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Abstract

Call centers usually handle several types of calls. To do so effectively, agents are given special

training. However, it is often not cost-effective to have every agent be able to handle every type

of call. Thus, the agents tend to have different skills, in different combinations. Call centers are

equipped with automatic call distributors to assign calls to appropriate agents, i.e., to perform

skill-based routing (SBR). However, it is challenging to do skill-based routing well. Moreover, it

is challenging to determine the staff requirements in an SBR call center. This paper addresses

these problems. The main idea is to seek simplification through resource pooling, i.e., the

notion that with (i) only a limited amount of cross training (e.g., perhaps even when agents

have at most two skills)and (ii) a reasonable scheduling policy, the call center performance may

be nearly the same as if all agents had all skills (and scheduling was not an issue at all). First,

simulation experiments within a particular SBR framework show that resource pooling indeed

occurs. Second, resource pooling is exploited to develop an effective algorithm to generate

staffing requirements. The staffing algorithm exploits the classical Erlang model to determine

an initial estimate for the total staff needed in the call center. Motivated by heavy-traffic

stochastic-process limits, a square-root formula is then applied to determine initial primary-

skill requirements within the estimated total staff. Then a fair-assignment scheme is developed

to allocate additional skills. Finally, simulations are performed in order to make improvements

in the initial assignment, in order to make the total staff requirements as small as possible,

while ensuring that all performance requirements are met. Simulation experiments show that

the overall procedure can be remarkably effective: The required staff with limited cross training

in a reasonable SBR framework can be nearly the same as if all agents had all skills.

Subject classifications: Queues, applications: resource pooling in call centers. Queues, algo-

rithms: staffing in call centers with skill-based routing. Queues, networks: Call centers with

skill-based routing.

Area of Review: Stochastic Models.

Keywords: telephone call centers, customer contact centers, staffing, scheduling, skill-based

routing, resource pooling, queues, multi-server queues, multi-class queues, simulation.





1. Introduction

The purpose of this paper is to provide insights and methods to help improve the design

and management of telephone call centers and more general customer contact centers allowing

contact through other media such as email. As indicated in the review by Gans, Koole and

Mandelbaum (2003), systematic analysis is needed because call centers have become quite

complicated.

Skill-Based Routing. Call centers usually handle several types of calls. However, it is

usually not possible or cost-effective to train every agent (customer service representative) to

be able to handle every type of call. For example, with the globalization of many businesses,

call centers often receive calls in several different languages. The callers and agents each may

speak one or more of several possible languages, but not necessarily all of them. And, of course,

it may simply not be possible for the agents to learn all the languages. But it may well be

possible to find agents that can speak two or three languages.

Another classification of calls involves special promotions. The callers may be calling a

special 800 number designated for the special promotion. Agents typically are trained to

respond to inquiries about some of the promotions, but not all of them. Learning about

special promotions is certainly less difficult than learning entire languages, but it tends to be

prohibitive to train all agents to be able to respond to calls about all promotions, especially

when there is a very short time span between the creation and the delivery of the promotion.

Specialization also naturally arises in strategic outsourcing, where one company turns over

some of its business functions to a third-party contractor. An example is the management

of the company’s computer and information systems. The strategic outsourcing is usually

managed by a single-point-of-contact help desk, which in fact is a call center. In these technical

help desks, agents (service representatives) may only be able to help customers with some

of their technical problems. The agents may have different levels of skills, with some skills

requiring extensive training.

Thus, frequently, the calls have different requirements and the agents have different skills.

Fortunately, modern automatic call distributors (ACD’s) have the capability of assigning calls

to agents with the appropriate skills. Thus the call-center information-and-communication-

technology (ICT) equipment can allow for the generalization to multiple call types. That

capability is called skill-based routing (SBR).
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Most current call centers perform skill-based routing, and many do so remarkably well.

Nevertheless, there remains a need for fundamental principles and operations-research tech-

niques that will make it possible to better design and manage SBR call centers.

In fact, skill-based routing is now an active research topic, but so far there is only a relatively

small body of literature. For example, Garnett and Mandelbaum (2000) conducted a simulation

study to show some of the operational complexities of skill-based routing. Research also has

been done by Perry and Nilsson (1992), Koole and Talim (2000) and Borst and Seri (2000).

An interesting fluid-model approach to staffing in SBR call centers has recently been proposed

by Harrison and Zeevi (2003). Our intent is to contribute to this line of research.

Resource Pooling. We propose a two-word answer to the SBR problem: resource pooling.

Within the context of an SBR call center, resource pooling means that with a limited amount

of cross training (having agents with multiple skills) and a reasonable scheduling algorithm,

a diverse SBR call center may perform nearly the same as if all agents had all skills (and

scheduling were not an issue at all).

The resource-pooling notion is important, because it may lead to much greater efficiency,

with significant performance benefits and cost reductions. Of course, resource pooling is not

the solution to all problems, but we intend to show that it is an important concept for SBR

call centers. In particular, if there is inadequate sharing of skills, then the SBR call center

will perform nearly the same as several separate smaller call centers, and thus lose important

economies of scale. If the separate smaller groups are themselves still large, then little efficiency

will be lost, but if the separate groups are indeed not large, then the performance can be much

worse than if all agents had all skills.

We have noted that performance may be much better if all agents are universal agents, i.e.,

if all agents have all skills, than if the agents each have only one skill. However, previously

we gave compelling examples (e.g., languages and computer skills) showing that it is often not

feasible for many agents to have all skills. The main point, then, is that a little flexibility may

go a long way: We will show that an SBR call center can perform nearly as well as an SBR

call center staffed by universal agents (where all agents have all skills) if the agents only have

relatively few skills, in particular, only two skills.

In particular, in this paper we describe simulation experiments conducted in order to

investigate resource pooling in SBR call centers. In these simulation experiments we consider

a call center with 90 agents and 6 call types. In six separate simulation runs, we then see
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what happens if all agents have j skills, 1 ≤ j ≤ 6. Consistent with the remark above, first

we show that the performance is much better for j = 6 than for j = 1, demonstrating the

potential importance of resource pooling. As should be expected, the performance improves

as j increases. However, we show that the performance with j = 2 is much closer to the

performance with j = 6 than the performance with j = 1. Indeed, the performance with j = 2

is almost as good as the performance with j = 6. It is natural to contemplate more cases, e.g.,

in which only some of the agents have two skills, but we believe our experiments adequately

address the main point.

Implications. No doubt, the main implication of these experimental results is the impor-

tance of paying careful attention to the agent skill mix. In most discussions of SBR call centers,

the skill mix is taken as given, but in fact in the design and operation of an SBR call center,

there are opportunities to determine the agent skill mix. Our experiments show that there can

be great benefit in having some flexibility (agents having multiple skills), but the value added

by having great flexibility (agents having a large number of skills) is likely not to be so great.

We believe that is a fundamental principle that can greatly help call-center managers.

Moreover, resource pooling has strong implications about the importance of skill-based

routing algorithms. If indeed limited flexibility within a reasonable, but suboptimal, SBR

framework can produce performance nearly as good as if all agents had all skills, then we will

have succeeded in circumventing the hard scheduling problem. If we can achieve the desired

performance benefit through limited flexibility, it may be unnecessary to address the difficult

scheduling problem.

Of course, it remains to investigate the extent to which the “great benefit of limited flexibil-

ity” principle is applicable in different call-center settings. We would suggest that this principle

might even be used to evaluate alternative call-center designs. In particular, we contend that

one scheme for operating an SBR call center might well be preferred to another if it better

facilitates great benefits from limited flexibility.

Another implication is that, if we design and manage the SBR call center so that there

is sufficient flexibility to support resource pooling, then the SBR call center will be easier to

operate. To firmly support that idea, in this paper we show how to exploit resource pooling in

order to develop an algorithm to determine staff (agents) and equipment (telephone trunk lines)

requirements in an SBR call center. To do so, we specify a specific framework to implement

skill-based routing. Then, within that framework, we develop an algorithm for staff and
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equipment provisioning. A key idea is to choose a reasonable SBR framework, rather than

search for an optimal scheduling policy.

The centerpiece of our provisioning algorithm is the resource-pooling notion. In particular,

in the initial phase of our provisioning algorithm, when we start to decide on the total number

of agents to be in the call center, we assume that resource pooling will ultimately be present,

and thus we apply the classical Markovian M/M/C/K model, acting as if skills do not matter.

With that simplification, the optimal number of agents can easily be found by applying fast

numerical algorithms, e.g., as in Borst, Mandelbaum and Reiman (2004), Massey and Wallace

(2004) and Whitt (2003). (The algorithm in Whitt (2003) allows the treatment of customer

abandonment with non-exponential service-time and abandon-time distributions, but in this

paper we do not consider those features. Those extensions are known to be important in

practice; e.g., see Brown et al. (2002). The algorithm in Jennings et al. (1996) could be used

to address time-dependent arrivals, which we do not consider here either.)

But we need to go further: After specifying the total number of agents required, we de-

termine the specific skill requirements for these agents. We thus generate a full specification

of the agent-skill requirements, which can be used as input to the staff scheduling phase of

call-center management. (Recall that call centers typically use a four-phase process to deter-

mine and manage staffing levels. The first phase involves forecasting customer arrival rates

and expected service times across the day. The second phase uses these forecasts to deter-

mine the staff and equipment requirements. The third phase uses the output of the second

phase, together with appropriate optimization tools, to determine what equipment is needed

and make detailed staff schedules, allowing for meals and breaks. Finally, the fourth phase

involves real-time adjustments during service delivery. In this paper, we are only considering

the second phase.)

Next, given a fully specified provisioning, we employ simulation to make small local refine-

ments in the initial provisioning, aiming to reduce the required staff while meeting specified

constraints on performance. In applying simulation to analyze call-center models, we are fol-

lowing common practice; e.g., see Anton et al. (1999) and Brigandi et al. (1994). In seeking

improved polices by performing local search, we are following Choudhury et al. (1995); there

the algorithm was numerical transform inversion instead of simulation. The resource pooling

helps us quickly find a good starting point for the second, simulation phase of our provisioning

algorithm.

As we apply simulation to improve our agent-skill-matrix assignment, we see the realized
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performance. Thus we can directly verify that our proposed provisioning algorithm is in-

deed effective. And, indeed, these simulation experiments provide additional support for the

resource-pooling notion, because the algorithm shows that the number of agents and telephone

trunk lines required in the SBR call center, where each agent has only two skills, is nearly

the same as if each agent had all skills. In other words, not only is the performance for given

provisioning nearly the same as when all agents have all skills (as shown in Section 3), but also

the provisioning for given performance requirements is nearly the same as when all agents have

all skills (shown in Sections 5 and 6). Amazingly, in our examples, there is only a difference of

a single agent: In our examples, 90 agents suffice when all agents have all skills, while 91 agents

suffice when all agents have at most two skills. We do not claim that the same spectacular

resource-pooling benefit necessarily will hold in all other settings, but the examples here show

the potential.

A Little Flexibility Goes a Long Way. The conclusions here have implications for other

contexts involving decision-making under uncertainty, suggesting that we might expect a little

flexibility to go a long way. On the other hand, it should come as no surprise that this

important idea has already been advanced in other contexts. The idea is natural, so it is hard

to properly trace its history, but we can cite several instances closely related to the call-center

context.

Significant theoretical work exposing the advantage of a small amount of flexibility was

done by Azar et al. (1994), Vvedenskaya et al. (1996), Turner (1996) and Mitzenmacher

(1996). To convey the idea, will will describe the queueing problem considered in Vvedenskaya

et al. (1996). It involves assigning arriving customers, immediately upon arrival, to one of

several identical queues. In the model there is a single stream of customers arriving in a Poisson

process. Upon arrival, each customer must join one of a large number of independent, identical

single-server queues with exponential service times and unlimited waiting space.

The standard approach to this queue-joining problem is to examine the state of all the

queues and join one of the queues with the fewest customers. Indeed, Winston (1977) proved

that the join-the-shortest-line rule is optimal. (Surprisingly, perhaps, optimality can cease

if some of the assumptions are changed, e.g., if the service-time distribution need not be

exponential; see Whitt (1986).) A difficulty with the join-the-shortest-queue rule, however, is

that it may require obtaining a large amount of state information. In particular, we need to

know the number of customers in each of the queues, which may be difficult if there are many
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widely-distributed queues.

So it is natural to consider alternative approaches that require less information. A simple

alternative is to use no information at all. One way to do so is to assign each arrival randomly

to one of the queues, with each server being selected having equal chance. However, a random

assignment makes the individual servers act as separate M/M/1 queues. If we assign successive

arrivals randomly to one of the servers, then we lose all the efficiency of the multiserver system.

The key idea in Azar et al. (1994), Vvedenskaya et al. (1996), Turner (1996) and Mitzen-

macher (1996) is to allow just a little choice. In particular, it suffices to compare just two

queues: An alternative “lightweight” approach is to pick two of the queues at random and

join the shorter of those two. The remarkable fact is that this lightweight “low-information”

decision rule does almost as well as the join-the shortest-queue rule, requiring full informa-

tion, which in turn does nearly as well as the large combined group of servers with a single

queue, serving in first-come first-served order. That conclusion was formalized by consider-

ing the asymptotic behavior as the number of servers gets large (with the arrival rate kept

proportional).

A related, alternative scheme, is to pay little attention upon arrival, but then later perform

periodic load balancing. The performance of periodic load balancing is studied in Hjlmtsson

and Whitt (1998).

Thus, previous mathematical analysis suggests that a little flexibility may go a long way.

Thus it is natural to investigate resourse pooling. Related research on resource pooling (with

precise meaning depending upon the context) has been done by Mandelbaum and Reiman

(1998), Mitzenmacher (1997), Mitzenmacher and Vöcking (1999), Harrison and Lopez (1999),

Turner (1999) and Williams (2000). In the same spirit is recent work on cross training of

workers; see Andradóttir et al. (2001), Hopp and van Oyen (2003) and references therein.

Organization of This Paper. Here is how the rest of this paper is organized: In Section

2 we specify our call-center model; i.e., we specify precisely how we will implement skill-based

routing. Next, in Section 3 we describe our experiment to investigate resource pooling in an

SBR call center. In Section 4 we present our staff-and-equipment provisioning algorithm, which

is in the setting of Section 2. In Sections 5 and 6 we describe simulation experiments to see

how the algorithm performs. The first experiment in Section 5 is for a balanced call center,

like the one considered in Section 3. The second experiment in Section 6 is for a more realistic

unbalanced call center. Additional details can be found in Wallace (2004), on which this paper
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draws.

2. The Call-Center Model

In this section we specify the call-center model that we will consider. There are two parts

to the model: (i) a specification of the way that the call center operates, and (ii) stochas-

tic assumptions to be used in our simulation experiments. At the outset we should point

out that neither part of the model is fully general. In particular, we introduce a structured

framework for the operation of the call center which makes it relatively easy to implement skill-

based routing. No doubt, this scheme does not yield optimal routing, even under the strong

stochastic assumptions we make, but we believe it is a reasonable framework. It is based on

existing commercial systems for implementing skill-based routing. However, as indicated in

the introduction, we believe that the main ideas in this paper can be applied more generally.

Our call-center model will be a multi-server queueing system with C servers, K extra

waiting spaces and n call types. The pair (C, K) corresponds to having C agents or CSR’s

and C + K available telephone trunk lines. A call uses a trunk line both while it is waiting

and while it is being served. We assume that the ACD can accommodate C + K calls, with

any calls not being served waiting. Calls arriving when all C + K trunk lines are occupied are

assumed to be blocked and lost.

Now we start introducing our special SBR framework: Each agent can have from 1 to n

skills, at distinct levels, ranging from 1 to n, where n is the number of call types. Agents can

serve a call type if they have the skill for that call type; they cannot serve a call type if they

do not have the required skill. In subsections below we specify: (i) how we assign skills and

skill levels to agents, (ii) what to do when a new arrival occurs, (iii) what to do when an agent

becomes free and (iv) the stochastic assumptions we make in our simulation experiments.

Assigning Skills to Agents We specify the skills of agents via a C × n agent-skill matrix

A. The rows of A correspond to the agents, while the columns of A correspond to skill levels.

The skill levels are used to assign priorities among different agents possessing a designated

skill. (An agent has a skill if and only if he has that skill at some positive level. Lower skill

levels have preference in the priority scheme.) We assume that each agent has at most one

skill at any given skill level, so that the matrix A can indeed be used to assign skills. Entry

Ai,j specifies the skill of the ith agent at the jth skill level, with a 0 indicating no skill at that

level.

7



Row i of A specifies the skills and skill levels for the ith agent. The first column of A

specifies the primary skills. Thus Ai,1 is the primary skill of agent i. We assume that every

agent has a primary skill, so that Ai,1 is an integer with 1 ≤ Ai,1 ≤ n for each i. We group the

agents by their primary skills, so work group Gk is the subset of all agents with primary skill

k, i.e.,

Gk ≡ {i : 1 ≤ i ≤ C, Ai,1 = k}, 1 ≤ k ≤ n .

By our assumptions, the collection of work groups is a partition of the set of all agents, i.e.,

of the set {1, . . . , C}. Each agent belongs to one and only one work group. The number of

elements in work group k is the number of elements in Gk, denoted by |Gk|, i.e.,

Ck ≡ |Gk| =
C∑

i=1

1{Ai,1=k} ,

where 1B is the indicator function of the set B; i.e., 1B(i) = 1 if i ∈ B and 1B = 0 otherwise.

We will assume that there is a work group associated with each call type, although that

assumption could be relaxed.

The jth column of A specifies the skills at the jth skill level. Thus, as indicated above,

entry Ai,j specifies the skill of the ith agent at the jth skill level. If agent i has skill k at level

j, then Ai,j = k; if agent has no skill at level j, then Ai,j = 0. We assume that each agent

skill appears at most at one level, so no positive number appears more than once in any row.

(A second appearance in any row would be redundant, because the higher skill level would

dominate.) Thus the positive entries of the ith row are the skills possessed by the ith agent.

The columns where those positive entries appear indicate the skill levels of those skills for that

particular agent. Two agents have the same skills at the same levels if, and only if, their rows

in the skill matrix A are identical.

In order to clarify the rules for assigning skills to agents, we consider the following four

examples:

A5×1 =




1
1
1
1
1




, A3×2 =




1 0
2 0
2 0


 , A4×2 =




1 0
1 0
2 1
2 1


 , A6×4 =




3 4 1 0
1 4 0 0
2 3 0 0
4 0 0 0
3 1 2 4
1 0 4 0




The first matrix A5×1 specifies an agent profile for a call center manned by 5 agents,

all possessing the same single skill. The second matrix A3×2 specifies an agent profile for a

call center with 3 agents, each possessing one of two primary skills. The zeros in the second
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column indicate that no agent has a secondary skill. Thus, this call center has two separate

work groups that function as separate call centers: Agent 1 will handle all type-1 calls, while

agents 2 and 3 will handle all type-2 calls.

The third matrix A4×2 is in the spirit of the bilingual call-center model used in Green

(1985) and Stanford and Grassmann (1993, 2000). In this matrix, the first two rows represent

2 agents each with a primary skill to support call type 1 and no secondary skill. These 2 agents

form work group one and are referred to as the limited-use or restricted-use servers in Green

(1985) and the unilingual group in Stanford and Grassmann (2000). The third and fourth rows

represent agents 3 and 4. These agents each have a primary skill to support call type 2 and

a secondary skill to support call type 1. They make up work group two and are referred to

as the general-use servers and bilingual group in Green (1985) and Stanford and Grassmann

(2000), respectively.

In the last example, the matrix A6×4 illustrates the more general structure possible for the

agent-skill matrix. This example has 6 agents and 4 call types. There are four work groups,

one for each call type. Using the first column, we can identify the agent’s work group. Work

group 1 consists of agents 2 and 6, while work group 2 consists of agent 3. All agents have

secondary skills with the exception of agents 4 and 6. Agent 4 supports only call type 4, while

agent 5 is a universal agent, because he can support all of the call types. Agent 6 can support

2 different service requests: call type 1 at the primary level and call type 4 at the tertiary level.

Note that agent 6 has a tertiary skill but no secondary skill.

What to do when an Arrival Occurs In order to implement skill-based routing, we need

to specify the decisions we will make in two situations: (i) when an arrival occurs, and (ii)

when an agent becomes free. We treat each in turn.

Arriving calls of type k are first routed to available agents in work group k, because those

agents have primary skill k (Gk = {i : Ai,1 = k}). The longest-idle-agent-routing (LIAR)

policy is used to determine which of the idle agents in work group k is to handle the call. The

LIAR policy sends the call to the agent in work group k that has been idle the longest since the

completion of their last job. The LIAR policy is deemed fair, because it tends to balance the

workload across agents. However, other tie-breaking schemes schemes could be used instead.

For example, one might choose the idle agent whose cumulative idle time over the last half

hour is greatest.

If all agents with call type k as a primary skill are busy, then the call is routed to available
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agents having call type k as a secondary skill. Again, among all agents having type k as a

secondary skill, the LIAR policy is used to pick the actual agent to handle the call. If all

agents with call type k as a primary skill or a secondary skill are busy, then the call is routed

to available agents having call type k as a tertiary skill, and so on. Again, the LIAR policy is

used to break ties.

If no available qualified agent can be found to handle the type-k call immediately upon

arrival, then the type-k call is placed on the end of a queue associated with work group k.

What to do when an Agent becomes Free We now specify what an agent does when he

completes handling a call and becomes free. First, if there are no customers in the n queues,

then the agent goes idle. Otherwise, the agent visits the queues of the work groups for which

he has skills. If there are no waiting calls for which he has skills, then again the agent goes

idle. The agent visits the queues in order of the agent’s skill levels; i.e., the agent goes first to

the queue with his primary skill, second to the queue with his secondary skill, and so forth.

The agent serves the call that is first in line in the first nonempty queue in the skill-level order.

Thus the agent serves calls within each work group (equivalently, within each call type) in a

first-come first-served (FCFS) order or, equivalently, in a first-in first-out (FIFO) order.

Stochastic Assumptions We now specify stochastic assumptions to be used in our simu-

lation experiments. We make relatively simple assumptions, but we do not believe they are

critical to our conclusions.

In our simulation model we assume that n types of calls arrive at the call center according

to n mutually independent Poisson processes with rates λi, 1 ≤ i ≤ n. It is well known that

is equivalent to assuming that all calls arrive according to a single Poisson process with rate

λ = λ1 + · · · + λn and, afterwards, are assigned to be type i with probability pi ≡ λi/λ,

according to mutually independent trials, independent of the single Poisson process.

We assume that the call holding (service) times mutually independent exponential random

variables, which are independent of the arrival process. We assume that calls of type k have

mean 1/µk, regardless of where they are served. Thus we are assuming that time differences

in call processing among different agents can be ignored, given that the agent actually has the

required skill. In our simulation experiments, we will go further and assume that all service

times have the same mean.

In this paper we do not consider either retrials or abandonments. Thus, calls that are
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blocked do not affect future arrivals. We assume that service quality is sufficiently high that

abandonments can be ignored. Thus we assume that all admitted calls will eventually be

served. Again, we believe our conclusions do not depend strongly on these assumptions, but

that remains to be verified. Our provisioning algorithm extends to cover abandonments and

non-exponential service-time and abandon-time distributions, as we will explain in Section 4.

3. The Resource Pooling Experiment

In this section we describe a simulation experiment conducted to investigate the extent

to which resource pooling holds in SBR call centers. In particular, we investigate how many

skills agents need in order to achieve the benefits of resource pooling. We consider a call center

serving 6 call types and see what happens when all agents possess j skills, allowing j to range

from 1 to 6 in separate simulation runs. When j = 6, all agents have all skills, and the call

center behaves like a single-group call center. In contrast, when j = 1, the call center behaves

much like 6 separate call centers, for which the performance is much worse. When j = 1, the

call center does not behave exactly like separate call centers because of the finite waiting room.

Here, when j = 1, the six call types share the common waiting room. The shared waiting room

leads to much better performance than if the waiting room too was divided into segregated

portions without any sharing.

Here is the main point: We show that the performance for 2 ≤ j ≤ 5 is nearly the same as

for j = 6, being much better than when j = 1. We thus see that significant resource pooling

occurs even when each agent has only two skills. The performance is somewhat better if j = 3

than if j = 2, but most of the resource-pooling benefit occurs when j = 2.

The model we consider is a balanced M6/M/90/30 SBR call center. There are 90 agents

and 30 extra waiting spaces. There are 6 call types and thus 6 work groups. The number of

agents per work group is 90/6 = 15; i.e., C1 = C2 = · · · = C6 = 15. The service times are IID

exponential random variables with mean 10 minutes, i.e., 1/µ1 = · · · = 1/µ6 = 10 minutes.

The number of skills per agent varies from 1 to 6 in different runs. Since the number of agents

is 90, each work group can have exactly 15 agents, and, when j ≥ 2, there will be exactly

15/5 = 3 agents with each combination of the possible primary and secondary skills.

Recall that the offered load with common service times is the arrival rate times the mean

service time. We consider three different offered loads: 84.0 (normal load), 77.4 (light load) and

90.0 (heavy load). The corresponding traffic intensities are: 84.0/90 = 0.933 (normal load),
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77.4/90 = 0.86 (light load) and 90/90 = 1.00 (heavy load). As discussed in Whitt (1992), the

traffic intensities yielding normal, light and heavy loading depend on the number of servers,

increasing as the number of servers increases. The finite waiting room makes it possible to

have traffic intensities greater than 1, as would the presence of customer abandonment.

In our resource-pooling simulation experiment, we do all possible cases, considering each

number of skills with each loading. Thus we perform 6× 3 = 18 simulation runs in all. Each

simulation run is based on approximately 800, 000 arrivals, starting after an initial warmup

period to allow the system to reach steady state. The warmup period was chosen to correspond

to 2000 mean service times, which constituted about 20%–24% of each run. In order to calculate

confidence intervals, we used the technique of batch means, dividing each run into 20 batches.

It is also important to validate the simulation tool. As described in Chapter 4 of Wallace

(2004), the simulation tool was validated by making comparisons with alternative ways for

obtaining numerical results. In particular, as summarized in Table 4.1 of Wallace (2004),

the simulation was compared with other methods for treating several different special cases.

Among these were exact numerical results for the M/M/C/K model and the bilingual call

center analyzed by Stanford and Grassman (1993, 1998). For more complicated models, a

comparison was made with Ridley’s (2003) simulator for call centers with time-dependent

arrival rates, specialized to the case of constant arrival rates.

We show the simulation results in Figure 1 and in Tables 1–3. Figure 1 shows 9 individual

graphs in a 3 × 3 arrangement. The columns correspond to the normal, light, and heavy load

cases, respectively. The rows show estimates of (i) the steady-state blocking probability, (ii) the

conditional expected steady-state delay (before beginning service), given that the call enters

(is not blocked), and (iii) and the conditional steady-state probability that the delay exceeds

0.5 minutes, given that the call enters. Both the blocking probability and the delay probability

are in percentages. For each of the offered-load scenarios, we make 6 different simulation runs,

one for each different number of skills. The horizonal axis for each graph specifies the number

of skills that the agents have. The full model requires specifying the agent-skill matrix. The

six agent-skill matrices are displayed in Appendix A.

Figure 1 dramatically shows the resource pooling. In all three offered-load scenarios, there

are significant improvements in performance when agents are given at least two skills. More-

over, we see that most of the benefit is achieved by adding the second skill. Only modest

further improvements are achieved when additional skills are provided. Indeed, Figure 1 shows

that near-full resource pooling is achieved by giving agents only two skills.
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More detailed descriptions of system performance in the 18 cases are shown in Tables 1–3.

In these tables we do not display confidence intervals, but the statistical precision can be seen

from the results for different work groups. Since the model is perfectly symmetric for j = 1,

j = 2 and j = 6, the actual theoretical (infinite-sample) per-work-group performance measures

are the same for all groups. Thus the observed variability in the statistics provides a practical

estimate of the statistical precision.

In order to put Tables 1–3 into perspective, it is useful to analyze the extreme cases

analytically. First, when j = 6, the model reduces to three cases of a M/M/90/30 model

with 1/µ = 10 using a time scale of minutes, which we can solve analytically. The three

cases are: λ = 8.4 (normal load), λ = 7.74 (light load) and λ = 9.0 (heavy load). Numerical

analytical results for these three M/M/90/30 models appear in Table 4. These results confirm

the six-skill case of the simulation runs in Tables 1–3.

As noted above, when j = 1, the model does not reduce to six separate M/M/15/5 models,

because the six call types actually share the common waiting room of size 30. However, it is

clear that the M/M/15/5 model is a worst-case bound for the blocking probabilities. On the

other hand, the M/M/15/30 model is a best-case bound for the blocking probabilities. To

put the simulation results for j = 1 in perspective, we thus calculate performance measures

for the M/M/15/5 and M/M/15/30 models, with the same arrival and service rates. With

the M/M/15/5 model, we again have a time scale of minutes and with 1/µ = 10, but now

the three possible arrival rates are: λ = 1.4 (normal load), λ = 1.29 (light load) and λ = 1.5

(heavy load). The performance results appear in Table 5. From Tables 5 and 1–3, we see that

there is a wide range of performance, none of which is consistently good.

4. A Heuristic SBR Provisioning Algorithm

In this section we apply the resource-pooling property to develop an algorithm to generate

requirements for staff and trunk lines in our call-center model with skill-based routing. That

means that we aim to determine the parameters C and K in the Mn/M/C/K/SBR model

and the agent-skill matrix A, given the other model parameters and various constraints on A

and on performance. Our main idea is to assume that there will be sufficient cross training

so that resource pooling holds, but we use simulation to verify that the performance is indeed

satisfactory, and to make appropriate adjustments if it is not.
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Figure 1: Typical performance measures as a function of the number of skills per agent and

the offered load for an M6/M/90/30 SBR call center with 1/µ1 = · · · = 1/µ6 = 10 minutes.

The specific performance measures are the blocking probability, the mean conditional delay

given entry, and the conditional probability that the delay is greater than 0.5.

14



Performance Number of Skills per Agent

Measure One Two Three Four Five Six

1. Blocking (%) 3.38 0.44 0.39 0.39 0.38 0.38

2. Mean Delay (min) 2.85 0.59 0.49 0.47 0.46 0.46

3. Mean Delay 1 2.99 0.60 0.48 0.46 0.45 0.46

3. Mean Delay 2 2.83 0.60 0.49 0.47 0.46 0.46

3. Mean Delay 3 2.77 0.57 0.47 0.45 0.45 0.44

3. Mean Delay 4 2.78 0.57 0.49 047 0.45 0.45

3. Mean Delay 5 2.92 0.60 0.49 0.45 0.45 0.44

3. Mean Delay 6 2.90 0.61 0.51 0.48 0.47 0.47

4. P (Delay ≤ 0.5 |entry) (%) 47.8 71.6 76.4 77.6 78.0 78.1

5. P (Delay1 ≤ 0.5 |entry) 47.3 71.1 76.4 77.5 78.0 77.9

5. P (Delay2 ≤ 0.5 |entry) 47.2 71.5 76.2 77.6 77.9 78.0

5. P (Delay3 ≤ 0.5 |entry) 48.3 72.1 76.7 77.9 78.2 78.4

5. P (Delay4 ≤ 0.5 |entry) 48.7 72.2 76.6 77.6 78.1 78.1

5. P (Delay5 ≤ 0.5 |entry) 48.3 71.6 76.4 78.1 78.1 78.3

5. P (Delay6 ≤ 0.5 |entry) 48.0 71.4 76.2 77.5 77.8 78.0

6. Avg Agent Util (%) 89.7 92.8 92.9 92.9 92.9 92.9

7. Work Group 1 Util 89.8 92.9 92.9 92.9 92.9 92.9

7. Work Group 2 Util 89.8 92.8 92.8 92.9 92.9 92.9

7. Work Group 3 Util 89.8 92.8 93.0 92.9 92.9 92.9

7. Work Group 4 Util 89.8 92.9 92.9 92.9 92.9 92.9

7. Work Group 5 Util 89.5 92.8 92.8 92.9 92.9 92.9

7. Work Group 6 Util 89.8 92.9 92.9 92.9 92.9 92.9

8. Work Group 1 Prim Util 89.8 69.4 64.8 63.2 62.4 62.0

8. Work Group 2 Prim Util 89.8 69.2 64.2 63.0 62.0 62.5

8. Work Group 3 Prim Util 89.8 69.2 64.2 62.8 62.2 62.1

8. Work Group 4 Prim Util 89.8 68.8 64.1 63.0 62.1 61.9

8. Work Group 5 Prim Util 89.5 69.1 64.3 62.7 62.2 61.9

8. Work Group 6 Prim Util 89.8 69.5 64.9 62.8 62.4 62.0

Table 1: Performance Measures for the M6/M/90/30 SBR simulation run with offered load

α = 84.0, mean service times 1/µi = 10 min, Ci = 15 agents (i = 1, . . . , 6). This is the

normal-load example.
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Performance Number of Skills per Agent

Measure One Two Three Four Five Six

1. Blocking (%) 0.62 0.023 0.019 0.019 0.018 0.018

2. Mean Delay (min) 1.84 0.15 0.10 0.09 0.09 0.09

3. Mean Delay 1 1.83 0.16 0.10 0.09 0.09 0.09

3. Mean Delay 2 1.70 0.16 0.10 0.09 0.09 0.09

3. Mean Delay 3 1.75 0.15 0.10 0.09 0.09 0.09

3. Mean Delay 4 1.75 0.15 0.10 0.09 0.09 0.09

3. Mean Delay 5 1.99 0.15 0.10 0.09 0.08 0.09

3. Mean Delay 6 2.04 0.15 0.10 0.09 0.09 0.08

4. P (Delay ≤ 0.5 |entry) (%) 60.0 91.0 94.1 94.8 95.0 95.1

5. P (Delay1 ≤ 0.5 |entry) 60.3 90.7 94.0 94.7 94.9 94.9

5. P (Delay2 ≤ 0.5 |entry) 60.8 91.0 94.0 94.8 95.0 95.0

5. P (Delay3 ≤ 0.5 |entry) 60.6 91.0 94.1 94.9 95.1 95.1

5. P (Delay4 ≤ 0.5 |entry) 60.7 91.1 94.0 94.8 95.0 95.0

5. P (Delay5 ≤ 0.5 |entry) 59.6 91.1 94.4 94.9 95.3 95.3

5. P (Delay6 ≤ 0.5 |entry) 59.1 91.1 94.1 94.8 95.0 95.2

6. Avg Agent Util (%) 85.4 86.0 86.0 86.0 86.0 86.0

7. Work Group 1 Util 85.3 86.2 86.0 85.9 85.9 86.0

7. Work Group 2 Util 85.2 85.9 86.0 85.9 85.9 86.0

7. Work Group 3 Util 85.3 85.9 85.9 85.8 85.9 85.9

7. Work Group 4 Util 85.2 85.9 86.0 86.1 86.0 86.0

7. Work Group 5 Util 85.5 86.0 85.9 86.0 86.0 85.9

7. Work Group 6 Util 85.6 85.9 85.9 86.1 86.0 85.9

8. Work Group 1 Prim Util 85.3 69.3 66.5 65.6 65.3 65.1

8. Work Group 2 Prim Util 85.2 69.1 66.4 65.6 65.2 64.9

8. Work Group 3 Prim Util 85.3 68.9 66.2 65.3 65.0 65.0

8. Work Group 4 Prim Util 85.2 69.0 66.3 65.7 65.3 65.3

8. Work Group 5 Prim Util 85.5 69.0 66.4 65.6 65.3 65.1

8. Work Group 6 Prim Util 85.6 68.9 66.4 65.7 65.4 64.9

Table 2: Performance Measures for the M6/M/90/30 SBR simulation run with offered load α

= 77.4, mean service times 1/µi = 10 min, Ci = 15 agents (i = 1, . . . , 6). This is the light-load

example.
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Performance Number of Skills per Agent

Measure One Two Three Four Five Six

1. Blocking (%) 7.46 2.54 2.35 2.32 2.31 2.31

2. Mean Delay (min) 3.29 1.40 1.28 1.26 1.25 1.24

3. Mean Delay 1 3.36 1.42 1.31 1.31 1.27 1.31

3. Mean Delay 2 3.30 1.37 1.27 1.26 1.24 1.25

3. Mean Delay 3 3.06 1.41 1.27 1.22 1.25 1.20

3. Mean Delay 4 3.28 1.35 1.28 1.23 1.23 1.22

3. Mean Delay 5 3.29 1.39 1.27 1.28 1.23 1.25

3. Mean Delay 6 3.59 1.43 1.29 1.24 1.26 1.24

4. P (Delay ≤ 0.5 |entry) (%) 41.9 45.3 47.9 48.8 49.4 49.3

5. P (Delay1 ≤ 0.5 |entry) 41.1 45.1 47.7 48.4 49.1 49.3

5. P (Delay2 ≤ 0.5 |entry) 42.3 45.0 48.1 48.7 49.1 49.0

5. P (Delay3 ≤ 0.5 |entry) 42.7 45.2 48.1 49.3 49.5 50.0

5. P (Delay4 ≤ 0.5 |entry) 42.1 45.7 48.0 49.2 49.8 49.6

5. P (Delay5 ≤ 0.5 |entry) 41.8 45.4 47.9 48.8 49.5 48.9

5. P (Delay6 ≤ 0.5 |entry) 41.3 45.4 48.2 48.8 49.5 49.4

6. Avg Agent Util (%) 91.8 97.4 97.6 97.6 97.6 97.6

7. Work Group 1 Util 92.1 97.4 97.6 97.6 97.6 97.6

7. Work Group 2 Util 91.6 97.4 97.6 97.6 97.6 97.6

7. Work Group 3 Util 91.5 97.4 97.6 97.6 97.6 97.6

7. Work Group 4 Util 91.9 97.4 97.6 97.6 97.7 97.7

7. Work Group 5 Util 91.8 97.4 97.6 97.6 97.7 97.7

7. Work Group 6 Util 91.8 97.4 97.6 97.6 97.6 97.7

8. Work Group 1 Prim Util 92.1 73.8 69.3 68.9 67.7 67.6

8. Work Group 2 Prim Util 91.6 73.6 69.4 68.3 67.6 67.4

8. Work Group 3 Prim Util 91.5 73.3 69.1 67.9 67.5 67.1

8. Work Group 4 Prim Util 91.9 73.4 69.3 68.2 67.3 67.6

8. Work Group 5 Prim Util 91.8 73.7 69.2 68.4 67.6 67.9

8. Work Group 6 Prim Util 91.8 73.7 70.0 67.9 67.4 67.6

Table 3: Performance Measures for the M6/M/90/30 SBR simulation run with offered load α

= 90.0, mean service times 1/µi = 10 min, Ci = 15 agents (i = 1, . . . , 6). This is the heavy-load

example.
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M/M/90/30

Perf. Measure λ = 7.74 λ = 8.40 λ = 9.00

1. Blocking (%) 0.0168 0.36 2.35

2. Mean Delay (min) 0.083 0.450 1.24

4. P (Delay ≤ 0.5 |entry) (%) 94.2 73.3 38.7

4. P (Delay ≤ 1.0 |entry) (%) 97.0 81.6 49.5

6. Avg. Agent Util. (%) 85.99 93.00 97.65

Table 4: Performance Measures for the M/M/90/30 model to put the SBR simulation results

in perspective. The mean service time is 1/µ = 10 minutes.

M/M/15/K

K=5 K=30

Perf. Measure λ = 1.29 λ = 1.40 λ = 1.50 λ = 1.29 λ = 1.40 λ = 1.50

1. Blocking (%) 3.88 6.53 9.48 0.0073 0.66 2.81

2. Mean Delay (min) 0.585 0.823 1.05 2.15 4.94 8.97

4. P (Delay ≤ 0.5 |entry) (%) 73.7 64.1 55.5 57.5 34.4 15.3

4. P (Delay ≤ 1.0 |entry) (%) 79.1 70.9 63.3 61.8 38.1 17.5

6. Avg. Agent Util. (%) 85.37 92.72 97.19 82.66 87.24 90.52

Table 5: Performance Measures for the M/M/15/K model for K = 5 and K = 30 to put

the SBR simulation results for the case in which all agents having only one skill (j = 1) in

perspective. The mean service time is 1/µ = 10 minutes.
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Constraints Our primary goal is to minimize C, the total staff required. A secondary goal,

for given C, is to minimize C + K, the required number of trunk lines. We seek minimum

values of C and K subject to the condition that constraints on performance are satisfied.

We also aim to determine an appropriate agent-skill matrix A, subject to constraints on it

and subject to constraints on performance. The specific problem we consider here allows an

arbitrary agent-skill matrix A subject to the constraint that each agent have at most two skills.

We intend that to be illustrative of what can be done by our general approach.

We consider two performance constraints: First, we have a speed-to-answer service-level

target; specifically, for each call type i, we require that

P (Delayi ≤ τi|entry) ≥ δi , (4.1)

where Delayi denotes the steady-state delay for an arriving call of type i (before beginning

service) and in general the parameters τi and δi can depend on the call type i. The constraint in

(4.1) is on the conditional delay probability given that the arriving call enters (is not blocked).

Here we let

τi = τ = 0.5 and δi = δ = 0.80 (4.2)

which corresponds to the requirement that 80% of the calls of each type be answered within

0.5 minute (30 seconds).

Our second performance constraint is a blocking probability target. For each call type i, we

require that

P (Q(i) = C + K) ≤ εi , (4.3)

where Q(i) is the steady-state total number of calls in the system seen by an arrival of type

i. Under the assumption of Poisson arrivals (which we have assumed here, but which need

not hold in practice), the random variables Q(i) are distributed as Q, the steady-state total

number in the system at an arbitrary time, by virtue of the Poisson Arrivals See Time Averages

(PASTA) property; e.g., see Wolff (1989). Here we will let the blocking probability target be

εi = ε = 0.005 for all i , (4.4)

which corresponds to 0.5% blocking. Typically, agents are much more expensive than trunk

lines, so that the blocking probability target should be relatively small. The blocking-probability

constraint is included so that there are not substantially more trunk lines than needed.

Our approach is to exploit the resource-pooling property to obtain an initial candidate

solution. Then we exploit simulation to make local adjustments to obtain a good solution.
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Finding an Initial Candidate Pair (C,K). We make use of the resource-pooling property

by initially acting as if all agents have all skills or, equivalently, as if there was only a single

call type. Thus we choose initial values of C and K to meet the performance requirements

in a standard M/M/C/K model. Ways to do so, along with supporting theory, have been

developed by Massey and Wallace (2004).

To apply the M/M/C/K model, we need to calculate the aggregate parameters. The

arrival rate for the M/M/C/K model is the total arrival rate

λ ≡ λ1 + · · ·+ λn (4.5)

and the expected service time is a convex combination of the individual mean service times,

namely,
1
µ
≡ 1

λ

n∑

i=1

λi

µi
. (4.6)

The ratio α ≡ λ/µ is the offered load in the M/M/C/K model. From heavy-traffic

stochastic-process limits for many-server queues in Halfin and Whitt (1981), Puhalskii and

Reiman (2000), Massey and Wallace (2004) and Whitt (2003), we know that, for the relatively

large offered loads usually considered, that

C ≈ α + c1

√
α and K ≈ c2

√
α (4.7)

for suitable positive constants c1 and c2 (of order 1). Thus we can anticipate approximately

what the critical values will be.

Since there are very fast algorithms for solving the M/M/C/K model, it is easy to perform

a search to find the best (C, K) pair: A simple way is to first act as if K = ∞. With K = ∞,

the speed-to-answer service-level is monotone in C, so it is easy to find the value of C that

just meets the speed-to-answer service-level target. Next, for that initial value of C fixed,

the blocking probability is monotone in K, so it is easy to find the value of K such that the

pair (C, K) just meets the blocking probability target. However, since we decreased K, we

increased the blocking, thereby reducing the delays for the customers that enter, so it may

now be possible to decrease C. So, starting from the initial pair (C,K), we can decease C in

unit steps, finding the associated K to meet the blocking-probability target at each step, until

we can decrease C no more. Finding the new K to go with C − 1 is relatively easy, because

we can start with K + 1, where K is associated with C. In that way, we can calculate the

optimum (C, K) pair for the M/M/C/K model, i.e., the one yielding the minimum value of

C, and for that C, the minimum value of K such that both performance constraints are met.
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The algorithm in Massey and Wallace (2004) based on the heavy-traffic limit can get close

even more quickly.

We note that an infeasible value of C can be identified if we locate an associated value of K

such that the two performance constraints are simultaneously violated. If we try to increase K

in order to reduce the blocking probability, the speed-to-answer service-level constraint will be

violated even more. On the other hand, if we try to decrease K to improve the speed-to-answer

probability, then the blocking gets worse. So no value of K can work with that value of C.

(See Massey and Wallace (2004) for supporting theory.)

It is significant that this important initial step using the Erlang model can be generalized.

By using the approximation algorithm in Whitt (2003), we can carry out the same procedure for

the more general M/GI/C/K+GI model, allowing abandonment with non-exponential service-

time and customer-abandon-time distributions, but we do not do that here. For applications,

that is an important extension, because statistical analysis of call-center data has shown that

the service-time and abandon-time distributions are often not nearly exponential; see Brown

et al. (2002).

Determining the Work Group Sizes Having used the M/M/C/K model to find an initial

pair (C, K), we now must specify the skills and skill levels for the C agents. We first determine

the initial work group sizes; i.e., we first determine Ci, the number of agents in work group i,

for each i, 1 ≤ i ≤ n.

Applying the heavy-traffic stochastic-process limits for many-server queues again, we use a

square-root approximation to allocate agents to the n work groups. In particular, first ignoring

integrality constraints, we first generate real numbers Ri as initial estimates for Ci. We let

Ri = αi + x
√

αi, 1 ≤ i ≤ n , (4.8)

where

αi ≡ λi

µi
(4.9)

is the offered load of call type i and x is a positive constant. It is easy to see that x must be

x =
(C − α)∑n

i=1

√
αi

. (4.10)

It is easy to see that, Ri > 0 and R1 + · · ·+Rn = C, provided that C > α, which will always be

the case if the blocking probability is sufficiently small. As shown in Theorem 8.2.1 of Wallace

(2004), the square-root method allocates relatively more capacity to the work groups with the

smaller offered loads.
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We next round the work group sizes Ri specified in (4.8)–(4.10) to obtain the desired integer

values Ci, keeping the property C1 + · · ·+ Cn = C. When there are several work groups, none

of which are large, this rounding can cause difficulties, but these difficulties will be addressed

in the second refinement phase of the algorithm, so we do not consider the rounding problem

very important.

One simple way to do the rounding is to first round down, letting C∗
i = bRic, 1 ≤ i ≤ n,

where byc is the greater integer less than or equal to y. We start by assigning C∗
i agents to

work group i. The total number of agents assigned so far is

C∗ ≡ C∗
1 + · · ·+ C∗

n . (4.11)

We then need to assign the remaining C−C∗ agents to work groups. (Note that necessarily 0 ≤
C−C∗ ≤ n−1.) A natural procedure is to assign the C−C∗ remaining agents one to each group

in order of the differences Ri − bRic (higher numbers first). A possible refinement designed

to aid the smaller work groups is to allocate in order of the normalized values (Ri − bRic)/Ri

(again higher numbers first).

Determining the Agent-Skill Matrix Given the work group sizes, we next need to con-

struct an associated initial agent skill matrix A. In actual applications, this step is likely to

depend strongly on the skill combinations available. Assuming that resource pooling will be

present, this step should not be too critical either. Nevertheless, we specify a specific procedure.

We start by noting that the first column of A is determined so that |Gk| = Ck for each k.

Letting Ci,j,k denote the number of agents in work group i that have skill level j to support

call type k, we let

Ci,j,k =
{

Ci for j = 1 and k = i
γi,j(C − Ci)−1CkCi, otherwise

(4.12)

where 0 ≤ γi,j ≤ 1 and it is understood that, for each pair (i, k), we must have Ci,j,k = 0 for

all but one value of j. The parameter γi,j is the proportion of agents in work group i that have

a skill at level j.

In our examples each agent will have exactly two skills. When agents have two skills,

γi,j = 1 for j = 2, and γi,j = 0 otherwise. Note that the scheme in (4.12) lets the number of

agents in work group i having secondary skill to serve call type k be directly proportional to

both Ci, the size of work group i, and Ck, the size of work group k.

Note that this framework allows us to consider partial skill assignments as well. For exam-

ple, if we want only half of the agents in each work group to have secondary skills, then we let
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γi,2 = 1/2. Also note that, as before, we must do additional rounding to obtain integer values.

Given the above, it is not difficult to complete the definition of the agent-skill matrix A in

our setting, in which we only specify the number of skills each agent has. We do not discuss

further details, because it does not seem too important and because we anticipate that there

will be other constraints on the agent-skill matrix in applications.

Using Simulation to Make Improvements. Given the arrival and service parameters,

and any agent-skill matrix A, we can use simulation to evaluate the performance. Thus we

next use simulation to evaluate the performance and make refinements. We keep making

modifications, trying to minimize the staff C, and minimize K for given C, subject to the

constraint that the performance requirements are met. In the initial phase above, we used

resource pooling and fast numerical algorithms to get close to the optimal pair (C,K). The

goal is to be close enough that only a relatively small number of extra simulations are required

to get to a good solution.

Since we have based our initial staffing on the resource-pooling property, we anticipate that

the initial staffing requirement C is optimistic (a lower bound). But to find out, we simulate

the call-center model and examine the performance. If the speed-to-answer service-level target

is not met for one or more classes, we increment C by one and decrement K by 1, thus keeping

C + K fixed, and repeat the experiment. By the process already specified, we determine new

work groups and a new agent-skill matrix A. We repeat this step until all the speed-to-answer

service-level targets are met. Because of the resource pooling, we anticipate that we will not

need to increment C many times.

Once we have found a staffing level C meeting the speed-to-answer service-level target, we

investigate the blocking-probability target. If the blocking-probability target is met, then we

have an initial feasible solution, and we can go on to the refinement phase. If the blocking-

probability target is not met, then we increment K by one and conduct another simulation,

continuing until the blocking-probability target is met. That might yield an infeasible C. If

necessary, we increment C by one and repeat the search for a feasible K, We thus complete

this initial phase of the search with a feasible pair (C, K) and a feasible agent-skill matrix A.

We do not stop, however, because it may be possible to do better. For example, the

rounding to determine integer work-group sizes can cause difficulties. So we now enter a

performance-based refinement phase. Our primary goal now is to decrease C. But now we use

the observed performance to identify appropriate local changes to make. We first selectively
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decrement the total number of agents, C, by one and increment K by one, thus again keeping

C +K fixed. The idea here is to remove an agent from the highest performing group, and then

among those, one that has secondary skills serving another high performing group, where high-

performing groups are those most strongly exceeding the speed-to-answer service-level target.

We then update the agent-skill matrix A by deleting the row and repeating the experiment.

If all speed-to-answer service-level targets are met, then we try to repeat the procedure and

delete another agent.

When no more agents can be simply removed, we try to make the last infeasible (C,K)

pair feasible by adjusting the agent skill mix. We switch skills of high performing work groups

to low performing work groups. If by these switches we succeed in making the current (C,K)

pair feasible, then we go back to the previous step and try to simply decrement C. When the

agent skill mix adjustment fails to produce feasibility, we go back to the last feasible (C,K)

and stop there.

The general idea is to perform a local search in the space of allowed pairs (C, K) and skill

matrices A, using simulations to evaluate the performance of each successive setting. Since

performance requirements do not need to be generated in real time, the computer could be

used to thoroughly investigate all possible local changes, if desired. The local search idea is

similar to the local-search procedure used by Choudhury et al. (1995). Here, we can judge

the progress of the refinements by comparing the number C produced with the initial value

produced in the resource-pooling step; that initial value should be a lower bound.

5. A Balanced Example

In this section we show how the provisioning algorithm in Section 4 works in a balanced

example, closely related to the example used for the resource-pooling experiment in Section

3. Like Section 3, the balanced example has 6 call types. Again the mean service time is 10

minutes. The offered load for each call type is 13.75, so that the total offered load is 82.5.

We start by applying the M/M/C/K model. First, the asymptotic method for the M/M/C/K

model in Massey and Wallace (2004) yields an initial solution of (C, K) = (90, 21). As shown

in Table 6 exact analysis yields (90, 20) instead, but the blocking probability is close to the

boundary (0.5% blocking). Clearly, 89 agents are insufficient.

In contrast, if all agents have only one skill, then we have 6 separate M/M/C/K models

each with offered load 13.75, for which the optimal solution is (18, 10), yielding a total (C,K) =

24



M/M/C/K and λ = 8.25

Perf. Measure C = 90,K = 21 C = 90,K = 20 C = 90,K = 19 C = 89,K = 21

1. Blocking (%) 0.45 0.49 0.53 0.60

2. Mean Delay (min) 0.248 0.238 0.227 0.303

4. P (Delay ≤ 0.5 |entry) (%) 82.4 82.9 83.2 78.9

4. P (Delay ≤ 1.0 |entry) (%) 89.6 90.0 90.5 87.0

6. Avg. Agent Util. (%) 91.25 91.22 91.18 91.12

Table 6: Performance Measures for the M/M/90/30 model to put the SBR simulation results

in perspective. The mean service time is 1/µ = 10 minutes.

(108, 60). So, clearly, adding multiple skills has an enormous performance impact. Indeed, 20%

more agents are required when agents have only one skill instead of all six skills. The question

is whether we can experience much less performance degradation when agents have just two

skills.

We now turn to the simulation phase of the algorithm. For the initial value C = 90,

we can assign primary and secondary skills to each agent in a balanced way. Each of the 6

work groups has 15 agents. And, for each work group (primary skill), each of the 5 remaining

skills are assigned to 3 agents in the work group. Thus each of the 30 pairs of distinct skills

are assigned as primary and secondary skills to 3 agents. Given that obvious initial agent

skill matrix, we apply simulation to evaluate its performance. The simulation results for this

initial case with (C,K) = (90, 21) and that skill matrix is given in Table 7. We show the

overall blocking probability, the overall mean delay, the mean delay for each call type, the

overall speed-to-answer service-level P (Delay ≤ 0.5 |entry), the per-call-type speed-to-answer

service-level P (Delayi ≤ 0.5 |entry), the overall agent utilization percentage, the work-group

utilization percentages and the percentage work-group utilizations devoted to call types with

that skill as a primary skill.

From Table 7, we see that the blocking probability is 0.0054, which is above the target

ε = 0.0050, while some of the speed-to-answer service-level probabilities are also below the

target 80%. Those speed-to-answer discrepancies could conceivably be due to statistical error,

but the blocking gap is significant. Thus we conclude that we need to increment the number

of agents, C.

Following the specified procedure, we increment C by 1 and decrement K by one, to produce

the new candidate pair (91, 20). It next remains to specify the work groups and the agent-skill

matrix. For this symmetric example, we get Ri = 15.1667 for all i. We thus, arbitrarily add
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one agent to work group 6. We then arbitrarily give this agent secondary skill 5, so we add the

row (6, 5, 0, 0, 0, 0) to the initial agent-skill matrix. Then we simulate this new case and obtain

the results in Table 7. And now we see that the performance constraints are all satisfied, so we

can stop. As we should expect, the performance is somewhat better for work groups 6 and 5

because they received the extra help. The main point, though, is that the provisioning solution

when each agent has only two skills is nearly the same as when each agent has all six skills.

6. An Unbalanced Example

In this section we consider a more difficult unbalanced example. We leave the mean service

times the same, but modify the arrival rates so that the offered loads become

α1 = α2 = 4.25, α3 = 10.50, α4 = 13.75, α5 = 19.25 and α6 = 30.50 (6.1)

Just as for the balanced example, the total offered load is 82.50, but now the six offered loads

are unbalanced.

Just as for the balanced example, if all agents have all six skills, the solution based on the

M/M/C/K model is (C,K) = (90, 21). On the other hand, if each agent has only a single

skill, then we find the six required (C, K) pairs associated with the offered loads in (6.1) are:

(7, 5), (7, 5), (14, 8), (18, 9), (24, 10), and (36, 13), respectively, yielding a total requirement of

(106, 50). Interestingly, fewer resources are required in the single-skill case for the unbalanced

model than for the balanced model, but there still is a dramatic increase in required resources.

To see what happens when each agent has two skills, we again turn to the simulation.

However, in the unbalanced case the initial case is no longer symmetric, so from the outset

we have rounding problems when we specify the work groups. In the initial simulation phase,

where we simply increment C, the algorithm takes four steps, proceeding from C = 90 to

C = 93. The successive work group sizes assigned when C ranges from 90 to 94 are shown

in Table 8. For this example, we rounded up the first five work-group sizes, and chose the

final sixth work-group size so that the total number of agents became the correct number.

The rounding procedure specified above would work better, but we will see that the rounding

procedure is not critical.

Given the work-group sizes specified in the C = 90 column of Table 8, we next define

the initial agent-skill matrix A. Following (4.12), we assign secondary skills to the agents as

specified in Table 9. The initial agent-skill matrix itself is displayed in Appendix B.
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Heuristic SBR Resource Provisioning Algorithm
Number of Iterations (No. of Agents)

Performance 1 2
Measure (90) (91)

1. Blocking (%) 0.54 0.43
2. Mean Delay (min) 0.36 0.30
3. Mean Delay 1 0.37 0.32
3. Mean Delay 2 0.36 0.32
3. Mean Delay 3 0.35 0.30
3. Mean Delay 4 0.36 0.30
3. Mean Delay 5 0.35 0.28
3. Mean Delay 6 0.37 0.28
4. P (Delay ≤ 0.5 |entry) (%) 79.8 82.7
5. P (Delay1 ≤ 0.5 |entry) 79.5 81.9
5. P (Delay2 ≤ 0.5 |entry) 79.7 81.9
5. P (Delay3 ≤ 0.5 |entry) 80.0 82.5
5. P (Delay4 ≤ 0.5 |entry) 80.0 82.6
5. P (Delay5 ≤ 0.5 |entry) 80.3 83.5
5. P (Delay6 ≤ 0.5 |entry) 79.7 83.9
6. Avg Agent Util (%) 91.1 90.2
7. Work Group 1 Util 91.2 90.4
7. Work Group 2 Util 91.2 90.3
7. Work Group 3 Util 91.1 90.4
7. Work Group 4 Util 91.2 90.3
7. Work Group 5 Util 91.2 90.4
7. Work Group 6 Util 91.2 89.7
8. Work Group 1 Prim Util 68.3 69.1
8. Work Group 2 Prim Util 68.0 68.9
8. Work Group 3 Prim Util 67.8 68.7
8. Work Group 4 Prim Util 67.8 68.9
8. Work Group 5 Prim Util 67.9 68.3
8. Work Group 6 Prim Util 68.3 66.5

Table 7: Performance measures for the balanced-offered-load example in which the offered
load are α1 = · · · = α6 = 13.75, the mean service times are 1/µ1 = · · · = 1/µ6 = 10.0 min,
the blocking-probability target is ε = 0.005 and the speed-to-answer service-level target is
P (Delay ≤ 0.5 |entry) ≥ 0.80.
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Square-Root Method
C = 90 C = 91 C = 92 C = 93 C = 94

x = 0.358 x = 0.405 x = 0.453 x = 0.500 x = 0.548
No. αi Real Ci Real Ci Real Ci Real Ci Real Ci

1. 4.25 4.99 5 5.09 6 5.18 6 5.28 6 5.38 6
2. 4.25 4.99 5 5.09 6 5.18 6 5.28 6 5.38 6
3. 10.50 11.66 12 11.81 12 11.97 12 12.12 13 12.28 13
4. 13.75 15.08 16 15.25 16 15.43 16 15.61 16 15.78 16
5. 19.25 20.82 21 21.03 22 21.24 22 21.45 22 21.66 22
6. 30.50 32.47 31 32.74 29 33.00 30 33.26 30 33.53 31

total 82.5 90.00 90 91.00 91 92.00 92 93.00 93 94.00 94

Table 8: The number of agents in each work group computed by the square-root method for
the unbalanced-offered-load example, where the rounding is done by rounding up the first five
work groups and then compensating by rounding down the sixth work group.

Primary Number of secondary skills that support call-type k

Skills k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

C1 = 5 C1,2,1 = 0 C1,2,2 = 1 C1,2,3 = 1 C1,2,4 = 1 C1,2,5 = 1 C1,2,6 =1
C2 = 5 C2,2,1 = 1 C2,2,2 = 0 C2,2,3 = 1 C2,2,4 = 1 C2,2,5 = 1 C2,2,6 = 1
C3 = 12 C321 = 1 C322 = 1 C323 = 0 C324 = 2 C325 = 3 C326 = 5
C4 = 16 C421 = 1 C422 = 1 C423 = 3 C424 = 0 C425 = 4 C426 = 7
C5 = 21 C521 = 2 C522 = 1 C523 = 4 C524 = 5 C525 = 0 C526 = 9
C6 = 31 C621 = 3 C622 = 3 C623 = 6 C624 = 8 C625 = 11 C626 = 0

total
C = 90 8 7 15 17 20 23

Table 9: Specification of the secondary skills for the initial agent-skill matrix A
(2)
90×6 using the

recommended method for evenly assigning agents skills, for the unbalanced example.
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As indicated, the initial phase of the simulation algorithm in which we simply increment

C takes us to the feasible solution (93, 18) in four steps. The second agent-skill matrix is also

shown in Appendix B; it has three new rows, which are highlighted in boldface. The next

two cases for (92, 19) and (93, 18) each involve the addition of a single row. The added rows

in these two steps are, respectively, (6, 4, 0, 0, 0, 0) and (3, 4, 0, 0, 0, 0). Those additions to the

agent-skill matrix for (91, 20) give us the skill matrix for (93, 18).

The performance measures for each case are shown in Table 10. From Table 10, we see

that the last (93, 18) case is indeed feasible, but some of the speed-to-answer service-level

probabilities are much above target, suggesting that we might well be able to reduce the

number of agents.

We now turn to the second phase of the resource-provisioning algorithm. Now we make

local adjustments based on the observed performance. We start with the (93, 18) feasible

solution that concluded the incrementing-C phase. The successive changes we make in this

second performance-based phase are displayed in Table 11. In the 8th iteration (simulation

run) we obtain a feasible solution with the pair (91, 20), once again coming within a single

agent of the single-group case in which all agents have 6 skills. The final agent-skill matrix is

displayed in Appendix B.

To verify the we have found the best possible solution (within our local-search framework),

we continue to perform simulations. We go on to another 9th iteration, deleting the row

(3, 5, 0, 0, 0, 0), but we see that there is no point to try to achieve C = 90, because the blocking

probability exceeds the target 0.5% and the overall speed-to-answer service-level probability

is under target, as well as several of the individual call-type speed-to-answer service-level

probabilities. And there is no longer any significant slack in the individual call-type speed-to-

answer service-level probabilities. The highest one is 80.5%.

But we have admirably achieved our goal. Once again, the final feasible solution is within

a single agent of what can be achieved when all agents have all skills.
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First Phase of the SBR Resource-Provisioning Algorithm
Number of Iterations (No. of Agents)

Performance 1 2 3 4
Measure (90) (91) (92) (93)

1. Blocking (%) 0.53 0.42 0.36 0.30
2. Mean Delay (min) 0.35 0.28 0.23 0.18
3. Mean Delay 1 0.82 0.55 0.47 0.40
3. Mean Delay 2 0.97 0.58 0.48 0.40
3. Mean Delay 3 0.39 0.33 0.27 0.20
3. Mean Delay 4 0.31 0.28 0.22 0.18
3. Mean Delay 5 0.27 0.22 0.19 0.16
3. Mean Delay 6 0.24 0.22 0.17 0.13
4. P (Delay ≤ 0.5 |entry) (%) 81.3 83.9 86.5 88.8
5. P (Delay1 ≤ 0.5 |entry) 68.3 75.5 78.4 80.5
5. P (Delay2 ≤ 0.5 |entry) 65.2 74.9 77.8 80.3
5. P (Delay3 ≤ 0.5 |entry) 79.7 81.8 84.7 88.0
5. P (Delay4 ≤ 0.5 |entry) 82.0 83.6 86.5 88.8
5. P (Delay5 ≤ 0.5 |entry) 83.4 86.2 87.8 89.8
5. P (Delay6 ≤ 0.5 |entry) 84.4 85.8 88.7 90.9
6. Avg Agent Util (%) 91.2 90.2 89.3 88.4
7. Work Group 1 Util 86.8 84.9 83.2 82.1
7. Work Group 2 Util 86.8 84.6 83.0 81.8
7. Work Group 3 Util 89.5 88.6 87.8 86.0
7. Work Group 4 Util 90.2 89.5 88.6 87.7
7. Work Group 5 Util 91.6 90.5 89.6 88.8
7. Work Group 6 Util 93.4 93.5 92.6 92.1
8. Work Group 1 Prim Util 54.4 50.4 50.3 51.6
8. Work Group 2 Prim Util 55.5 50.3 51.1 50.8
8. Work Group 3 Prim Util 63.7 63.6 64.6 62.7
8. Work Group 4 Prim Util 66.4 67.1 67.6 67.9
8. Work Group 5 Prim Util 72.0 70.6 71.6 72.0
8. Work Group 6 Prim Util 78.8 80.8 80.5 81.1

Table 10: Performance measures in the initial phase of the algorithm for the unbalanced
example having offered loads α1 = α2 = 4.25, α3 = 10.50, α4 = 13.75, α5 = 19.25, and α6

= 30.50. As always, the mean service times are 1/µ1 = · · · = 1/µ6 = 10.0 minutes, the
blocking-probability target is ε = 0.005 and the speed-to-answer service-level target is target
delay P (Delay ≤ 0.5 |entry) ≥ 0.80.
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Steps in the Second Refinement Phase of the Algorithm

Agent Skill aT = bT =

Iteration Removal Change
�

j k 0 0 0 0
� �

q r 0 0 0 0
�

(C, K)

5
√ �

6 5 0 0 0 0
�

(92, 19)

6
√ �

6 5 0 0 0 0
� �

2 1 0 0 0 0
�

(92, 19)

7
√ �

4 6 0 0 0 0
�

(91, 20)

8
√ �

5 6 0 0 0 0
� �

1 2 0 0 0 0
�

(91, 20)

9
√ �

3 5 0 0 0 0
�

(90, 21)

Table 11: The agent-skill-matrix updates during the second performance-based refinement
phase of the algorithm. The row vectors aT and bT are the deleted and inserted rows, respec-
tively, corresponding to the skill profiles of agents in the highest and worst performing work
groups.
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Refined SBR Heuristic Resource Provisioning Algorithm

Number of Iterations (No of Agents)

Performance 4 5 6 7 8 9

Measure (93) (92) (92) (91) (91) (90)

1. Blocking (%) 0.30 0.35 0.36 0.43 0.44 0.54

2. Mean Delay (min) 0.18 0.23 0.23 0.28 0.29 0.36

3. Mean Delay 1 0.40 0.47 0.38 0.47 0.37 0.40

3. Mean Delay 2 0.40 0.48 0.37 0.46 0.36 0.41

3. Mean Delay 3 0.20 0.23 0.24 0.29 0.29 0.41

3. Mean Delay 4 0.18 0.21 0.21 0.30 0.30 0.35

3. Mean Delay 5 0.16 0.19 0.21 0.25 0.28 0.35

3. Mean Delay 6 0.13 0.18 0.21 0.25 0.28 0.33

4. P (Delay ≤ 0.5 |entry) (%) 88.8 86.5 86.2 83.4 82.9 79.8

5. P (Delay1 ≤ 0.5 |entry) 80.5 78.0 81.6 78.6 82.6 80.0

5. P (Delay2 ≤ 0.5 |entry) 80.3 77.6 81.4 78.6 81.9 79.7

5. P (Delay3 ≤ 0.5 |entry) 88.0 86.1 85.8 83.6 83.4 78.6

5. P (Delay4 ≤ 0.5 |entry) 88.8 87.2 87.0 83.2 82.6 80.5

5. P (Delay5 ≤ 0.5 |entry) 89.8 87.7 86.7 84.6 83.1 79.4

5. P (Delay6 ≤ 0.5 |entry) 90.9 88.0 86.9 84.1 82.9 80.3

6. Avg Agent Util (%) 88.4 89.3 89.3 90.2 90.2 91.1

7. Work Group 1 Util 82.1 83.2 82.9 84.6 82.5 84.2

7. Work Group 2 Util 81.8 83.2 81.4 83.1 82.6 83.7

7. Work Group 3 Util 86.0 87.0 87.3 88.4 88.5 90.1

7. Work Group 4 Util 87.7 88.8 88.9 90.2 90.5 91.3

7. Work Group 5 Util 88.8 89.7 90.0 90.7 91.2 92.1

7. Work Group 6 Util 92.1 92.9 93.3 93.8 94.0 94.4

8. Work Group 1 Prim Util 51.6 50.8 49.1 48.7 45.5 44.8

8. Work Group 2 Prim Util 50.8 50.5 46.7 46.7 45.6 44.5

8. Work Group 3 Prim Util 62.7 61.9 61.7 61.4 60.9 62.8

8. Work Group 4 Prim Util 67.9 67.0 66.9 68.2 68.2 67.2

8. Work Group 5 Prim Util 72.0 71.4 71.8 71.3 72.8 73.2

8. Work Group 6 Prim Util 81.1 81.5 82.5 82.1 82.4 81.8

Table 12: Performance measures for the unbalanced example in the second refinement phase
of the provisioning algorithm. The offered loads are α1 = α2 = 4.25, α3 = 10.50, α4 = 13.75,
α5 = 19.25, and α6 = 30.50.
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Mitzenmacher, M. and B. Vöcking 1999. The asymptotics of selecting the shortest of two,

improved. Proceedings of the 1999 Allerton Conference on Communication, Control and

Computing, University of Illinois.

Perry, M. and A. Nilsson 1992. Performance modeling of automatic call distributors: assignable

grade of service staffing. Proceedings of the 14th International Switching Symposium,

294–298.

34



Puhalskii, A. A., M. I. Reiman. 2000. The multiclass GI/PH/N queue in the Halfin-Whitt

regime. Adv. Appl. Prob. 32, 564-595.

Ridley, A. 2003. Performance Analysis of a Multi-Class Preemptive Priority Call Center with

Time Varying Arrivals, Ph.D. dissertation, University of Maryland, College Park.

Stanford, D. and W. K. Grassmann 1993. The Bilingual Server Systems: A Queueing Model

Featuring Fully And Partially Qualified Servers. Management Science 31, 221–277.

Stanford D. and W. K. Grassmann 2000. Bilingual server call centers. Analysis of Commu-

nication Networks: call centers, traffic and performance, eds. D. McDonald and S. R. E.

Turner (Amer. Math. Soc., Providence), 31–47.

Turner, S. 1996. Resource Pooling In Stochastic Networks, Ph.D Dissertation, Cambridge

University.

Turner, S. (1998). The Effect of Increasing Routing Choice on Resource Pooling. Probability

in the Engineering and Informational Sciences. 12, 109–124.

Vvedenskaya, N. D., R. L. Dobrushin and F. I. Karpelovich 1996. Queueing systems with

selection of the shortest of two queues: an asymptotic approach. Problems in Information

Transmission 32, 15–27.

Wallace, R. B. 2004. Performance Modeling and Design of Call Centers with Skill-Based

Routing, Ph.D. dissertation, the George Washington University, School of Engineering

and Applied Science.

Whitt, W. 1986. Deciding which queue to join: some counterexamples. Operations Research

34, 55–62.

Whitt, W. 1992. Understanding the efficiency of multi-server service systems. Management

Science, 38, 708–723.

Whitt, W. 2002. Heavy-traffic limits for the G/H∗
2/n/m queue. Department of Industrial

Engineering and Operations Research, Columbia University.

Whitt, W. 2003. Engineering solution of a basic call-center model. Department of Industrial

Engineering and Operations Research, Columbia University. Submitted to Management

Science.

35



Williams, R. J. (2000) On dynamic scheduling of a parallel server system with complete

resource pooling. Analysis of Communication Networks: Call Centres, Traffic and Per-

formance, D. R. McDonald and S. R. E. Turner (eds.), Fields Institute Communications

28, The American Math. Society, Providence, RI, 49–72.

Winston, W. 1977. Optimality of the shortest line discipline. Journal of Applied Probability

14, 181–189.

Wolff, R. W. 1989. Stochastic Modeling and the Theory of Queues, Prentice Hall, Englewood

Cliffs, NJ.

36



Appendix A. Agent-Skill Matrices for the Resource-Pooling Experiment

In this appendix we display the six agent-skill matrices used in the resource-pooling

experiment in Section 3.

A
(1)
90×6 =

 
B

(1)
45×6

C
(1)
45×6

!
,B

(1)
45×6 =

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
2 0 0 0 0 0
2 0 0 0 0 0
2 0 0 0 0 0
2 0 0 0 0 0
2 0 0 0 0 0
2 0 0 0 0 0
2 0 0 0 0 0
2 0 0 0 0 0
2 0 0 0 0 0
2 0 0 0 0 0
2 0 0 0 0 0
2 0 0 0 0 0
2 0 0 0 0 0
2 0 0 0 0 0
2 0 0 0 0 0
3 0 0 0 0 0
3 0 0 0 0 0
3 0 0 0 0 0
3 0 0 0 0 0
3 0 0 0 0 0
3 0 0 0 0 0
3 0 0 0 0 0
3 0 0 0 0 0
3 0 0 0 0 0
3 0 0 0 0 0
3 0 0 0 0 0
3 0 0 0 0 0
3 0 0 0 0 0
3 0 0 0 0 0
3 0 0 0 0 0

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

,C
(1)
45×6 =

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

4 0 0 0 0 0
4 0 0 0 0 0
4 0 0 0 0 0
4 0 0 0 0 0
4 0 0 0 0 0
4 0 0 0 0 0
4 0 0 0 0 0
4 0 0 0 0 0
4 0 0 0 0 0
4 0 0 0 0 0
4 0 0 0 0 0
4 0 0 0 0 0
4 0 0 0 0 0
4 0 0 0 0 0
4 0 0 0 0 0
5 0 0 0 0 0
5 0 0 0 0 0
5 0 0 0 0 0
5 0 0 0 0 0
5 0 0 0 0 0
5 0 0 0 0 0
5 0 0 0 0 0
5 0 0 0 0 0
5 0 0 0 0 0
5 0 0 0 0 0
5 0 0 0 0 0
5 0 0 0 0 0
5 0 0 0 0 0
5 0 0 0 0 0
5 0 0 0 0 0
6 0 0 0 0 0
6 0 0 0 0 0
6 0 0 0 0 0
6 0 0 0 0 0
6 0 0 0 0 0
6 0 0 0 0 0
6 0 0 0 0 0
6 0 0 0 0 0
6 0 0 0 0 0
6 0 0 0 0 0
6 0 0 0 0 0
6 0 0 0 0 0
6 0 0 0 0 0
6 0 0 0 0 0
6 0 0 0 0 0

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

.
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A
(2)
90×6 =

 
B

(2)
45×6

C
(2)
45×6

!
,B

(2)
45×6 =

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1 2 0 0 0 0
1 2 0 0 0 0
1 2 0 0 0 0
1 3 0 0 0 0
1 3 0 0 0 0
1 3 0 0 0 0
1 4 0 0 0 0
1 4 0 0 0 0
1 4 0 0 0 0
1 5 0 0 0 0
1 5 0 0 0 0
1 5 0 0 0 0
1 6 0 0 0 0
1 6 0 0 0 0
1 6 0 0 0 0
2 1 0 0 0 0
2 1 0 0 0 0
2 1 0 0 0 0
2 3 0 0 0 0
2 3 0 0 0 0
2 3 0 0 0 0
2 4 0 0 0 0
2 4 0 0 0 0
2 4 0 0 0 0
2 5 0 0 0 0
2 5 0 0 0 0
2 5 0 0 0 0
2 6 0 0 0 0
2 6 0 0 0 0
2 6 0 0 0 0
3 1 0 0 0 0
3 1 0 0 0 0
3 1 0 0 0 0
3 2 0 0 0 0
3 2 0 0 0 0
3 2 0 0 0 0
3 4 0 0 0 0
3 4 0 0 0 0
3 4 0 0 0 0
3 5 0 0 0 0
3 5 0 0 0 0
3 5 0 0 0 0
3 6 0 0 0 0
3 6 0 0 0 0
3 6 0 0 0 0

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

,C
(2)
45×6 =

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

4 1 0 0 0 0
4 1 0 0 0 0
4 1 0 0 0 0
4 2 0 0 0 0
4 2 0 0 0 0
4 2 0 0 0 0
4 3 0 0 0 0
4 3 0 0 0 0
4 3 0 0 0 0
4 5 0 0 0 0
4 5 0 0 0 0
4 5 0 0 0 0
4 6 0 0 0 0
4 6 0 0 0 0
4 6 0 0 0 0
5 1 0 0 0 0
5 1 0 0 0 0
5 1 0 0 0 0
5 2 0 0 0 0
5 2 0 0 0 0
5 2 0 0 0 0
5 3 0 0 0 0
5 3 0 0 0 0
5 3 0 0 0 0
5 4 0 0 0 0
5 4 0 0 0 0
5 4 0 0 0 0
5 6 0 0 0 0
5 6 0 0 0 0
5 6 0 0 0 0
6 1 0 0 0 0
6 1 0 0 0 0
6 1 0 0 0 0
6 2 0 0 0 0
6 2 0 0 0 0
6 2 0 0 0 0
6 3 0 0 0 0
6 3 0 0 0 0
6 3 0 0 0 0
6 4 0 0 0 0
6 4 0 0 0 0
6 4 0 0 0 0
6 5 0 0 0 0
6 5 0 0 0 0
6 5 0 0 0 0

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

.
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A
(3)
90×6 =

 
B

(3)
45×6

C
(3)
45×6

!
,B

(3)
45×6 =

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1 2 3 0 0 0
1 2 3 0 0 0
1 2 3 0 0 0
1 3 4 0 0 0
1 3 4 0 0 0
1 3 4 0 0 0
1 4 5 0 0 0
1 4 5 0 0 0
1 4 5 0 0 0
1 5 6 0 0 0
1 5 6 0 0 0
1 5 6 0 0 0
1 6 2 0 0 0
1 6 2 0 0 0
1 6 2 0 0 0
2 1 3 0 0 0
2 1 3 0 0 0
2 1 3 0 0 0
2 3 4 0 0 0
2 3 4 0 0 0
2 3 4 0 0 0
2 4 5 0 0 0
2 4 5 0 0 0
2 4 5 0 0 0
2 5 6 0 0 0
2 5 6 0 0 0
2 5 6 0 0 0
2 6 1 0 0 0
2 6 1 0 0 0
2 6 1 0 0 0
3 1 2 0 0 0
3 1 2 0 0 0
3 1 2 0 0 0
3 2 4 0 0 0
3 2 4 0 0 0
3 2 4 0 0 0
3 4 5 0 0 0
3 4 5 0 0 0
3 4 5 0 0 0
3 5 6 0 0 0
3 5 6 0 0 0
3 5 6 0 0 0
3 6 1 0 0 0
3 6 1 0 0 0
3 6 1 0 0 0

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

,C
(3)
45×6 =

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

4 1 2 0 0 0
4 1 2 0 0 0
4 1 2 0 0 0
4 2 3 0 0 0
4 2 3 0 0 0
4 2 3 0 0 0
4 3 5 0 0 0
4 3 5 0 0 0
4 3 5 0 0 0
4 5 6 0 0 0
4 5 6 0 0 0
4 5 6 0 0 0
4 6 1 0 0 0
4 6 1 0 0 0
4 6 1 0 0 0
5 1 2 0 0 0
5 1 2 0 0 0
5 1 2 0 0 0
5 2 3 0 0 0
5 2 3 0 0 0
5 2 3 0 0 0
5 3 4 0 0 0
5 3 4 0 0 0
5 3 4 0 0 0
5 4 6 0 0 0
5 4 6 0 0 0
5 4 6 0 0 0
5 6 1 0 0 0
5 6 1 0 0 0
5 6 1 0 0 0
6 1 2 0 0 0
6 1 2 0 0 0
6 1 2 0 0 0
6 2 3 0 0 0
6 2 3 0 0 0
6 2 3 0 0 0
6 3 4 0 0 0
6 3 4 0 0 0
6 3 4 0 0 0
6 4 5 0 0 0
6 4 5 0 0 0
6 4 5 0 0 0
6 5 1 0 0 0
6 5 1 0 0 0
6 5 1 0 0 0

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

.
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A
(4)
90×6 =

 
B

(4)
45×6

C
(4)
45×6

!
,B

(4)
45×6 =

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1 2 3 4 0 0
1 2 3 4 0 0
1 2 3 4 0 0
1 3 4 5 0 0
1 3 4 5 0 0
1 3 4 5 0 0
1 4 5 6 0 0
1 4 5 6 0 0
1 4 5 6 0 0
1 5 6 2 0 0
1 5 6 2 0 0
1 5 6 2 0 0
1 6 2 3 0 0
1 6 2 3 0 0
1 6 2 3 0 0
2 1 3 4 0 0
2 1 3 4 0 0
2 1 3 4 0 0
2 3 4 5 0 0
2 3 4 5 0 0
2 3 4 5 0 0
2 4 5 6 0 0
2 4 5 6 0 0
2 4 5 6 0 0
2 5 6 1 0 0
2 5 6 1 0 0
2 5 6 1 0 0
2 6 1 3 0 0
2 6 1 3 0 0
2 6 1 3 0 0
3 1 2 4 0 0
3 1 2 4 0 0
3 1 2 4 0 0
3 2 4 5 0 0
3 2 4 5 0 0
3 2 4 5 0 0
3 4 5 6 0 0
3 4 5 6 0 0
3 4 5 6 0 0
3 5 6 1 0 0
3 5 6 1 0 0
3 5 6 1 0 0
3 6 1 2 0 0
3 6 1 2 0 0
3 6 1 2 0 0

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

,C
(4)
45×6 =

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

4 1 2 3 0 0
4 1 2 3 0 0
4 1 2 3 0 0
4 2 3 5 0 0
4 2 3 5 0 0
4 2 3 5 0 0
4 3 5 6 0 0
4 3 5 6 0 0
4 3 5 6 0 0
4 5 6 1 0 0
4 5 6 1 0 0
4 5 6 1 0 0
4 6 1 2 0 0
4 6 1 2 0 0
4 6 1 2 0 0
5 1 2 3 0 0
5 1 2 3 0 0
5 1 2 3 0 0
5 2 3 4 0 0
5 2 3 4 0 0
5 2 3 4 0 0
5 3 4 6 0 0
5 3 4 6 0 0
5 3 4 6 0 0
5 4 6 1 0 0
5 4 6 1 0 0
5 4 6 1 0 0
5 6 1 2 0 0
5 6 1 2 0 0
5 6 1 2 0 0
6 1 2 3 0 0
6 1 2 3 0 0
6 1 2 3 0 0
6 2 3 4 0 0
6 2 3 4 0 0
6 2 3 4 0 0
6 3 4 5 0 0
6 3 4 5 0 0
6 3 4 5 0 0
6 4 5 1 0 0
6 4 5 1 0 0
6 4 5 1 0 0
6 5 1 2 0 0
6 5 1 2 0 0
6 5 1 2 0 0

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

.
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A
(5)
90×6 =

 
B

(5)
45×6

C
(5)
45×6

!
,B

(5)
45×6 =

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1 2 3 4 5 0
1 2 3 4 5 0
1 2 3 4 5 0
1 3 4 5 6 0
1 3 4 5 6 0
1 3 4 5 6 0
1 4 5 6 2 0
1 4 5 6 2 0
1 4 5 6 2 0
1 5 6 2 3 0
1 5 6 2 3 0
1 5 6 2 3 0
1 6 2 3 4 0
1 6 2 3 4 0
1 6 2 3 4 0
2 1 3 4 5 0
2 1 3 4 5 0
2 1 3 4 5 0
2 3 4 5 6 0
2 3 4 5 6 0
2 3 4 5 6 0
2 4 5 6 1 0
2 4 5 6 1 0
2 4 5 6 1 0
2 5 6 1 3 0
2 5 6 1 3 0
2 5 6 1 3 0
2 6 1 3 4 0
2 6 1 3 4 0
2 6 1 3 4 0
3 1 2 4 5 0
3 1 2 4 5 0
3 1 2 4 5 0
3 2 4 5 6 0
3 2 4 5 6 0
3 2 4 5 6 0
3 4 5 6 1 0
3 4 5 6 1 0
3 4 5 6 1 0
3 5 6 1 2 0
3 5 6 1 2 0
3 5 6 1 2 0
3 6 1 2 4 0
3 6 1 2 4 0
3 6 1 2 4 0

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

,C
(5)
45×6 =

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

4 1 2 3 5 0
4 1 2 3 5 0
4 1 2 3 5 0
4 2 3 5 6 0
4 2 3 5 6 0
4 2 3 5 6 0
4 3 5 6 1 0
4 3 5 6 1 0
4 3 5 6 1 0
4 5 6 1 2 0
4 5 6 1 2 0
4 5 6 1 2 0
4 6 1 2 3 0
4 6 1 2 3 0
4 6 1 2 3 0
5 1 2 3 4 0
5 1 2 3 4 0
5 1 2 3 4 0
5 2 3 4 6 0
5 2 3 4 6 0
5 2 3 4 6 0
5 3 4 6 1 0
5 3 4 6 1 0
5 3 4 6 1 0
5 4 6 1 2 0
5 4 6 1 2 0
5 4 6 1 2 0
5 6 1 2 3 0
5 6 1 2 3 0
5 6 1 2 3 0
6 1 2 3 4 0
6 1 2 3 4 0
6 1 2 3 4 0
6 2 3 4 5 0
6 2 3 4 5 0
6 2 3 4 5 0
6 3 4 5 1 0
6 3 4 5 1 0
6 3 4 5 1 0
6 4 5 1 2 0
6 4 5 1 2 0
6 4 5 1 2 0
6 5 1 2 3 0
6 5 1 2 3 0
6 5 1 2 3 0

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

.
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A
(6)
90×6 =

 
B

(6)
45×6

C
(6)
45×6

!
,B

(6)
45×6 =

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1 2 3 4 5 6
1 2 3 4 5 6
1 2 3 4 5 6
1 3 4 5 6 2
1 3 4 5 6 2
1 3 4 5 6 2
1 4 5 6 2 3
1 4 5 6 2 3
1 4 5 6 2 3
1 5 6 2 3 4
1 5 6 2 3 4
1 5 6 2 3 4
1 6 2 3 4 5
1 6 2 3 4 5
1 6 2 3 4 5
2 1 3 4 5 6
2 1 3 4 5 6
2 1 3 4 5 6
2 3 4 5 6 1
2 3 4 5 6 1
2 3 4 5 6 1
2 4 5 6 1 3
2 4 5 6 1 3
2 4 5 6 1 3
2 5 6 1 3 4
2 5 6 1 3 4
2 5 6 1 3 4
2 6 1 3 4 5
2 6 1 3 4 5
2 6 1 3 4 5
3 1 2 4 5 6
3 1 2 4 5 6
3 1 2 4 5 6
3 2 4 5 6 1
3 2 4 5 6 1
3 2 4 5 6 1
3 4 5 6 1 2
3 4 5 6 1 2
3 4 5 6 1 2
3 5 6 1 2 4
3 5 6 1 2 4
3 5 6 1 2 4
3 6 1 2 4 5
3 6 1 2 4 5
3 6 1 2 4 5

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

,C
(6)
45×6 =

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

4 1 2 3 5 6
4 1 2 3 5 6
4 1 2 3 5 6
4 2 3 5 6 1
4 2 3 5 6 1
4 2 3 5 6 1
4 3 5 6 1 2
4 3 5 6 1 2
4 3 5 6 1 2
4 5 6 1 2 3
4 5 6 1 2 3
4 5 6 1 2 3
4 6 1 2 3 5
4 6 1 2 3 5
4 6 1 2 3 5
5 1 2 3 4 6
5 1 2 3 4 6
5 1 2 3 4 6
5 2 3 4 6 1
5 2 3 4 6 1
5 2 3 4 6 1
5 3 4 6 1 2
5 3 4 6 1 2
5 3 4 6 1 2
5 4 6 1 2 3
5 4 6 1 2 3
5 4 6 1 2 3
5 6 1 2 3 4
5 6 1 2 3 4
5 6 1 2 3 4
6 1 2 3 4 5
6 1 2 3 4 5
6 1 2 3 4 5
6 2 3 4 5 1
6 2 3 4 5 1
6 2 3 4 5 1
6 3 4 5 1 2
6 3 4 5 1 2
6 3 4 5 1 2
6 4 5 1 2 3
6 4 5 1 2 3
6 4 5 1 2 3
6 5 1 2 3 4
6 5 1 2 3 4
6 5 1 2 3 4

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

.
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Appendix B. Agent-Skill Matrices for the Unbalanced Example in Section 6.

In this appendix we display three of the agent-skill matrices used for the final unbalanced

example. Here is the first agent-skill matrix:

A
(2)
90×6 =

�
B38×6

C52×6

�
,B38×6 =

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1 2 0 0 0 0
1 3 0 0 0 0
1 4 0 0 0 0
1 5 0 0 0 0
1 6 0 0 0 0
2 1 0 0 0 0
2 3 0 0 0 0
2 4 0 0 0 0
2 5 0 0 0 0
2 6 0 0 0 0
3 1 0 0 0 0
3 2 0 0 0 0
3 4 0 0 0 0
3 4 0 0 0 0
3 5 0 0 0 0
3 5 0 0 0 0
3 5 0 0 0 0
3 6 0 0 0 0
3 6 0 0 0 0
3 6 0 0 0 0
3 6 0 0 0 0
3 6 0 0 0 0
4 1 0 0 0 0
4 2 0 0 0 0
4 3 0 0 0 0
4 3 0 0 0 0
4 3 0 0 0 0
4 5 0 0 0 0
4 5 0 0 0 0
4 5 0 0 0 0
4 5 0 0 0 0
4 6 0 0 0 0
4 6 0 0 0 0
4 6 0 0 0 0
4 6 0 0 0 0
4 6 0 0 0 0
4 6 0 0 0 0
4 6 0 0 0 0

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

,C52×6 =

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

5 1 0 0 0 0
5 1 0 0 0 0
5 2 0 0 0 0
5 3 0 0 0 0
5 3 0 0 0 0
5 3 0 0 0 0
5 3 0 0 0 0
5 4 0 0 0 0
5 4 0 0 0 0
5 4 0 0 0 0
5 4 0 0 0 0
5 4 0 0 0 0
5 6 0 0 0 0
5 6 0 0 0 0
5 6 0 0 0 0
5 6 0 0 0 0
5 6 0 0 0 0
5 6 0 0 0 0
5 6 0 0 0 0
5 6 0 0 0 0
5 6 0 0 0 0
6 1 0 0 0 0
6 1 0 0 0 0
6 1 0 0 0 0
6 2 0 0 0 0
6 2 0 0 0 0
6 2 0 0 0 0
6 3 0 0 0 0
6 3 0 0 0 0
6 3 0 0 0 0
6 3 0 0 0 0
6 3 0 0 0 0
6 4 0 0 0 0
6 4 0 0 0 0
6 4 0 0 0 0
6 4 0 0 0 0
6 4 0 0 0 0
6 4 0 0 0 0
6 4 0 0 0 0
6 4 0 0 0 0
6 5 0 0 0 0
6 5 0 0 0 0
6 5 0 0 0 0
6 5 0 0 0 0
6 5 0 0 0 0
6 5 0 0 0 0
6 5 0 0 0 0
6 5 0 0 0 0
6 5 0 0 0 0
6 5 0 0 0 0
6 5 0 0 0 0

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

.
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Here is the second agent-skill matrix for the unbalanced example. The three new rows

are highlighted in boldface.

A
(2)
91×6 =

�
B40×6

C51×6

�
,B40×6 =

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1 2 0 0 0 0
1 3 0 0 0 0
1 4 0 0 0 0
1 5 0 0 0 0
1 6 0 0 0 0
1 6 0 0 0 0
2 1 0 0 0 0
2 3 0 0 0 0
2 4 0 0 0 0
2 5 0 0 0 0
2 6 0 0 0 0
2 6 0 0 0 0
3 1 0 0 0 0
3 2 0 0 0 0
3 4 0 0 0 0
3 4 0 0 0 0
3 5 0 0 0 0
3 5 0 0 0 0
3 5 0 0 0 0
3 6 0 0 0 0
3 6 0 0 0 0
3 6 0 0 0 0
3 6 0 0 0 0
3 6 0 0 0 0
4 1 0 0 0 0
4 2 0 0 0 0
4 3 0 0 0 0
4 3 0 0 0 0
4 3 0 0 0 0
4 5 0 0 0 0
4 5 0 0 0 0
4 5 0 0 0 0
4 5 0 0 0 0
4 6 0 0 0 0
4 6 0 0 0 0
4 6 0 0 0 0
4 6 0 0 0 0
4 6 0 0 0 0
4 6 0 0 0 0
4 6 0 0 0 0

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

,C51×6 =

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

5 1 0 0 0 0
5 1 0 0 0 0
5 2 0 0 0 0
5 2 0 0 0 0
5 3 0 0 0 0
5 3 0 0 0 0
5 3 0 0 0 0
5 3 0 0 0 0
5 4 0 0 0 0
5 4 0 0 0 0
5 4 0 0 0 0
5 4 0 0 0 0
5 4 0 0 0 0
5 6 0 0 0 0
5 6 0 0 0 0
5 6 0 0 0 0
5 6 0 0 0 0
5 6 0 0 0 0
5 6 0 0 0 0
5 6 0 0 0 0
5 6 0 0 0 0
5 6 0 0 0 0
6 1 0 0 0 0
6 1 0 0 0 0
6 1 0 0 0 0
6 2 0 0 0 0
6 2 0 0 0 0
6 2 0 0 0 0
6 3 0 0 0 0
6 3 0 0 0 0
6 3 0 0 0 0
6 3 0 0 0 0
6 3 0 0 0 0
6 4 0 0 0 0
6 4 0 0 0 0
6 4 0 0 0 0
6 4 0 0 0 0
6 4 0 0 0 0
6 4 0 0 0 0
6 4 0 0 0 0
6 5 0 0 0 0
6 5 0 0 0 0
6 5 0 0 0 0
6 5 0 0 0 0
6 5 0 0 0 0
6 5 0 0 0 0
6 5 0 0 0 0
6 5 0 0 0 0
6 5 0 0 0 0
6 5 0 0 0 0

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

.
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Here is the agent-skill matrix associated with the final feasible solution (91, 20):

A
(2)
91×6 =

�
B42×6

C49×6

�
,B42×6 =

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1 2 0 0 0 0
1 2 0 0 0 0
1 3 0 0 0 0
1 4 0 0 0 0
1 5 0 0 0 0
1 6 0 0 0 0
1 6 0 0 0 0
2 1 0 0 0 0
2 1 0 0 0 0
2 3 0 0 0 0
2 4 0 0 0 0
2 5 0 0 0 0
2 6 0 0 0 0
2 6 0 0 0 0
3 1 0 0 0 0
3 2 0 0 0 0
3 4 0 0 0 0
3 4 0 0 0 0
3 4 0 0 0 0
3 5 0 0 0 0
3 5 0 0 0 0
3 5 0 0 0 0
3 6 0 0 0 0
3 6 0 0 0 0
3 6 0 0 0 0
3 6 0 0 0 0
3 6 0 0 0 0
4 1 0 0 0 0
4 2 0 0 0 0
4 3 0 0 0 0
4 3 0 0 0 0
4 3 0 0 0 0
4 5 0 0 0 0
4 5 0 0 0 0
4 5 0 0 0 0
4 5 0 0 0 0
4 6 0 0 0 0
4 6 0 0 0 0
4 6 0 0 0 0
4 6 0 0 0 0
4 6 0 0 0 0
4 6 0 0 0 0

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

,C49×6 =

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

5 1 0 0 0 0
5 1 0 0 0 0
5 2 0 0 0 0
5 2 0 0 0 0
5 3 0 0 0 0
5 3 0 0 0 0
5 3 0 0 0 0
5 3 0 0 0 0
5 4 0 0 0 0
5 4 0 0 0 0
5 4 0 0 0 0
5 4 0 0 0 0
5 4 0 0 0 0
5 6 0 0 0 0
5 6 0 0 0 0
5 6 0 0 0 0
5 6 0 0 0 0
5 6 0 0 0 0
5 6 0 0 0 0
5 6 0 0 0 0
5 6 0 0 0 0
6 1 0 0 0 0
6 1 0 0 0 0
6 1 0 0 0 0
6 2 0 0 0 0
6 2 0 0 0 0
6 2 0 0 0 0
6 3 0 0 0 0
6 3 0 0 0 0
6 3 0 0 0 0
6 3 0 0 0 0
6 3 0 0 0 0
6 4 0 0 0 0
6 4 0 0 0 0
6 4 0 0 0 0
6 4 0 0 0 0
6 4 0 0 0 0
6 4 0 0 0 0
6 4 0 0 0 0
6 4 0 0 0 0
6 5 0 0 0 0
6 5 0 0 0 0
6 5 0 0 0 0
6 5 0 0 0 0
6 5 0 0 0 0
6 5 0 0 0 0
6 5 0 0 0 0
6 5 0 0 0 0

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

.
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