1982) and references cited there.

To match the large time behavior, let {X(t) : t ≥ 0 } be a given integer-valued stochastic

process and let X j (t) represent the sum of the jumps from state j during the period that X has

spent t units of time in state j. To formally define X j (t), let T j (t) be the time when X has spent t

units of time in state j, defined by setting

t =
0
∫

T j (t)

1 {X(u) = j} du , (17)

where 1 A is the indicator function of the set A. Let J i be the time of the i th jump of X and let

N(t) be the number of jumps of X in [ 0 ,t]. Then

X j (t) =
i = 1
Σ

N(T j (t) )

(X(J i ) − j) 1 {X(J i − ) = j} , t ≥ 0 . (18)

We typically can only approximately determine {X j (t) : t ≥ 0 }, but even an estimate can serve

as the basis for the diffusion approximation.

We assume that {X j (t) : t ≥ 0 } obeys a central limit theorem, i.e.,

√ λ j cj
2 t

X j (t) − λ j t_ __________ ⇒ N( 0 , 1 ) as t→ ∞ , (19)

where N( 0 , 1 ) is a standard (zero mean, unit variance) normal random variable and ⇒ denotes

convergence in distribution. We then create the diffusion approximation by first setting

µ( j) = λ j and σ2 ( j) = λ j cj
2 (20)

and then fitting continuous functions to µ( j) and σ2 ( j). It is easy to see that this procedure

coincides with (8) and (9) with n = 1 when X is a BD process, but it also applies more generally.

2.3 BD Approximations

Since BD processes are also relatively easy to work with, we could consider constructing
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approximating BD processes instead of approximating diffusion processes. This might be

convenient for looking at the time-dependent behavior, e.g., for doing simulation or optimization

via Markov programs in the spirit of Kushner and Dupuis (1992). However, it is not as easy to

approximate by a BD process as it is by a diffusion process.

Starting from a diffusion process, we can obtain an approximating BD process by solving (8)

and (9) for the birth and death rate functions β and δ. In particular, we get

β( j) =
2

σ2 ( j) + µ( j)_ ___________ and δ( j) =
2

σ2 ( j) − µ( j)_ ___________ . (21)

Obviously, this BD construction works only when σ2 ( j) ≥ µ( j) for all j. When σ2 ( j) is

significantly less than µ( j), we should not anticipate that a BD approximation will be good.

We also note that piecewise-linear BD processes can be considered. The geometric, Poisson

and discrete uniform distributions play the role of the exponential, normal and continuous

uniform distributions below. The truncation property holds because the BD process is also a

reversible Markov process.

3. Piecewise-Continuous Diffusions

We now exhibit the steady-state distribution for a (time-homogeneous) diffusion with

piecewise-continuous drift and diffusion functions µ(x) and σ2 (x), with σ2 (x) > 0. As before,

we use the k + 1 points s i and assume that the drift and diffusion coefficients are continuous on

(s i − 1 ,s i ) with limits from the left and right at each s i for each i; see pp. 13, 25 and 90 of Mandl

(1968). We also assume that the boundary points s 0 and s k are reflecting if finite and inaccessible

if infinite. We assume there is a proper time-dependent distribution which converges to a proper

steady-state distribution with density f (x). (For the piecewise-linear case, this follows from the

extra structure.) The general theory implies that
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f (x) =
M(s k )
m(x)_ _____ , s 0 ≤ x ≤ s k , (22)

where

m(x) =
σ2 (x) s(x)

2_ _________ (23)

is the speed density,

s(x) = exp



− ∫

θ

x

σ2 (y)

2µ(y)_ _____ dy




(24)

is the scale density with θ arbitrary satisfying s 0 < θ < s k , and

M(x) = ∫s 0

x
m(y) dy , s 0 ≤ x ≤ s k , (25)

provided that all integrals are finite; see pp. 13, 25, 90 of Mandl (1968) and §15.3 and 15.5 of

Karlin and Taylor (1981).

From (22)-(25), we see that the density f (x) can easily be calculated by numerical integration.

Our object is to obtain more convenient explicit expressions. From (24) and (25), we see that

s(x) and M(x) are continuous on (s 0 , s k ), so that m and f are continuous everywhere in the

interval (s 0 , s k ) except perhaps at the points s i , 1 ≤ i ≤ k − 1, where σ2 (x) is discontinuous.

Indeed, since σ2 (x) has positive limits from the left and the right at s i for each i, 1 ≤ i ≤ k − 1,

so will the density f and we can relate the right and left limits. In particular,

f (s i + ) =
σ2 (s i + )

σ2 (s i − )_ _______ f (s i − ) . (26)

From (26) and (3), we easily obtain the formula for the probability weights in (5).

From (22) – (25), we also directly deduce that the conditional density, conditioning on a

subinterval is Kf (x) for x in this subinterval. Moreover, this conditional density is the steady-

state density of the diffusion process obtained by restricting the original diffusion process to this
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subinterval, using reflecting boundaries at all finite boundary points.

4. Four Basic Linear Diffusion Processes

We construct the component densities f i in (3) from the steady-state densities of four basic

diffusion processes.

4.1 The Ornstein-Uhlenbeck Process

If

µ(x) = − a(x − m) and σ2 (x) = σ2 > 0 (27)

for a > 0 and − ∞ < x < ∞, then we have the Ornstein-Uhlenbeck (OU) process, for which the

steady-state limit is normally distributed with mean m and variance σ2 /2a.

Let N(m , b 2 ) denote a normally distributed random variable with mean m and variance b 2 .

Let Φ be the cumulative distribution function (cdf) and φ the density of N( 0 , 1 ). If X is the

steady-state distribution of the OU process in (27) restricted to the interval (s i − 1 , s i ), then X has

the distribution of N(m , σ2 /2a) conditioned to be in the interval (s i − 1 , s i ); i.e., X has the

density

f (x) =

Φ


 b

s i − m_ ______




− Φ


 b

s i − 1 − m_ ________




b − 1 φ


 b

x − m_ ____


_ __________________________ , s i − 1 < x < s i , (28)

where b 2 = σ2 /2a.

Of course, the cdf Φ appearing in (28) involves an integral, but it can be calculated

approximately without integrating using rational approximations; see §26.2 of Abramowitz and

Stegun (1972).
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Note that we can easily infer the shape of f from (28). For example, f is unimodal; and the

mode is in the interior of (s i − 1 , s i ), and thus at m, if and only if s i − 1 < m < s i . In general,

f (x) increases as x moves toward m.

The following proposition gives the first two moments of X.

Proposition 1. If − ∞ ≤ s i − 1 < s i ≤ ∞, then

E[N(m , b 2 )s i − 1 ≤ N(m , b 2 ) ≤ s i ] = m + b

Φ


 b

s i − m_ ______




− Φ


 b

s i − 1 − m_ _______








φ



 b

s i − 1 − m_ ________




− φ


 b

s i − m_ ______







_ ___________________________ (29)

and

E[N(m , b 2 )2s i − 1 ≤ N(m , b 2 ) ≤ s i ] =

m 2 + 2mb

Φ


 b

s i − m_ ______




− Φ


 b

s i − 1 − m_ ________








φ



 b

s i − 1 − m_ ________




− φ


 b

s i − m_ ______







_ ___________________________ + b 2

+ b 2

Φ


 b

s i − m_ ______




− Φ


 b

s i − 1 − m_ ________











 b

s i − 1 − m_ ________




φ


 b

s i − 1 − m_ ________




−


 b

s i − m_ ______




φ


 b

s i − m_ ______







_ _______________________________________________ . (30)

Proof. First note that xφ(x) = − φ′ (x) for all x, so that

E[N( 0 , 1 )s i − 1 ≤ N( 0 , 1 ) ≤ s i ] =
Φ(s i ) − Φ(s i − 1 )

φ(s i − 1 ) − φ(s i )_ _______________ .

Consequently,
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E[N(m , b 2 )s i − 1 ≤ N(m , b 2 ) ≤ s i ] = m + bE


 b

N(m , b 2 ) − m_____________s i − 1 ≤ N(m , b 2 ) ≤ s i





= m + bE



N( 0 , 1 ) b

s i − 1 − m_ ________ ≤ N( 0 , 1 ) ≤
b

s i − m_ ______




.

Next note that x 2 φ(x) = φ(x) + φ′ ′ (x), so that

E[N( 0 , 1 )2s i − 1 ≤ N( 0 , 1 ) ≤ s i ] = 1 +
Φ(s i ) − Φ(s i − 1 )

s i − 1 φ(s i − 1 ) − s i φ(s i )_ ____________________ .

Consequently,

E[N(m , b 2 )2s i − 1 ≤ N(m , b 2 ) ≤ s i ] = m 2

+ 2mbE[N( 0 , 1 )s i − 1 ≤ N(m , b 2 ) ≤ s i ]

+ b 2 E[N( 0 , 1 )2s i − 1 ≤ N(m , b 2 ) ≤ s i ] .

4.2 Reflected Brownian Motion with Zero Drift

If

µ(x) = 0 and σ2 (x) = σ2 > 0 (31)

on (s i − 1 , s i ) for − ∞ < s i − 1 < s i < ∞, then we have the reflected Brownian motion (RBM)

process with zero drift, for which the steady-state limit X is uniformly distributed on (s i − 1 , s i )

with mean (s i − 1 + s i )/2 and second moment (si
3 − si − 1

3 )/3 (s i − s i − 1 ). The conditional

distribution on a subinterval is again uniform with the new endpoints playing the role of s i − 1 and

s i .

4.3 Reflected Brownian Motion with Drift

If

µ(x) = − a and σ2 (x) = σ2 > 0 (32)

for a > 0 on (s , ∞), then we have RBM with negative drift, for which the steady-state limit is

distributed as s plus an exponential with mean σ2 /2a. This case also covers RBM with positive
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drift a on ( − ∞ , − s), say {R(t) : t ≥ 0 }, because { − R(t) : t ≥ 0 } is then the RBM with

negative drift above. Hence, if f and g are the steady-state densities with negative and positive

drift, respectively, then g( − s − x) = f (s + x) for x ≥ 0. Hence, it suffices to focus only on the

negative drift case.

It is well known and easy to see that the conditional distribution of s plus an exponential

given that it is contained in the interval (s i − 1 , s i ), where s i − 1 > s, is the same as an exponential

on ( 0 , s i − s i − 1 ); i.e., the conditional density is

f (x) =
1 − e − λ(s i − s i − 1 )

λe − λ(x − s i − 1 )
_ ______________ , s i − 1 < x < s i , (33)

where λ − 1 is the mean of the exponential random variable; here λ − 1 = σ2 /2a.

Let X be a random variable with the density f in (33). Then elementary calculations yield

E[X] = s i − 1 + λ − 1

1 − e − λ(s i − s i − 1 )

[ 1 − λe − λ(s i − s i − 1 ) ( 1 + λ(s i − s i − 1 ) ) ]_ _______________________________ (34)

and

E[X 2 ] = si − 1
2 +

1 − e − λ(s i − s i − 1 )

2s i − 1 λ − 1 [ 1 − λe − λ(s i − s i − 1 ) 
1 + λ(s i − s i − 1 )]

_ ________________________________________ (35)

+ λ − 2

1 − e − λ(s i − s i − 1 )





1 − e − λ(s i − s i − 1 ) 



1 + λ(s i − s i − 1 ) +

2

λ2 (s i − s i − 1 )2
_ ____________








_ ________________________________________________ ,

where λ − 1 = σ2 /2a.

4.4 Positive Linear Drift

A relatively difficult case occurs if

µ(x) = a(x − m) and σ2 (x) = σ2 > 0 (36)
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for a > 0 and s i − 1 < x < s i . Then there is positive linear drift away from m. By partitioning

the interval into two subintervals and performing a change of variables, it suffices to consider the

case

µ(x) = ax and σ2 (x) = σ2 > 0 (37)

on ( 0 , s). However, even (37) is difficult. Indeed, no nice explicit form is available for (37). In

particular, from (22) – (25) we see that the steady-state density for (37) is of the form

f (x) = Ke ax2 /σ , 0 ≤ x ≤ s , (38)

and the mean is

EX =
2a
σK_ ___ (e as 2 /σ − 1 ) (39)

for a constant K such that ∫
0

s
f (x) dx = 1. Except for the constant K, the form of (38) and (39) is

quite simple and thus easily understood. However, K does not have a simple expression. The

constant K can be found from Dawson’s integral D(y) ≡ e − y2 ∫
0

y
e x2

dx, whose values appear in

Table 7.5 of Abramowitz and Stegun (1972). The maximum value is D(y) = 0. 541 occurring at

y = 0. 924; see 7.1.17 of Abramowitz and Stegun.

Since the constant K in (38) is relatively intractable, if this case is present, then we would

resort to either direct numerical integration in the setting of §3 or approximation of the drift

coefficient in (36) by piecewise-constant drift coefficients as in §4.2 and §4.3 over several

subintervals.

Example 4.1. Insurance Fund.

We now give a (non-queueing) example with a positive state-dependent drift. As in

Harrison (1977), consider an insurance firm with an asset process that is a diffusion with state-

dependent drift µ(x) = αx for positive x where α > 0 and constant variance function, but let the

process have a reflecting barrier at zero instead of the absorbing barrier. Moreover, combine this
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with DeFinetti’s model of an insurance fund as discussed on pages 146-147 of Gerber (1979), in

which all proceeds above some level b are paid out as dividends. Then the asset process is a

linear diffusion on [ 0 ,b] with drift function µ(x) = αx, where α > 0.

5. Stochastic Comparisons

Since we may want to approximate a general piecewise-continuous diffusion by a piecewise-

linear diffusion, it is useful to have results providing insight into the quality of the approximation.

From §3 we easily can obtain sufficient conditions for a stochastic comparison. We say that

one density f 1 is less than or equal to another f 2 on the same interval (s 0 , s k ) in the sense of

likelihood ratio, and we write f 1 ≤ lr f 2 , if f 2 (x)/ f 1 (x) is nondecreasing in x. A likelihood ratio

implies that the distribution determined by f 1 is stochastically less than or equal to the

distribution determined by f 2; see Ross (1982).

Proposition 2. Consider two piecewise-continuous diffusions on a common interval (s 0 , s k )

satisfying (22) – (25). If σ1
2 (x)/σ2

2 (x) is nondecreasing in x and µ 2 (x)/σ2
2 (x) ≥ µ 1 (x)/σ1

2 (x)

for all x, then f 1 ≤ lr f 2 .

Proof. Note that f 2 (x)/ f 1 (x) is nondecreasing if and only if σ1
2 (x) s 1 (x)/σ2

2 (x) s 2 (x) is

nondecreasing by (22) and (23). Next, by (24), s 1 (x)/ s 2 (x) is nondecreasing if and only if

µ 2 (x)/σ2
2 (x) ≥ µ 1 (x)/σ1

2 (x) for all x.

Note that the condition in Proposition 2 is satisfied if σ1
2 (x) = σ2

2 (x) and µ 1 (x) ≤ µ 2 (x) for

all x.

From (22) – (25) we can also establish continuity results showing that f n (x) → f (x) for each

x if µ n (x) → µ(x) and σn
2 (x) → σ2 (x) for each x, plus extra regularity conditions, for a

sequence of piecewise-continuous diffusions.
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6. On the Quality of Diffusion Approximations for BD Processes

We now investigate when the direct diffusion approximation for BD processes with n = 1 in

(8) and (9) is reasonable for the stationary distribution of the BD process. For simplicity, we

assume that l > − ∞. Recall that the steady-state probability mass function for a BD process is

π j = ρ j /
i = l
Σ
u

ρ i , l ≤ j ≤ u , (40)

where ρ l = 1 and

ρ j =
i = l + 1
Π

j
(β i − 1 /δ i ) =

δ j

β l_ __ exp
i = l + 1
Σ
j − 1

log


 δ i

β i_ __




, l + 1 ≤ j ≤ u . (41)

To relate (41) to the steady-state distribution of the diffusion, we exploit the expansion of the

logarithm, i.e.,

log ( 1 + x) = x −
2
x 2
_ __ +

3
x 3
_ __ − . . . . (42)

From (41) and (42), we obtain a condition for the diffusion approximation to be good. The

condition is that (β i − δ i )/δ i is suitably small for the i of interest. Assuming this is the case, we

have

ρ j ∼∼
δ j

β l_ __ exp
i = l + 1
Σ
j − 1








 δ i

β i − δ i_ _______




+ O


 δ i

β i − δ i_ _______




2




. (43)

From (8) and (9) with n = 1, β l ∼∼ σ2 (l), δ j ∼∼ σ2 ( j)/2, δ i ∼∼ σ2 (i)/2 and

ρ j ∼∼
σ2 ( j)

2σ2 (l)_ ______ exp
i = l + 1
Σ
j − 1

σ2 (i)

2µ(i)_ _____ . (44)

If, in addition, 2µ(i)/σ2 (i) is suitably smooth, e.g., linear, then
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ρ j
∼∼

σ2 ( j)

2σ2 (l)_ ______ exp∫
l + 1/2

j − 1/2

σ2 (y)

2µ(y)_ _____ dy (45)

and indeed, by (22), (23), (24) and (45),

π j
∼∼ ∫

j − 1/2

j + 1/2
f (y) dy ∼∼ f ( j) , l ≤ j ≤ u , (46)

where f is the diffusion process density in (22). Formula (46) shows that the steady-state BD

probability mass function values π j are reasonably approximated by the steady-state diffusion

density f ( j).

7. Optimization

It can be rather straightforward to handle costs in a piecewise linear diffusion process.

Suppose a cost is charged to the system at rate g i (x) per unit time when x∈[s i − 1 ,s i ). Then

standard renewal-reward theory tells us that the expected average cost per unit time is

i = 1
Σ
k

p i ∫s i − 1

s i
g i (x) f i (x) dx . (47)

Example 2.2 Revisited.

Suppose that we consider the secondary service with buffers again. The piecewise linear

diffusion process approximation is given in (14) and (15). By the results of section 3 and 4, we

find that in regions 1 and 3, the stationary distribution is truncated exponential, and in region 2 it

is truncated normal. To simplify notation, we will let β 0 − η 1 = − µ ≤ 0 and β 0 + η 1 = δ.

We also let (β 0 − η 1 )/η 2 = − α ≤ 0 and √ β 0 /η 2 = γ. Then, from section 4 we find
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f 1 (x) =
1 − e − λ 1 (c1 + 2 )

λ 1 e − λ 1 (x + 1/2 )

_ ______________ , (48)

f 2 (x) = C(s) . φ


 γ

x + α − (c 1 + 1 )_ ________________




, (49)

f 3 (x) =
1 − e − λ 2 c2

λ 2 e − λ 2 (x − (c1 + 1 + s + 1/2 ) )

_ ___________________ , (50)

where

λ 1 =
2µ
δ_ __ ,

C(s)
1_ ____ = γ





Φ



 γ

1/2 + α_ _______




− Φ


 γ

1/2 + s + α_ ___________









, λ 2 =
2 (µ − sη 2 )

δ + sη 2_ __________ . (51)

(It follows from §4.1 that for the normal part, we have the mean m = c 1 + 1 − α.) From (5)

and (6) we also get r 1 = 1,

r 2 =
( 1 − e − λ 1 (c1 + 2 ) 2β 0 C(s) φ( (α + 1/2 )/γ)

δ λ 1 e − λ 1 (c1 + 2 )

_ ________________________________ (52)

r 3 = r 2
.

(δ + sη 2 ) λ 2

( 1 − e − λ 2 c2 ) 2β 0 C(s) φ( (α + s + 1/2 )/γ)_ _________________________________ . (53)

Now we consider optimization problems. Even if we restrict attention to choosing the

parameters c 1 , s and c 2 , there are quite a few possibilities. For example, the s secondary servers

could be a given, as would be the number of buffer spaces, c 1 + c 2 . In this case, the decision

problem would be how to split the buffers, and where to place the secondary servers (if we restrict

ourselves to using them as a dedicated group). In extreme cases, we might want to place all of

the buffer spaces in between the single server and the secondary servers (if e.g., h 1 = h 3 < h 2),

or in the other extreme (e.g., if h 2 < min {h 1 ,h 3 } ), we may want to place all of the servers

together at the head of the system, thus effectively working as a (partially) ranked

M / M / s + 1/ c 1 + c 2 system, with a strange cost structure. (In both of these cases, there would

only be 2 regions.) We will call this Problem 1.
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Alternatively, the buffer spaces as well as their positions might be fixed externally, and the

decision variable might simply be how many excess servers, s, to hire, within a given budget

constraint. We will call this Problem II.

In both cases, since queueing occurs only in the regions 1 and 3, costs should be quadratic in

those 2 regions, and linear in the region where service is in parallel; i.e., we will take

g i (x) = h i
.(x − s i − 1 )2 , i = 1 , 3, and g 2 (x) = h 2

. (x − s 1 ) ≡ h 2
. (x − (c 1 + 1 + 1/2 ) ). Let

B(c 1 ,s ,c 2 ) denote the cost function for the system. Then we have

E(B(c 1 ,s ,c 2 ) ) = p 1 h 1 E(X 1 − s 0 )2 + p 2 h 2 E(X 2 − s 1 ) + p 3 h 3 E(X 3 − s 2 )2 , (54)

where X i has density f i . These values are then easily obtained from (29) and (35), yielding

E(X 1 − s 0 )2 =
4
1_ _ −

λ 1 ( 1 − e − λ 1 (c1 + 2 ) )

1 − λ 1 e − λ 1 (c1 + 2 ) ( 1 + λ 1 (c 1 + 2 ) )_ ___________________________

+
4
1_ _

1 − e − λ 1 (c1 + 2 )

1 − e − λ 1 (c1 + 2 ) ( 1 + λ 1 (c 1 + 2 ) + λ1
2 (c 1 + 2 )2 /2 )_ ______________________________________ , (55)

E(X 2 − s 1 ) = c 1 + 1 − α +
C(s)

γ2
_ ____





φ



 γ

α + 1/2_ ______




− φ


 γ

s + α + 1/2_ _________









, (56)

E(X 3 − s 2 )2 = (c 1 + 1 + s + 1/2 )2 +


 λ 2

2 (c 1 + 1 + s + 1/2 )_ _______________







 1 − e − λ 2 c2

1 − λ 2 e − λ 2 c2 ( 1 + λ 2 c 2 )____________________





+
λ2

2 ( 1 − e − λ 2 c2 )

1 − e − λ 2 c2 ( 1 + λ 2 c 2 + λ2
2 c2

2 /2 )_ _________________________ . (57)

It should of course be recalled that p 2 = p 2 (c 1 ,s), p 3 = p 3 (c 1 ,s ,c 2 ) λ 2 = λ 2 (s).

Standard numerical optimization techniques can now be used to optimize the system, for

example, for Problem I, suppose that c 1 + c 2 + K, then let c 1 = c, and c 2 = K − c in

(55)–(57), and just optimize E(B(c,s ,K − c) ) with respect to c. The two extreme cases referred

to above correspond respectively to the cases c = 0, c = K. For Problem II, we would try to

maximize s subject to E(B(c 1 ,s ,c 2 ) ) ≤ l, where l is our budget per unit time.
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For example, we applied the symbolic mathematical package Maple V to differentiate

EB(c,s ,K − c) with respect to c in order to find the optimal solution for Problem I; see Char et al.

(1992). Using piecewise linear diffusion processes together with symbolic mathematics packages

seems like a promising approach.

8. Conclusions

In Sections 1, 3 and 4 we showed that the steady-state distribution of a one-dimensional

piecewise-linear diffusion can be expressed conveniently in closed form, in a way that is

insightful. It remains to obtain corresponding results for multi-dimensional diffusions.

In Sections 2 and 6 we discussed diffusion approximations for birth-and-death processes and

other integer-valued processes. It remains to further evaluate the quality of these approximations.

In Sections 3 and 5 we discussed piecewise-linear diffusion approximations for more general

diffusion processes with piecewise-continuous drift and diffusion functions. In §7 we showed

how the piecewise linear diffusion processes can be used effectively for optimization, especially

when combined with a symbolic mathematics package such as Maple V. It remains to exploit the

use of symbolic mathematics packages further.

Overall, we have tried to support the idea that diffusion processes can be useful for queueing

and other applied problems.

Acknowledgement. We thank Jewgeni Dshalalow for helpful comments on the presentation.
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