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Abstract

We describe a new tool that we are developing to
help analyze the performance of emerging telecommu-
nication systems. These emerging systems include
ATM, broadband, intelligent and wireless networks,
each of which will support a wide variety of services
and media. Our tool is distinguished from previous
tools by exploiting numerical transform inversion. In
this paper we describe three modules in the tool. These
modules provide algorithms for obtaining the exact an-
alytic solutions to: (i) resource-sharing models, (ii)
BMAP/G/1 queueing models and (iii) polling models.
Since the tool is based on analytical methods instead of
simulation, it is relatively fast. The tool has a window-
based menu-driven interface and provides both graph-
ical and numerical output.

1 Introduction

In this paper we describe a new performance analysis
tool that we are developing, called Q2, which exploits
recent progress in numerical transform inversion. The
tool has a user-friendly interface with window-based
menu-driven input and graphical as well as numerical
output. Since the algorithms are based on analytical
solutions instead of simulation, the running times are
relatively short. Many substantial problems can be
analyzed in fractions of a second or seconds, when
simulations would take hours or days.

As usual, the computational engine of the perfor-
mance analysis tool is being kept mostly transparent
to the user. Hence, the tool can include a wide variety
of different algorithms without excessively burdening
the user. However, for developing, maintaining, un-

derstanding and fine-tuning the tool, it is significant
that all the initial modules are based on a single tech-
nology: numerical transform inversion. It is remark-
able that this one approach has so many applications
to performance analysis models. Indeed, it is surpris-
ing that it has not previously been given much more
attention.

Numerical transform inversion has several advan-
tages over other computational approaches for perfor-
mance analysis models. For many stochastic models of
interest, transforms of key quantities either are already
available or are relatively easy to obtain. Moreover,
transform inversion tends to place fewer restrictions
on the distributions appearing in the model. For ex-
ample, in the GI/G/1 queue the interarrival-time and
service-time distributions need not be phase-type or
even have rational Laplace transforms [1]. Numeri-
cal inversion also routinely produces tail probabilities
instead of just means. It is now widely recognized
that tail probabilities usually are more informative in
performance analysis than means. Moreover, simula-
tion is usually quite effective for computing means, but
simulation has difficulty computing small tail proba-
bilities.

Hence, the essential tool behind the tool is numer-
ical transform inversion. For this purpose, we exploit
the Fourier-series method, drawing upon our previous
work in [2], [7], [8]. We are able to invert both one-
dimensional and multi-dimensional transforms, where
these transforms can be generating functions (or z-
transforms), Laplace transforms, Fourier transforms
(or characteristic functions) or combinations of these.

This paper only provides a brief overview, but it
indicates where additional information can be found.
This paper can be regarded as a sequel to our overview
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of transform inversion applications in [9]. Here we dis-
cuss three different models for which we have success-
fully applied numerical inversion: (i) resource-sharing
models, (ii) the BMAP/G/1 queue and (iii) polling
models. These models are the first three modules in
Q2. Their relevance for performance analysis is well
known. All three models lead to relatively complex
structured Markov chains. The special structure en-
ables us to obtain relatively compact representations
of the steady-state distributions via transforms. In
the last two cases we have transforms of the transient
distributions as well. For many cases of the three mod-
els, numerical transform inversion appears to be the
only available technique for computing distributions
of interest.

2 Resource-sharing models

The first module of Q2 is for solving resource-sharing
models, drawing on our work with K. K. Leung in
[3]–[6]. Resource-sharing models (also known as loss
networks) are multi-dimensional generalizations of the
classical Erlang loss model. In a resource-sharing
model there are multiple resources, each containing
multiple resource units which provide service to mul-
tiple customers. Each customer is a source of a stream
of requests. Each customer request requires a number
of units from each resource, which may be zero, one
or greater than one, and may be different on differ-
ent resources and different for different customers. If
all requirements can be met upon arrival of a new
request, then the new request is admitted, and all re-
quired resource units are held throughout the request
holding time. Otherwise, the request is blocked and
lost. The primary measures of performance are the re-
quest blocking probabilities of the different customers.

In a circuit-switched telecommunications network,
the resources may be links, and the resource units may
be circuits on these links, while the customers may
be associated with different services and the requests
may be calls. In an ATM network, the resources may
be switches and other network facilities, the resource
capacity (units) may be the bandwidth available at
these network facilities, while the customers may be
prospective users of the network and the customer re-
quests may be required “effective bandwidths” asso-
ciated with bursts within an established connection.
Thus this is a candidate model to address the well
known ATM call-admission-control problem. Both ap-
plications are intended for a broad range of services,
so that it is important that the model includes cus-
tomers with different characteristics. In particular, it

is important to allow some customer requests to use
multiple resource units.
The standard resource-sharing model has a

complete-sharing (CS) policy, in which requests are
admitted whenever all the required resource units are
free. However, we consider more general resource-
sharing policies involving extra linear constraints. We
pay particular attention to the case in which upper-
limit (UL) and guaranteed minimum (GM) bounds are
assigned to each customer. A UL bound limits the
number of requests from that customer that can be
in service. A GM bound guarantees that there is al-
ways space for a specified number of active requests
from that customer. A set of GM bounds is equiva-
lent to an upper limit on the resource units used by
each subset of the classes. The UL and GM bounds
are equivalent for two classes, but not for more than
two classes. We focus on combined UL and GM bounds
(which cannot be reduced to either one alone). The
UL and GM bounds are very useful for providing pro-
tection against overloads and for providing different
grades of service to different customers.
In the standard resource-sharing model, the request

arrival processes are independent Poisson processes
and the request holding times are independent ran-
dom variables with a general distribution having finite
mean. The key description of each customer’s request
stream is the offered load, which is the product of
the arrival rate and the mean holding time. It is well
known that this resource-sharing model has a product-
form steady-state distribution, i.e., if n ≡ (n1, . . . , nr),
where nj is the number of customer-j requests in ser-
vice, then the steady-state probability mass function is

π(n) = g(K)−1f(n),with f(n) = Πrj=1fj(nj) (2.1)

and fj(nj) = exp(−ρj)ρ
nj
j /nj ! (the Poisson distribu-

tion) where ρj is the offered load for class j, and the
normalization constant (or partition function) g(K) in
(2.1) is the sum of f(n) over all allowable states. The
set of allowable states depends on the sharing pol-
icy. With the complete-sharing policy, the quantity
K ≡ (K1, . . . ,Kp) in g(K) is the vector of resource
capacities; otherwise it is more complicated. More-
over, it is known that the blocking probabilities and
other steady-state performance measures of interest
have simple expressions in terms of the normalization
constants appearing in the steady-state distribution.
In this module we use our new algorithm for calcu-

lating the blocking probabilities based on numerically
inverting the generating function (or z-transform) of
the normalization constant [3]. If the vector K in the
normalization constant g(K) is p-dimensional, then
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the generating function is the following p-dimensional
function of complex variables z ≡ (z1, . . . , zp):

G(z) =

∞
∑

i1=1

. . .

∞
∑

ip=1

g(K)zK11 . . . z
Kp
p . (2.2)

For our approach, it is significant that the generating
function has a remarkably simple form. For example,
with the complete-sharing policy, the generating func-
tion is

G(z) = Πpi=1(1− zi)
−1 exp(

r
∑

j=1

ρjΠ
p
i=1z

aij
i ) , (2.3)

where p is the number of resources, r is the number of
customers and aij is the number of units of resource i
required by each customer-j request. With the com-
bined UL and GM bounds, the generating function is
more complicated but still tractable.
We also provide variants of the algorithm which

have been developed for state-dependent arrival and
service rates [4] and batch arrivals [5]. State-
dependent arrival rates and batch arrivals are impor-
tant to represent sources of customer requests that
are more or less bursty (variable) than a Poisson pro-
cess. State-dependent service rates permit us to con-
sider buffered as well as unbuffered models, such as
the single-server variant considered by Kamoun and
Kleinrock [13] to analyze a node of a store-and-forward
computer network.
Recursive algorithms, such as the Kaufman [14] –

Roberts [21] algorithm, have previously been devel-
oped for many resource-sharing models, but not in
the generality above. Moreover, for those models for
which recursive algorithms have been developed, our
inversion algorithm is computationally superior for
large models. The numerical inversion algorithm has
a number of computational advantages. First, large
finite sums can be efficiently computed through judi-
cious truncation or through acceleration methods. Sec-
ond, for large models with a high-dimensional gener-
ating function, it is often possible to reduce the ef-
fective dimension by inverting the variables in a good
order. For example, this dimension reduction enables
us to solve models with UL and GM bounds nearly
as quickly as the standard model with the CS sharing
policy. It is also possible to reduce the computations
by exploiting multiplicities, i.e., multiple classes with
identical parameters. We can make our models much
larger by increasing multiplicities at negligible compu-
tational cost.
Our algorithm exploits the Fourier-series method

for inverting generating functions, as in [2], [8]. Since

the normalization constants can grow rapidly in the
resource capacities, an important ingredient in our in-
version algorithm is an effective scaling procedure [3],
[4]. We demonstrate the effectiveness of the overall
inversion algorithm in [3], [4], [5] by solving some chal-
lenging numerical examples.

Even though the inversion algorithm is remarkably
effective, very large networks without special struc-
ture are well beyond the capabilities of the inversion
algorithm. To approximately solve very large models,
following [6], the module uses reduced-load fixed-point
approximations, exploiting the inversion algorithm for
solving single resources or subnetworks.

3 The BMAP/G/1 queue

The second module of Q2 computes steady-state and
transient performance measures for the BMAP/G/1
queue, drawing on our work with D. M. Lucantoni in
[7]–[11], [17]. The BMAP/G/1 queue is a single-server
queue with unlimited waiting space, the first-come
first-served service discipline, independent and identi-
cally distributed service times with a general distribu-
tion, and a batch Markovian arrival process (BMAP),
which is independent of the service times. The most
significant feature is the BMAP. It is a very general
arrival process, permitting a rich variety of models
[16]. The BMAP is an alternative representation for
the versatile Markovian point process or Neuts process
[19], [20].

The BMAP can be constructed by considering a
two-dimensional Markov process {[N(t), J(t)] : t ≥ 0}
on the state space {i, j) : i ≥ 0, 1 ≤ j ≤ m} with an
infinitesimal generator Q having the structure

Q =





















D0 D1 D2 D3 . . .

D0 D1 D2 . . .

D0 D1 . . .

D0 . . .





















, (3.1)

where Dk, k ≥ 0, are m×m matrices; D0 has negative
diagonal elements and nonnegative off-diagonal ele-
ments; Dk, k ≥ 1, are nonnegative; and D ≡

∑

∞

k=0Dk
is an irreducible infinitesimal generator. We assume
that D 6= D0, so that arrivals do occur. The vari-
able N(t) counts the number of arrivals in the inter-
val (0, t], and the variable J(t) represents an auxil-
iary state. Transitions from (i, j) to (i + k, l), k ≥ 0,
1 ≤ j, l ≤ m, correspond to batch arrivals of size k

3



along with a change of state from j to l, and these
occur with intensity (Dk)jl.

Note that it is possible to have any of: (i) ar-
rivals without change of auxiliary state, (ii) arrivals
with change of auxiliary state, and (iii) change of
auxiliary state without arrivals. A familiar special
case of a BMAP is the Markov modulated Poisson
process (MMPP) having an m-dimensional (diagonal)
rate matrix Λ. (The environment is governed by a
Markov chain with generator M . When the chain
is in state j, arrivals occur according to a Poisson
process with rate λj .) An MMPP is a BMAP with
D0 =M − Λ, D1 = Λ and Dk = 0 for k ≥ 2.

Since a superposition of independent BMAPs is
again a BMAP, the BMAP is very useful to study
queues with superposition arrival processes, which in
turn are useful to study the phenomenon of statis-
tical multiplexing in communication networks. For
ATM networks there is great interest in small cell
loss probabilities associated with large numbers of in-
dependent sources. We have used our algorithm for
the BMAP/G/1 queue to gain insight into the ATM
problem by computing small tail probabilities in a
BMAP/G/1 queue with an arrival process that is a
superposition of 60 two-state MMPPs [9], [11].

The BMAP/G/1 queue is a special case of a struc-
tured Markov chain of M/G/1 type [19]. Within
the class of Markov chains of M/G/1 type, the
BMAP/G/1 queue has a special place, because vir-
tually all its performance measures can be expressed
as matrix generalizations of the corresponding per-
formance measures in the ordinary M/G/1 queue
[16]. However, just as for the ordinary M/G/1 queue,
many of the desired probability distributions in the
BMAP/G/1 queue are only available (except in spe-
cial cases) in the form of transforms.

Matrix-analytic theory has provided expressions
for the transforms of quantities of interest [15], [16],
[19], [20], in the BMAP/G/1 queue and M/G/1-
type Markov chains. However, in contrast to the
situation for GI/M/1-type Markov chains [18], there
has remained a need for effective algorithms for the
BMAP/G/1 queue and M/G/1-type Markov chains.
It appears that numerical transform inversion is a nat-
ural tool to fill this gap.

To illustrate, we consider the queue-length process
at departure epochs in the BMAP/G/1 queue, which
is an M/G/1-type Markov chain. Let xi represent the
steady-state queue-length vector, whose jth element
is the probability that the queue length is i and the
arrival process is in state j right after a departure in

steady state. Its generating function is

X(z) ≡

∞
∑

i=0

xiz
i = −x0D

−1
0 D(z)A(z)[zI −A(z)]

−1,

(3.2)
where D0 is from (3.1), D(z) is the matrix generat-
ing function D(z) ≡

∑

∞

k=0Dkz
k and A(z) ≡ Ã(z, 0),

where Ã(z, s) is the two-dimensional matrix transform

Ã(z, s) =

∫

∞

0

e−x(sI−D(z))dH(x) ≡ ĥ(sI −D(z)),

(3.3)
with H being the service-time cumulative distribution
function and ĥ its Laplace-Stieltjes transform. It is
known [15] that x0 in (3.2) is computable in terms
of the model input, so that the most challenging part
is (3.3). However, as shown in [17], when H has a
rational Laplace transform, it is not difficult to com-
pute Ã(z, s) for any pair of complex numbers (z, s).
In addition, the running time is quite insensitive to
the degree of the polynomials. Hence, we are able to
calculate xi by numerically inverting (3.2).
To make the tool easy to use, in addition to allow-

ing the full generality of the model, we consider special
cases of the model that can be specified by relatively
few parameters. For example, we consider Erlang (Ek)
and hyperexponential (Hk) service-time distributions.
An H2 distribution can be represented as a mixture
of two exponential distributions or as the interarrival
time in an interrupted Poisson process, which is a spe-
cial case of a two-state MMPP in which one rate is
0. We allow the three H2 parameters to be specified
by the natural parameter triples associated with these
two representations or by the first three moments.
For the arrival process, we allow a class of general

BMAPs by having Dk = 0 for k > m for some m
and having the user specify m and Dk, 0 ≤ k ≤ m.
We also allow superpositions of two special BMAPs.
The first special class contains Ek and Hk renewal
processes. The second special class contains MMPPs.
The user specifies the number of basic processes (re-
newal processes or MMPPs), the multiplicity of each
in the superposition, and the parameters for each. The
tool then constructs the BMAP representation for the
overall superposition process. At present, our algo-
rithm can solve models in which the final BMAP has
up to about 100 states.
In addition to calculating probability distributions,

we also use numerical inversion to calculate any num-
ber of their moments and their asymptotic parame-
ters [7]. As with the normalization constants in the
resource-sharing models, it is important to have an
effective scaling procedure to compute high-order mo-
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ments. As shown in [7], the high-order moments can in
turn be used to compute the asymptotic parameters.
For example, it often happens that

xij ∼ αjσ
i as i→∞, (3.4)

where ai ∼ bi as i → ∞ means that the ratio con-
verges to 1. The program computes the parameters
αj and σ in (3.4). The approximation xij ≈ αjσ

i

is a convenient compact representation that is often
adequately accurate for many applications [10], [11].
We also have refined three-term approximations that
match moments and asymptotics, which are even more
accurate.

4 Polling models

The third module of Q2 calculates steady-state and
transient performance measures for polling models,
drawing on [12]. In our polling models, independent
Poisson arrivals come to different queues, where they
are served by a single server. The server may serve
the queues in a cyclic order or according to a more
general polling table. We allow either gated or ex-
haustive service at each queue, with different policies
allowed at different queues. With the gated policy, the
server serves all customers found at the queue when
it first arrives there, but none of the customers that
arrive later. With the exhaustive policy, the server
keeps working until the queue is empty, serving new
customers who arrive while the server is busy serving
earlier arrivals at that queue. In [12] we show that
the inversion approach applies to many other polling
models as well.
The time required for the server to move from one

queue to another is called a switchover time. During
a switchover time no service is performed. We treat
both the case of zero switchover times and nonzero
switchover times. We assume that the switchover
times and service times are mutually independent ran-
dom variables with general distributions that depend
on the queue. As in the previous BMAP/G/1 module,
the user can specify these distributions by selecting the
general form such as Ek and Hk, and then providing
the required parameters.
As can be seen from Takagi [22], [23], multidimen-

sional transforms of performance measures of interest
have been derived for these (and related) polling mod-
els. These transform expressions have been success-
fully exploited to derive means and sometimes second
moments, but until [12] they evidently had not been
used to calculate the distributions themselves, higher
moments or asymptotic parameters.

In [12] we show that these polling transforms often
can be quite easily computed and inverted numerically
to calculate distributions, all moments and asymptotic
parameters. We develop a new efficient recursive al-
gorithm for computing transform values. Our opera-
tion count for computing moments and distributions is
O(Nα) for one queue and is O(N1+α) for all queues of
an N -queue system, where α is typically in the range
0.6 to 0.8. It appears that our algorithm is faster
than other available algorithms for mean waiting time
and queue lengths. For example, in [12] we treat an
asymmetric 1000-queue system and compute the mean
waiting time in less than 5 seconds, and several mo-
ments and tail probability values in a few minutes,
using a SUN SPARC-2 workstation.
Computing full distributions instead of only means

is important because in many performance analysis
applications we really want to know high percentiles,
such as the 95th or 99th. In emerging high-speed com-
munication networks there is even great interest in
very small tail probabilities, such as 10−9, in order
to provide an appropriate quality of service. Hence,
the ability to compute full distributions should signif-
icantly increase the usefulness of polling models.
We compute all moments by numerical inversion,

so that our method is the same for the hundredth
moment as it is for the first moment. By contrast,
previous results for higher moments have been via an-
alytical differentiation of the transform, which leads
to cumbersome expressions. So far, analytical differ-
entiation has only provided results for the first two
moments, but we can easily compute even the hun-
dredth moment.
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