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Abstract

We propose a stochastic difference equation of the form Xn = AnXn−1 + Bn to model the annual

returns Xn of a hedge fund relative to other funds in the same strategy group in year n. We fit

this model to data from the TASS database over the period 2000 to 2005. We let {An} and {Bn}
be independent sequences of independent and identically distributed random variables, allowing

general distributions, with An and Bn independent of Xn−1, where E[Bn] = 0. This model is

appealing because it can involve relatively few parameters, can be analyzed, and can be fit to

the limited and somewhat unreliable data reasonably well. The key model parameters are the

year-to-year persistence factor γ ≡ E[An] and the noise variance σ2
b ≡ V ar(Bn). The model was

chosen primarily to capture the observed persistence, which ranges from 0.11 to 0.49 across eleven

different hedge-fund strategies, according to regression analysis. The constant-persistence normal-

noise special case with An = γ and Bn (and thus Xn) normal provides a good fit for some strategies,

but not for others, largely because in those other cases the observed relative-return distribution has

a heavy tail. We show that the heavy-tail case can also be successfully modelled within the same

general framework. The model is evaluated by comparing model predictions with observed values of

(i) the relative-return distribution, (ii) the lag-1 auto-correlation and (iii) the hitting probabilities

of high and low thresholds within the five-year period.



1. Introduction

Despite the abundance of stochastic models for stocks, commodities and market indices, relatively

few stochastic models have been developed for hedge funds. That is not entirely surprising since

hedge funds are not too transparent; there are only a few sources of data, with infrequent voluntary

reporting. We contribute by developing a stochastic-process model of the relative annual returns of

a hedge fund, exploiting data from the Tremont Advisory Shareholders Services (TASS) hedge-fund

database for the period 2000-2005.

1.1. Relative Annual Returns Within the Fund Strategy

The TASS database archives monthly returns and the managed asset value for each hedge fund.

In addition, TASS also archives various fund-specific data, such as the strategy of the fund. The

eleven strategies and the sample size for each are given in the first and second columns of Table 1;

we will explain the rest of Table 1 later. (The appendixes of Hasanhodzic and Lo (2007) and Chan

et al. (2006) describe the hedge-fund strategies.)

Table 1: Estimated persistence γ and auto-correlation ρ for the eleven strategies.

Strategy Sample γ from γ from ratio of ρ
Size regression1 exp. returns2 auto-correlation3

Convertible 238 0.44±0.10 0.39 0.49+0.09/-0.11
Dedicated Short 29 0.49±0.38 0.44 0.16+0.25/-0.35
Emerging Market 315 0.36±0.10 0.36 0.32+0.09/-0.10
Equity Marcro 268 0.09±0.10 0.12 0.12±0.12
Event Driven 533 0.24±0.08 0.16 0.13±0.08
Fixed Income 193 0.29±0.14 0.38 0.37+0.12/-0.14
Fund of Fund 986 0.33±0.05 0.31 0.31+0.05/-0.06
Global Macro 166 0.13±0.15 0.14 0.06±0.15
Long-short Equity 1658 0.15±0.04 0.11 0.07±0.05
Managed Future 235 0.22±0.13 0.17 0.21+0.12/-0.13
Other 167 0.41±0.15 0.38 0.39+0.12/-0.13

1. 95% confidence interval for the regression coefficient
2. Ratio of expected relative returns from the previous to current year for pairs of two successive years whose return
values are both above the average.
3. confidence interval of correlation coefficient from 95% confidence interval of Fisher-Z statistic in (4.1).

In order to highlight differences in hedge fund performance within its strategy and to approach

a stationary environment, we focus on the relative annual returns. We use geometric compounding
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to convert the twelve reported monthly returns into one annual return, i.e.,

rannual = (1 + r1) · (1 + r2) · · · (1 + r12)− 1 .

We then obtain the relative annual returns by subtracting the average for the strategy for that

year.

We think of the TASS relative return data as being observations from a stationary discrete-

time stochastic process {Xn : n ≥ 0}, with Xn representing the relative annual return from year

n. Assuming that the process {Xn} is indeed approximately stationary (which is made more

plausible by our focus on relative returns), we combine all the data for each category to estimate

the distribution of the single-year relative return for each strategy. For each strategy, we seek a

stochastic-process model that matches both the observed single-year relative-return distribution

and the observed dependence structure. To have a model useful for prediction, it is desirable that

the stochastic process be a Markov process, with a state that is as simple as possible.

Since we focus on relative returns, the relative-return distribution necessarily has mean 0, so a

key parameter of the distribution to be matched is the variance σ2 ≡ V ar(Xn), but we also want

to match the entire distribution as much as possible. Indeed, in some cases we find that the return

distribution has a heavy tail, consistent with an infinite variance.

For a stationary stochastic process, a key parameter describing the dependence structure is

the autocorrelation ρ ≡ Cor(Xn, Xn+1) ≡ Cov(Xn, Xn+1)/σ2. Estimates of the auto-correlation ρ

appear in the final column of Table 1. However, we also want to match the full time-dependent

behavior of the stochastic process as much as possible. To partially test the time-dependent behavior

beyond the auto-correlation ρ, we evaluate the probability that the relative returns will ever hit

specified levels within a five-year period. That also illustrates how the model can be applied.

1.2. Persistence of Hedge-Fund Returns

Our modelling approach is motivated by our observation of persistence in the relative returns.

Broadly, persistence in hedge-fund returns is a tendency for a fund which generates relatively high

(or low) returns in a period to continue generating relatively high (or low) returns again in the next

period.

Persistence has been studied quite extensively within the hedge-fund literature, but it remains

a highly controversial topic. A consensus has not yet been reached on the degree of persistence in
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hedge-fund returns, or even whether it exists at all. Indeed, some studies did not find significant

persistence; e.g., Brown et al. (1999), Capocci and Hüber (2004), and Boyson and Cooper (2004).

However, several studies have found evidence of strictly positive persistence, depending on the time

period measured; Agarwal and Naik (2000) found significant persistence for quarterly returns, while

Edwards and Caglayan (2001) found significant persistence over one to two years, and Jagannathan

et al. (2006) found significant persistence over three years of returns. For hedge-fund indexes, Amenc

et al. (2003) found statistically meaningful persistence for most of the strategies.

In this paper, we consider persistence in the (relative) returns. It is important to note that

others have looked for persistence in different ways; e.g., Jagannathan et al. (2006) is about alpha

persistence. We say that there is a persistence factor of γ if for every 1 percentage point the fund

makes above the average in the current year, it is expected to earn γ percentage point above the

average in the next year. For the stochastic process {Xn : n ≥ 0}, the persistence implies that we

should have the following relation between the conditional expected relative return at the end of

the current year, given the previous relative return, and the previous relative return itself:

E[Xn|Xn−1] = γXn−1 (1.1)

for all n and all values of Xn−1. We estimate the persistence factors by performing a regression

analysis. In particular, we combine the relative-return data for all pairs (Xn, Xn+1) and perform a

standard linear regression. Our estimated persistence factors for the eleven hedge-fund strategies

ranged from 0.11 to 0.49; estimates by two different methods appear in the third and fourth columns

of Table 1. The 95% confidence intervals show that positive persistence is confirmed statistically

for all but two strategies; See §4 for more on our data-selection and analysis procedure.

In our statistical analysis we do find strong evidence for persistence, but we hasten to admit that

the issue remains controversial. The voluntary reporting has led to questions about the reliability of

the data. As Getsmansky et al. (2004) pointed out, under the voluntary reporting system, a hedge

fund manager may choose to report smoothed returns intentionally, which causes serial correlation

of returns. Possible biases in reported hedge-fund returns are discussed by Fung and Hsieh (2000)

and Boyson and Cooper (2004). As we explain in §4.1, in our data selection procedure, we attempt

to reduce the bias, but the TASS data should be regarded as somewhat unreliable. We emphasize

that our primary goal is not to make a case for persistence, but instead is to show how persistence

can be exploited, if it is there, in order to create a flexible and tractable stochastic-process model

of hedge-fund returns. Our approach should also have other useful applications, where persistence
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may exist. We introduce the model in the next section. In subsequent sections, we elaborate on the

appealing mathematical structure of the model, we describe our data analysis methods and results,

and we show that the model provides a flexible framework for fitting.

2. The Proposed Stochastic Difference Equation Model

In order to capture the observed persistence in the performance of hedge-fund relative returns, we

first propose the simple stochastic difference equation (SDE)

Xn = γXn−1 + Bn, n ≥ 1, (2.1)

where γ is a constant with 0 < γ < 1, Bn is independent of Xn−1 and {Bn : n ≥ 1} is a sequence

of independent and identically distributed (i.i.d.) random variables, each distributed as N(0, σ2
b ),

where N(a, b) denotes a normally distributed random variable with mean a and variance b.

The SDE in (2.1) is a linear, recursive Markov process; it is also a first-order autoregressive

process. Moreover, the SDE in (2.1) is a natural discrete-time analog of the familiar continuous-time

stochastic differential equation

dX(t) = −νX(t) + σcdB(t), (2.2)

where {B(t) : t ≥ 0} is a standard Brownian motion, commonly used in finance, as can be seen by

subtracting Xn−1 from both sides in (2.1) to get

Xn −Xn−1 = −(1− γ)Xn−1 + Bn, n ≥ 1. (2.3)

We choose the discrete-time process in (2.1) instead of the continuous-time process in (2.2) because

hedge-fund returns are reported much less frequently than stock prices.

The initial SDE model in (2.1) is very appealing because, first, it clearly matches the persistence

as specified in (1.1) with the same parameter γ and, second, one need to choose only one remaining

model parameter σ2
b in order to match the steady-state variance σ2. That is easily done, because

for the model (2.1) it turns out that one variance must be a constant multiple of the other:

σ2 =
σ2

b

1− γ2
, (2.4)

Moreover, as a consequence of (2.1), the distribution of Xn (assuming stationarity) must itself be

normal, distributed as N(0, σ2
b/(1− γ2)). Both these conclusions are demonstrated in §3.

4



This is a beautiful simple story when it works. Clearly, it works (from this preliminary checking)

if indeed the two variances are related by (2.4) and the steady-state distribution of the relative

returns is approximately normal. Fortunately, for some hedge fund strategies, we find that both

conditions are satisfied reasonably well. Moreover, we can go beyond the distribution of relative

annual returns to check the time-dependent behavior. In §3 we show that in steady-state, the SDE

in (2.1) necessarily has autocorrelation equal to the persistence:

autocorrelation ≡ ρ = γ ≡ persistence factor. (2.5)

This special relation in (2.5) turns out to match the TASS data remarkably well, given the limited

data, as shown in Table 1, which displays estimates of both ρ and γ.

We find that the simple SDE model in (2.1) provides a remarkably good fit for some of the

hedge-fund strategies, e.g., for the emerging-market strategy. However, it does not provide a good

fit for all strategies; e.g., for the fund-of-fund and event-driven strategies, largely because for those

other strategies the empirical distribution of the relative annual returns is quite far from normal,

having a heavy tail. Figure 1 substantiates this claim, showing the histogram and Q-Q plots of

the relative annual returns of hedge funds within the fund-of-fund and emerging-market strategies.

(The units are chosen so that a relative annual return of 0.10 corresponds to 10 percentage points

above average.)

We selected these two strategies for three reasons: (i) because these strategies have relatively

large numbers of observations (ii) because they have relatively high persistence factors and (iii)

because the return distributions exhibit very different tail behavior. Figure 1 shows that the

distributions for those two strategies differ significantly. The Q-Q plots in Figure 1 (c) and (d)

show that the distribution of the relative returns for the emerging-market strategy is close to

normal, whereas for the fund-of-fund strategy it is not.

The fund-of-fund strategy is somewhat special, involving investments in other strategies. It

might be considered surprising that the relative returns from the fund-of-fund strategy are less

normal, since they tend to be more diversified, but correlations among the returns from different

strategies may possibly explain this phenomenon. Understanding the observed tail behavior of

different strategies remains a problem for future research. We do emphasize that heavy tails are

also observed in other strategies, such as the event-driven strategy, as we show in Appendix §J.

Corresponding figures for other strategies appear in Appendix §C.
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(b) Histogram from emerging-market strategy
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(c) Q-Q plot for fund-of-fund strategy

−3 −2 −1 0 1 2 3
−6

−4

−2

0

2

4

6
x 10

−3

Standard Normal Quantiles

Q
ua

nt
ile

s 
of

 In
pu

t S
am

pl
e

QQ Plot of Sample Data versus Standard Normal

(d) Q-Q plot for emerging-market strategy

Figure 1: (a)(b) Histograms of 986 relative returns within the fund-of-fund strategy and 315 relative returns within
the emerging-market strategy from the TASS database. (A relative return of 0.15 means 15 percentage points above
the average.) (c)(d) Q-Q plots comparing the model to the normal distribution.

Just as for performance persistence, the distribution and other statistical properties of hedge-

fund returns are not yet well understood, despite the importance (Lhabitant, 2004; Kassberger and

Kiesel, 2006; Tran, 2006). Several authors have reported that the normal distribution may not

approximate hedge-funds returns well, primarily because of heavy tails (Lo, 2001; Lhabitant, 2004;

Tran, 2006; Geman and Kharoubi, 2003; Eling and Schuhmacher, 2007). It should thus not be

surprising that we find that the relative returns are reasonably well approximated by the normal

distribution for some strategies, but not for all strategies. Consistent with our analysis, Amo

et al. (2007) pointed out that autocorrelation, high-peak, and heavy-tail may be observed from the

distributions of hedge-fund returns.

Kassberger and Kiesel (2006) studied the distribution of daily hedge-fund indices within each

strategy. Based on the daily indices data from March 2003 to June 2006, they show that the
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distributions of indices have heavy-tails by Q-Q plots. They claimed that a Normal Inverse Gaussian

(NIG) distribution fits the distribution of indices well, since it may have heavy-tail and skewness

depending on parameter values.

2.1. A More General SDE Model

The non-normal distribution shown in Figure 1 (c), and in other return distributions, leads us to

look for other models. Fortunately, we find that a natural generalization of the simple SDE in (2.1)

provides a robust and tractable model for capturing different behavior observed in the TASS data.

As a generalization of the simple SDE in (2.1), we propose the SDE

Xn = AnXn−1 + Bn , n ≥ 1 , (2.6)

where An and Bn are independent of Xn−1 and {An : n ≥ 1} and {Bn : n ≥ 1} are independent

sequences of i.i.d. random variables with general distributions, satisfying

E[An] = γ for 0 < γ < 1, and E[Bn] = 0. (2.7)

In going from (2.1) to (2.6), we have replaced the constant persistence factor γ by the random

persistence An, but the moment conditions in (2.7) imply that the basic persistence relation (1.1)

still holds. Moreover, the autocorrelation still satisfies (2.5), as we show in §3. By allowing An

and Bn to have general distributions, we have produced a much more flexible class of models.

Fortunately, this class of models is also remarkably tractable, as was shown by Vervaat (1979),

where many additional references can be found.

We classify the specific models we consider by the assumptions we make about the distributions

of An and Bn. When P (An = γ) = 1, we have a constant-persistence model; when An has a non-

degenerate distribution, we have a stochastic-persistence model. When Bn is normally distributed,

we have a normal-noise model. To capture the heavier tails we see in the data, we also consider

as distributions for Bn the Student-t distribution, a mixture of two distributions, an empirical

distribution and a stable distribution.

2.2. The Constant-Persistence Stable-Noise Model

We highlight the constant-persistence stable-noise model, because it is now common to use stable

distributions to represent heavy-tailed distributions, building on early work by Mandelbrot (1963),
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Fama (1965) and others; see Embrechts et al. (1997), Samorodnitsky and Taqqu (1994) and §4.5

of Whitt (2002) for general background. Indeed, there is now a vast literature on heavy tails in

financial data; e.g., see Lux (1996), Rachev and Mittnik (2000), Cont (2001) and Gabaix et al.

(2007).

A random variable Y is said to have a (strictly) stable law if, for any positive numbers a1 and

a2, there is a positive number c ≡ c(a1, a2) such that

a1Y1 + a2Y2
d= cY, (2.8)

where Y1 and Y2 are independent copies of Y and d= means equality in distribution. It turns out

that the constant c must be related to the constants a1 and a2 by

aα
1 + aα

2 = cα (2.9)

for some constant α with 0 < α ≤ 2, called the index of the stable law. A random variable

Yα with stable distribution having index α with 0 < α < 2 satisfies P (Yα > x)/x−α → c+

and P (Yα < −x)/x−α → c− as x → ∞ for some positive constants c+ and c−. Consequently,

E[|Yα|p] < ∞ for all p < α, but E[|Yα|p] = ∞ for all p > α. We will be considering α with

1 < α < 2, so that our stable distributions will have infinite variance but finite mean, which we

take to be zero.

Just as for the normal distribution (which can be regarded as a special stable distribution),

the structure of the SDE in (2.1) implies that the stochastic structure of the distribution of Bn is

inherited by the distributions of Xn for the constant-persistence models; i.e., the distribution of

Xn is again stable with the same index and skewness parameter; that is, we have

Xn
d=

(
1

1− γα

)1/α

Bn, (2.10)

as we prove in §3. We use this relation (2.10) in what we think are novel ways: We use (2.10) to

test both the constant-persistence stable-noise model and the stable index α (using the persistence

factor γ already estimated); see §7.

For the constant-persistence stable-noise model, the SDE in (2.1) also has the continuous-

time analog in (2.2), but where now {B(t) : t ≥ 0} is a non-Gaussian stable Lévy motion, as

in Samorodnitsky and Taqqu (1994). More generally, when the random variable Bn has a non-

normal distribution, (2.1) has continuous analog (2.2) where {B(t) : t ≥ 0} is a Lévy process; see
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Wolfe (1982). In §5 of Wolfe (1982), he shows how to construct the continuous-time analog from

the discrete-time SDE if it is desired. By now, there is a substantial literature on non-standard

stochastic differential equations in finance; e.g., see Barndorff-Nielsen and Shephard (2001) and

Borland (2002).

We will show that the constant-persistence stable-noise model is remarkably effective for the

fund-of-fund strategy. Nevertheless, other versions of the model in (2.6) are worth considering as

well, in part because they have finite variance, which allows us to use the observed variance σ2 to

calibrate the model.

2.3. Previous Models of Hedge-Fund Returns

A conventional assumption is that a firm’s net asset value evolves in continuous time as a geometric

Brownian motion. Following that convention, a log-normal distribution was used to model hedge

fund net asset value by Atlan et al. (2006) and the risky investment the hedge fund holds by

Hodder and Jackwerth (2007). However, the log-normal assumption is not empirically tested in

those papers.

Others have previously used Markov process models to model hedge-fund returns. Hayes (2006)

used discrete-time birth-and-death process to calculate the maximum drawdown in hedge-fund

returns, and used the autocorrelation condition to calibrate the model. In Derman et al. (2008) we

used three-state Markov chain models to estimate the premium from extended hedge-fund lockup.

We used the same TASS data to calibrate that model.

Several econometric models have been proposed as well. A seminal paper is Amin and Kat

(2003), which sought a trading strategy with cash and a market portfolio such as S&P 500 to

replicate the distribution of a hedge-fund’s returns. If a replicating portfolio can be found, by

considering the required initial investment in the replicating portfolio and the hedge-fund man-

agement fee, then it may be possible to evaluate whether or not an investment in the hedge fund

is justifiable or not. A similar replicating approach is also found in Hasanhodzic and Lo (2007).

They tried to replicate hedge-fund returns with six common risk factors such as the S&P 500, US

Dollar Indexes, Bond index, etc, by means of linear regression analysis. Chan et al. (2006) is a

paper closely related to Hasanhodzic and Lo (2007). However, the purpose of Chan et al. (2006)

was somewhat different; they wanted to decompose the risk factors underlying the hedge fund in

order to compare the systematic risks of hedge funds to that of other traditional asset classes.
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2.4. Applications of the Stochastic Model

As usual, a stochastic-process model allows us to go far beyond a direct examination of historical

data to ask various “what if” questions. There are many ways to apply the model to answer

questions, which cannot easily be answered from the data directly. We might simply want to know

the probability distribution of the relative return for a particular hedge fund over the following year,

given all available past data. From the past data, we can observe the most recent relative return,

say X0 = c. We would then apply the model in (2.6) to conclude that the relative return next year

should be distributed as A1c+B1, where A1 and B1 are the independent stochastic persistence and

noise, respectively, for that hedge-fund strategy, whose distributions can be determined by data

fitting, as described in this paper. We could go further and calculate the discounted present value

of the return stream over many years; see (3.11) - (3.12).

We might want to invest in that particular hedge fund because we believe that it will be

especially well managed. We could use the model to provide a “measurement-based” quantification

of what we mean by good management. In particular, we may postulate that a good fund manager

improves the fund performance in one or more of three possible ways: increasing the expected

persistence γ ≡ E[An], reducing the standard deviation of the persistence σa ≡
√

V ar(An), or

reducing the standard deviation of the additive noise σb ≡
√

V ar(Bn). With the model, we can

quantify the impact of such effects. We first fit the model to the data for that hedge-fund strategy

in order to obtain random variables An and Bn. We then produce new random variables A′n and

B′
n consistent with the postulated consequences of good management. We then calculate future

relative returns, both with the original model and with the revised model. In that way, we can

estimate the value added by the good management.

We illustrate with a concrete example: Suppose that the relative returns for a specific fund

in the last year are X0 = c. We start by quantifying what it mean for a “good” manager to be

effective. Suppose that we conclude that the impact of superior management should increase its

nominal estimated expected persistence from γ to 1.5γ, reduce the estimated standard deviation of

the persistence from σa to 0.8σa, and reduce the estimated standard deviation of the noise from from

σb to 0.5σb. As a numerical example, we choose the beta-persistence t-noise model developed in

§6.2 for the fund-of-fund strategy (which has parameter values γ = 0.33, σa = 0.0381, σb = 0.0642,

and α = 50, β = 101.52). We then choose new random variable A′n and B′
n with γ′ = 1.5γ, σ′a =

0.8σa, σ
′
b = 0.5σb and define X ′

n based on the new parameter values. Then, algebraic manipulation
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yields α′ = 84.75 and β′ = 86.46. It is then immediate that E[X ′
1|X ′

0 = c] − E[X1|X0 = c] =

(γ′−γ)c = 0.1650c, V ar(X1|X0 = c)−V ar(X ′
1|X ′

0 = c) = c2(0.36σ2
a)+0.75σ2

b = 0.0005c2 +0.0031.

We have thus shown how the model can be applied to quantify the impact of good management.

3. Background on the General SDE

The behavior of the general SDE in (2.6) is well described in Vervaat (1979); we will be stating

implications from the general results there. We will be considering the standard (good) case in which

the expectation E[log (An)] is well defined (at least one of the positive part or the negative part

has finite expectation) and the following (minimal) logarithmic-moment conditions are satisfied:

−∞ ≤ E[log (An)] < 0 and E[log+ (Bn)|] < ∞ , (3.1)

where log+(x) ≡ max {0, log (x)}. Note that log (An) = −∞ occurs if An = 0, which is a possibility

we want to allow. That corresponds to no persistence at all.

Under condition (3.1), Vervaat shows that we have convergence in distribution Xn ⇒ X∞ as

n →∞, where the distribution of X∞ is independent of the initial conditions and is characterized

as the unique solution to the stochastic fixed-point equation

X∞
d= AnX∞ + Bn, (3.2)

where the random vector (An, Bn) is independent of X∞ on the right. There is thus a unique

stationary version of the process {Xn : n ≥ 0}, obtained by letting the initial value X0 be distributed

as X∞, while being independent of A1 and B1. With our notion of persistence in mind, it is

natural to go beyond condition (3.1) and assume in addition that P (0 ≤ An < 1) = 1. That will

immediately imply extra moment conditions we make for An below. But that extra assumption is

actually not required.

Moreover, we actually do not need to assume that An is independent of Bn, as we have done,

but the strong results in Vervaat (1979) do require that the sequence {(An, Bn)} be a sequence

of i.i.d. random vectors. It is worth noting, though, that the general model in (2.6) has been

further generalized beyond Vervaat (1979). First, Brandt (1986) established results for the case

in which independence for the sequence {(An, Bn) : n ≥ 1} is dropped; he assumes only that

it is a stationary sequence. Next Horst (2001) considers the time-dependent version, allowing the

distribution of (An, Bn) to depend on n. Finally, Horst (2003) embeds the model in a game-theoretic
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setting, letting the values of (An, Bn) depend on the strategic decisions of multiple players. These

extensions are significantly less tractable than (2.6) here, but they open the way to interesting new

applications.

Given (3.1), we can also characterize the distribution of X∞ via an infinite-series representation

X∞
d=

∞∑

k=1

A1A2 ·Ak−1Bk, (3.3)

where the series on the right converges with probability 1 (w.p.1). It is thus easy to approximately

generate samples from the distribution of X∞ by considering a truncated version of the series. If

|An| tends to be relatively small, as with our persistence estimates, then relatively few terms are

required.

Moreover, it is easy to apply the stochastic fixed-point equation (3.2) in order to deduce that

the steady-state value X∞ is distributed simply as a constant multiple of Bn, as given in (2.10),

when Bn has a stable law. We have the following elementary proposition:

Proposition 1. For the simple SDE in (2.1), if Bn has a stable law with index α, i.e., if (2.8) and

(2.9) hold for 0 < α ≤ 2 (with α = 2 being the case of a normal distribution), then

X∞
d=

(
1

1− γα

)1/α

Bn; (3.4)

i.e., (2.10) is valid.

Proof. First, since we are considering the simple SDE in (2.1), we have An ≡ γ. Since the

distribution of X∞ is the unique solution to the stochastic fixed-point equation (3.2), it suffices to

show that X∞ ≡ cBn satisfies equation (3.2) for some constant c, i.e., it suffices to show that

cB
d= γ(cB) + Bn, (3.5)

where B and Bn are independent random variables with the common distribution of Bn. Since Bn

has a stable law with index α, we can apply (2.9) to get the equation cα = (γc)α + 1α, which has

the desired value for c as its unique solution.

Important moment properties of the SDE in (2.6) are given in §5 of Vervaat (1979), but these

require extra conditions on the moments of the model elements. Prior to the moment conditions

made in (2.7), in addition to the conditions above, we assume the technical regularity conditions

E[|An|] < 1, E[|Bn|] < ∞ and E[|X0|] < ∞. (3.6)
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Under these conditions, it follows that E[|X∞|] < ∞ and E[|Xn|] < ∞ for all n. By 5.2.1 of Vervaat

(1979), if (3.6) holds, then in general

E[X∞] =
E[Bn]

1− E[An]
and E[Xn] → E[X∞] as n →∞. (3.7)

Since we assume condition (2.7) in addition to conditions (3.1) and (3.6), we can conclude that

E[X∞] = 0 and E[Xn|] → 0 as n →∞.

We will not want to go beyond these first-moment conditions for Bn in (3.6) when we consider

stable noise, because then Bn will have infinite variance. However, for the finite-variance case,

we also assume that E[A2
n] < 1, and E[B2

n] < ∞ and E[X2
0 ] < ∞. Then 5.2.2 of Vervaat (1979)

provides the following important expression for the variance of the steady-state distribution:

σ2 ≡ V ar(X∞) =
E[B2

n]
1− E[A2

n]
=

V ar(Bn)
1−E[A2

n]
≡ σ2

b

1− σ2
a − γ2

, (3.8)

where we have introduced the new notation σ2
a ≡ V ar(An) and used the assumption that E[An] = γ

in the final expression. Paralleling (3.7), it also implies the convergence V ar(Xn) → V ar(X∞) as

n →∞. When P (An = γ) = 1, then (3.8) reduces to (2.4).

We now exploit the variance limit above under the the moment conditions in order to char-

acterize the auto-correlation of the stationary version of the stochastic process {Xn}. We will

characterize the asymptotic behavior, with a non-stationary initial condition. For that purpose,

assume that E[X0] = 0 along with the moment conditions, so that we have E[Xn] = 0 for all n.

Then the time-dependent auto-covariance is simply

Cov(Xn+1, Xn) = E[Xn+1Xn] = γE[X2
n] = γV ar(Xn), (3.9)

which implies that the associated auto-correlations satisfy

ρn ≡ Cor(Xn+1, Xn) =
Cov(Xn+1, Xn)√

V ar(Xn+1)V ar(Xn)
= γ

√
V ar(Xn)

V ar(Xn+1)
→ γ as n →∞. (3.10)

We have thus shown for the general SDE model in (2.6) that ρ = γ, where ρ ≡ ρ∞ is the auto-

correlation for the stationary version of {Xn}, obtained by letting X0 be distributed as X∞, just

as claimed in (2.5) for the simple SDE in (2.1).

In our hedge-fund context it is natural to be interested in the discounted present value of a

return stream. It is thus convenient that the discounting can be incorporated into our current

framework. First, if we postulate a constant rate of interest r compounded continuously, so that
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the annual discounting factor is e−r, then the (random) present value of the entire relative-return

stream and its conditional expected value are

V (r) =
∞∑

n=1

e−nrXn and E[V (r)|X0] =
X0

1− γe−r
. (3.11)

More generally, we may have random annual interest rate Rn in year n, so that the present value is

V =
∞∑

n=1

(
n∏

k=1

Rk)Xn . (3.12)

Given our model with specified distributions for An and Bn, a well-defined stochastic process

{Rn : n ≥ 1}, which could be (but need not be) a sequence of i.i.d. random variables with specified

distribution, and the initial value X0, we can easily determine the distribution of V by simulation.

We can first generate a segment of the process {Xn} recursively, and then do the same for the

sum in (3.12). Given typical discounting processes {Rn}, the series will converge quickly, so that

truncated versions will yield good approximations.

4. Empirical Observations from the TASS Data

4.1. Hedge-Fund Data Selection and Analysis

We first explain how we try to remove biases in the TASS data. We then describe the regression

procedure to estimate the persistence factor.

TASS differentiates between the date the fund starts reporting and the date the fund starts

operating. When a fund starts reporting returns after operating for several months or years, the

fund may simultaneously report several monthly returns at the time its first return is reported. It

is then possible for the fund manager to report only good returns. Otherwise, if the returns are

bad, the manager may choose not to report them. This phenomenon creates the so-called backfill

bias, since the backfilled returns tend to be higher due to the missing bad returns. Fung and Hsieh

(2000) calculate that the difference from actual returns and reported returns is about 3.6% per year

from this reason. In order to at least partially address this problem, we consider monthly returns

only after the fund’s first reporting date. Similarly, if a fund’s monthly returns are reported less

than six times a year, we exclude these data, due to the possibility of hiding bad returns.

We also considered the asset value managed by a fund. We treat all funds equally, without

regard to the asset value, so we present a “fund view” as opposed to a “dollar view.” However, we

did start by removing very small funds from our sample. Specifically, we consider monthly returns
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only if the fund’s asset value managed has reached 25 million dollars at least once, at which point

we assume that the fund becomes mature, so that it can produce relatively stable returns. A similar

data selection strategy was used by Boyson and Cooper (2004). To better understand this issue,

we computed the average asset value managed for each fund and plotted the distribution of the

values; it is shown in the Appendix §B. As might be expected, the distribution of the sizes has a

heavy tail.

After selecting the monthly returns based on the above criteria, we proceeded to estimate the

persistence factor by regression. In particular, we made pairs of two successive annual returns for

each hedge fund from 2000 to 2005. Thus, there are possibly five pairs of annual returns of a fund,

if it does not cease reporting during that period. (Thus, our sample sizes in Table 1 are the number

of pairs in the strategy.) The monthly returns are annualized to measure the yearly persistence of

returns, using geometric compounding. We next calculate relative annual returns for each fund by

subtracting the average annual returns of the funds in the same strategy. The relative returns for

two successive years are then coupled as a pair to estimate yearly persistence factor. In order to

make meaningful pairs of relative returns for two successive years, the averages of annual returns

for the first year and each strategy of the funds are calculated first. When calculating the average

annual returns and the associated relative returns for the next consecutive year, we only include

returns from the funds which existed and were not dropped from the TASS database during the

previous year. Thus, the average annual return for any given year depends on whether that year

is treated as an initial year or a next year. They are not necessarily equal, since some funds may

start reporting to TASS in the next consecutive year. In this way, we finally construct pairs of two

consecutive relative returns from 2000 to 2005 for each strategy of the fund.

Before conducting regression, we also exclude pairs of returns with extreme values, depending

on the distribution of the pairs of returns for each strategy category. Even one or two outliers

can seriously affect the regression, especially if we do not have a large number of observations.

Specifically, we excluded pairs of relative returns when one absolute relative return exceeds ±
30 % for the fixed-income and equity-macro and ± 40% for the convertible, dedicated-short-bias,

and global-macro strategies. We also excludes pairs of relative returns exceeding ± 50% for the

emerging-market, event-driven, fund-of-fund, long/short-equity, managed-future, and others strate-

gies. (These percentages were chosen to be appropriate by visual inspection. The percentages are

roughly equivalent relative to the overall standard deviation of the return distribution for the strat-
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egy.) On the positive side, this data-selection procedure helps us avoid data errors. On the other

hand, this data-selection procedure might lead us to underestimate heavy tails. As a consequence,

our heavy-tail findings should be even more convincing.

We conducted a linear auto-regression analysis with pairs of two successive years of annual

relative returns. The coefficient from this linear regression, i.e., the least square fit is the calculated

persistence. The regression analysis results in very low intercept for all strategy category. Thus,

we finally conduct a auto-regression without intercept and consider only the coefficient term. The

results are shown in the third column of Table 1.

An alternative way to estimate the persistence factor is to consider the ratio of the next-year

average returns to the current-year average return, restricting attention to the returns that are

positive in the current year. The fourth column of Table 1 shows the ratio of two successive

average returns restricting attention to the returns that are positive and negative in the current

year, respectively. We observe that these alternative persistence estimates tend to be similar to the

regression estimates.

4.2. Persistence of Relative Returns

We started by constructing scatter plots of the relative returns for each hedge-fund strategy, using

all pairs (Xn, Xn+1), and performed auto-regression analysis in that setting in order to estimate

the persistence factor, which thus becomes the the regression coefficient. Figure 2 shows the scatter

plots of the relative annual returns for the fund-of-fund and emerging-market strategies. A linear
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(a) Fund-of-fund strategy
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(b) Emerging-market strategy

Figure 2: Scatter plots and auto-regression lines for relative returns from two successive years within (a) the
fund-of-fund strategy and (b) the emerging-market strategy.
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relationship is not overwhelmingly clear in Figure 2. Nevertheless, we do observe more pairs of

returns in the lower left and higher right sides of the scatter plot, indicating the existence of

persistence. We mention that the persistence factor may also be derived in another way. We can

also estimate the persistence factor from the ratio of the two successive years’ expected relative

returns, when those values are both above the average. This directly measures the ratio of current

year’s expected relative returns to the previous year’s expected relative returns, but we have yet

to develop the statistical properties of this estimator. The estimated persistence factors by both

these methods are given in Table 1.

4.3. Distribution of Relative Returns

We now turn to the distribution of the relative annual returns. As illustrated by Figure 1, we

constructed histograms showing the empirical distribution and constructed Q-Q plots to test for

normality. As we have indicated before, the emerging-market strategy relative-return distribution

seems to be approximately normal, but the fund-of-fund relative-return distribution does not.

The distributions and Q-Q plots for the other strategies are given in §C of the Appendix. The

Q-Q plots there show that the relative-return distribution for the global-macro strategy also is

well approximated by the normal distributions, but all others have significant departures from

normality in the tails. We also performed the Lilliefors test in Appendix §C, from which we

conclude, statistically, that the relative returns from most of the strategies are not consistent with

the normal distribution. (See Lilliefors (1967) for the details of the test.) In order to facilitate

visual comparison with the normal distribution, we also plotted histograms from a simulation of

i.i.d. normal random variable with the same sample sizes; see, Appendix §D. Finally, we note that

the fund-of-fund relative-return distribution has a relatively high peak in the center.

4.4. Autocorrelation of Relative Returns

In §3 we showed that the auto-correlation is equal to the persistence for the general SDE model in

(2.6). Thus we want to see if that is true for the TASS data. To examine this issue, we estimate

the auto-correlations in the data, using the sample correlation coefficient estimator, denoted by r.

In order to estimate the 95% confidence intervals for the auto-correlation correlation, we use the

well-known result that the Fisher Z statistic, defined by

Z =
1
2

ln
(

1 + r

1− r

)
, (4.1)
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is approximately normally distributed with mean zero and standard deviation σz = 1/
√

n− 3 ,

where n is the sample size; e.g., see Serfling (1980) or Lin (1989).

From (4.1), we derive the confidence interval of the correlation coefficient ρ from the confidence

interval of Z. The confidence interval is not symmetric around the observed sample autocorrelation

coefficient r because r is a non-symmetric function of Z in (4.1). The last column in Table 1

summarizes the results. Table 1 shows that the two 95% confidence intervals – for the persistence

γ and the auto-correlation ρ – overlap significantly for most strategies. Thus we conclude that γ

and ρ coincide with each other and regard this as support for the validity of the SDE model in

(2.6). Figure 3 adds by providing a graphical comparison of these confidence intervals.

Figure 3: A comparison of estimates of the auto-correlation ρ and the persistence γ, showing the 95% confidence
intervals for both. As before, the horizontal axis represents the strategy: 1. Convertible 2. Dedicated Short 3.
Emerging Market 4. Equity Marcro 5. Event Driven 6. Fixed Income 7. Fund of Fund 8. Global Macro 9.
Long-short Equity 10. Managed Future 11. Other 12. All

5. Testing the Constant-Persistence Normal-Noise Model

We now describe how we evaluated the fit of the constant-persistence normal-noise model. This

model has only two parameters γ and σb ≡ SD(Bn) ≡
√

V ar(Bn), so the fit to the observed per-

sistence γ and standard deviation σ ≡ SD(Xn) is immediate. If we use only those two parameters,

we obtain a perfect fit by applying (2.4) and letting σ2
b = (1 − γ2)σ2. Such a fit seems to provide

a reasonable rough model in all cases.

In this section we want to evaluate the quality of that fit more closely. One test is the auto-

correlation; the predicted relation between the autocorrelation and persistence in (2.5) holds more

generally, and was just discussed above; Table 1 shows that the fit is pretty good, given the limited
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data. There are two principal remaining issues: (i) Is the relative-return distribution approximately

normal? and (ii) Are the standard deviations (or variances) actually related by (2.4)? We have

already addressed the first question in §4.3, finding that the return distribution is approximately

normal in some cases, but not all. Now we turn to the one remaining question.

As indicated before, assuming stationarity, we combine all the relative-return data to estimate

the one-year relative-return distribution. The standard deviation of that distribution is denoted by

σ; it is estimated directly by the sample standard deviation once the data have been combined.

Testing is possible because we can also directly observe the values of the noise variables Bn.

We estimate σb ≡ SD(Bn) ≡
√

V ar(Bn) by acting as if the model is valid, implying that Bn ≡
Xn+1−γXn would be i.i.d random variables, using the previously estimated value of the persistence

γ. We thus estimate σb directly by the sample standard deviation as well, but we are here assuming

the model to get the i.i.d. structure and we are using our estimate of the persistence γ. From (2.4),

the constant-persistence normal-noise model (and other finite-variance-noise models) predict that

σ/σb =
√

1/(1− γ2). Since we have already estimated γ from the data, we can compare σ/σb and
√

1/(1− γ2) in order to test the validity of the model.

Table 2 shows the results. From the last two columns in the table, we observe that σ/σb and

Table 2: Estimation of the standard deviations σ and σb to test the constant-persistence model.

Strategy σ σb ratio ratio
return1 noise2 data3 model4

1. Convertible 0.0686+0.0068/-0.0056 0.0579+0.0057/-0.0048 1.18 1.11+0.07/-0.05
2. Dedicated Short 0.1393+0.0480/-0.0284 0.1353+0.0466/-0.0275 1.03 1.15+0.88/-0.14
3. Emerging Market 0.1903+0.0161/-0.0138 0.1797+0.0152/-0.0130 1.06 1.07+0.05/-0.04
4. Equity Macro 0.0801+0.0074/-0.0062 0.0655+0.0061/-0.0051 1.22 1.00+0.01/-0.00
5. Event Driven 0.1007+0.0064/-0.0057 0.0884+0.0056/-0.0050 1.14 1.03+0.03/-0.02
6. Fixed Income 0.0693+0.0077/-0.0063 0.0661+0.0073/-0.0060 1.05 1.04+0.06/-0.03
7. Fund of Fund 0.0681+0.0031/-0.0029 0.0565+0.0026/-0.0024 1.21 1.06+0.02/-0.02
8. Global Macro 0.1070+0.0129/-0.0104 0.1027+0.0124/-0.0100 1.04 1.01+0.03/-0.01
9. Long-short Equity 0.1520+0.0054/-0.0050 0.1376+0.0048/-0.0045 1.10 1.01+0.01/-0.01
10. Managed Future 0.1265+0.0126/-0.0105 0.1214+0.0121/-0.0101 1.04 1.02+0.03/-0.02
11. Other 0.1003+0.0120/-0.0097 0.0976+0.0117/-0.0094 1.03 1.14+0.16/-0.08

1. σ: Standard deviation and 95 % confidence interval of the relative annual return
2. σb: Standard deviation and 95 % confidence interval of Bn ≡ Xn − γXn−1.
3. Ratio: σ/σb observed from the data.
4. Ratio:

√
1/(1− γ2), ratio σ/σb from the constant-persistence normal-noise model; see (2.4). 95% confidence

interval of the ratio is obtained from 95% confidence interval of γ in Table 1.

√
1/(1− γ2) are quite close for some fund strategies, but not for others. In particular, we see a
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good match for the emerging-market, fixed-income, global-macro, and managed-future strategies,

but we see a poor match, in various degrees, for the others; the worst being the equity-macro and

fund-of-fund strategies.

Where the match is good, we need to also test the normal-distribution property, which we have

done, and discussed in §4.3. Where the match is poor, we see right away that we need to consider

a different model, which is what much of the rest of this paper is about.

6. Stochastic-Persistence Models

In this section, we consider the stochastic-persistence models with various stochastic noise distribu-

tions as an alternative to the constant-persistence normal-noise model. Our analysis here illustrates

the great model flexibility for fitting to data. Our goal in this section is to remedy both deficiencies

found in the constant-persistence normal-noise model for some strategies: With the extra flexibility,

we obtain a perfect match of the variance σ2, remedying the problems observed in the last two

columns of Table 2, and in addition seek a good match in the overall distribution.

6.1. Beta Persistence

In order to achieve this new flexibility in a controlled way, we assume that An has a beta distribution,

which is a probability distribution that concentrates on the open unit interval (0, 1). The beta

distribution has two parameters, α and β, with mean α/(α+β) and variance αβ/[(α+β)2(α+β+1)].

We can choose α and β to match the mean E[An] and the variance V ar(An), provided that

the variance is not too large. We remark that the beta distribution arises naturally in Bayesian

frameworks when focusing on an unknown parameter lying in a fixed interval; e.g., see Browne and

Whitt (1996). However, other persistence distributions can be used in essentially the same way.

By introducing beta persistence, we have thus increased the parameters associated with the

persistence from only one (γ) in the deterministic case to two with this beta distribution. We can

fit the beta parameters α and β to the mean and variance by

γ =
α/β

1 + α/β
and c2

a ≡
σ2

a

γ2
=

β

α(α + β + 1)
=

1
α
β

(
α
β + 1 + 1

β

) . (6.1)

From (6.1), we see that the mean γ depends on α and β only through their ratio, while c2
a, the

squared coefficient of variation (SCV, variance divided by the square of the mean), is strictly

increasing in both α and β for any given ratio α/β.
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The full beta-persistence stochastic-noise model has three basic parameters: σ2
b , γ and σ2

a, but

we only directly observe γ and σ2. We have used γ to specify the mean E[An]. We thus have only

σ2 to use in order to determine the two model variances σ2
a and σ2

b . Hence, there is one extra degree

of freedom.

We apply the variance formula (3.8) to determine a relation that all these variances must satisfy.

Formula (3.8) implies that we must have

0 ≤ σ2
b ≤ (1− γ2)σ2 and 0 ≤ σ2

a ≤ 1− γ2. (6.2)

Given both σ2 and σ2
b , formula (3.8) gives a formula for σ2

a. In summary, there is a one-parameter

family of variance pairs (σ2
a, σ

2
b ) consistent with our data.

We can draw some initial conclusions. First, if σ2
a = 0, so that An = γ w.p.1, then we can

estimate σ2
b directly by looking at Xn − γXn−1, as we already did. By formula (2.4) or (3.8), we

then should have σ2
b = (1 − γ2)σ2, but that is inconsistent with the results in Table 2. Hence

we conclude that we do need to have stochastic persistence; i.e., we should consider some non-

degenerate beta distribution for An.

One way to proceed at this point is to exploit what we have done in the previous section, and

assume that we have already fit the variance σ2
b by acting as if the persistence An were constant.

In other words, we let σ2
b be the estimated variance of Xn − γXn−1, using our estimate of the

persistence γ.

Given that we start with an estimate of σ2 and have already estimated γ and σ2
b by the methods

already described, we can choose the variance σ2
a ≡ V ar(An) to satisfy (3.8). For the fund-of-fund

return data, we have γ = 0.33 from Table 1, while σ = 0.0681 and σb = 0.0565 from Table 2, so that

our estimated beta parameters are, first, σ2
a = 0.2028 and then α = 0.03 and β = 0.06. However,

the result is not plausible, because these small values of α and β produce a strongly U -shaped

density for An; see Appendix §E.

We deduce that we should consider larger values of α and β, and thus smaller values for the

variance σ2
a and larger values for σ2

b . For given α, β is determined to match γ. From visual

inspection, we estimate that α = 50 should be reasonable; see Appendix §G.

Once we have chosen α, that determines β and thus σ2
a, which in turn determines σ2

b by (3.8). For

α = 50, we get β = 101.51, σ2
a = 0.0014 and σb = 0.9369σ = 0.0642. Having calibrated the model

parameter values, we then approximate the random variable X∞ by taking a truncated version of
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the infinite series in (3.3). In our context, where we always have γ < 1/2, fewer than 10 terms

suffices. We use only 5 for the fund-of-fund data with γ = 0.33. That yields the approximation

X∞ ≈ B1 + A1B2 + A1A2B3 + A1A2A3B4 + A1A2A3A4B5 . (6.3)

We get one realization from X∞ by generating four independent copies of An and five independent

copies of Bn.

6.2. The Beta-Persistence Normal-Noise and t-Noise Models

So far, by this rather involved process, we have specified only the variance of the noise σ2
b ≡

V ar(Bn). A simple specific noise distribution with that variance is the normal distribution that

we have been considering; we get it by simply assuming that Bn
d= N(0, σ2

b ). For that special

noise distribution, the single parameter σ2
b fully specifies the noise distribution. We call this the

beta-persistence normal-noise model. However, when we apply this procedure and apply simulation

to estimate the relative-return distribution, we see that the return distribution remains too close

to the normal distribution. That remains the case for a wide range of α values; See, Appendix

§E. Thus we rule out the beta-persistence normal-noise model. Our analysis leads us to conclude

that this beta-noise feature, by itself, does not address the heavy tails seen in the data for the

fund-of-fund strategy.

In order to capture the heavy tails in the observed relative-return distribution, we consider

non-normal noise distributions. In doing so, we build on our previous analysis. As before, we

aim to match the estimated values of γ and σ. We exploit the beta persistence we have already

constructed, with α = 50, σ2
a = 0.0133 and σb = 0.0638.

As a new candidate noise distribution, we propose the (Student)-t distribution, which is known

to have a heavier tail than the normal distribution. Specifically, we assume that Bn
d= κT (ν)

where T (ν) denotes a random variable with the standard t-distribution having parameter ν, which

is commonly referred to as the degrees of freedom, and κ is a constant scale factor. Since we keep

the beta persistence, we call the overall model the beta-persistence t-noise model.

For ν > 2, the variance of a t-distributed random variable T is ν/(ν − 2). Since E[Bn] = 0, we

can match the given variance via

σ2
b ≡ V ar(Bn) = E[B2

n] = E[κ2T 2] =
κ2ν

ν − 2
. (6.4)
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We first use ν as a parameter to choose in order to select the desired shape of the distribution of

Xn, consistent with a fixed first two moments of Bn (mean 0 and variance σ2
b ). We then use κ to

match the observed variance. Thus, for any given ν, κ is determined by κ = σb

√
(ν − 2)/ν.

Figure 4 shows the simulated distribution of the relative return Xn from the beta-persistence t-

noise model with An
d= Beta(50, 101.51) and Bn

d= 0.0278·T (2.4) compared to the observed relative-

return distribution for the fund-of-fund strategy. Comparing Figures 1 and 4, we see that the

beta-persistence t-noise model approximates the observed relative-return distribution much better

than the constant-persistence normal-noise model does. The two-sample Kolmogorov-Smirnov test

also statistically shows that we cannot reject the hypothesis that the simulated data and empirical

data come from the same distribution, with p value of 0.3080 (The high p value indicates that we

cannot reject the hypothesis that the two random variables are drawn from the same distribution;

e.g., see Massey (1951).)

However, looking closely at Figure 4, we see that the observed relative-return distribution still

has heavier tails than predicted by the model, especially in the left tail. That conclusion is confirmed

by the Q-Q plot in Figure 4(c).

6.3. The Beta-Persistence Empirical-Noise Model

A relatively simple way to obtain a better fit to the data within the beta-persistence class of models

is to let Bn have the observed empirical distribution for Xn − γXn−1, using the estimated value of

γ. This automatically gives Bn and its estimated variance σ2
b . It now goes further to directly match

the shape. This procedure works quite well, as we show in Appendix §G. Overall, the approach

works well if we are content to use the model for simulation. However, we might want a parametric

model, with not too many parameters, so we consider further refinements.

6.4. The Beta-Persistence Mixed-Noise Model

Since the beta-persistence t-noise model did not adequately capture the heavy left tail of the

observed relative-return distribution for the fund-of-fund strategy, we continue to search for a

better parametric model. In order to better match this feature, we consider a mixture of two

distributions for our noise distribution. We do this both to illustrate the flexibility of our general

modelling framework and to obtain a better fit.
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(a) Histogram of relative returns from the data
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(b) Beta-persistence t-noise model
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(c) Q-Q plot comparing the model to the data

Figure 4: (a) The relative-return distribution from the data within the fund-of-fund strategy (986 observations).
(b) Simulation estimate of the relative-return distribution (sample size 106) using the beta-persistence t-noise model,
with the sample size of 106, with α = 50, β = 101.51, ν = 2.4, k = 0.0278, γ = 0.33 and σ = 0.0681. (c) Q-Q plot of
the beta-persistence t-noise model to the data.

Again building upon our previous fitting, we let the distribution of Bn be a mixture of an

exceptional normal distribution with some small probability p and the t distribution with probability

1− p. We start with the beta stochastic persistence in order to calibrate the two variances σ2 and

σ2
b , and then we introduce the t-noise distribution in order to capture the main shape of the return

distribution. In addition, we now add a small normal component to capture the heavy left tail. We

call this overall construction our beta-persistence mixed-noise model.

The noise random variable Bn in this model can be defined explicitly by

Bn =

{
Z1

d= µ1 + κT (ν) with probability 1− p

Z2
d= N(µ2, σ

2
2) with probability p .

(6.5)
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Here it is understood that Z1 represents the regular returns, while Z2 represents the exceptional

low returns. We intend to make the probability p small.

From (6.5), we have six parameters to fit: p, κ, ν, µ1, µ2 and σ2. We start by controlling the

overall shape. That is done by choosing the t parameter ν, in the method just described. We then

calibrate p by counting the number of relative returns less than −2σ. Then it remains to fit the

four remaining parameters κ, µ1, µ2 and σ2. But now we can write down expressions for the mean

and variance of Bn:

E[Bn] = (1− p)µ1 + pµ2 = 0,

σ2
b = E[B2

n] = (1− p)
(

κ2 ν

ν − 2
+ µ2

1

)
+ p(µ2

2 + σ2
2) . (6.6)

Since we have two equations in four parameter values, we have two degrees of freedom. Thus, we fit

µ2 and σ2 directly from the data. We directly fit the mean and standard deviation of the relative

returns counted for estimating p. In this way, we can fit p, µ2 and σ2 at the same time. Then, from

(6.6), we can obtain explicit representations for µ1 and κ, namely,

µ1 = −pµ2/(1− p) and κ =
√

[(ν − 2)/ν(1− p)]
(
σ2

b − p(µ2
2 + σ2

2)− (1− p)µ2
1

)
. (6.7)

For the fund-of-fund relative returns, out of 986 data points in our sample, we find 18 relative

returns below −2σ = −0.1363. Thus our estimate for p is p = 18/986 = 0.0183. As indicated above,

in this step we also select the mean and standard deviation of this “exceptional distribution.” We

find that the mean and standard deviation of those 18 returns are µ2 = −0.2746 and σ2 = 0.0717.

Finally, we fit the remaining parameters, getting µ1 = −0.0051 and κ = 0.0232. Again, after

calibrating parameters for Xn, we use (6.3) to generate realizations of the modelled stationary

return X∞.

Figure 5 (a) and (b) shows the simulated return distribution for this beta-persistence mixed-

noise model. We now do see a heavier left tail in the model, just like that in the data, but

unfortunately now the left tail of the return distribution generated by the model now is heavier

than the left tail of the observed distribution from the data. This actually should not be surprising

because our model exaggerates the probability of a return below −2σ, including the t-variable as

well as the exceptional normal component.

In order to reduce the gap between the model and the data in the left tail, we consider a new

parameter fitting procedure that reduces p while keeping µ2 and σ2 as specified. The new procedure
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starts from the given parameter values p, µ2, σ2, µ1, κ and the simulation obtained from the fitting

procedure stated above. We first calculate the probability of relative returns falling below the

threshold in the model, denoted by f . Since µ2 ¿ −2σ and σ2 ¿ (−2σ + µ2), we ignore the

probability of exceptional random variables exceeding the threshold. Let t be the probability that

t-distribution falls below the threshold (which we do not evaluate directly). From the definition of

t and the observed f , we obtain p + (1 − p)t ≈ f , which yields t ≈ (f − p)/(1 − p). To obtain a

corrected model, we replace f by p and p by p′, and have p′ + (1− p′)t ≈ p for t ≈ (f − p)/(1− p).

Combining these two equations, we get the following expression for p′ (which is to replace p):

p′ =
2p− p2 − f

1− f
. (6.8)

Our revised model is (6.5) with p replaced with p′ in (6.8). We assume that µ2 and σ2 remain

unchanged. We thus need to calculate new values of µ′1 and κ′ via (6.7), using p′ instead of p.

Then, we perform simulation once more with new parameters. Since the first simulation has

f = 0.0284, we obtain p′ = 0.0081, µ′1 = 0.0022 and κ′ = 0.0236 from the new procedure. We found

that this procedure significantly improves the fitting. As shown in Figure 5, the left tail from the

new procedure matches the data much better than before.

7. The Constant-Persistence Stable-Noise Model

The procedures in §6 introduced more and more complexity in order to obtain a better and better

fit. A more parsimonious alternative is to directly address the heavy-tail property at the outset

by using a stable distribution. In doing so, we have to abandon the information provided by the

variance σ2 and the other variances, because the stable distribution has infinite variance. We thus

lose a convenient model parameter when we take this step.

However, we gain simplicity, because we can use the constant-persistence model and avoid any

representation of the distribution of An. Moreover, the stable distribution has the advantage of

providing additional tractability. In particular, with constant persistence, stable noise provides

the nice relation between the distribution of Xn and the distribution of Bn given in (2.10) and

Proposition 1. That relation says that Xn will be distributed the same as a constant multiple of

Bn.

Indeed, Proposition 1 provides an ideal way to test whether the constant-persistence stable-

noise might be appropriate. A simple test is to plot the distributions of Xn and Bn and see if they
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(a) Beta-persistence mixed-noise model
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(b) Q-Q plot of the model to the data
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(c) Beta-persistence mixed-noise model re-calibrated
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(d) Q-Q plot of the model to the data

Figure 5: (a) Simulation estimate of the relative-return distribution (sample size 106) using the beta-persistence
mixed-noise model with γ = 0.33, α = 50, ν = 2.4, σ = 0.0681, µ2 = −0.2746, σ2 = 0.0717, p = 0.0186, µ1 = −0.0051
and κ = 0.0232. (to be compared to Figure 4 (a)). (b) Q-Q plot comparing the model to the data. (c) (d) Simulation
estimate of the relative-return distribution and Q-Q plot for the same model re-calibrated with p′ = 0.0098, µ′1 =
0.0027, κ′ = 0.0237 in (6.8).

look similar. As noted before, we obtain Bn directly from Xn−γXn−1, using the previous estimate

for the persistence γ. Figures 4 (a) and 6 (a) show the empirical distributions of Xn (stationary

version) and Bn obtained from the fund-of-fund data. Clearly, these distributions look remarkably

similar, although the Q-Q plot in Figure 6 (b) shows some discrepancy in the tails. Moreover,

the relationship is further substantiated by Table 3, where the ratio of the quantile differences

of these distributions are calculated at different levels. These quantile ratios constitute estimates

of the proportionality constant c. These quantile ratios are consistently around 1.2, with some

discrepancy again in the tails. Thus, Figure 6 and Table 3 suggest that Xn
d= cBn approximately,

where c is a constant whose value is about 1.2. We also performed the two sample Kolmogorov-
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(a) Bn ≡ Xn − γXn−1 from the data
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(b) Q-Q plot comparing Xn to cBn

Figure 6: (a) Distribution of Bn ≡ Xn − γXn−1 for the fund-of-fund relative returns, to be compared to Figure 4
(a), and (b) Q-Q plot comparing the distributions of Xn and cBn with c = 1.2.

Smirnov test to compare the distributions, and obtained a p value of 0.5196, which provides further

support.

Table 3: The Quantile Differences of Xn and Bn and Their Ratios

Quantile Difference1 Xn Bn Ratio 2

55%− 45% 0.0111 0.0085 1.3096
60%− 40% 0.0210 0.0170 1.2321
65%− 35% 0.0327 0.0265 1.2342
70%− 30% 0.0425 0.0364 1.1683
75%− 25% 0.0566 0.0492 1.1506
80%− 20% 0.0709 0.0609 1.1633
85%− 15% 0.0907 0.0778 1.1656
90%− 10% 0.1211 0.1053 1.1509
95%− 5% 0.1887 0.1430 1.3194

1. Difference between two quantile values.
2. Ratio: Quantile Difference for X /Quantile Difference for B.

Recall from our discussion in §1 that the index α of a stable law coincides with its tail-decay

parameter (of the form Cx−α for some constant C). The conventional elementary way to investigate

power tails and estimate the index α is to directly construct a log-log plot of the tails of the

distributions. Figure 7 shows the log-log plots of the two distribution tails for the fund-of-fund

relative-return data. (Figure 7 also shows corresponding plots for a model, to be discussed below.)

We observe that the left tail of the return distribution is approximated quite well by the linear

slope of −1.6, which implies that there is approximately a power tail and that α ≈ 1.6. As we have
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observed before, the heavy-tail behavior is more evident in the left tail than in the right tail. The

two sample Kolmogorov-Smirnov test result also shows high p value (0.1446), which statistically

shows that the two samples could be drawn from the same distribution. (In Appendix §F we provide

log-log plots of the tails of the simulated distributions from the other models for contrast.)
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Figure 7: Log-log plots of the left and right tails of the fund-of-fund relative-return distribution, from the TASS
data and the constant-persistence stable-noise model with parameters γ = 0.33, α = 1.6, β = 0, k = 0.029.

We now combine the last two observations to develop a test for the constant-persistence stable-

noise model. On the one hand, we have directly estimated the stable index α from the log-log

plots of the distribution tails (getting α ≈ 1.6), but on the other hand, for the constant-persistence

stable-noise model, the observed quantile ratio c ≈ 1.2 also provides an estimate of the index α.

That is true because, given the quantile ratio c and the persistence γ, we can solve for α in the

equation

cα =
1

1− γα
, (7.1)

obtained from (2.10). We see that the observed value c = 1.20 is consistent with the other parameter

values: γ ≈ 0.33 and α ≈ 1.6. Thus the constant-persistence stable-noise model passes this test.

Non-Gaussian stable laws actually have four parameters, and are commonly referred to by

Sα(κ, β, µ); see Samorodnitsky and Taqqu (1994). (We use κ instead of the conventional σ to avoid

confusion with the standard deviation considered previously.) As before, α is the index, which

ranges in 0 < α < 2. The other three parameters are: the scale κ, the skewness β and the location

parameter µ. When the stable law has a finite mean, µ is that mean. Since we are considering

stable laws with finite mean, where that mean is zero, we always have µ = 0. For α > 1 and µ = 0,

we have the scaling relation

cSα(κ, β, 0) d= Sα(cκ, β, 0) for all c > 0 (7.2)
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for all model parameters. Choosing the scale parameter κ is like choosing the measuring units.

In addition to the index, the shape is determined by the skewness parameter β which ranges in

−1 ≤ β ≤ 1. From (7.2), we see that the scale has no effect on the index or the skewness.

Given the index α, we also have available the two parameters κ and β. As α increases, the

shape of the distribution is more centered. As β increases, the distribution is skewed more to the

left. Thus we formulate the constant-persistence stable-noise model by letting Bn
d= κ · Sα(1, β, 0).

Using Proposition 1 and the scaling relation (7.2) for the constant-persistence stable-noise model

(2.1), we have

X∞
d=

(
1

1− γα

)1/α

κ · Sα(1, β, 0) . (7.3)

We emphasize that this characterization of the limiting distribution in the constant-persistence

stable-noise model simplifies further analysis and simulation; e.g., we do not need the approximation

formula in (6.3).

We are now ready to consider specific parameter values for our constant-persistence stable-noise

model. We can select the index from the slope of the log-log plots, as in Figure 7. We then can set

the scale parameter κ by looking at the quantile ratios. We have chosen the value κ = 0.029. We

can choose the skewness to match the shape. We compare plots of the distribution of either Bn or

Xn to plots of stable distributions as a function of the skewness parameter β. In this informal way,

we picked β = 0; see, Appendix §H for the details.

Figure 8 (a) shows the estimated relative-return distribution from the calibrated constant-

persistence stable-noise model. Note that the chosen value of κ = 0.029 matches the peak of the

distribution from the data and model reasonably well; see Figure 4 (a) for comparison. Figure 8

shows that the model approximates the empirical distribution reasonably well. However, Figure 8

(b) shows that the tails of the simulated distribution from the model fits the tails of the distribution

from the data only roughly, not as good as Figure 5 (d).

Now we further test the validity of the model by comparing the quantile ratio in Table 3 and c

in (7.3). Since the quantile ratio is estimated from the data and c is predicted by the model, if they

coincide, the validity of the model is verified. It turns out that the model with calibrated α = 1.6

and γ = 0.33, κ = 0.029 from the data generates c = 1.1232 which is consistent with Table 3. This

provides solid support for the constant-persistence stable-noise model.
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(a) Constant-persistence stable-noise model
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(b) Q-Q plot comparing model and data

Figure 8: (a) A simulation estimate of the relative-return distribution (sample size 106) of the constant-persistence
stable-noise model with α = 1.6, β = 0, κ = 0.029 (to be compared to Figure 4 (a)). (b) Q-Q plot comparing the pre-
dicted relative-return distribution based on the constant-persistence stable-noise model to the empirical distribution
from the fund-of-fund TASS data.

8. An Additional Model Test: Hitting Probabilities

In this section, we consider the probability that the hedge-fund relative return ever exceeds some

level during the 5-year time period. Such hitting probabilities are important for risk management.

We consider high or low levels of relative returns, measured in units of (sample) standard deviation

σ. By simply counting the number of hedge funds whose relative returns have ever reached the

level during 5-year period (2000-2004), we calculate the hitting probability from the data.

Table 4 shows the hitting probabilities of each level for five years from the data within the fund-

of-fund strategy and the corresponding beta-persistence t-noise, beta-persistence mixed noise and

constant-persistence stable-noise models. The probability estimate from the data is the observed

proportion of funds whose relative returns had ever hit the level during the entire five-year period,

among the 92 total number of funds within fund-of-fund strategy in 2000. The initial relative return

in the model simulation is set to have the stationary limiting distribution of each model, i.e., X∞.

We perform two different simulation estimates. First, in order to estimate the true hitting

probabilities, we generate 10,000 independent values of X∞ for initial relative returns, using (6.3)

and (7.3) and then use the recursion Xn = AnXn−1 + Bn to calculate 95% confidence interval

of hitting probability throughout five years. Second, in order to assess whether the model is

consistent with the data, given the small sample size, we simulate 92 independent values of the

X∞ random variables as the initial relative returns in 2000 and then use the recursion formula of
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Xn = AnXn−1 + Bn to determine the hitting probability within 5 years. We repeat 20 of these

simulations and record the maximum and minimum hitting probability observed and investigate if

the range of hitting probabilities includes the probability from the data. It is observed that the

hitting probabilities for the high level fit the probability from the data relatively well. However,

all the first estimates predict higher hitting probabilities for the low levels than are predicted from

the data estimates. Nevertheless, the range of probabilities from the 20 simulations includes the

hitting-probability estimates from data in most cases. (See, also Appendix G for corresponding

results for the Beta-persistence empirical-noise model.)

Table 4: Hitting probabilities of thresholds over a five-year period (2000-2004)

Level1 data2 t-noise Mixed noise Stable noise
N = 923 N = 10, 0004 N = 923 N = 10, 0004 N = 923 N = 10, 0004

3 σ 0.0326 [0,0.0435] 0.0280±0.0032 [0,0.0543] 0.0174±0.0026 [0,0.0870] 0.0326±0.0035
2 σ 0.0761 [0.0326,0.1087] 0.0696±0.0050 [0.0217,0.0761] 0.0464±0.0041 [0.0217,0.1630] 0.0712±0.0050
1 σ 0.2363 [0.1739,0.3478] 0.2569±0.0086 [0.1304,0.2717] 0.2012± 0.0079 [0.1304,0.3696] 0.2593±0.0086
-1 σ 0.2391 [0.1848,0.3043] 0.2603±0.0086 [0.1196,0.3152] 0.2028± 0.0079 [0.1739,0.3587] 0.2590±0.0086
-2 σ 0.0542 [0.0326,0.1413] 0.0718±0.0051 [0.0217,0.1522] 0.0797± 0.0053 [0.0217,0.1087] 0.0670±0.0049
-3 σ 0.0326 [0,0.0543] 0.0273±0.0032 [0.0109,0.0978] 0.0516±0.0043 [0,0.0652] 0.0328±0.0035

1. σ = 0.0681, the observed standard deviation of the fund-of-fund relative returns.
2. Number of funds that have ever hit the level for 2000-2004 divided by 92, the total number in 2000.
3. Minimum and maximum of the probabilities from 20 simulations with sample size of 92 initially.
4. 95 % confidence interval of hitting probability from simulation with sample size of 10,000 initially

9. Conclusion

In this paper, we proposed a stochastic difference equation (SDE) of the form Xn = AnXn−1 + Bn

to model the relative returns of hedge funds. In §2-§3 we showed that the model is remarkably

tractable, with many convenient analytical properties. Afterwards, we showed that the model is

remarkably flexible for model fitting by showing how it can be calibrated to the data from the TASS

database from 2000 to 2005. The foundation of our approach is persistence. It is quantified in the

model via γ ≡ E[An]. We presented a strong case for basing the model on persistence by showing

that the observed persistence estimated from the data by regression is statistically significant for

all but two strategies (see Table 1). The persistence was found to range from 0.11 to 0.49 across

the eleven fund strategies.

For the emerging-market strategy, the parsimonious (two parameter) constant-persistence normal-

noise model with An = γ and Bn
d=N(0, σ2

b ) provides an excellent fit, with σ2
b fit to the estimated

relative-returns variance σ2 directly by (2.4). However, the constant-persistence normal-noise model
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is not suitable for the fund-of-fund strategy, and most other strategies, largely because the relative-

return distribution has heavy tails. However, we find that some strategies are well approximated

by the beta-persistence normal-noise model. In particular, that is the case for the long-short equity

strategy, as we show in the Appendix §I. We do a complete fitting for that strategy there.

For the heavy-tailed distributions, we demonstrated the SDE model flexibility by showing that a

good fit can be obtained for the fund-of-fund relative-return process by choosing variables An and Bn

in different ways. The beta-persistence mixed-noise model in §6.4, the constant-persistence stable-

noise model in §7 and the beta-persistence empirical-noise model in Appendix §G all produced

remarkably good fits, given the limited and unreliable data. Each of these models has advantages

and disadvantages: The empirical-noise model is evidently most accurate, but it is a complicated

non-parametric model, which may only be useful in simulation studies. The stable-noise model has

the most appealing mathematical form, but it is not as accurate and it cannot exploit the variance

for fitting (since it implies infinite variance). The mixed-noise model falls in between: it has good

accuracy and it is a parametric model that can use the variance for fitting, but the parametric

structure is complicated, making it harder to use in mathematical analysis. But these three models

are just a sample of what could be considered. They illustrate that our SDE model offers a flexible

model for fitting.

We paid special attention to matching the (assumed stationary) single-year relative-return dis-

tribution, but we also evaluated the fit of the stochastic-process model over time. As shown in

(3.10), the SDE model predicts that the autocorrelation coefficient should coincide with the persis-

tence factor γ. Table 1 shows that is consistent with the data. In §8 we also showed that the model

predicted 5-year hitting probabilities of high (or low) thresholds reasonably well too. The fit here

was especially good for the beta-persistence empirical-noise model, as shown in Appendix §G. In

this test, our conclusions were not as strong as we would like because of the relatively small sample

sizes and the somewhat unreliable data. We think that there is the potential for even better fitting

with better data.

Overall, we contend that the value of our proposed modelling approach has been demonstrated.

It should be useful in other financial contexts as well, wherever persistence may exist. As we

explained in §2, our SDE is a discrete-time analog of the common stochastic differential equation,

which should be regarded as an attractive alternative when time is naturally regarded as discrete.

§2.4 contains a numerical example illustrating how our model can be applied to go beyond data
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description to answer various “what if” questions. There we briefly considered how the model

might be applied to quantify the value of good fund management.
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A. Introduction and Summary

This appendix has nine more sections. In §B we display plots of the sizes of the managed assets of
the funds in our sample. In §C, we provide the relative-return distributions of hedge funds across 10
strategies in the TASS database from 2000-2005. It is observed that the relative-return distributions
for some strategies are approximately normal, while others have high peaks or heavy tails, which
is not fit by the normal distribution. In §D, we show how the relative-return distribution in the
constant-persistence normal-noise model depends on the sample size of the simulation. We compare
simulations with the sample size of the data to larger simulations with sample size of 106.

We supplement the analysis of the other models in the remaining sections. In §E, we show how
the beta-persistence model depends on the beta-distribution parameters α and β. It is shown that
the shape of the estimated relative-return distribution is insensitive to α and β. In §F, we show that
the heavy-tail and light-tail distributions behave differently in log-log scale. In §G, we show that the
beta-persistence empirical-noise model provides a good fit the the data and reasonable estimates
to the hitting probabilities. In §H, we show how the tails of the relative-return distribution in
the constant-persistence stable-noise model behave, depending on the parameter β in the stable
distribution. It is observed that the estimated relative-return distribution fits the data reasonably
well for fund-of-fund strategy when β = 0. In §I, we provide a fitting for long-short equity strategy,
which has the largest sample size in the data. We conclude that the beta-persistence normal-noise
model fits the data well. Finally, in §J, we provide a fitting for the event-driven strategy whose
relative-return distribution has heavy tails. It is observed that the beta-persistence t-noise model
and constant-persistence stable-noise model provides a good fit to the data.

B. The Values of Managed Assets

As described in §4 of the main paper, we started by examining the TASS data. We followed the
previous researchers, such as Boyson and Cooper (2004), in our data selection procedure. For each
strategy, in order to avoid very small funds, which might have different characteristics, we first
removed all funds from the data for which the managed asset value never reaches our 25 million
dollar threshold. For the fund-of-fund strategy, we first removed 407 fund pairs from the data;
that left the 986 fund pairs in our sample. (A pair is the relative annual returns for two successive
years.)

To further explore the data, we considered the distribution of the average asset values managed
by the fund. In Figure 1 (a) below, we plot the histogram of the average managed asset value
among the the 986 funds in the fund-of-fund strategy. These 986 observations are taken only from
the funds exceeding the 25 million dollar threshold. We see that the largest managed asset values
are of order $108. We also show a corresponding log-log plot in Figure 1 (b), which shows that the
size distribution has a heavy tail.

We also measure the total value of asset managed by the larger and smaller funds (in terms of
managed asset values) in Table 5. We first study the total value of asset managed for all 986 returns
observed for fund-of-fund strategy. Since the relative returns from 2000 to 2004 are included at the
same time for all 986 observations, asset values of some funds are counted multiple times for their
life during the period. Thus, we also choose one specific year, namely, 2004, and take a snapshot
of that year in terms of asset size such that we can see how the asset size of each fund, not the
returns over the years, is distributed in one year.
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(a) Histogram and log-log plot of the asset value managed by funds (all)
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(b) Histogram and log-log plot of the asset value managed by funds (2004)

Figure 1: Histogram and log-log plot of the value of managed assets for funds under the fund-of-fund strategy.

The table shows that top 10% funds constitute large portion of total asset values, up to 65%. It
also shows that the percentage of total asset values in two methods are not significantly different.
Although the 65% is not small, we believe that this is not an extreme value such that we need some
other measure to analyze the relative returns under the same strategy.

Table 5: Managed asset values for fund-of-fund strategy

Ranking Managed asset Manages asset for 2004
Top 1% 33 % 38 %
Top 5% 55 % 58 %
Top 10% 65 % 67 %

Bottom 10% 0.5 % 1 %
Bottom 5% 0.1 % 0.2 %
Bottom 1% 0 % 0 %

Total Managed Asset $1× 1011 $2× 1011
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C. Distribution of Relative Returns from the Data

In this section, we carry out the analysis of Figure 1 in the main paper for the other hedge-fund
strategies. In particular, we display histograms of the relative returns within each of these strategies
and provide Q-Q plots comparing the empirical distribution to the normal distribution. It is pointed
out by Lhabitant (2004), Tran (2006), Geman and Kharoubi (2003), Eling and Schuhmacher (2007),
Kassberger and Kiesel (2006) that hedge fund returns or indexes have heavy-tails, which are not
fitted by normal distribution. In contrast, although most returns do indeed show heavy tails, we
find that relative returns within the global-macro and emerging-market strategies can be fit to the
normal distribution; see Figure 1 in the main paper and Figure 2 below. (We omit dedicated-short-
biased strategy since we only have 29 observations.)
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(a) Convertible (γ = 0.44)
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(b) Equity macro (γ = 0.09)

Figure 2: Relative-return distributions and Q-Q plots comparing the empirical distribution to the normal distribu-
tion for 10 strategies in TASS database from 2000-2004.
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(c) Event driven (γ = 0.24)
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(d) Fixed income (γ = 0.29)
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(e) Global macro (γ = 0.13)

Figure 2: (Continue) Relative-return distributions and Q-Q plots comparing the empirical distribution to the normal
distribution for 10 strategies in TASS database from 2000-2004.
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(f) Long-short equity (γ = 0.15)
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(g) managed future (γ = 0.20)
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(h) Others (γ = 0.48)

Figure 2: (Continue) Relative-return distributions and Q-Q plots comparing the empirical distribution to the normal
distribution for 10 strategies in TASS database from 2000-2004.
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The table below shows results for the Lilliefors test. It tests the hypothesis that the sample
comes from a normal distribution. The two distributions with relatively high p-values (greater that
0.05) from the Lilliefors test have distributions the look like the normal distribution in Figure 2,
both directly and in the Q-Q plot .

Table 6: Lilliefors test results with 95 % significance level

Strategies Result p-value
Convertible Reject 0.0001

Equity Macro Reject 0.0071
Event Driven Accept 0.1204
Fixed Income Reject 0.0424
Global Macro Accept 0.3002

Long-short Equity Reject 0.0001
Managed Future Reject 0.0021

Other Reject 0.0001

D. Constant-Persistence Normal-Noise Model Simulation

In this section, we show how the relative-return distribution in the constant-persistence normal-
noise model depends on the sample size of the simulation. Since the relative returns we have from
the data is limited, when fitting the relative-return distribution, it might be helpful to compare the
empirical distribution to the estimated distribution with the sample size of the data. Figure 3 (a)-
(c) illustrate estimated distributions, each with the same size of the data, 986, for the fund-of-fund
strategy. We then do the same for the emerging-market strategy in Figure 3 (e)-(g) with sample
size of 315. We also provide the estimated relative-return distribution with sample size of 106 in
Figure 3 (d) and (h) in order to see how the shape of the estimated relative-return distribution
changes as the sample size increases.
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(a) 986 simulation of the model
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(b) Relative-return distribution from 986 samples
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(c) Relative-return distribution from 986 samples
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(d) Relative-return distribution from 106 samples

Figure 3: (a)(b)(c) The estimated relative-return distribution with the sample size of 986 in the constant-persistence
normal-noise model with γ = 0.33, σb = 0.0565 for fund-of-fund strategy. (d) The estimated relative-return distribu-
tion with the sample size of 106.
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(e) 315 simulation of the model
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(f) 315 simulation of the model
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(g) 315 simulation of the model
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(h) 1, 000, 000 simulation of the model

Figure 3: (Continue)(e)(f)(g) The estimated relative-return distribution with the sample size of 315 in the constant-
persistence normal-noise model with γ = 0.36, σb = 0.1797 for emerging-market strategy (h) The estimated relative-
return distribution with the sample size of 106.
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E. Beta-Persistence Model Simulations

In this section, we illustrate how the beta-persistence model depends on the beta-distribution
parameters α and β. It is observed that the overall relative-return distribution predicted by the
model does not depend much on beta-distribution parameters. See, Figure 4 for the beta-persistence
normal-noise model. The observation also holds for the other beta-persistence models with t and
mixture noise.
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(a) The beta-persistence normal-noise model with α = 0.03 and corre-
sponding beta PDF
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(b) The beta-persistence normal-noise model with α = 10 and corre-
sponding beta PDF
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(c) The beta-persistence normal-noise model with α = 50 and correspond-
ing beta PDF

Figure 4: Simulation estimate of the relative-return distribution and the associated beta pdf from the beta-
persistence normal-noise model for the fund-of-fund strategy with γ = 0.33, σ = 0.0681 and (a) α = 0.03 and
β = 0.06, (b) α = 10 and β = 20.30, (c) α = 50 and β = 101.51.
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F. Log-Log Plots of Distribution Tails in Different Models

In this section, we plots the distribution tails for the normal, t, and mixture noise model in order to
show the differences in their tail behavior. All except the normal have heavy tails, which is shown
as linear behavior for larger values (at the right in each plot) in Figure 5.
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(a) 10,000 simulation of constant-persistence normal-noise model
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(b) 10,000 simulation of constant-persistence t-noise model
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(c) 10,000 simulation of beta-persistence mixed-noise model

Figure 5: Log-log plots of the estimated relative-return distributions with sample size of 104 in the (a) constant-
persistence normal-noise model, (b) constant-persistence t-noise model, (c) constant-persistence mixed-noise model.
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G. The Beta-Persistence Empirical-Noise Model

To seek a still better fit to the data within the beta-persistence class of models, we can let Bn

have the observed empirical distribution for Xn − γXn−1, using the estimated value of γ. This
automatically gives Bn and its estimated variance σ2

b . It now goes further to directly match the
shape, but sacrifices the explicit parametric form. In order to simulate B following the same
distribution of Bn obtained from the data, we construct distribution function of Bn numerically.
This is done by splitting the support of relative returns, [−0.5, 0.5] equally and cumulatively count
the number of returns falling each interval, from left to the right. As a numerical example, we
construct distribution function of Bn from the relative returns within fund-of-fund strategy. Given
the distribution function, we can generate B using inverse transform method; we generate uniform
random variable and find the inverse value of given distribution function numerically. Figure 6
shows the distribution function of X based on the simulation of B constructed from empirically
obtained Bn. As we see from the figure, the beta-persistence empirical-noise model also provides a
good fit to the data.
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(a) Relative-return distribution
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(b) Q-Q plot comparing the model to the data
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(c) Left-tail log-log plot
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(d) Right-tail log-log plot

Figure 6: Simulated samples from the beta-persistence empirical-noise model with γ = 0.33, α = 50, σ = 0.0681
and the empirical relative-return distribution for the fund-of-fund strategy from the data.
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Table 7 below shows the hitting probabilities from the beta-persistence empirical-noise model.
It is observed that the maximum and minimum of 20 simulations of hitting probabilities cover
the empirically observed hitting probabilities from the data. The large number (104) of simulation
results in the fourth column of Table 7 also suggests that the beta-persistence empirical-noise model
provides reasonable estimates of the hitting probabilities.

Table 7: Hitting probabilities of thresholds over a five-year period (2000-2004)

Level1 data2 empirical-noise
N = 923 N = 10, 0004

3 σ 0.0326 [0,0.0652] 0.0313±0.0034
2 σ 0.0761 [0.0217,0.1196] 0.0659±0.0049
1 σ 0.2363 [0.1630,0.3261] 0.2226±0.0082
-1 σ 0.2391 [0.1413,0.2826] 0.2021±0.0079
-2 σ 0.0542 [0.0109,0.0870] 0.0477±0.0042
-3 σ 0.0326 [0,0.0543] 0.0271±0.0032

1. σ = 0.0681, the observed standard deviation of the fund-of-fund relative returns.
2. Number of funds that have ever hit the level for 2000-2004 divided by total 92 funds in 2000.
3. Minimum and maximum of the probabilities from 20 simulations with sample size of 92 initially.
4. 95 % confidence interval of hitting probability from simulation with sample size of 10,000 initially
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H. Constant-Persistence Stable-Noise Model Simulations

In this section, we show how the relative-return distribution in the constant-persistence stable-noise
model depends on parameter β in the stable distribution. Figure 7 shows Q-Q plots and log-log
plots of the left and right tails of the estimated distributions for β = −0.2,−0.1, 0, and 0.1. It
is observed that the constant-persistence stable-noise model with β = −0.1 fits the Q-Q plot well
whereas the left and right tails of the distribution are approximated well with β = 0.1. Overall,
β = 0 fits both the Q-Q plot and the left and right tails relatively well at the same time. It is hard
to find stable random variable parameters that can fit both Q-Q plot and log-log figures at the
same time. It is because the shape of the stable distribution cannot match the observed distribution
exactly. However, the constant-persistence stable-noise model still provides a reasonably good fit
to the data with fewer parameters than the other models, such as the beta-persistence mixed-noise
model.
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(a) Q-Q plot with β = −0.2
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(b) Q-Q plot with β = −0.1
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(c) Q-Q plot with β = 0
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(d) Q-Q plot with β = 0.1

Figure 7: Q-Q plots and Log-log plots of left and right tails of the relative-return distributions from the constant-
persistence stable-noise model with α = 1.6, k = 0.0029 for β = −0.2,−0.1, 0, and 0.1.
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(e) Constant-persistence normal-noise model (Log-log plots) with β = −0.2
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(f) Constant-persistence normal-noise model (Log-log plots) with β = −0.1

10
−3

10
−2

10
−1

10
0

10
−3

10
−2

10
−1

10
0

log−log plot of left tail

cd
f

 

 
Empirical Data
Model Simulation

10
−3

10
−2

10
−1

10
0

10
−3

10
−2

10
−1

10
0

log−log plot of right tail

cc
df

=
1−

cd
f

 

 
Empirical Data
Model Simulation

(g) Constant-persistence normal-noise model (Log-log plots) with β = 0
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(h) Constant-persistence normal-noise model (Log-log plots) with β = 0.1

Figure 7: (Continued) Q-Q plots Log-log plots of left and right tails of the relative-return distributions from the
constant-persistence stable-noise model with α = 1.6, k = 0.0029 for β = −0.2,−0.1, 0, and 0.1.
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I. Analysis of Relative Returns within the Long-Short Equity Strategy

In this section, we fit the relative returns within the long-short equity strategy. Table 1 in the main
paper shows that this strategy has the largest sample size. Thus it is natural to fit our SDE model
to the data in this case. Although we observe relative large number of observations from the data
for this strategy, we see that the relative returns does not have high performance persistence.

The Q-Q plot of the relative returns in Figure 2 (f) suggests that the distribution does not have
heavy tails. That is also supported in the log-log plots of the distribution tails in Figure 8 since
both the left and right tails do not end with a linear line and instead decrease quickly in the right
side of the Figure 8 (c). Thus, we start from normal-noise model to fit the data. As observed in
Table 2 in the main paper, the ratio σ/σb from the data and model do not match. Thus, we use
the beta-persistence normal-noise model first with α = 50. For given σ = 0.1520 and γ = 0.15 from
the data, we calibrate other parameters β, σa and σb, following §6 of the main paper. Figure 8 (a)
and (b) show the estimated relative-return distribution. It is observed from Figure 8 (d) that the
Q-Q plot of the model to the data is close to a linear line with slope 1. Thus, we conclude that
the relative-return distribution is approximated well by the beta-persistence normal-noise model
for the long-short equity strategy.
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(a) Relative-return distribution with 1658 samples
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(b) Relative-return distribution with 106 samples
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(c) Log-log plot of the left and right tails from the beta-persistence normal-noise model
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(d) Q-Q plot (simulated distribution to empirical one)

Figure 8: Relative returns simulated from the beta-persistence normal-noise model with α = 50, σ = 0.1520,
γ = 0.15 for the long-short equity strategy.
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J. Analysis of Relative Returns within the Event-Driven Strategy

In this section, we analyze another single strategy whose relative-return distribution has heavy tails.
In particular, we analyze the event-driven strategy since it has relative big sample size (533) and high
persistence factor (γ = 0.24). The Q-Q plot in Figure 9 shows that the relative-return distribution
has heavier tails than a normal distribution. We thus proceed using our beta-persistence t-noise
and constant-persistence stable-noise models to fit the data.
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(a) Event-driven strategy (γ = 0.24)

Figure 9: Distribution of relative returns from event-driven strategy and Q-Q plot comparing the distribution to
the normal distribution.

J.1. Beta-Persistence t-Noise Model

In this section, we test whether the beta-persistence t-noise model can fit the data for the event-
driven strategy. Recall that in the beta-persistence t-noise model, once α is set, then the other
parameter β in the beta random variable is determined to fit the mean (γ = 0.24). Just as we did
for the fund-of-fund strategy, we set α = 50, so that the persistence random variable is relatively
narrowly distributed around γ = 0.24. We then set the degrees of freedom in the t random variable
to fit the distribution of relative returns from the data. Another parameter k in the model is
determined to fit the standard deviation of Xn (σ = 0.1007). We find that v = 3.5 fits the
distribution well.

From Figure 10, we observe that the quantiles in the Q-Q plot comparing the samples from the
model to the data coincide reasonably well. We obtain p value of 0.1349 from Kolmogorov-Smirnov
two sample test. Thus, we cannot reject the hypothesis that the simulated returns and empirical
returns come from the same distribution.

J.2. Constant-Persistence Stable-Noise Model

In this section, we test whether the constant-persistence stable-noise model provides a good fit
the data. In order to test that, we measure the quantiles of Xn and Bn that directly come from
Xn − γXn−1, using previous estimate for the persistence factor γ. Table 8 shows that the ratios of
quantiles from X and B are roughly equal to 1.3. We thus proceed the model fitting by assuming
that c = 1.3.

Given c = 1.3, we now compare Xn and cBn from the data for the event-driven strategy. Figure
11 shows the histograms of Xn and cBn from the data, which look similar. We also conducted
Kolmogorov-Smirnov two-sample test and obtained a p-value of 0.2834. Thus we cannot reject
the hypothesis that these two sets of samples come from the same distribution. The Q-Q plot also
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(a) Q-Q plot comparing the model the the data
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(b) Log-log plot of left tails
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(c) Log-log plot of right tails

Figure 10: The beta-persistence t-noise model 104 number of simulation with α = 50, v = 3.5, γ = 0.24 comparing
to the data for event-driven strategy.

Table 8: The Quantile Differences of Xn and Bn and Their Ratios

Quantile Difference1 Xn Bn Ratio 2

55%− 45% 0.0259 0.0207 1.2533
60%− 40% 0.0460 0.0372 1.2378
65%− 35% 0.0783 0.0578 1.3552
70%− 30% 0.1012 0.0703 1.4396
75%− 25% 0.1270 0.0921 1.3789
80%− 20% 0.1580 0.1204 1.3132
85%− 15% 0.1878 0.1587 1.1832
90%− 10% 0.2935 0.2067 1.1587
95%− 5% 0.3051 0.2876 1.0610

1. Difference between two quantile values.
2. Ratio: Quantile Difference for X /Quantile Difference for B.
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(a) Event-driven strategy Xn
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(b) Event-driven strategy cBn = c(Xn − γXn−1)
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(c) Q-Q plot comparing Xn and cBn

Figure 11: Xn and cBn from event-driven strategy and Q-Q plot comparing the distribution of Xn and cBn with
c = 1.3 for event-driven strategy.

shows that the quantiles from the distributions of the samples from the model and the data coincide
with each other remarkably well.

Figure 12 shows that the constant-persistence stable-noise model fits the relative returns within
the event-driven strategy reasonably well with stable-distribution parameters α = 1.75, β = −0.2
and κ = 0.055. The Q-Q plots in the figure show that the quantiles of the distributions of the
samples from the model and the data coincide well. Also, log-log plots of the left and right tails
show that the tail behaviors of the distribution of the samples from the model approximate the
distribution of the samples from the data reasonably well.

We test if the c and α in Figure 12 and γ reasonably fit (7.1) in the main papr. We observe
that cα = 1.58 and 1/(1−γα) = 1.08 coincide only roughly. Nevertheless, in summary, we conclude
that the fitting to a heavy-tailed distribution works reasonably well, given the limited data.
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(a) Q-Q plot comparing the model to the data
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(b) Log-log plot of left tails
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(c) Log-log plot of right tails

Figure 12: Event-driven strategy Q-Q plot comparing the distribution of 533 samples from the data and 104

samples from the constant-persistence stable-noise model with α = 1.75, β = −0.2, γ = 0.24, k = 0.055 for event-
driven strategy.
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