Chapter 5

Heavy-Traffic Limits for
Fluid Queues

5.1. Introduction

In this chapter we see how the continuous-mapping approach can be ap-
plied to establish heavy-traffic stochastic-process limits for queueing models,
and how those heavy-traffic stochastic-process limits, in turn, can be applied
to obtain approximations for queueing processes and gain insight into queue-
ing performance.

To establish the heavy-traffic stochastic-process limits, the general idea
is to represent the queueing “content” process of interest as a reflection of
a corresponding net-input process. For single queues with unlimited stor-
age capacity, a one-sided one-dimensional reflection map is used; for single
queues with finite storage capacity, a two-sided one-dimensional reflection
map is used. These one-dimensional reflection maps are continuous as maps
from D to D with all the principal topologies considered by virtue of results
in Sections 13.5 and 14.8. Hence, FCLT’s for scaled net-input processes
translate into corresponding FCLT’s for scaled queueing processes.

Thus we see that the relatively tractable heavy-traffic approximations
can be regarded as further instances of the statistical regularity stemming
from the FCLT’s in Chapter 4. The FCLT for the scaled net-input processes
may be based on Donsker’s theorem in Section 4.3 and involve convergence
to Brownian motion; then the limit process for the scaled queueing processes
is reflected Brownian motion (RBM). Alternatively, the FCLT for the scaled
net-input processes may be based on one of the other FCLT’s in Sections
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168 CHAPTER 5. HEAVY-TRAFFIC LIMITS

4.5 — 4.7 and involve convergence to a different limit process; then the limit
process for the scaled queueing processes is the reflected version of that other
limit process.

For example, when the net-input process can be constructed from partial
sums of IID random variables with heavy-tailed distributions, Section 4.5
implies that the scaled net-input processes converge to a stable Lévy motion;
then the limit process for the queueing processes is a reflected stable Lévy
motion. The reflected stable Lévy motion heavy-traffic limit describes the
effect of the extra burstiness due to the heavy-tailed distributions.

As indicated in Section 4.6, it is also possible to have more burstiness
due to strong positive dependence or less burstiness due to strong negative
dependence. When the net-input process has such strong dependence with
light-tailed distributions, the scaled net-input processes may converge to
fractional Brownian motion; then the limit process for the scaled queueing
processes is reflected fractional Brownian motion.

In this chapter, attention will be focused on the “classical” Brownian
approximation involving RBM and its application. For example, in Section
5.8 we show how the heavy-traffic stochastic-process limit with convergence
to RBM can be used to help plan queueing simulations, i.e., to estimate
the required run length to achieve desired statistical precision, as a function
of model parameters. Reflected stable Lévy motion will be discussed in
Sections 8.5 and 9.7, while reflected fractional Brownian motion will be
discussed in Sections 8.7 and 8.8.

In simple cases, the continuous-mapping approach applies directly. In
other cases, the required argument is somewhat more complicated. A specific
simple case is the discrete-time queueing model in Section 2.3. In that case,
the continuous-mapping argument applies directly: FCLT’s for the partial
sums of inputs Vj translate immediately into associated FCLT’s for the
workload (or buffer-content) process {Wj}, exploiting the continuity of the
two-sided reflection map. The continuous-mapping approach applies directly
because, as indicated in (3.5) in Chapter 1, the scaled workload process is
exactly the reflection of the scaled net-input process, which itself is a scaled
partial-sum process. Thus all the stochastic-process limits in Chapter 4
translate into corresponding heavy-traffic stochastic-process limits for the
workload process in Section 2.3.

In this chapter we see how the continuous-mapping approach works
with related continuous-time fluid-queue models. We start considering fluid
queues, instead of standard queues (which we consider in Chapter 9), be-
cause fluid queues are easier to analyze and because fluid queues tend to
serve as initial “rough-cut” models for a large class of queueing systems.
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The fluid-queue models have recently become popular because of applica-
tions to communication networks, but they have a long history. In the
earlier literature they are usually called dams or stochastic storage mod-
els; see Moran (1959) and Prabhu (1998). In addition to queues, they have
application to inventory and risk phenomena.

In this chapter we give proofs for the theorems, but the emphasis is on
the statement and applied significance of the theorems. The proofs illustrate
the continuous-mapping approach for establishing stochastic-process limits,
exploiting the useful functions introduced in Section 3.5. Since the proofs
draw on material from later chapters, upon first reading it should suffice to
focus, first, on the theorem statements and their applied significance and,
second, on the general flow of the argument in the proofs.

5.2. A General Fluid-Queue Model

In a fluid-queue model, a divisible commodity (fluid) arrives at a storage
facility where it is stored in a buffer and gradually released. We consider an
open model in which fluid arrives ezogenously (from outside). For such open
fluid-queue models, we describe the buffer content over time. In contrast,
in a standard queueing model, which we consider in Chapter 9, individual
customers (or jobs) arrive at a service facility, possibly wait, then receive
service and depart. For such models, we count the number of customers in
the system and describe the experience of individual customers. The fluid
queue model can be used to represent the unfinished work in a standard
queueing model. Then the input consists of the customer service require-
ments at their arrival epochs. And the unfinished work declines at unit rate
as service is provided.

In considering fluid-queue models, we are motivated to a large extent by
the need to analyze the performance of evolving communication networks.
Since data carried by these networks are packaged in many small packets, it
is natural to model the flow as fluid, i.e., to think of the flow coming contin-
uously over time at a random rate. A congestion point in the network such
as a switch or router can be regarded as a queue (dam or stochastic storage
model), where input is processed at constant or variable rate (the available
bandwidth). Thus, we are motivated to consider fluid queues. However,
we should point out that other approaches besides queueing analysis are
often required to engineer communication networks; to gain perspective, see
Feldmann et al. (2000, 2001) and Krishnamurthy and Rexford (2001).
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5.2.1. Input and Available-Processing Processes

In this section we consider a very general model: We consider a single fluid
queue with general input and available-processing (or service) processes.
For any ¢ > 0, let C(t) be the cumulative input of fluid over the interval
[0,%] and let S(t) be the cumulative available processing over the interval
[0,%]. If there is always fluid to process during the interval [0,¢], then the
quantity processed during [0,¢] is S(¢). We assume that {C(¢) : ¢ > 0}
and {S(t) : t > 0} are real-valued stochastic processes with nondecreasing
nonnegative right-continuous sample paths. But at this point we make no
further structural or stochastic assumptions.

A common case is processing at a constant rate y whenever there is fluid
to process; then

S@t)=put, t>0. (2.1)

More generally, we could have input and output at random rates. Then

C(t):/OtRi(s)ds and S(t):/OtRo(s)ds, £>0,  (22)

where {R;(t) : t > 0} and {R,(t) : t > 0} are nonnegative real-valued
stochastic processes with sample paths in D. For example, it is natural
to have maximum possible input and processing rates v; and v,. Then, in
addition to (2.2), we would assume that

0<Ri(t)<v; and 0< R,(t)<v, forall ¢t w.p.l. (2.3)

With (2.2), the stochastic processes C' and S have continuous sample paths.
We regard that as the standard case, but we allow C and S to be more
general.

With the general framework, the discrete-time fluid-queue model in Sec-
tion 2.3 is actually a special case of the continuous-time fluid-queue model
considered here. The previous discrete-time fluid queue is put in the present
framework by letting

1¢]
Ct)=) Vi and S(t)=ult], t>0,
k=1

where [t] is the greatest integer less than or equal to .



5.2. A GENERAL FLUID-QUEUE MODEL 171

5.2.2. Infinite Capacity

We will consider both the case of unlimited storage space and the case
of finite storage space. First suppose that there is unlimited storage space.
Let W (t) represent the workload (or buffer content, i.e., the quantity of
fluid waiting to be processed) at time ¢. Note that we can have significant
fluid flow without ever having any workload. For example, if W(0) = 0,
C(t) = At and S(t) = pt for all ¢ > 0, where A < y, then fluid is processed
continuously at rate A, but W (t) = 0 for all t. However, if C is a pure-jump
process, then the processing occurs only when W (¢) > 0. (The workload or
virtual-waiting-time process in a standard queue is a pure-jump process.)

The workload W (t) can be defined in terms of an initial workload W (0)
and a net-input process C(t) — S(t), t > 0, via a potential-workload process

X)) =W(0)+C(t) - S(t), t>0, (2.4)
by applying the one-dimensional reflection map to X, i.e., by letting
W) = $(X)(1) = X(1) — inf {X()AO}, 120,  (25)
<s<

where a A b = min{a, b}.

We could incorporate the initial workload W (0) into the cumulative-
input process {C(t) : t > 0} by letting C'(0) = W (0). Then X would simply
be the net-input process. However, we elect not to do this, because it is
convenient to treat the initial conditions separately in the limit theorems.

The potential workload represents what the workload would be if we
ignored the emptiness condition, and assumed that there is always output
according to the available-processing process S. Then the workload at time
t would be X (¢): the sum of the initial workload W (0) plus the cumula-
tive input C(t) minus the cumulative output S(¢). Since emptiness may
sometimes prevent output, we have definition (2.5).

Formula (2.5) is easy to understand by looking at a plot of the potential
workload process {X(t) : t > 0}, as shown in Figure 5.1. Figure 5.1 shows
a possible sample path of X when S(¢) = ut for t > 0 w.p.1 and there is
only one on-off source that alternates between busy periods and idle periods,
having input rate » > u during busy periods and rate 0 during idle periods.
Hence the queue alternates between net-input rates r — u > 0 and —p < 0.
The plot of the potential workload process {X(t) : ¢ > 0} also can be
interpreted as a plot of the actual workload process if we redefine what is
meant by the origin. For the workload process, the origin is either 0, if X
has not become negative, or the lowest point reached by X. The position of
the origin for W is shown by the shaded dashed line in Figure 5.1.
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X(t)

Figure 5.1: A possible realization of the potential workload process {X(¢) :
t > 0} and the actual workload process {W(¢) : t > 0} with unlimited
storage capacity: The actual workload process appears if the origin is the
heavy shaded dashed line; i.e., solid line - dashed line = actual workload.

An important observation is that the single value W (t), for any ¢ > 0,
depends on the initial segment {X(s) : 0 < s < t}. To know W (¢), it is
not enough to know the single value X (¢). However, by (2.5) it is evident
that, for any ¢ > 0, both W (¢) and the initial segment {W(s) : 0 < s < ¢t}
are functions of the initial segment {X(s) : 0 < s < t}. With appropriate
definitions, the reflection map in (2.5) taking the modified net-input process
{X(t) : t > 0} into the workload processes {W (t) : t > 0} is a continuous
function on the space of sample paths; see Section 13.5. Thus, by exploiting
the continuous mapping theorem in a function space setting, a limit for a
sequence of potential workload processes will translate into a corresponding
limit for the associated sequence of workload processes.

Remark 5.2.1. Model generality. It may be hard to judge whether the
fluid queue model we have introduced is exceptionally general or restrictive.
It depends on the perspective: On the one hand, the model is very general
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because the basic stochastic processes C' and S can be almost anything. We
illustrate in Chapter 8 by allowing the input C' to come from several on-off
sources. We are able to treat that more complex model as a special case
of the model studied here. On the other hand, the model is also quite re-
strictive because we assume that the workload stochastic process is directly
a reflection of the potential-workload stochastic process. That makes the
continuous-mapping approach especially easy to apply. In contrast, as we
will see in Chapter 9, it is more difficult to treat the queue-length process in
the standard single-server queue without special Markov assumptions. How-
ever, additional mathematical analysis shows that the model discrepancy is
asymptotically negligible: In the heavy-traffic limit, the queue-length pro-
cess in the standard single-server queue behaves as if it could be represented
directly as a reflection of the associated net-input process. And similar
stories hold for other models. The fluid model here is attractive, not only
because it is easy to analyze, but also because it captures the essential nature
of more complicated models. =

The general goal in studying this fluid-queue model is to understand
how assumed behavior of the basic stochastic processes C and S affects the
workload stochastic process W. For example, assuming that the net-input
process C' — S has stationary increments and negative drift, under minor
regularity conditions (see Chapter 1 of Borovkov (1976)), the workload W (t)
will have a limiting steady-state distribution. We want to understand how
that steady-state distribution depends on the stochastic processes C' and
S. We also want to describe the transient (time-dependent) behavior of the
workload process. Heavy-traffic limits can produce robust approximations
that may be useful even when the queue is not in heavy traffic.

We now want to consider the case of a finite storage capacity, but before
defining the finite-capacity workload process, we note that the one-sided
reflection map in (2.5) can be expressed in an alternative way, which is
convenient for treating generalizations such as the finite-capacity model and
fluid networks; see Chapter 14 and Harrison (1985) for more discussion.
Instead of (2.5), we can write

W(t) = ¢(X)(t) = X(t) + L(¢), (2.6)

where X is the potential workload process in (2.4) and {L(¢) : ¢ > 0} is a
nondecreasing “regulator” process that increases only when W (t) = 0, i.e.,
such that

/ W(s)dL(s) =0, t>0. 2.7)
0
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From (2.5), we know that

L(t) = = inf {X(s) A0}, 20. (2.8)

It can be shown that the characterization of the reflection map via (2.6)
and (2.7) is equivalent to (2.5). For a detailed proof and further discussion,
see Chapter 14, which focuses on the more complicated multidimensional
generalization.

5.2.3. Finite Capacity

We now modify the definition in (2.6) and (2.7) to construct the finite-
capacity workload process. Let the buffer capacity be K. Now we assume
that any input that would make the workload process exceed K is lost. Let

W(t) = dx(X)(t) = X(t) + L(t) — U(t), t>0, (2.9)

where again X (t) is the potential workload process in (2.4), the initial con-
dition is now assumed to satisfy 0 < W(0) < K, and L(t) and U(t) are both
nondecreasing processes. The lower-boundary regulator process L = 1pp(X)
increases only when W (t) = 0, while the upper-boundary regulator process
U = ¢y (X) increases only when W (t) = K; i.e., we require that

t t
/ W (s)dL(s) = / (K — W(s)dU(s) =0, t>0.  (2.10)
0 0

The random variable U () represents the quantity of fluid lost (the overflow)
during the interval [0,t]. We are often interested in the overflow process
{U(t) : t > 0} as well as the workload process {W(t) : t > 0}.

Note that we can regard the infinite-capacity model as a special case of
the finite-capacity model. When K = oo, we can regard the second integral
in (2.10) as implying that U(¢) = 0 for all ¢ > 0.

Closely paralleling Figure 5.1, for the finite-capacity model we can also
depict possible realizations of the processes X and W together, as shown in
Figure 5.2. As before, the potential workload process is plotted directly, but
we also see the workload (buffer content) process W if we let the origin and
upper barrier move according to the two heavily shaded dashed lines, which
remain a distance K apart. Decreases in the dashed lines correspond to in-
creases in the lower-barrier regulator process L, while increases in the shaded
lines correspond to increases in the upper-barrier regulator process U. From
the Figure 5.2, the validity of (2.9) and (2.10) is evident. Furthermore, it
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is evident that the two-sided reflection in (2.9) can be defined by successive
applications of the one-sided reflection map in (2.5) and (2.6) correspond-
ing to the lower and upper barriers separately. For further discussion, see
Section 14.8.

Y ()

W(t) ¢

0
4 time ¢
_!
’

Figure 5.2: A possible realization of the potential workload process {X (¢) :
t > 0} and the actual workload process {W (¢) : ¢ > 0} with finite storage
capacity K: The actual workload process appears if the origin and upper
limit are the heavily shaded dashed lines always a distance K apart. As in
Figure 5.1, solid line - lower dashed line = actual workload.

As in the infinite-capacity case, given K, the initial segment {W (s), L(s),U(s) :
0 < s < t} depends on the potential-workload process X via the cor-
responding initial segment {X(s) : 0 < s < t}. Again, under regular-
ity conditions, the reflection map in (2.9) taking {X(¢) : ¢ > 0} into
{(W(t),L(t),U(t) : t > 0} is a continuous function on the space of sample
paths (mapping initial segments into initial segments). Thus, stochastic-
process limits for X translate into stochastic-process limits for (W, L,U),
by exploiting the continuous-mapping approach with the full reflection map
(¢K,%rL,%y) in a function space setting.

Let D(t) represent the amount of fluid processed (not counting any over-
flow) during the time interval [0,¢]. We call {D(t) : t > 0} the departure
process.
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From (2.4) and (2.9),

D(t) = W(0)+Ct)—W(t) —U®)
= S(t)—L(t), t>0. (2.11)

Note that the departure process D in (2.11) is somewhat more compli-
cated than the workload process W because, unlike the workload process,
the departure process cannot be represented directly as a function of the
potential workload process X or the net-input process C — S. In general,
the departure process cannot be represented directly in terms of X or C'— S
because these processes cannot see the values of jumps in C' and S that occur
at the same time. Simultaneous jumps in C and S correspond to instants
at which fluid arrives and some of it is instantaneously processed. The fluid
that is instantaneously processed immediately upon arrival never affects the
workload process. To obtain stochastic-process limits for the departure pro-
cess, we will impose a condition to rule out such cancelling jumps in the limit
processes associated with C' and S. In particular, the departure process is
considerably less complicated in the case of constant processing, as in (2.1).

We may also be interested in the processing time T'(t), i.e., the time
required to process the work in the system at any time ¢, not counting
any future input. For the processing time to correctly represent the actual
processing time for the last particle of fluid in the queue, the fluid must
be processed in the order of arrival. The processing time 7'(t) is the first
passage time to the level W(t) by the future-available-processing process
{S(t+u) — S(t) : u >0}, ie.,

T@t) =inf{u>0:S{t+u)— St >WE)}, t>0. (2.12)

We can obtain an equivalent representation, involving a first passage time
of the process S alone on the left in the infimum, if we use formula (2.9) for

W (t):
Tt)+t=t+inf{u>0:S({t+u)—S(t) > X(t)+ L) —U(t)},
=inf{u>0:S(u)>W(0)+C(t)+ L(t) = U(t)}, t>0.(2.13)
In general, the processing time is relatively complicated, but in the common

case of constant processing in (2.1), T'(¢) is a simple modification of W (t),

namely,
T(t)=W(t)/p, t>0. (2.14)

More generally, heavy-traffic limits also lead to such simplifications; see
Section 5.9.2.
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5.3. Unstable Queues

There are two main reasons queues experience congestion (which here
means buildup of workload): First, the queue may be unstable (or over-
loaded); i.e., the input rate may exceed the output rate for an extended
period of time, when there is ample storage capacity. Second, the queue
may be stable, i.e., the long-run input rate may be less than the long-run
output rate, but nevertheless short-run fluctuations produce temporary pe-
riods during which the input exceeds the output.

The unstable case tends to produce more severe congestion, but the
stable case is more common, because systems are usually designed to be
stable. Unstable queues typically arise in the presence of system failures.
Since there is interest in system performance in the presence of failures,
there is interest in the performance of unstable queues. For our discussion of
unstable queues, we assume that there is unlimited storage capacity. We are
interested in the buildup of congestion, which is described by the transient
(or time-dependent) behavior of the queueing processes.

5.3.1. Fluid Limits for Fluid Queues

For unstable queues, useful insight can be gained from fluid limits as-
sociated with functional laws of large numbers (FLLN’s). These stochastic-
process limits are called fluid limits because the limit processes are deter-
ministic functions of the form ct for some constant c¢. (More generally, with
time-varying input and output rates, the limits could be deterministic func-
tions of the form f(f r(s)ds, t > 0, for some deterministic integrable function
T.)

To express the FLLN'’s, we scale space and time both by n. As before, we
use bold capitals to represent the scaled stochastic processes and associated
limiting stochastic processes in the function space D. We use a hat to denote
scaled stochastic processes with the fluid scaling (scaling space as well as
time by n). Given the stochastic processes defined for the fluid-queue model
in the previous section, form the associated scaled stochastic processes

Cn(t) = n'C(nt),
S.(t) = ntS(nt),
X,(t) = n7'X(nt),
W, (t) = n 'W(nt),
L.(t) = n 'L(nt),
D, (1) n~'D(nt),
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T,(t) = n~'T(nt), t>0. (3.1)

The continuous-mapping approach shows that FLLN’s for C and S imply
a joint FLLN for all the processes. As before, let e be the identity map, i.e.,
e(t)=1t,t>0. Let u AX = min{u, \} and AT = maz{\, 0} for constants )
and pu.

We understand D to be the space D([0,00), R), endowed with either the
J1 or the M; topology, as defined in Section 3.3. Since the limits are contin-
uous deterministic functions, the J; and M; topologies here are equivalent
to uniform convergence on compact subintervals. As in Section 3.3, we use
DF to denote the k-dimensional product space with the product topology;
then z, — z, where z, = (z},...2*) and z = (z!,...,2*), if and only if
zt, — z; for each i.

We first establish a functional weak law of large numbers (FWLLN),
involving convergence in probability or, equivalently (because of the deter-
ministic limit), convergence in distribution (see p. 27 of Billingsley (1999)).
As indicated above, we restrict attention to the infinite-capacity model. It
is easy to extend the results to the finite-capacity model, provided that the
capacity is allowed to increase with n, as in Section 2.3.

ni " n

Theorem 5.3.1. (FWLLN for the fluid queue) In the infinite-capacity fluid-
queue model, if Cn = Xe and S, = pe in (D, M), where 0 < p < oo and
C, and S, are given in (3.1), then

~

(Cn,Sn, Xn, Wi, L, Dy, Tp) =
(e, pe, (A —p)e, (A —pu)Te, (u—A)Te,(AA e, (p—1)"e)(3.2)
in (D, My)" for p= M\ p.

Proof. The single limits can be combined into joint limits because the
limits are deterministic, by virtue of Theorem 11.4.5. So start with the joint
convergence

(Cn,Spn,n "W (0)) = (Ne,pe,0) in (D,M)?>xR.
Since X ) X
X, =C,—S,+n"1W(0)
by (2.4), we can apply the continuous-mapping approach with addition,

using the fact that addition on D? is measurable and continuous almost
surely with respect to the limit process, to get the limit

X,=>X=0M-pe
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Specifically, we invoke Theorems 3.4.3 and 12.7.3 and Remark 12.7.1.
Then, because of (2.5) — (2.8), we can apply the simple continuous-
mapping theorem, Theorem 3.4.1, with the reflection map to get

W, = W=¢X)=(-p'e

and X R X
L,=L=y(X)=(p— /\)+e ,

drawing on Theorems 13.5.1, 13.4.1 and 14.8.5. Then, by (2.11), we can
apply the continuous-mapping approach with addition again to obtain D,, =
D = (A A p)e. Finally, by (2.13),

n T (nt)+t = inf{u > 0:n 1S(nu) > n 1 (C(nt)+ L(nt)+W(0))} (3.3)
or, in more compact notation,
Tp+e=8,10(Cp+L,+n1W(0)) . (3.4)

Hence, we can again apply the continuous-mapping approach, this time with
the inverse and composition functions. As with addition used above, these
functions as maps from D and D x D to D are measurable and continuous al-
most surely with respect to the deterministic, continuous, strictly increasing
limits. Specifically, by Corollary 13.6.4 and Theorem 13.2.1, we obtain

T,+e=puleoNe+(u—NTe)=(pVie,

so that
Tn = (p - 1)+e ’

as claimed. By Theorem 11.4.5, all limits can be joint. =

From Theorem 5.3.1, we can characterize stable queues and unstable
queues by the conditions A < g and A > u, respectively, where A and u
are the translation constants in the limits for the input process C and the
available-processing process S. Equivalently, we can use the traffic intensity
p, defined as

EPYITE (3.5)

From the relatively crude fluid-limit perspective, there is no congestion
if p < 1; i.e., Theorem 5.3.1 implies that W, = Oe if p < 1. On the other
hand, if p > 1, then the workload tends to grow linearly at rate A — u. Con-
sistent with intuition, the fluid limits suggest using a simple deterministic
analysis to describe congestion in unstable queues. When a queue is unstable
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for a significant time, the relatively simple deterministic analysis may cap-
ture the dominant congestion effect. The same reasoning applies to queues
with time-dependent input and output rates that are unstable for substan-
tial periods of time. See Oliver and Samuel (1962), Newell (1982) and Hall
(1991) for discussions of direct deterministic analysis of the congestion in
queues.

Ordinary weak laws of large numbers (WLLN’s), such as

tTWit)=A—p)T in R as t— o0,

follow immediately from the FWLLN’s in Theorem 5.3.1 by applying the
continuous-mapping approach with the projection map, which maps a func-
tion z into z(1). We could not obtain these WLLN’s or the stronger
FWLLN’s in Theorem 5.3.1 if we assumed only ordinary WLLN’s for C
and S, i.e., if we had started with limits such as

t7!Ct)=X in R as t— o0,

because we needed to exploit the continuous-mapping approach in the func-
tion space D. We cannot go directly from a WLLN to a FWLLN, because
a FWLLN is strictly stronger than a WLLN.

However, we can obtain functional strong laws of large numbers (FS-
LLN’s) starting from ordinary strong laws of large numbers (SLLN’s), be-
cause a SLLN implies a corresponding FSLLN; see Theorem 3.2.1 and Corol-
lary 3.2.1 in the Internet Supplement. To emphasize that point, we now state
the SLLN version of Theorem 5.3.1. Once we go from the SLLN’s for C' and
S to the FSLLN’s, the proof is the same as for Theorem 5.3.1.

Theorem 5.3.2. (FSLLN for the fluid queue) In the infinite-capacity fluid-
queue model, if

t7'1C(t) = A and t7'SEt) —»p in R wpl as t— oo,
for 0 < p < o0, then

(Cna S7‘L; Xm Wna f’na f)na r:/I\--‘TL) -
(Aea me, (>‘ - N’)ea (A - u)+ea (lj‘ - A)—i_ea (A N H)e, (p - 1)+e) (36)

w.p.1 in (D, My)7 for p in (3.5).
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5.3.2. Stochastic Refinements

We can also employ stochastic-process limits to obtain a more detailed
description of congestion in unstable queues. These stochastic-process limits
yield stochastic refinements to the fluid limits in Theorems 5.3.1 and 5.3.2
above. For the stochastic refinements, we introduce new scaled stochastic
processes:

C.(t) = ¢;1(C(nt) — Int),

Su(t) = ¢, (S(nt) — unt),

Xa(t) = ¢ (X(nt) — (A= pnt),

Wi(t) = ¢ (W(nt) — (A= p)tnt),

Ly(t) = ¢, (L(nt) — (u—A)"nt),

D,(t) = ¢, (D(nt) — (AAp)nt),

To(t) = ¢, (T(nt)—(p—1)Tnt), t>0. (3.7)

As in the last chapter, the space scaling constants will be assumed to
satisfy ¢, — oo and n/c, — 0o as n — oo. The space-scaling constants
will usually be a power, ie., ¢, = nl for 0 < H < 1, but we allow other
possibilities. In the following theorem we only discuss the cases p < 1 and
p > 1. The more complex boundary case p = 1 is covered as a special case
of results in the next section. Recall that D is the product space with the
product topology; here we let the component space D = D! have either the
J1 or the M; topology.

Since the limit processes C and S below may now have discontinuous
sample paths, we need an extra condition to apply the continuous-mapping
approach with addition. The extra condition depends on random sets of
discontinuity points; e.g.,

Disc(S) = {t: S(t) #S(t-)} ,

where z(t—) is the left limit of the function z in D (see Section 12.2). The
random set of common discontinuity points of C and S is Disc(C)NDisc(S).
The jump in S associated with a discontinuity at ¢ is S(¢) — S(¢—). The
required extra condition is somewhat weaker for the M; topology than for
the J; topology.

Theorem 5.3.3. (FCLT’s for the stable and unstable fluid queues) In the
infinite-capacity fluid queue, suppose that ¢, — oo and ¢, /n — 0 as n — co.
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Suppose that
(Cn,Sn) = (C,S) in D2, (3.8)

where D? has the product topology with the topology on D' being either J,
or My, C, and S,, are defined in (3.7) and

P(C(0) =S(0)=0)=1. (3.9)

If the topology is J1, assume that C and S almost surely have no common
discontinuities. If the topology is My, assume that C and S almost surely
have no common discontinuities with jumps of common sign.

(a) If p < 1 and C — S has no positive jumps, then

(CnsSn, X, Wy, Lip, D) =
(C,S,C —S,0e,S — C,C) (3.10)

in DS with the same topology.
(b) If p > 1, then

(CnasnaxnawnaLnaDn) =
(C,S,C—8S,C —8,0e,S) (3.11)

in D% with the same topology.

Proof. Paralleling the proof of Theorem 5.3.1 above, we start by applying
condition (3.8) and Theorem 11.4.5 to obtain the joint convergence

(Cn,Sn,c,'W(0)) = (C,8,0) in D?*xR.

Then, as before, we apply the continuous mapping approach with addition,
now invoking the conditions on the discontinuities of C and S, to get

(Cn,Sn, Xn, ¢, ' W(0)) = (C,8,C—8,0) in D>xR. (3.12)

For the M; topology, we apply Theorems 3.4.3 and 12.7.3 and Remark 12.7.1.
For Ji, we apply the J; analog of Corollary 12.7.1; see Remark 12.6.2.

The critical step is treating W,,. For that purpose, we apply Theorem
13.5.2, for which we need to impose the extra condition that C — S have
no positive jumps in part (a). We also use condition (3.9), but it can be
weakened. We can use the Skorohod representation theorem, Theorem 3.2.2,
to carry out the argument for individual sample paths.

The limit for L,, in part (a) then follows from (2.6), again exploiting
the continuous-mapping approach with addition. The limits for L,, in part
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(b) follows from Theorem 13.4.4, using (2.8) and condition (3.9). We can
apply the convergence-together theorem, Theorem 11.4.7, to get limits for
the scaled departure process D,,. If A < u, then

d¢(Dn, Cp) < [|Dn = Callt < lleg "W (0) = Wyl = 0

by (2.11), where d; and || - || are the J; (or M7) and uniform metrics for the
time interval [0,], as in equations (3.2) and (3.1) of Section 3.3. If A > u,
then

dt(Dn, Sn) < ||Dn - Sn”t < ”LnHt =0

by (2.11). =

The obvious sufficient condition for the limit processes C and S to al-
most surely have no discontinuities with jumps of common sign is to have
no common discontinuities at all. For that, it suffices for C and S to be
independent processes without any fixed discontinuities; i.e., C has no fixed
discontinuities if P(¢ € Disc(C)) = 0 for all ¢.

With the J; topology, the conclusion can be strengthened to the strong
SJ; topology instead of the product J; topology, but that is not true for
Mji; see Remark 9.3.1 and Example 14.5.1.

When p < 1, we not only obtain the zero fluid limit W,, = 0Oe in Theorem
5.3.1, but we also obtain the zero limit W,, = 0e in Theorem 5.3.3 (a) with
the refined scaling in (3.7), provided that C — S has no positive jumps.
However, if C'— S has positive jumps, then the scaled workload process W,
fails to be uniformly negligible. That shows the impact of jumps in the limit
process.

Under extra conditions, we get a limit for T, jointly with the limit in
Theorem 5.3.3.

Theorem 5.3.4. (FCLT for the processing time) Let the conditions of The-
orem 5.3.3 hold. If the topology is J1, assume that S has no positive jumps.
(a) If p < 1, then jointly with the limit in (3.10)

T, = Oe

in D with the same topology.

(b) Suppose that p > 1. If the topology is J1, assume that C and S o pe
almost surely have no common discontinuities. If the topology is M, assume
that C and S o pe almost surely have no common discontinuities with jumps
of common sign. Then jointly with the limit in (3.11)

T, = /J'_l(c —So pe)

in D with the same topology.
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Proof. We can apply Theorem 13.7.4 to treat T,,, starting from (3.3) and
(3.4). If A > p, then

(n/cn)(Sy — pe, Cp + L, + 1 1W(0) — Xe) = (S,C) (3.13)
because Ly, = 0e and n~'W(0) = 0. If A < y, then

(n/cn)(Sn — pe, Cp + Ly, + n~'W(0) — pe) = (S,8) , (3.14)
because, by (2.6),

di(Cp + L, 4 ¢, 'W(0),8,) < |Lp + Xyp|le = [Wa|: = 0.

We can apply Theorem 13.7.4 to obtain limits for T,, jointly with the other
limits because

To = (n/ea)(Tn —(p—1)"e)
= (n/e)(87" 0 Zn— (pV 1)e)
= (n/cn)(8; 02y — preo (AV pe)

for appropriate Z,, (specified in (3.13) and (3.14) above), where n/c, — 0o
as n — o0o. Theorem 13.7.4 requires condition (3.9) for S. =

We regard the unstable case p > 1 as the case of primary interest for a
single model. When p > 1, Theorem 5.3.3 (b) concludes that W (t) obeys
the same FCLT as X (t). In a long time scale, the amount of reflection is
negligible. Thus we obtain the approximation

W(t) = (A —p)t + cnX(t/n) (3.15)

for the workload, where X = C — S. In the common setting of Donsker’s
theorem, ¢, = n*/2 and X = oxB, where B is standard Brownian motion.
In that special case, (3.15) becomes

W(t) ~ (A—u)t+n'oxB(t/n)
~ N((\=p)t,o%t) . (3.16)

In this common special case, the stochastic refinement of the LLN shows
that the workload obeys a CLT and, thus, the workload W (¢) should be ap-
proximately normally distributed with mean equal to the fluid limit (A — p)t
and standard deviation proportional to v/¢, with the variability parameter
given explicitly. With heavy tails or strong dependence (or both), but still
with finite mean, the stochastic fluctuations about the mean will be greater,
as is made precise by the stochastic-process limits.
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Remark 5.3.1. Implications for queues in series. Part (a) of Theorem
5.3.3 has important implications for queues in series: If the first of two
queues is stable with p < 1, then the departure process D at the first queue
obeys the same FCLT as the input process C' at that first queue. Thus, if
we consider a heavy-traffic limit for the second queue (either because the
second queue is unstable or because we consider a sequence of models for the
second queue with the associated sequence of traffic intensities at the second
queue approaching the critical level for stability, as in the next section), then
the heavy-traffic limit at the second queue depends on the first queue only
through the input stochastic process at that first queue. In other words, the
heavy-traffic behavior of the second queue is the same as if the first queue
were not even there. We obtain more general and more complicated heavy-
traffic stochastic-process limits for the second queue only if we consider a
sequence of models for both queues, and simultaneously let the sequences
of traffic intensities at both queues approach the critical levels for stability,
which puts us in the setting of Chapter 14. For further discussion, see
Example 9.9.1, Chapter 14 and Karpelovich and Kreinin (1994). =

In this section we have seen how heavy-traffic stochastic-process limits
can describe the congestion in an unstable queue. We have considered the
relatively elementary case of constant input and output rates. Variations
of the same approach apply to queues with time-varying input and out-
put rates; see Massey and Whitt (1994a), Mandelbaum and Massey (1995),
Mandelbaum, Massey and Reiman (1998) and Chapter 9 of the Internet
Supplement.

5.4. Heavy-Traffic Limits for Stable Queues

We now want to establish nondegenerate heavy-traffic stochastic-process
limits for stochastic processes in stable fluid queues (where the long-run
input rate is less than the maximum potential output rate). (With a finite
storage capacity, the workload will of course remain bounded even if the
long-run input rate exceeds the output rate.)

The first heavy-traffic limits for queues were established by Kingman
(1961, 1962, 1965). The treatment here is in the spirit of Iglehart and
Whitt (1970a, b) and Whitt (1971a), although those papers focused on
standard queueing models, as considered here in Chapters 9 and 10. An early
heavy-traffic limit for finite-capacity queues was established by Kennedy
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(1973). See Whitt (1974b) and Borovkov (1976, 1984) for background on
early heavy-traffic limits.

In order to establish the heavy-traffic stochastic-process limits for stable
queues, we consider a sequence of models indexed by a subscript n, where
the associated sequence of traffic intensities {p, : n > 1} converges to 1, the
critical level for stability, as n — oo. We have in mind the case in which
the traffic intensities approach 1 from below, denoted by p, 1 1, but that is
not strictly required. For each n, there is a cumulative-input process C,,, an
available-processing process Sy, a storage capacity K, with 0 < K, < o
and an initial workload W,,(0) satisfying 0 < W,,(0) < K,,. As before, we
make no specific structural or stochastic assumptions about the stochastic
processes C, and S,, so we have very general models. A more detailed
model for the input is considered in Chapter 8.

To have the traffic intensity well defined in our setting, we assume that
the limits

=1 -1
Ao = lim ¢ Co(t (4.1)
and
=1 -1
pin = Jim 715, (1) (4.2)

exist w.p.1 for each n. We call A\, the input rate and u, the mazimum
potential output rate for model n. (The actual output rate is the input rate
minus the overflow rate.) Then the traffic intensity in model 7 is

Pn = An/pin - (4.3)

We will be letting p, — 1 as n — oc.

Given the basic model elements above, we can construct the potential-
workload processes { X, (t) : t > 0}, the workload processes {W,(t) : t > 0},
the upper-barrier regulator (overflow) processes {U,(t) : t > 0}, the lower-
barrier regulator processes {Ly(t) : ¢ > 0} and the departure processes
{Dy(t) : t > 0} as described in Sections 5.2.

We now form associated scaled processes. We could obtain fluid limits in
this setting, paralleling Theorems 5.3.1 and 5.3.2, but they add little beyond
the previous results. Hence we go directly to the generalizations of Theorem
5.3.3. We scale the processes as in (3.7), but now we have processes and
translation constants for each n. Let

Cn(t) = C;I(C’n(nt) — Apnt) ,
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W, (t) = ¢, ' Wy(nt),
Un(t) = ¢, ' Un(nt),
L,(t) = c;'Lp(nt), t>0. (4.4)

For the scaling constants, we have in mind A\, — X and u, — p as
n — 00, where 0 < A < oo and 0 < p < o0, with ¢, — o0 and n/c, — o
as n — oo. As in Section 2.3, the upper barrier must grow as n — o0o;
specifically, we require that K, = ¢, K.

Our key assumption is a joint limit for C,, and S,, in (4.4). When there
are limits for C,, and S,, with the translation terms involving A\, and up,,
the w.p.1 limits in (4.1) and (4.2) usually hold too, but (4.1) and (4.2) are
actually not required. However, convergence in probability in (4.1) and (4.2)
follows directly as a consequence of the convergence in distribution assumed
below. Hence it is natural for the limits in (4.1) and (4.2) to hold as well.

Let (¢x,vu,r) be the reflection map mapping a potential-workload
process X into the triple (W, U, L), as defined in Section 5.2. Here is the
general heavy-traffic stochastic-process limit for stable fluid queues. It fol-
lows directly from the continuous-mapping approach using addition and re-
flection.

Theorem 5.4.1. (general heavy-traffic limit for stable fluid queues) Con-
sider a sequence of fluid queues indexed by n with capacities K,, 0 <
K, < oo, general cumulative-input processes {Cp(t) : t > 0} and gen-
eral cumulative-available-processing processes {Sy(t) : t > 0}. Suppose that
K,=c,K,0< K <00, 0<W,(0) <K,,

(¢, ' W,(0),Cp, Sn) = (W'(0),C,S) in Rx D? (4.5)

for C,, and S, in (4.4), where the topology on D? is the product topology
with the topology on D' being either J; or My, ¢, — 00, cn/n — 0 and
An — i — 0, so that

M = n(An — tn)/cn =1, (4.6)

where —oo < 1 < oo. If the topology is Ji, suppose that almost surely
C and S have no common discontinuities. If the topology is My, suppose
that almost surely C and S have no common discontinuities with jumps of
common sign. Then, jointly with the limit in (4.5),

(Xn, Wy, Uy, Ly) = (X, W, U, L) (4.7)
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in D* with the same topology, where
X(t)=W'(0)+C(t) —S(t) +nt, t>0. (4.8)

and

(W, U,L) = (¢x(X), pv(X), (X)) (4.9)
with (¢x, Yy, L) being the reflection map associated with capacity K.

Proof. Note that
X, = ¢, ' Wyo(0) + C, — Sy, + 1€, (4.10)

where e(t) = ¢ for ¢ > 0. Thus, just as in Theorems 5.3.1 and 5.3.3 above,
we can apply the continuous-mapping approach starting from the joint con-
vergence

(¢, ' Wy (0), Cp, Sy mme) = (W'(0),C, S, ne) (4.11)

in Rx D3, which follows from (4.5), (4.6) and Theorem 11.4.5. We apply the
continuous mapping theorem, Theorem 3.4.3, with addition to get X,, = X.
(Alternatively, we could use the Skorohod representation theorem, Theorem
3.2.2.) We use the fact that addition is measurable and continuous almost
surely with respect to the limit process, by virtue of the assumption about
the discontinuities of C and S. Specifically, for M; we apply Remark 12.7.1
and Theorem 12.7.3. For J; we apply the analog of Corollary 12.7.1; see
Remark 12.6.2. Finally, we obtain the desired limit in (4.7) because

(Wna Uy, Ln) = (QSK(Xn)a wU(Xn)a 'lpL(Xn))

for all n. We apply the simple continuous-mapping theorem, Theorem 3.4.1,
with the reflection maps, using the continuity established in Theorems 13.5.1
and 14.8.5. =

Just as in Theorem 5.3.3, with the J; topology the conclusion holds in
the strong SJ; topology as well as the product J; topology. As before, the
conditions on the common discontinuities of C and S hold if C and S are
independent processes without fixed discontinuities.

In the standard heavy-traffic applications, in addition to (4.6), we have
An < fpy pn = pfor 0 < p < 00, Ay — iy, = 0 and p, = Ay/un T 1.
However, we can have non-heavy-traffic limits by having A\,n/c, — a > 0
and ppn/c, — b > 0, so that ¢ = a — b and p, = A\p/pn — a/b, where a/b
can be any positive value. Nevertheless, the heavy-traffic limit with p, 11
is the principal case.



5.4. HEAVY-TRAFFIC LIMITS FOR STABLE QUEUES 189

We discuss heavy-traffic stochastic-process limits for the departure pro-
cess and the processing time in Section 5.9. Before discussing the implica-
tions of Theorem 5.4.1, we digress to put the heavy-traffic limits in perspec-
tive with other asymptotic methods.

Remark 5.4.1. The long tradition of asymptotics. Given interest in the
distribution of the workload W (t), we perform the heavy-traffic limit, al-
lowing p, T 1 as n — oo in a sequence of models index by n, to obtain
simplified expressions for the ccdf P(W (t) > z) and the distribution of the
entire process {W(t) : ¢ > 0}. We describe the resulting approximation in
the Brownian case in Section 5.7 below. To put the heavy-traffic limit in
perspective, we should view it in the broader context of asymptotic meth-
ods: For general mathematical models, there is a long tradition of applying
asymptotic methods to obtain tractable approximations; e.g., see Bender
and Orszag (1978), Bleistein and Handelsman (1986) and Olver (1974). In
this tradition are the heavy-traffic approximations and asymptotic expan-
sions obtained by Knessl and Tier (1995, 1998) using singular perturbation
methods.

For stochastic processes, it is customary to perform asymptotics. We
usually simplify by letting ¢ — oco: Under regularity conditions, we obtain
W (t) = W(oo) as t — oo and then we focus on the limiting steady-state ccdf
P(W(o0) > z). (Or, similarly, we look for a stationary distribution of the
process {W(t) : t > 0}.) This asymptotic step is so common that it is often
done without thinking. See Asmussen (1987), Baccelli and Bremaud (1994)
and Borovkov (1976) for supporting theory for basic queueing processes.
See Bramson (1994a,b), Baccelli and Foss (1994), Dai (1994), Meyn and
Down (1994) and Borovkov (1998) for related stability results for queueing
networks and more general processes.

Given a steady-state ccdf P(W(oco) > x), we may go further and let
 — oo to find the steady-state tail-probability asymptotics. As noted in
Section 2.4.1, a common case for a queue with unlimited waiting space is
the exponential tail:

PW(co) >z) ~ae™™ as = — o0,
which yields the simple exponential approximation
P(W(oo)>z)=ae ™

for all z not too small; e.g., see Abate, Choudhury and Whitt (1994b, 1995).
With exponential tail-probability asymptotics, the key quantity is the
asymptotic decay rate 7. Since « is much less important than 7, we may
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ignore « (i.e., let @ = 1), which corresponds to exploiting weaker large-
deviation asymptotics of the form

log P(W(0) > z) ~ —nz  as = — 00

e.g., see Glynn and Whitt (1994) and Shwartz and Weiss (1995).

The large deviations limit is associated with the concept of effective
bandwidths used for admission control in communication networks; see
Berger and Whitt (1998a,b), Chang and Thomas (1995), Choudhury, Lu-
cantoni and Whitt (1996), de Veciana, Kesidis and Walrand (1995), Kelly
(1996) and Whitt (1993b). The idea is to assign a deterministic quantity,
called the effective bandwidth, to represent how much capacity a source will
require. New sources are then admitted if the sum of the effective band-
widths does not exceed the available bandwidth.

We will also consider tail-probability asymptotics applied to the steady-
state distribution of the heavy-traffic limit process. We could instead con-
sider heavy-traffic limits after establishing tail-probability asymptotics. It is
significant that the two iterated limits often agree: Often the heavy-traffic
asymptotics for n as p T 1 matches the asymptotics as first £ — oo and then
x — o0 in the heavy-traffic limit process; see Abate and Whitt (1994b) and
Choudhury and Whitt (1994). More generally, Majewski (2000) has shown
that large-deviation and heavy traffic limits for queues can be interchanged.
The large-deviation and heavy-traffic views are directly linked by moderate-
deviations limits, which involve a different scaling, including heavy traffic
(pn 1 1); see Puhalskii (1999) and Wischik (2001b).

However, as noted in Section 2.4.1, other asymptotic forms are possible
for queueing processes. We often have

P(W(c0) > z) ~az Pe™ as z— oo, (4.12)

for non-zero f3; e.g., see Abate and Whitt (1997b), Choudhury and Whitt
(1996) and Duffield (1997). Moreover, even other asymptotic forms are
possible; e.g., see Flatto (1997).

With heavy-tailed distributions, we usually have a power tail, i.e., (4.12)
holds with n = 0:

P(W(x)>z)~az™ as z— 0.

When the steady-state distribution of the workload in a queue has a power
tail, the heavy-traffic theory usually is consistent; i.e., the heavy-traffic limits
usually capture the relevant tail asymptotics; see Section 8.5. For more on
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power-tail asymptotics, see Abate, Choudhury and Whitt (1994a), Duffield
and O’Connell (1995), Boxma and Dumas (1998), Sigman (1999), Jelenkovié
(1999, 2000), Likhanov and Mazumdar (2000), Whitt (2000c) and Zwart
(2000, 2001).

With the asymptotic form in (4.12), numerical transform inversion can
be used to calculate the asymptotic constants 7, 8 and « from the Laplace
transform, as shown in Abate, Choudhury, Lucantoni and Whitt (1995)
and Choudhury and Whitt (1996). When n = 0, we can transform the
distribution into one with > 0 to perform the computation; see Section 5
of Abate, Choudhury and Whitt (1994a) and Section 3 of Abate and Whitt
(1997b). See Abate and Whitt (1996, 1999a,b,c) for ways to construct heavy-
tailed distributions with tractable Laplace transforms.

And there are many other kinds of asymptotics that can be consid-
ered. For example, with queueing networks, we can let the size of the net-
work grow; e.g., see Whitt (1984e, 1985c¢), Kelly (1991), Vvedenskaya et al.
(1996), Mitzenmacher (1996), and Turner (1998) =

5.5. Heavy-Traffic Scaling

A primary reason for establishing the heavy-traffic stochastic-process
limit for stable queues in the previous section is to generate approximations
for the workload stochastic process in a stable fluid-queue model. However,
it is not exactly clear how to do this, because in applications we have one
given queueing system, not a sequence of queueing systems. The general
idea is to regard our given queueing system as the n'" queueing system in
the sequence of queueing systems, but what should the value of n be?

The standard way to proceed is to choose n so that the traffic intensity
pn in the sequence of systems matches the actual traffic intensity in the
given system. That procedure makes sense because the traffic intensity p is
a robust first-order characterization of the system, not depending upon the
stochastic fluctuations about long-term rates. As can be seen from (4.1) —
(4.3) and Theorems 5.3.1 and 5.3.2, the traffic intensity appears in the fluid
scaling. Thus, it is natural to think of the heavy-traffic stochastic-process
limit as a way to capture the second-order variability effect beyond the traffic
intensity p.

In controlled queueing systems, it may be necessary to solve an op-
timization problem to determine the relevant traffic intensity. Then the
traffic intensity can not be regarded as given, but instead must be derived;
see Harrison (2000, 2001a,b). After deriving the traffic intensity, we may



192 CHAPTER 5. HEAVY-TRAFFIC LIMITS

proceed with further heavy-traffic analysis. Here we assume that the traffic
intensity has been determined.

If we decide to choose n so that the traffic intensity p, matches the given
traffic intensity, then it is natural to index the models by the traffic intensity
p from the outset, and then consider the limit as p 1 1 (with 1 indicating
convergence upward from below). In this section we show how we can index
the queueing models by the traffic intensity p instead of an arbitrary index
n. We also discuss the applied significance of the scaling of space and time in
heavy-traffic stochastic-process limits. We focus on the general fluid model
considered in the last two sections, but the discussion applies to even more
general models.

5.5.1. The Impact of Scaling Upon Performance

Let W,(t) denote the workload at time ¢ in the infinite-capacity fluid-
queue model with traffic intensity p. Let ¢(p) and b(p) denote the functions
that scale space and time, to be identified in the next subsection. Then the
scaled workload process is

W, (0) = (o) Wp(b(p)t) t20. (5.1)
The heavy-traffic stochastic-process limit can then be expressed as
W,=W in (D,M;) as pt1, (5.2)

where D = D([0,00),R) and {W(t) : ¢ > 0} is the limiting stochastic pro-
cess. In the limits we consider, ¢(p) 1T oo and b(p) 1 0o as p 1 1. Thus, the
heavy-traffic stochastic-process limit provides a macroscopic view of uncer-
tainty.

Given the heavy-traffic stochastic-process limit for the workload process
in (5.2), the natural approximation is obtained by replacing the limit by
approximate equality in distribution; i.e.,

() Wob(p)t) ~ W(H), >0,
or, equivalently, upon moving the scaling terms to the right side,
W,(t) ~ (o) W(b(p) '), >0, (5.3)

where ~ means approximately equal to in distribution (as stochastic pro-
cesses).
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We first discuss the applied significance of the two scaling functions c¢(p)
and b(p) appearing in (5.1) and (5.3). Then, afterwards, we show how to
identify these scaling functions for the fluid-queue model.

The scaling functions ¢(p) and b(p) provide important insight into queue-
ing performance. The space-scaling factor c(p) is relatively easy to interpret:
The workload process (for times not too small) tends to be of order ¢(p) as
p 1 1. The time-scaling factor b(p) is somewhat more subtle: The workload
process tends to make significant changes over time scales of order b(p) as
p T 1. Specifically, the change in the workload process, when adjusted for
space scaling, from time #1b(p) to time t2b(p) is approximately characterized
(for suitably high p) by the change in the limit process W from time #; to
time to.

Consequently, over time intervals of length less than b(p) the workload
process tends to remain unchanged. Specifically, if we consider the change
in the workload process W, from time t,b(p) to time t2(p), where t2(p) >
t1b(p) but t2(p)/b(p) — 0 as p 1 1, and if the limit process W is almost
surely continuous at time ¢1, then we conclude from the heavy-traffic limit in
(5.2) that the relative change in the workload process over the time interval
[t1b(p), t2(p)] is asymptotically negligible as p increases.

On the other hand, over time intervals of length greater than b(p), the
workload process W), tends to approach its equilibrium steady-state distri-
bution (assuming that both W(t) and W,(t) approach steady-state limits
as t — o0). Specifically, when ta(p) > t1b(p) and t9(p)/b(p) — oo as p T 1,
the workload process at time ¢2(p) tends to be in steady state, independent
of its value at time ¢1b(p). Thus, if we are considering the workload process
over the time interval [¢1b(p), t2(p)], we could use steady-state distributions
to describe the distribution of W,(t2(p)), ignoring initial conditions at time
t1b(p). (In that step, we assume that W (t) approaches a steady-state distri-
bution as ¢ — oo, independent of initial conditions.) Thus, under regularity
conditions, the time scaling in the heavy-traffic limit reveals the rate of
convergence to steady state, as a function of the traffic intensity.

The use of steady-state distributions tends to be appropriate only over
time intervals of length greater than b(p). Since b(p) T oo as p 1 1, transient
(time-dependent) analysis becomes more important as p increases. Fortu-
nately, the heavy-traffic stochastic-process limits provide a basis for ana-
lyzing the approximate transient behavior of the workload process as well
as the approximate steady-state behavior. As indicated above, the change
in the workload process (when adjusted for space scaling) between times
t1b(p) and t9b(p) is approximately characterized by the change in the limit
process W from time ¢; to time #5. Fortunately, the limit processes often
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are sufficiently tractable that we can calculate such transient probabilities.

Remark 5.5.1. Relazation times. The approximate time for a stochastic
process to approach its steady-state distribution is called the relazation time;
e.g., see Section II1.7.3 of Cohen (1982). The relaxation time can be defined
in a variety of ways, but it invariably is based on the limiting behavior as
t — oo for fixed p. In the relatively nice light-tailed and weak-dependent
case, it often can be shown, under regularity conditions, that

E[f(W,(1)] - E[f (Wp(c0))] ~ g(t,p)e”""?) as ¢ = oo, (5-4)

for various real-valued functions f, with the functions g and r in general
depending upon f. The standard asymptotic form for the second-order term
g is g(t,p) ~ c(p) or g(t,p) ~ c(p)t?®) as t — co. When (5.4) holds with
such a g, r(p) is called the relaxation time. Of course, a stochastic process
that starts away from steady state usually does not reach steady state in
finite time. Instead, it gradually approaches steady state in a manner such
as described in (5.4). More properly, we should interpret 1/r(p) as the rate
of approach to steady state.
With light tails and weak dependence, we usually have

r(p)/blp) = ¢ as pt1,

where ¢ is a positive constant; i.e., the heavy-traffic time-scaling usually
reveals the asymptotic form (as p 1 1) of the relaxation time.

However, with heavy tails and strong dependence, the approach to steady
state is usually much slower than in (5.4); see Asmussen and Teugels (1996)
and Mikosch and Nagaev (2000). In these other settings, as well as in the
light-tailed weak-dependent case, the time scaling in the heavy-traffic limit
usually reveals the asymptotic form (as p 1 1) of the approach to steady
state. Thus, the heavy-traffic time scaling can provide important insight
into the rate of approach to steady state. With heavy tails and strong
dependence, the heavy-traffic limits show that transient analysis becomes
more important. =

5.5.2. Identifying Appropriate Scaling Functions

We now consider how to identify appropriate scaling functions b(p) and
¢(p) in (5.1). We can apply the general stochastic-process limit in Theorem
5.4.1 to determine appropriate scaling functions. Specifically, the scaling
functions b(p) and c¢(p) depend on the input rates A,, the output rates p,
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and the space-scaling factors ¢, appearing in Theorem 5.4.1. The key limit
is (4.6), which determines the drift n of the unreflected limit process X.

To cover most cases of practical interest, we make three additional as-
sumptions about the scaling as a function of n in (4.4): First, we assume
that the space scaling is by a simple power. Specifically, we assume that

co=ntl for 0<H<1. (5.5)

(See Section 4.2 for discussion about the possible scaling functions.) We
need the condition on the exponent H in (5.5) in order to have ¢, — oo and
cn/n — 0 as n — oo, as assumed in Theorem 5.4.1.

Second, we assume that the translation terms A, and p,, in (4.4) converge
to finite positive limits as n — oco. In view of condition (4.6) in Theorem
5.4.1, it suffices to assume only that

Pn —> [ a8 N — 00, (5.6)

where 0 < p < 00.

Third, we assume that the basic limit in (4.6) holds with < 0. That
implies that the traffic intensities p,, are less than 1 for all n sufficiently
large. Now, if we combine (4.6), (5.5) and (5.6) (and divide by u, in (4.6)),
we obtain the condition

n' (1 —pn) = (= —n/p>0 (5.7)
for 0 < { < oo. From (5.7), we obtain the associated limit
n(1 — pp)VO=H) 5 ¢V/O=H) 55 n 00 (5.8)

or, equivalently,

oo\
nN( ) as n — oo . (5.9)
]._pn

Thus the canonical forms of the scaling functions are

b(p) =n = (L) o (5.10)
and

o(p) = n¥ = (L) o (5.11)

for ( = —n/p as in (5.7).
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To summarize, when the net-input process and potential-workload pro-
cess satisfies a FCLT with time scaling by n and space scaling by n”, the
associated scaled workload processes, as functions of the traffic intensity p,
have a heavy-traffic limit with the time-scaling function in (5.10) and space-
scaling function in (5.11); i.e., as functions of p, the time-scaling exponent
is 1/(1 — H) and the space-scaling exponent is H/(1 — H).

The initial space-scaling exponent H (the Hurst parameter) depends on
the burstiness; see Chapter 4. As the burstiness increases, H increases.
Of course, the standard case, considered in most heavy-traffic limits for
queues, is H = 1/2. The standard case with H = 1/2 occurs with Donsker’s
theorem and its variants with weak dependence and light tails, as discussed
in Sections 4.3 and 4.4. Since H = 1/2 is the standard case, it is also the
reference case. Values of H with 1/2 < H < 1 indicate greater burstiness
associated with heavy tails or strong positive dependence (or both). Values
of H with 0 < H < 1/2 are associated with strong negative dependence, as
might occur with strong traffic shaping, e.g., scheduling.

From (5.10) and (5.11), we see that the scaling functions b(p) and c(p)
increase rapidly as H 1 1 for p near 1. Indeed, the scaling exponents increase
as H increases from 0 toward 1. To make that important point clear, we
display the two scaling exponents for a range of H values in Table 5.1.

time-scaling | space-scaling
exponent exponent
H 1/(1-H) | H/(1-H)
1/101 | 101/100 17100
1/11 11/10 1/10
1/5 5/4 1/4
1/3 3/2 1/2
1/2 2 1
2/3 3 2
4/5 5 4
10/11 11 10
100/101 101 100

Table 5.1: The time-scaling and space-scaling exponents as a function of the
Hurst parameter H.

Since H increases as the burstiness increases, we see that increased
burstiness leads to greater scaling functions c(p) and b(p) for any given
traffic intensity p. The larger value of ¢(p) shows that the buffer content is
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likely to be larger (or that one needs larger buffers to avoid overflow). The
larger values of b(p) show that the time scales for statistical regularity are
longer. When there is larger burstiness, transient analysis becomes more
important in contrast to steady-state analysis.

From a practical engineering perspective, the analysis of the heavy-traffic
scaling functions b(p) and ¢(p) indicates that, when exceptional variability is
a possibility in a queueing setting, attention should be focused on the space-
scaling exponent H for the net-input process as well as the traffic intensity p.
Second-order refinements are provided by the constant ¢ appearing in (5.7),
(5.10) and (5.11) and the limit process W appearing in (5.2) and (5.3).

5.6. Limits as the System Size Increases

In this section we see how heavy-traffic stochastic-process limits for sta-
ble fluid queues change as the system size increases. The heavy-traffic limits
thus show how performance scales as the system size increases. We will
see that the performance impact depends on the way that the system size
increases. We start with a base infinite-capacity fluid queue for which there
is a heavy-traffic stochastic-process limit. We assume that there is a limit
for the potential-workload processes of the form X,, = X, where

X,(t)=n "X, (nt), t>0, (6.1)

for 0 < H <1 and
X(t)y=nt+Y(t), t>0, (6.2)

with {Y(¢) : t > 0} being H-self-similar, i.e.,
(Y(ct): >0} 2 (7Y (t):t>0} (6.3)

as in (2.5) in Section 4.2. Of course, there is a corresponding heavy-traffic
stochastic-process limit for the workload process,

W, = W = ¢(X),

where

W, = ¢(Xn) .

It will be convenient to focus on the potential-workload processes X,
instead of the workload processes W,,. We will focus on the scale factor o
when the limit process has the representation X = ne + ¢Y. For fixed 5
and Y, the associated reflection {W(¢) : t > 0} tends to be increasing in
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o (in a stochastic sense). For example, if Y is standard Brownian motion
and 7 < 0, then the steady-state quantity W (oco) has mean o2/2|5|; see
(7.13) below. More generally, o serves as a quantitative measure of the
variability (for fixed Y). The general principle is: Increased variability in
the potential workload process leads to larger workloads, where “larger” is
measured appropriately, e.g., by the mean or by a form of stochastic order.

We consider three ways to make the system larger: scaling space, scaling
time and creating independent replicas. Let the size-increase factor be a
positive integer m. We scale space (make it larger) by considering mX,,; we
scale time (make it faster) by considering X, ome; and we create independent
replicas by considering X, 1 + - -+ + X, p, where X, 1,..., Xy, », are m IID
copies of the original stochastic processes X,,.

For communication network applications, it is useful to think of constant
deterministic processing, whose rate is being increased by a factor m. Scaling
space then amounts to making the files or packets m times bigger to match
the increased capacity. Scaling time amounts to sending the same input
m times faster. Creating independent replicas means superposing (adding)
m independent sources, each distributed as the original one. (We will be
considering heavy-traffic limits for superposition input processes further in
later chapters; see Sections 8.7.1, 9.4 and 9.8.)

In manufacturing, scaling space can also occur. Scaling space occurs
in batching and unbatching; e.g., see Sections 8.5 and 9.3 of Hopp and
Spearman (1996).

When we scale space, the limit process is

mX = mne + mY . (6.4)
When we scale time, the limit process is

X ome mne +Y ome

4 mne + mY . (6.5)

When we create independent replicas, the limit process is

m m
> Xi=mne+ > Y;. (6.6)
=1

=1

The rate of the limit process increases by the same factor m in all three
cases, but the impact on the stochastic component, characterized by the
stochastic process Y, is different for the three methods. Scaling time by
m produces smaller stochastic fluctuations than scaling space by m, in the
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sense that the scale factors before Y in (6.4) and (6.5) are ordered: m < m.
The advantage of time scaling over space scaling increases as H decreases
(when the variability is smaller).

The impact of creating independent replicas depends on the properties
of the stochastic process Y. If Y is a Lévy process (has stationary and
independent increments), then a concatenation of independent versions is
equivalent to a longer version, i.e.,

m
S YiE£Yome. (6.7)
i=1

Thus, if Y is a Lévy process, creating independent replicas is equivalent to
scaling time, which we have seen produces better performance than scaling
space.

On the other hand, suppose that Y is fractional Brownian motion (FBM),
the principal example of a non-Lévy limit process in Chapter 4. Since FBM
is not a Lévy process, (6.7) does not hold. When Y is FBM, both Y and
Yo, Y, are zero-mean Gaussian processes. For zero-mean Gaussian pro-
cesses, it is natural to focus on the variances. With independent replicas,
the variance is

VaTiYi(t) =m(VarY(t)), t>0. (6.8)

In contrast, with time scaling, because of the H-self-similarity, the variance
is
VarY (mt) = Var(m®Y (t)) = m* (VarY(t)) . (6.9)

Hence, the variance with independent replicas is less than, equal to or greater
than the variance with time scaling, respectively, when H > 1/2, H = 1/2
or H<1/2.

More generally, we can compare all three methods using the variance
when Y (¢) has finite variance. Using the H-self-similarity of Y, we obtain

Var(mY(t)) = m?(VarY(t)),
VarY(mt) = m2?2(VarY(t)),

VariYi(t) = m(VarY(t)) . (6.10)
i=1

For H < 1/2, time scaling produces least variability; for H > 1/2, indepen-
dent replicas produces least variability.
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It is interesting to compare one large system (increased by factor m)
to m separate independent systems, distributed as the original one. We
say that there is economy of scale when the workload in the single large
system tends to be smaller than the sum of the workloads in the separate
systems. With finite variances, there is economy of scale when the ratio of
the standard deviation to the mean is decreasing in m. From (6.10), we see
that there is economy of scale with time scaling and independent replicas,
but not with space scaling. For communication networks, the economy of
scale associated with independent replicas is often called the multiplexing
gain, i.e., the gain in efficiency from statistical multiplexing (combining in-
dependent sources). See Smith and Whitt (1981) for stochastic comparisons
demonstrating the economy of scale in queueing systems. See Chapters 8
and 9 for more discussion.

Example 5.6.1. Brownian motion. Suppose that X = ne+ocB, where n <
0, 0 > 0 and B is standard Brownian motion. As noted above, the associated
RBM has steady-state mean o2 /2|n|. With space scaling, time scaling and
creating independent replicas, the steady-state mean of the RBM’s become

mo?/2/n|, o*/2ln| and o?/2[n|,

respectively. Thus, with space scaling, the steady-state mean is the same as
the total steady-state mean in m separate systems. Otherwise, the steady-
state mean is less by the factor m. =

In this section we have considered three different ways that the fluid
queue can get larger. We have shown that the three different ways have
different performance implications. It is important to realize, however, that
in applications the situation may be more complicated. For example, a
computer can be made larger by adding processors, but there invariably
are limitations that prevent the maximum potential output rate from be-
ing proportional to the number of processors as the number of processors
increases.

If the jobs are processed one at a time, then we must exploit parallel pro-
cessing, i.e., the processors must share the processing of each job. However,
usually a proportion of each job cannot be parallelized. Thus, with paral-
lel processing, the capacity tends to increase nonlinearly with the number
of processors; the marginal gain in capacity tends to be decreasing in m;
e.g., see Amdahl (1967) and Chapters 5-7 and 14 of Gunther (1998). With
deterministic processing, our analysis would still apply, provided that we
interpret m as the actual increase in processing rate.



5.7. BROWNIAN APPROXIMATIONS 201

Even if we can accurately estimate the effective processing rate, there
remain difficulties in applying the analysis in this section, because with
parallel processing, it may not be appropriate to regard the processing as
deterministic. It then becomes difficult to determine how the available-
processing process S and its FCLT should change with m.

5.7. Brownian Approximations

In this section we apply the general heavy-traffic stochastic-process limits
in Section 5.4 to establish Brownian heavy-traffic limits for fluid queues. In
particular, under extra assumptions (corresponding to light tails and weak
dependence), the limit for the normalized cumulative-input process will be a
zero-drift Brownian motion (BM) and the limit for the normalized workload
process will be a reflected Brownian motion (RBM), usually with negative
drift.

The general heavy-traffic stochastic-process limits in Section 5.4 also
generate non-Brownian approximations corresponding to the non-Brownian
FCLT’s in Chapter 4, but we do not discuss them here. We discuss ap-
proximations associated with stable Lévy motion and fractional Brownian
approximations in Chapter 8.

Since Brownian motion has continuous sample paths and the reflection
map maps continuous functions into continuous functions, RBM also has
continuous sample paths. However, unlike Brownian motion, RBM does not
have independent increments. But RBM is a Markov process. As a (well-
behaved) Markov process with continuous sample paths, RBM is a diffusion
process.

Harrison (1985) provides an excellent introduction to Brownian motion
and “Brownian queues,” showing how they can be analyzed using martin-
gales and the Ito stochastic calculus. Other good introductions to Brown-
ian motion and diffusion processes are Glynn (1990), Karatzas and Shreve
(1988) and Chapter 15 of Karlin and Taylor (1981). Borodin and Salminen
(1996) provide many Brownian formulas. Additional properties of RBM are
contained in Abate and Whitt (1987a-b, 1988a-d).

5.7.1. The Brownian Limit

If B is a standard Brownian motion, then {y + nt + cB(¢) : t > 0} is a
Brownian motion with drift n, diffusion coefficient (or variance coefficient)
0? and initial position y. We have the following elementary application of
Section 5.4.
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Theorem 5.7.1. (general RBM limit) Suppose that the conditions of Theo-
rem 5.4.1 are satisfied with W'(0) =y, ¢, = \/n and (C, S) two-dimensional
zero-drift Brownian motion with covariance matriz

2:( i aé,s) . (7.1)

ots 0%
Then the conclusions of Theorems 5.4.1, 5.9.1 and 5.9.3 (b) hold with
(Wa U, L) = (¢K (X)7 Z)DU (X)a Q;bL (X))

being reflected Brownian motion, i.e.,
X(t) £y +nt+ oxB(t) (7.2)

for standard Brownian motion B, drift coefficient n in (4.6) and diffusion
coefficient
0% = 0% + 0% — 20%’5 . (7.3)

Proof. Under the assumption on (C,S), C — S is a zero-drift Brownian
motion with diffusion coefficient 0% in (7.3). =

As indicated in Section 5.5, we can also index the queueing systems by
the traffic intensity p and let p + 1. With n = ¢2/(1 — p)? as in (5.10), the
heavy-traffic limit becomes

(A=W, (/1 =p)*) : >0} = ¢k (X) as pT1, (7.4)

where W, is the workload process in model p, which has output rate ;1 and
traffic intensity p, and

X(t) Sy~ Cut+B(ok), >0, (7.5)
with B being a standard Brownian motion. The capacity in model p is

K, = CK/(1— p).
We have freedom in the choice of the parameter (. If we let

C:ag(//j, ) (7.6)

and rescale time by replacing ¢ by t/o%, then the limit in (7.4) can be
expressed as

{ox°n(1 — PW,(toX /u*(1 = p)?) : t > 0} = ¢ (X) (7.7)
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where X is canonical Brownian motion with drift coefficient —1 and variance
coeficient 1, plus initial position ¥, i.e.,

(Xt :t>0y L {y—t+B(t):¢t>0}.
That leads to the Brownian approximation

{Wy(t) : 1> 0} = {okp (1= p)"Tox(X) (1 (1 — p)*t/o%) : 1 >0}, (7.8)
where X is again canonical Brownian motion.

Remark 5.7.1. The impact of variability The Brownian limit and the Brow-
nian approximation provide insight into the way variability in the basic
stochastic processes C' and S affect queueing performance. In the heavy-
traffic limit, the stochastic behavior of the processes C and S, beyond their
rates A and p, affect the Brownian approximation solely via the single vari-
ance parameter 0% in (7.3), which can be identified from the CLT for C — S.
For further discussion, see Section 9.6.1. =

We now show how the Brownian approximation applies to the steady-
state workload.

5.7.2. The Steady-State Distribution.

The heavy-traffic limit in Theorem 5.7.1 does not directly imply that the
steady-state distributions converge. Nevertheless, from (7.8), we obtain an
approximation for the steady-state workload, namely,

~_ %
Wp(o0) = md’K(X)(OO) . (7.9)
Conditions for the convergence of steady-state distributions in heavy traffic
have been established by Szczotka (1986, 1990, 1999).
We now give the steady-state distribution of RBM with two-sided reflec-
tion; see p. 90 of Harrison (1985). We are usually interested in the case of
negative drift, but we allow positive drift as well when K < oo.

Theorem 5.7.2. (steady-state distribution of RBM) Let {W (t) : ¢t > 0} be
one-dimensional RBM with drift coefficient , diffusion coefficient o2, initial
value y and two-sided reflection at 0 and K. Then

W(t) = W(x) in R as t— o0,
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where W (00) has pdf

1/K if n=0
flz) = o (7.10)
g U n#0,
with mean
K/2, if n=0
EW(00) = (7.11)
1_6156K - % if n#0
for

6 = 2n/0* (7.12)

Note that the steady-state distribution of RBM in (7.10) depends only
on the two parameters @ in (7.12) and K. The steady-state distribution is
uniform in the zero-drift case; the steady-state distribution is an exponential
distribution with mean —6~! = 02/2|n|, conditional on being in the interval
[0, K], when 7 < 0 and § < 0; K — W(00) has an exponential distribution
with mean § ' = 02/2n, conditional on being in the interval [0, K], when
1 > 0 and 6 > 0. Without the upper barrier at K, a steady-state distribution
exists if and only if n < 0, in which case it is the exponential distribution
with mean —6~! obtained by letting K — oo in (7.10). As K gets large, the
tails of the exponential distributions rapidly become negligible so that

i if <0
EW (00) ~ (7.13)
K—|o7' if n>0.

Let us now consider the approximation indicated by the limit. Since
n~/2W, (nt) = W(t), we use the approximations

W (t) ~ VAW (t/n) (7.14)

and
W, (0) = vnW () . (7.15)

Thus, when K = oo, the Brownian approximation for W,(cc) is an
exponential random variable with mean

2

S - (7.16)

B[Wy(oo)] = 52—
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The RBM’s ¢x(X) in (7.4) and ¢x(X) in (7.7) and (7.8) are the Brow-
nian queues, which serve as the approximating models. From the approxi-
mations in (7.8) — (7.16), we see the impact upon queueing performance of
the processes C and S in the heavy-traffic limit. In the heavy-traffic limit,
the processes C' and § affect performance through their rates A = pu and p
and through the variance parameter Jg(, which depends on the elements of
the covariance matrix ¥ in (7.1) as indicated in (7.3).

Note in particular that the mean of RBM in (7.16) is directly propor-
tional to the variability of X = C — S through the variability parameter
0% in (7.3). The variability parameter 0% in turn is precisely the variance
constant in the CLT for the net-input process C' — S.

In (7.9)—(7.16) we have described the approximations for the steady-
state workload distribution that follow directly from the heavy-traffic limit
theorem in Theorem 5.7.1. It is also possible to modify or “refine” the
approximations to satisfy other criteria. For example, extra terms that
appear in known exact formulas for special cases, but which are negligible
in the heavy-traffic limit, may be inserted. If the goal is to develop accurate
numerical approximations, then it is natural to regard heavy-traffic limits
as only one of the possible theoretical reference points. For the standard
multi-server GI/G/s queue, for which the heavy-traffic limit is also RBM,
heuristic refinements are discussed in Whitt (1982b, 1993a) and references
therein.

For the fluid queue, an important reference case for which exact for-
mulas are available is a single-source model with independent sequences of
IID on times and off times (a special case of the model studied in Chap-
ter 8). Kella and Whitt (1992b) show that the workload process and its
steady-state distribution can be related to the virtual waiting time process
in the standard GI/G/1 queue (studied here in Chapter 9). Relatively sim-
ple moment formulas are thus available in the M/G/1 special case. The
steady-state workload distribution can be computed in the general GI/G/1
case using numerical transform inversion, following Abate, Choudhury and
Whitt (1993, 1994a, 1999). Such computations were used to illustrate the
performance of bounds for general fluid queues by Choudhury and Whitt
(1997).

A specific way to generate refined approximations is to interpolate be-
tween light-traffic and heavy-traffic limits; see Burman and Smith (1983,
1986), Fendick and Whitt (1989), Reiman and Simon (1988, 1989), Reiman
and Weiss (1989) and Whitt (1989b). Even though numerical accuracy can
be improved by refinements, the direct heavy-traffic Brownian approxima-
tions remain appealing for their simplicity.
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Example 5.7.1. The M/G/1 steady state workload. It is instructive to
compare the approximations with exact values when we can determine them.
For the standard M/G/1 queue with K = oo, the mean steady-state work-
load has the simple exact formula

E __pox
[Woloo)] = g5 (717)
which differs from (7.16) only by the factor p in the numerator of (7.17)
and the factor y in the denominator of (7.16). First, in the M/G/1 model
the workload process has constant output rate 1, so 4 = 1. Hence, the only
real difference between (7.16) and (7.17) is the factor p in the numerator of
(7.17), which approaches 1 in the heavy-traffic limit.
To elaborate, in the M/G/1 queue, the cumulative input C(¢) equals
the sum of the service times of all arrivals in the interval [0,%], i.e., the
cumulative input is

Alt)
Ct)=> Vi, t20,
k=1

where {A(t) : t > 0} is a rate-v Poisson arrival process independent of
the sequence {Vj : k > 1} of IID service times, with V; having a general
distribution with mean EVj. Thus, the traffic intensity is p = vEV;. The
workload process is defined in terms of the net-input process X (t) = C(t) —t
as described in Section 5.2.

The cumulative-input process is a special case of a renewal-reward pro-
cess, considered in Section 7.4. Thus, by Theorem 7.4.1, if

ot =VarV; < oo,

then the cumulative-input process obeys a FCLT C,, = C for C,, in (3.7)
with translation constant A = p and space-scaling function ¢, = n'/2. Then
the limit process is c¢B, where B is standard Brownian motion and

0% = va¥ +pEV;
= pEVi(cy +1), (7.18)

where c%, is the squared coefficient of variation, defined by
& =0t /(EV1)?. (7.19)

Therefore,
0% = 0% = pEVi(c} +1) . (7.20)
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With this notation, the exact formula for the mean steady-state workload
in the M/G/1 queue is given in (7.17) above; e.g., see Chapter 5 of Kleinrock
(1975). As indicated above, the approximation in (7.16) differs from the
exact formula in (7.17) only by the factor p in the numerator of the exact
formula, which of course disappears (becomes 1) in the heavy-traffic limit.

For the M/G/1 queue, it is known that

P(Wy(o0) =0)=1—p. (7.21)

Thus, if we understand the approximation to be for the conditional mean
E[W,(00)|W,(c0) > 0], then the approximation beomes exact. In general,
however, the distribution of W) (cc) is not exponential, so that the expo-
nential distribution remains an approximation for the M/G/1 model, but
the conditional distribution of W (oo) given that W(oco) > 0) is exponen-
tial in the M/M/1 special case, in which the service-time distribution is
exponential. =

5.7.3. The Overflow Process

In practice it is also of interest to describe the overflow process. In a
communication network, the overflow process describes lost packets. An
important design criterion is to keep the packet loss rate below a specified
threshold. The loss rate in model n is

— i 41
Bn = tl_lglot Un(t) . (7.22)
The limits in Theorems 5.4.1 and 5.7.1 show that, with the heavy-traffic
scaling, the loss rate should be asymptotically negligible as n — oo. Specif-
ically, since n~/2U,(nt) = U(t) as n — oo, where U is the upper-barrier
regulator process of RBM, the cumulative loss in the interval [0,n] is of
order /n, so that the loss rate should be of order 1/y/n as n — oo. (Of
course, this asymptotic form depends on having the upper barriers grow as
K, = /nK and p, — 1.) More precisely, we approximate the loss rate 3,
by

Bn = B/Vn (7.23)
where
f= lim t~1U() . (7.24)

Note that approximation (7.23) involves an unjustified interchange of limits,
involving n — oo and t — oo.
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Berger and Whitt (1992b) make numerical comparisons (based on exact
numerical algorithms) showing how the Brownian approximation in (7.23)
performs for finite-capacity queues. For very small loss rates, such as 1077,
it is not possible to achieve high accuracy. (Systems with the same heavy-
traffic limit may have loss rates varying from 10~* to 107%5.) Such very
small probabilities tend to be captured better by large-deviations limits.
For a simple numerical comparison, see Srikant and Whitt (2001). Overall,
the Brownian approximation provides important insight. That is illustrated
by the sensitivity analysis in Section 9 of Berger and Whitt (1992b).

More generally, the heavy-traffic stochastic-process limits support the
approximation

U,(t) = v/nU(t/n), t>0, (7.25)

where U is the upper-barrier regulator process of RBM. In order for the
Brownian approximation for the overflow process in (7.25) to be useful,
we need to obtain useful characterizations of the upper-barrier regulator
process U associated with RBM. It suffices to describe one of the boundary
regulation processes U and L, because L has the same structure as U with a
drift of the opposite sign. The rates of the process L and U are determined
on p. 90 of Harrison (1985).

Theorem 5.7.3. (rates of boundary regulator processes) The rates of the
boundary regqulator processes exist, satisfying

o?/2K if n=0

L EL(t
a= tl_i)m # = tl_i)m % = (7.26)
[ee] oo .
eo«L_l if n#0
and

a?)2K if n=0

B = lim ult) _ lim EU®) _ (7.27)
t—oo ¢ t—oo t

1_6+6K if m#0.

It is important to note that the loss rate 8 depends upon the variance o2,
either directly (when n = 0) or via @ in (7.12). We can use regenerative anal-
ysis and martingales to further describe the Brownian boundary regulation
processes L and Uj; see Berger and Whitt (1992b) and Williams (1992). Let
Ta,p be the first passage time from level a to level b within [0, K]. Epochs at
which RBM first hits 0 after first hitting K are regeneration points for the
processes L and U. Assuming that the RBM starts at 0, one regeneration
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cycle is completed at time Ty g + Tk,0. Of course, L increases only during
[0, To,x], while U increases only during [To.x,To,x + Tk,]. We can apply
regenerative analysis and the central limit theorem for renewal processes to
show that the following limits exist

. L(t) . EL(t) EL(Tox +Tkpo)
= _— = = 2 ) 2
@ tl—l)I?o t tlifg) t E(T(),K + TK,O) (7 8)
. U@ . EU@{) EU(Tyk + Tk,)
= lim —~=1 = : : .2
B ti)lgo i ti)Igo i E(TO,K + TK,O) (7 9)
L
o2 = Tim YUY d o2 =1 Y UG (7.30)

t—o00

The parameters O’% and 0[2] in (7.30) are the asymptotic variance parameters
of the processes L and U. It is also natural to focus on the normalized
asymptotic variance parameters

¢t =ot/a and ¢ =05/6. (7.31)

Theorem 5.7.4. (normalized asymptotic variance of boundary regulator
processes) The normalized asymptotic variance parameters in (7.31) satisfy

2
(L(TO,K) - (TO’I;&fi’:z?i(go’K)) /EL(TO,K)

02U = c%:E

2K/3 if n=0

B 2(1—e?K p49KefK) . (7:32)
—9(1—ePK )2 if n#0

for 0 = 2n/c? as in (7.12).

In order to obtain the last line of (7.32) in Theorem 5.7.4, and for its
own sake, we use an expression for the joint transform of L(7p ) and Ty x
from Williams (1992). Note that it suffices to let 02 = 1, because if o2 > 0
and W is a (n/0,1) RBM on [0, K /o], then oW is an (n,52)-RBM on [0, K].

Theorem 5.7.5. (joint distribution of key variables in the regenerative rep-
resentation) For 02 =1 and all 51,59 > 0,

E[exp(—le(To,K) — SQT(),K)]
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ﬁ Zf 7']:0,82:0

1 ; —
cosh(yK)+s17~ 1 sinh(vK) if 1=0,52#0 (733)

mK i
COS(vK)+(51im)7—1 sinh(vK) if n#0,

where v = /1% + 2ss.

Since an explicit expression for the Laplace transform is available, we can
exploit numerical transform inversion to calculate the joint probability dis-
tribution and the marginal probability distributions of Ty x and L(7p k); see
Abate and Whitt (1992a, 1995a), Choudhury, Lucantoni and Whitt (1994)
and Abate, Choudhury and Whitt (1999).

Explicit expressions for the moments of L(Tp k) and Tp,x can be ob-
tained directly from Theorem 5.7.5.

Theorem 5.7.6. (associated moments of regenerative variables) If n = 0
and 0 =1, then

ETyx = K*, ET;x = 5K*/3,
E[L(To,x)] = K, E[L(Ty,x)*] = 2K*
E[To xL(Tox)] = 5K°/3. (7.34)

If n # 0 and 02 = 1, then

EThx = (e2™ —1+429K)/2n°
E[TOQ,K] = (e7" 47K L nKe 2K 42 K? — 2) /20"
EL(Tox)] = (1—e?™)/2q,
EL(Tox)?] = (1—e2)2/21,
EToxL(Tox)] = (72" —3pKe 21 — ™K LK) /207 . (7.35)

Fendick and Whitt (1998) show how a Brownian approximation can be
used to help interpret loss measurements in a communication network.

5.7.4. One-Sided Reflection

Even nicer descriptions of RBM are possible when there is only one
reflecting barrier at the origin (corresponding to an infinite buffer). Let
R = {R(;n,0%,z) : t > 0} denote RBM with one reflecting barrier at the



5.7. BROWNIAN APPROXIMATIONS 211

origin, i.e., R = ¢(B) for B = {B(t;n,0%,z) : t > 0}, where ¢ is the one-
dimensional reflection map in (2.5) and B is Brownian motion. There is
a relatively simple expression for the transient distribution of RBM when
there is only a single barrier; see p. 49 of Harrison (1985).

Theorem 5.7.7. (transition probability of RBM with one reflecting bar-
rier) If R = {R(t;n,0%,x) : t > 0} is an (n,0?)-RBM then

PR() <yR(0)=2) = 1-9@ (W)

— exp(2ny/c”)® (_y;ij{m) ,

where ® is the standard normal cdf.

We now observe that we can express RBM with negative drift (and one
reflecting barrier at the origin) in terms of canonical RBM with drift coeffi-
cient —1 and diffusion coefficient 1. We first state the result for Brownian
motion and then for reflected Brownian motion.

Theorem 5.7.8. (scaling to canonical Brownian motion) If m < 0 and
02 >0, then

{aB(bt;m,0?,z) : t > 0} 4 {B(t;—1,1,ax) : t > 0} (7.36)
and
{B(t;m,0%,z):t >0} 4 {a7'B(b7;—1,1,az) : t > 0} (7.37)
for
m| o?
a = ? > 0, b = ) > 0,
Y 2 = Loy (7.38)
m o= —— ) ot = = ) .

Theorem 5.7.9. (scaling to canonical RBM). Ifn < 0 and o2 > 0, then
{aR(bt;n, 02, V) : >0} L {R(t;—1,1,aY) : ¢t > 0} (7.39)
and

(R(t;n,02,Y) 1t >0} 2 {a ' R(b~'4;—1,1,aY) : ¢ > 0} (7.40)
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for
_ |nl _ o’
a = ; > O, b = 77—2’
—1 1
no= o ot=o, (7.41)

as in (7.38) of Chapter 4.

Theorem 5.7.9 is significant because it implies that we only need to
do calculations for a single RBM — canonical RBM. Expressions for the
moments of canonical RBM are given Abate and Whitt (1987a,b) along
with various approximations. There it is shown that the time-dependent
moments can be characterized via cdf’s. In particular, the time-dependent
moments starting at 0, normalized by dividing by the steady-state moments
are cdf’s. Moreover the differences E(R(t)|R(0) = z) — E[R(¢)|R(0) = 0]
divided by z are complementary cdf’s (ccdf’s), and all these cdf’s have
revealing structure. Here are explicit expressions for the first two moments.

Theorem 5.7.10. (moments of canonical RBM) If R is canonical RBM,
then

ER@®)R0) =2] = 27'+ip (’7;)

and

ER®®)?R0O0)=2] = 27 '4(z-1)Vi— \/_)<

)
) ()

e e ()]

where ® and ¢ are the standard normal cdf and pdf.
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When thinking about RBM approximations for queues, it is sometimes
useful to regard RBM as a special M/M/1 queue with p = 1. After doing
appropriate scaling, the M/M/1 queue-length process approaches a nonde-
generate limit as p — 1. Thus structure of RBM can be deduced from struc-
ture for the M/M/1 queue; see Abate and Whitt (1988a-d). This is one way
to characterize the covariance function of stationary RBM; see Abate and
Whitt (1988c). Recall that a nonnegative-real-valued function f is com-
pletely monotone if it has derivatives of all orders that alternate in sign.
Equivalently, f can be expressed as a mixture of exponential distributions;
see p. 439 of Feller (1971).

Theorem 5.7.11. (covariance function of RBM) Let R* be canonical RBM
initialized by giving R*(0) an ezponential distribution with mean 1/2. The
process R* is a stationary process with completely monotone covariance
function

Couv(R*(0),R*(2)) ER*(t) —27)(R*(0) —271)]
2(1 -2t — tH)[1 — (V)] + 2VH(1 + t)p(V?)

= Hi(t) = H3(t), t>0,

where Hy, is the k™" -moment cdf and HY, is the stationary-ezcess ccdf asso-
ciated with the first-moment cdf, i.e.,

k _
Hy(t) = E[R(QR‘(IZC()()),)C — 0]7

t>0),

and .
H{ (t)=1- 2/ Hf(s)ds, t>0.
0

Canonical RBM has asymptotic variance

o& = lim 7' Var (/OtR(s)ds|R(O) = x> =1/2.

t—00

5.7.5. First-Passage Times

We can also establish limits for first passage times. For a stochastic
process {Z(t) : t > 0}, let T, ;(Z) denote the first passage time for Z to go
from a to b. (We assume that Z(0) = a, and consider the first passage time
to b.) In general, the first passage time functional is not continuous on D
or even on the subset C, but the first passage time functional is continuous
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almost surely with respect to BM or RBM, because BM and RBM cross any
level w.p.1 in a neighborhood of any time that they first hit a level. Hence
we can invoke a version of the continuous mapping theorem to conclude that
limits holds for the first passage times.

Theorem 5.7.12. (limits for first passage times) Under the assumptions of
Theorem 5.7.1,

T Wn
a\/ﬁ,bf( ) = Ta,b(w)

for any positive a,b with a # b and 0 < a,b < K, where W is RBM and W,
18 the unnormalized workload process in model n.

Now let T, 5(R) be the first-passage time from a to b for one-sided canon-
ical RBM. The first-passage time upward is the same as when there is a
(higher) upper barrier (characterized in Theorems 5.7.5 and 5.7.6), but the
first-passage time down is new. Let f(¢;a,b) be the pdf of T ,(R) and let

~

f(s;a,b) be its Laplace transform, i.e.,

flsiab) = /0 ¢ oL f (ta,b)dt |

where s is a complex variable with positive real part. The Laplace transforms
to and from the origin have a relatively simple form; see Abate and Whitt
(1988a). Again, numerical transform inversion can be applied to compute
the probability distributions themselves.

Theorem 5.7.13. (RBM first-passage-time transforms and moments) For
canonical RBM (with no upper barrier), the first-passage-time Laplace trans-
forms to and from the origin are, respectively,

A~

f(s;2,0) = e

and n
~ . ™ T9
F(50,2) = T1€7IT2 4 roe®r1
for
r1(s) =14+vV14+2s and 7ro(s) =vV1+2s—1,
so that
ET,g = z, VarTzy = x,
ET,, = 271e* —1—-22] and

VarTy, = 47 '[e* —1—4z+4e*" (1 —2z) —4].
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The first passage time down is closely related to the busy period of
a queue, i.e., the time from when a buffer first becomes nonempty until
it becomes empty again. This concept is somewhat more complicated for
fluid queues than standard queues. In either case, the distribution of the
busy period for small values tends to depend on the fine structure of the
model, but the tail of the busy period often can be approximated robustly,
and Brownian approximations can play a useful role; see Abate and Whitt
(1988d, 1995b).

First-passage-time cdf’s are closely related to extreme-value ccdf’s be-
cause Ty (W) < t if and only if WT(t) = supj<,<, W(s) > a. Extreme-
value theory shows that there is statistical regularity associated with both
first-passage times and extreme values as t — oo and a — o0; see Resnick
(1987). Heavy-traffic extreme-value approximations for queues are discussed
by Berger and Whitt (1995a), Glynn and Whitt (1995) and Chang (1997).
A key limit is

2RT(t) —log(2t) = Z as t— oo,

where R is canonical RBM and Z has the Gumbel cdf, i.e.,
P(Z<z)=exrp(—e®), —o<z<o0.

This limit can serve as a basis for extreme-value engineering.

To summarize, in this section we have displayed Brownian limits for a
fluid queue, obtained by combining the general fluid-queue limits in Theorem
5.4.1 with the multidimensional version of Donsker’s theorem in Theorem
4.3.5. We have also displayed various formulas for RBM that are helpful in
applications of the Brownian limit. We discuss RBM limits and approxima-
tions further in the next section and in Sections 8.4 and 9.6.

5.8. Planning Queueing Simulations

In this section, following Whitt (1989a), we see how the Brownian ap-
proximation stemming from the Brownian heavy-traffic limit in Section 5.7
can be applied to plan simulations of queueing models. In particular, we
show how the Brownian approximation can be used to estimate the required
simulation run lengths needed to obtain desired statistical precision, before
any data have been collected. These estimates can be used to help design the
simulation experiment and even to determine whether or not a contemplated
experiment should be conducted.

The queueing simulations considered are single replications (one long
run) of a single queue conducted to estimate steady-state characteristics,
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such as long-run-average steady-state workload. For such simulations to be
of genuine interest, the queueing model should be relatively complicated, so
that exact numerical solution is difficult. On the other hand, the queueing
model should be sufficiently tractable that we can determine an appropriate
Brownian approximation.

We assume that both these criteria are met. Indeed, we specify the
models that we consider by stipulating that scaled versions of the stochastic
process of interest, with the standard normalization, converge to RBM as
p 1 1. For simplicity, we focus on the workload process in a fluid queue with
infinite capacity, but the approach applies to other models as well.

Of course, such a Brownian approximation directly yields an approxima-
tion for the steady-state performance, but nevertheless we may be interested
in the additional simulation in order to develop a more precise understand-
ing of the steady-state behavior. Indeed, one use of such simulations is
to evaluate how various candidate approximations perform. Then we of-
ten need to perform a large number of simulations in order to see how the
approximations perform over a range of possible model parameters.

In order to exploit the Brownian approximation for a single queue, we
focus on simulations of a single queue. However, the simulation actually
might be for a network of queues. Then the analysis of a single queue is
intended to apply to any one queue in that network. If we want to estimate
the steady-state performance at all queues in the network, then the required
simulation run length for the network would be the maximum required for
any one queue in the network. Our analysis shows that it often suffices to
focus on the bottleneck (most heavily loaded) queue in the network.

At first glance, the experimental design problem may not seem very
difficult. To get a rough idea about how long the runs should be, one might
do one “pilot” run to estimate the required simulation run lengths. However,
such a preliminary experiment requires that you set up the entire simulation
before you decide whether or not to conduct the experiment. Nevertheless, if
such a sampling procedure could be employed, then the experimental design
problem would indeed not be especially difficult. Interest stems from the
fact that one sample run can be extremely misleading.

This queueing experimental design problem is interesting and important
primarily because a uniform allocation of data over all cases (parameter val-
ues) is not nearly appropriate. Experience indicates that, for given statistical
precision, the required amount of data increases as the traffic intensity in-
creases and as the arrival-and-service variability (appropriately quantified)
increases. Our goal is to quantify these phenomena.

To quantify these phenomena, we apply the space and time scaling func-
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tions. Our analysis indicates that to achieve a uniform relative error over all
values of the traffic intensity p that the run length should be approximately
proportional to the time-scaling factor (1 — p)~2 (for sufficiently high p).
Relative error appears to be a good practical measure of statistical preci-
sion, except possibly when very small numbers are involved. Then absolute
error might be preferred. It is interesting that the required run length de-
pends strongly on the criterion used. With the absolute error criterion, the
run length should be approximately proportional to (1 — p)~%. With either
the relative or absolute error criteria, there obviously are great differences
between the required run lengths for different values of p, e.g., for p = 0.8,
0.9 and 0.99.

We divide the simulation run-length problem into two components. First,
there is the question: What should be the required run length given that the
system starts in equilibrium (steady state)? Second, there is the question:
What should we do in the customary situation in which it is not possible
to start in equilibrium? We propose to delete an initial portion of each
simulation run before collecting data in order to allow the system to (ap-
proximately) reach steady state. By that method, we reduce the bias (the
systematic error that occurs when the expected value of the estimator dif-
fers from the quantity being estimated). The second question, then, can be
restated as: How long should be the initial segment of the simulation run
that is deleted?

Focusing on the first question first, we work with the workload stochastic
process, assuming that we have a stationary version, denoted by W. First,
however, note that specifying the run length has no meaning until we specify
the time units. To fix the time units, we assume that the output rate in the
queueing system is p. (It usually suffices to let g = 1, but we keep general
¢ to show how it enters in.)

For the general fluid-queue model we have the RBM approximation in
(7.8). However, since we are assuming that we start in equilibrium, instead of
the Brownian approximation in (7.8), we assume that we have the associated
stationary Brownian approzimation

{(Wy(t) : ¢ >0} = {okp™ (1 = p) TR (ox"4*(1 = p)*t;=1,1) : £ > 0},
(8.1)
where 0% is the variability parameter, just as in (7.8), and R* is a stationary
version of canonical RBM, with initial exponential distribution, i.e.,

(R*(t;—1,1) : t > 0} £ {R(t;—1,1,Y) : £ > 0} , (8.2)

where the initial position Y is an exponential random variable with mean
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1/2 independent of the standard Brownian motion being reflected; i.e., R* =
#(B+Y') where ¢ is the reflection map and B is a standard Brownian motion
independent of the exponential random variable Y.

The obvious application is with {W;(¢) : t > 0} being a stationary ver-
sion of a workload process, as defined in Section 5.2. However, our analysis
applies to any stationary process having the Brownian approximation in
(8.1).

5.8.1. The Standard Statistical Procedure

To describe the standard statistical procedure, let {W(¢) : t > 0} be a
stochastic process of interest and assume that is stationary with EW (¢)2 <
0o. (We use that notation because we are thinking of the workload process,
but the statistical procedure is more general, not even depending upon the
Brownian approximation.) Our object is to estimate the mean E[W(0)] by
the sample mean, i.e., by the time average

t
W=t /0 W(s)ds, t>0. (8.3)

The standard statistical procedure, assuming ample data, is based on a CLT
for W;. We assume that

t'2(W, — E]W(0)]) = N(0,0%) as t— o0, (8.4)

where o2 is the asymptotic variance, defined by
o’ = hm tVar(Wy) —2/ C(t (8.5)

and C(t) is the (auto) covariance function
C(t) = EW ()W (0)] — (E[W(0)])>, t>0. (8.6)

Of course, a key part of assumption (8.4) is the requirement that the asymp-
totic variance o2 be finite. The CLT in (8.4) is naturally associated with
a Brownian approximation for the process {W(t) : ¢ > 0}. Such CLTs for
stationary processes with weak dependence were discussed in Section 4.4.
Based on (8.4), we use the normal approximation

W, ~ N(E[W(0)],0%/t) (8.7)

for the (large) ¢ of interest, where o2 is the asymptotic variance in (8.5).
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Based on (8.7), a [(1—0)-100]% confidence interval for the mean E[W (0)]
is

W — Zﬁ/2(02/t)1/2a Wi + Zﬂ/2(02/t)1/2] ) (8.8)

where
P(—zp/5 <N(0,1) < zgp0) =1-8. (8.9)

The width of the confidence interval in (8.8) provides a natural measure
of the statistical precision. There are two natural criteria to consider: abso-
lute width and relative width. Relative width looks at the ratio of the width
to the quantity to be estimated, E[W (0)].

For any given 3, the absolute width and relative width of the [(1 — ) -
100]% confidence intervals for the mean E[W (0)] are, respectively,

. 20’Zﬂ/2

2
wa(f) = —p— and wi(f) /e

=~ 8.10
t1/2E[W (0)] (8.10)
For specified absolute width € and specified confidence level 1— (3, the required

simulation run length, given (8.7), is

402

ta(ea ﬂ) -

2
?5/2
L2

8.11
_ (8.11)
For specified relative width € and specified confidence level 1— (3, the required
length of the estimation interval, given (8.7), is

2.2
4o 2379

tr(e,8) = 5 (8.12)

(BW(0))*

From (8.11) and (8.12) we draw the important and well-known conclusion
that both t,(e, 8) and t,.(e, 3) are inversely proportional to €2 and directly
proportional to 0% and 22 /2"

Standard statistical theory describes how observations can be used to
estimate the unknown quantities E[W (0)] and o?. Instead, we apply addi-
tional information about the model to obtain rough preliminary estimates
for E[W (0)] and o? without data.

5.8.2. Invoking the Brownian Approximation

At this point we invoke the Brownian approximation in (8.1). We assume
that the process of interest is W, and that it can be approximated by scaled
stationary canonical RBM as in (8.1). The steady-state mean of canonical
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RBM and its asymptotic variance are both 1/2; see Theorems 5.7.10 and
5.7.11. Tt thus remains to consider the scaling.

To consider the effect of scaling space and time in general, let W again
be a general stationary process with covariance function C and let

Wy (t) =yW(zt), t>0

for y,z > 0. Then the mean E[W, ,(t)], covariance function Cj ,(t) and
asymptotic variance of W, , are, respectively,

E[W,,.(t)] = yEW (2t) = yE[W ()],
Cy..(t) = y*C(zt) and aj,z =y%0?/z . (8.13)

Thus, from (8.1) and (8.13), we obtain the important approximations

x o% 2 ok

We have compared the approximation for the mean in (8.14) to the exact
formula for the M/G/1 workload process in Example 5.7.1. Similarly, the
exact formula for the asymptotic variance for the M/M/1 workload process,
where y =1, is

‘712/V _ 2P(3 — P) .
o (1=pt

see (23) of Whitt (1989a). Formula (8.15) reveals limitations of the approx-
imation in (8.14) in light traffic (as p | 0), but formula (8.15) agrees with
the approximation in (8.14) in the limit as p — 1, because 0% = 2p for the
M/M/1 queue; let EV; = 1 and ¢ = 1 in (7.20). Numerical comparisons
of the predictions with simulation estimates in more general models appear
in Whitt (1989a). These formulas show that the approximations give good
rough approximations for p not too small (e.g., for p > 1/2).

Combining (8.12) and (8.14), we see that the approximate required sim-
ulation run length for W} given a specified relative width € and confidence
level 1 — 3 for the confidence interval for E[W ;(0)] is

(8.15)

803(,22/2
ep(l—p)*

Combining (8.11) and (8.14), we see that the approximate required simu-
lation run length for W given a specified absolute width € and confidence

tr(e, B8) = (8.16)
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level 1 — 3 for the confidence interval for E[W,(0)] is

6,2
ta(e, B) ~ 2oxFps .
ept(l —p)?

In summary, the Brownian approximation in (8.1) dictates that, with a
criterion based on the relative width of the confidence interval, the required
run length should be directly proportional to both the the time-scaling term
as a function of p alone, (1—p) 2, and the heavy-traffic variability parameter
0%. In contrast, with the absolute standard error criterion, the required run
length should be directly proportional to (1 — p)~*, the square of the time-
scaling term as a function of p alone, and ¢%, the cube of the heavy-traffic
variability parameter ag(.

The second question mentioned at the outset is: How to determine an
initial transient portion of the simulation run to delete? To develop an
approximate answer, we can again apply the Brownian approximation in
(8.1). If the system starts empty, we can consider canonical RBM starting
empty. By Theorem 5.7.10, the time-dependent mean of canonical RBM
E[R(t)|R(0) = 0] is within about 1% of its steady-state mean 1/2 at ¢ = 4.
Hence, if we were simulating canonical RBM, then we might delete an initial
portion of length 4. Thus, by (8.1), a rough rule of thumb for the queueing
process W, (with unit processing rate) is to delete an initial segment of
length 402 /u?(1 — p)2. When we compare this to formula (8.16), we see
that the proportion of the total run that should be deleted should be about
e/ 2z§ /o» Which is small when € is small.

We can also employ the Brownian approximation to estimate the bias
due to starting away from steady-state. For example, the bias due to starting
empty with canonical RBM is

(8.17)

t
BER,—1/2 — tl/(E[R(t;—l,l,O]—1/2)ds
0

Q

¢t /OO(E[R(S); —1,1,0] — 1/2)ds = 1/4t , (8.18)
0

by Corollary 1.3.4 of Abate and Whitt (1987a). The approximate relative
bias is thus 1/2¢. That same relative bias should apply approximately to
the workload process in the queue. We can also estimate the reduced bias
due to deleting an initial portion of the run, using Theorem 5.7.10 and the
hyperexponential approximation

1/2 — E[R(t; —1,1,0] = 0.36e™ 22" 4+ 0.138¢7 0704 t>0.  (8.19)
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Our entire analysis depends on the normal approximation in (8.7), which
in turn depends on the simulation run length . Not only must ¢ be suffi-
ciently large so that the estimated statistical precision based on (8.7) is
adequate, but ¢t must be sufficiently large so that the normal approximation
in (8.7) is itself reasonable. Consistent with intuition, experience indicates
that the run length required for (8.7) to be a reasonable approximation also
depends on the parameters p and 0%, with ¢ needing to increase as p and
03( increase. We can again apply the Brownian approximation to estimate
the run length required. We can ask what run length is appropriate for a
normal approximation to the distribution of the sample mean of canonical
RBM. First, however, the time scaling alone tells us that the run length must
be at least of order 0% /u?(1 — p)?. This rough analysis indicates that the
requirement for (8.7) to be a reasonable approximation is approximately the
same as the requirement to control the relative standard error. For further
analysis supporting this conclusion, see Asmussen (1992).

5.9. Heavy-Traffic Limits for Other Processes

We now obtain heavy-traffic stochastic-process limits for other processes
besides the workload process in the setting of Section 5.4. Specifically, we
obtain limits for the departure process and the processing time.

5.9.1. The Departure Process

We first obtain limits for the departure process defined in (2.11), but in
general we can have difficulties applying the continuous-mapping approach
with addition starting from (2.11) because the limit processes S and —L
can have common discontinuities of opposite sign. We can obtain positive
results when we rule that out, again invoking Theorem 12.7.3.

Let the scaled departures processes be defined by

D, = ¢,  (Dy(nt) — ppnt), t>0. (9.1)

Theorem 5.9.1. (limit for the departure process) Let the conditions of
Theorem 5.4.1 hold. If the topology on D is Ji, assume that S and L almost
surely have no common discontinuities. If the topology on D is My, assume
that S and L almost surely have no common discontinuities with jumps of
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common sign. Then, jointly with the limits in (4.5) and (4.7),
D,>D=S-L in D (9.2)
with the same topology, for Dy, in (9.1), S in (4.5) and L in (4.9).

Proof. By (2.11),
D,=S,—L, .

By Theorem 5.4.1, (S,,,L,) = (S,L) in D? jointly with the other limits.
Just as in the proof of Theorem 5.4.1, we can apply the continuous mapping
theorem, Theorem 3.4.3, with addition. Under the conditions on the discon-
tinuities of S and L, addition is measurable and almost surely continuous.
Hence we obtain the desired limit in (9.2). =

The extra assumption in Theorem 5.9.1 is satisfied when P(S,(t) =
pnt, t > 0) =1 or when X has no negative jumps (which implies that
L = 91,(X) has continuous paths).

As an alternative to (9.1), we can use the input rate A, in the translation
term of the normalized departure process; i.e., let

D! =c (D, (nt) — A\ynt), t>0. (9.3)

n n

When the input rate appears in the translation term, we can directly com-
pare the departure processes D,, to the cumulative-input processes C,,.

Corollary 5.9.1. (limit for the departure process with input centering) Un-
der the assumptions of Theorem 5.9.1,

D, =>D'=-ne+S—-L in (D,M) (9.4)
for D! in (9.3), n in (4.6), e(t) =t for t >0, S in (4.5) and L in (4.9).
n

Proof. Note that D/, = D,, — n,e. Hence, as before, we can apply the
continuous-mapping theorem, Theorem 3.4.3, with addition to the joint limit
(Dp,nne) = (D,ne), which holds by virtue of Theorems 5.9.1 and 11.4.5.

5.9.2. The Processing Time

We now establish heavy-traffic limits for the processing time T'(¢) in
(2.12). We first exploit (2.13) when K = oo. Let the scaled processing-time
processes be

T,(t) =c, ' Ty(nt), t>0. (9.5)

n
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Theorem 5.9.2. (limit for the processing time when K = o) Suppose that,
in addition to the conditions of Theorem 5.4.1, K = o0, b, = 1 a8 1 — 00,
where 0 < p < 00,

nen = n(>‘n - N)/Cn — nc (9'6)
and

Ns;n = nlpn — p)/cn = ns (9.7)
where —0co0 < N < 00 and —o0 < ng < o0, so that n = nc —ns. If
the topology on D is Ji, suppose that almost surely no two of the limit
processes C, S and L have common discontinuities. If the topology on D
is M1, assume that L and C almost surely have no common discontinuities

with jumps of opposite sign, and S and L almost surely have no common
discontinuities with jumps of common sign. Suppose that

P(S(0)=0)=1. (9.8)

Then
T,=pu ‘W in D (9.9)

with the same topology on D, jointly with the limits in (4.5) and (4.7), for
T, in (9.5) and W in (4.9) with K = cc.

Proof. We can apply the continuous-mapping approach with first passage
times, using the inverse map with centering in Section 13.7. Specifically,
we can apply Theorem 13.7.4 with the Skorohod representation theorem,
Theorem 3.2.2. From (2.13),

n T, (nt)+nt = inf{u > 0:n"1S,(nu) > n "1 (Cp(nt)+ W, (0)+ Ly (nt))} .
By (4.5), (9.6) and (9.7),

(n/cn)(gn — ue, Zn - ,ue) = (S +nse,Z + "]Ce) s (9'10)
where

Sp=n"1S,(nt) and Z, =n"HCy(nt) + W.(0) + Ly(nt)), t>0.

We use the conditions on the discontinuities of C and L to obtain the limit

A~

(n/cn)(Zn — pe) = Z +nce

where
Z=C+W'(0)+L,
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by virtue of Theorem 12.7.3. Since

A~

To(t) = n T, (nt) = (S 0 Z,)(t) —t, t>0, (9.11)

the desired limit for T, follows from Theorem 13.7.4. In particular, (9.10),
(9.11) and (9.8) imply the limit

(n/cn)(8," 0 Zn — "€ 0 pre)
N (Z+nce) — (S+nse)opu~teope w
H uo

The continuity conditions in Theorem 5.9.2 are satisfied when S is almost
surely continuous and X almost surely has no negative jumps (which makes
L almost surely have continuous paths). That important case appears in
the convergence to reflected stable Lévy motion in Theorem 8.5.1.

We can also obtain a FCLT for 7T, when K < oo under stronger con-
tinuity conditions and pointwise convergence under weaker conditions. (It
may be possible to establish analogs to part (b) below without such strong
continuity conditions.)

Theorem 5.9.3. (limits for the processing time when K < oo) Suppose
that the conditions of Theorem 5.4.1 hold with 0 < K < 0o and [y, — W,
where 0 < p < oo.

(a) If
P(t € Disc(S)) = P(t € Disc(W)) =0, (9.12)
then
T,(t) = p *W({) in R. (9.13)
(b) If
P(Ce(C)=P(SeC)=1, (9.14)
then
T, ='W in (D,M), (9.15)

where P(W € C) = 1.

Proof. (a) By (2.12),
n T, (nt) = inf{u > 0: Sp(n(t +u)) — Sp(nt) > Wy(nt)} ,
so that

Tn(t) = inf{u>0: ppu+ Sp(t + ulcn/n)) — Su(t) > Wy(t)} .
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By the continuous-mapping approach, with condition (9.12),
To(t) = inf{u>0: pu> WD)} |

which implies the conclusion in (9.13).
(b) Under condition (9.14),

sup {|Sn(t +u(cn/n)) —Sn(t)|]} -0 as n—o00 w.p.l

0<t<T
for any 7" with 0 < T < o0; see Section 12.4. Hence the conclusion in
part (a) holds uniformly over all bounded intervals. An alternative proof
follows the proof of Theorem 5.9.2, including the process {U(t) : ¢ > 0}
when K <oco. =

Remark 5.9.1. The heavy-traffic snapshot principle. With the previous
heavy-traffic theorems in this section, Theorems 5.9.2 and 5.9.3 establish
a version of the heavy-traffic snapshot principle, a term coined by Reiman
(1982): In the heavy-traffic limit, the processing time is asymptotically negli-
gible compared to the time required for the workloads to change significantly.
Since time is scaled by n, the workloads can change significantly only over
time intervals of length of order n. On the other hand, since the space scal-
ing is by ¢, where ¢, — oo but ¢,/n — 0 as n — oo, the workload itself
tends to be only of order ¢,, which is asymptotically negligible compared
to n. Correspondingly, Theorems 5.9.2 and 5.9.3 show that that processing
times also are of order ¢,. Thus, in the heavy-traffic limit, the workload
when a particle of work departs is approximately the same as the workload
when that particle of work arrived.

The heavy-traffic snapshot principle also holds in queueing networks.
Thus the workload seen upon each visit to a queue in the network and
upon departure from the network by a particle flowing through the network
is the same, in the heavy-traffic limit, as seen by that particle upon initial
arrival. The heavy-traffic snapshot principle implies that network status can
be communicated effectively in a heavily loaded communication network: A
special packet sent from source to destination may record the buffer content
at each queue on its path. Then this information may be passed back to the
source by a return packet. The snapshot principle implies that the buffer
contents at the queues will tend to remain near their original levels (relative
to heavy-loading levels), so that the information does not become stale. (A
caveat: With the fluid-limit scaling in Section 5.3, the heavy-traffic snapshot
principle is not valid. In practice, we need to check if the snapshot principle
applies.) For more on the impact of old information on scheduling service
in queues, see Mitzenmacher (1997).
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5.10. Priorities

In this book we primarily consider the standard first-come first-served
(FCFS) service discipline in which input is served in order of arrival, but it
can be important to consider other service disciplines to meet performance
goals. We now illustrate how we can apply heavy-traffic stochastic-process
limits to analyze a queue with a non-FCFS service discipline. Specifically,
we now consider the fluid-queue model with priority classes. We consider
the relatively tractable preemptive-resume priority discipline; i.e., higher-
priority work immediately preempts lower-priority work and lower-priority
work resumes service where it stopped when it regains access to the server.
Heavy-traffic limits for the standard single-server queue with the preemptive-
resume priority discipline were established by Whitt (1971a).

In general, there may be any number m of priority classes, but it suffices
to consider only two because, from the perspective of any given priority class,
all lower priority work can be ignored, and all higher-priority work can be
lumped together. Thus, the model we consider now is the same as in Section
5.2 except that there are two priority classes. Let class 1 have priority over
class 2. For 1 = 1,2, there is a class-: cumulative-input stochastic process
{C;(t) : t > 0}. As before, there is a single server, a buffer with capacity K
and a single service process {S(t) : t > 0}. (There is only a single shared
buffer, not a separate buffer for each class.)

Like the polling service discipline considered in Section 2.4.2, the preemptive-
resume priority service discipline is a work-conserving service policy. Thus
the total workload process is the same as for the FCFS discipline consid-
ered above. We analyze the priority model to determine the performance
enhancement experienced by the high-priority class and the performance
degradation experienced by the low-priority class.

We first define class-i available-processing processes by letting

Si(t) S(t),
So(t) = Si(t) — Di(t), (10.1)

where Dy = {Di(t) : t > 0} is the class-1 departure process, defined as in
(2.11). We then can define the class-i potential-workload processes by

X;(t) = Wi(0) + Ci(t) — Si(?) (10.2)

just as in (2.4). Then the class-i workload, overflow and departure processes
are W; = ¢ (X;), U; = vy (X;) and D; = S; — ¥ (X;), just as in Section
5.2.
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We now want to consider heavy-traffic limits for the two-priority fluid-
queue model. As in Section 5.4, we consider a sequence of queues indexed
by n. Suppose that the per-class input rates A, and Ay, and a maximum-
potential output rate y, are well defined for each n, with limits as in (4.1)
and (4.2). Then the class-i traffic intensity in model n is

Pin = /\i,n/ﬂn (10.3)

and the overall traffic intensity in model n is

Pn =PintP2m - (10.4)

As a regularity condition, we suppose that u, — p as n — oo, where
0<p<oo.

In this context, there is some difficulty in establishing a single stochastic-
process limit that generates useful approximations for both classes. It is
natural to let

Pin = Pi ; (10.5)

where 0 < p; < oco. If we let p = p; + p2 = 1, then the full system
is in heavy traffic, but the high-priority class is in light traffic: pi, —
p1 < 1 as n — oco. That implies that the high-priority workload will be
asymptotically negligible compared to the total workload in the heavy-traffic
scaling. That observation is an important insight, but it does not produce
useful approximations for the high-priority class.

On the other hand, if we let p; = 1, then the high-priority class is in
heavy traffic, but p = p1+p2 > 1, so that the full system is unstable. Clearly,
neither of these approaches is fully satisfactory. Yet another approach is to
have both p, — 1 and p1, — 1 as n — oo, but that forces po, — 0. Such a
limit can be useful, but if the low-priority class does not contribute a small
proportion of the load, then that approach will usually be unsatisfactory as
well.

5.10.1. A Heirarchical Approach

What we suggest instead is a heirarchical approach based on considering
the relevant scaling. From the scaling analysis in Section 5.5, including
the time and space scaling in (5.10) and (5.11), we can see that the full
system with higher traffic intensity has greater scaling than the high-priority
class alone. Thus, we suggest first doing a heavy-traffic stochastic-process
limit for the high-priority class alone, based on letting p1, 1 1 and, second,
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afterwards doing a second heavy-traffic limit for both priority classes, based
on fixing p; and letting pg, 11 — p1.
As a basis for these heavy-traffic limits, we assume that

(Cl’n,CQ’n,Sn) = (Cl,CQ,S) (106)
where

Cl,n(t) = n_HC’l(Cl,n(nt)—)\l,nnt),
CQ,n(t)

n~Hoz (Con(nt) — Ao pnt),
S,(t) = n~Hs(S,(nt) — unt) (10.7)

for 0 < Hg1 <1,0 < Hgp <1and 0 < Hg < 1. For simplicity, we let the
processing rate y be independent of 7.

Note that a common case of considerable interest is the light-tailed weak-
dependent case with space-scaling exponents

Hey=Hop = He=1/2, (10.8)

but we allow other possibilities. We remark that in the light-tailed case with
scaling exponents in (10.8) the heirarchical approach can be achieved directly
using strong approximations; see Chen and Shen (2000). (See Section 2.2 of
the Internet Supplement for a discussion of strong approximations.)

When (10.8) does not hold, then it is common for one of the three space-
scaling exponents to dominate. That leads simplifications in the analysis
that should be exploited. In the heavy-traffic limit, variability appears only
for the processes with the largest scaling exponent.

Given a heavy-traffic stochastic-process limit as in Theorem 5.4.1 for the
high-priority class alone with the space scaling factors in (10.7), we obtain
the high-priority approximation

Hy 1
T—Hy 1—p\ =1
Wi (8) <1 Elm) W (< C1p1> | t) =0 1

as in (5.3) with the scaling functions in (5.10) and (5.11) based on the traffic
intensity p; and the space-scaling exponent

H1 = maa:{Hc,l,Hg} . (10.10)
The limit process W1 in (10.9) is ¢x(X1) as in (4.9), where

X (t) = W{(0) + C1(t) — S(t) + mt, t>0,



230 CHAPTER 5. HEAVY-TRAFFIC LIMITS

as in (4.8). If Hoy > Hg, then S(£) = 0 in the limit; if Hs > He,p, then
C1(t) =0 in the limit. Instead of (4.6), here we have

Mun = n(Aip — tn)/cn =M1 .

Next we can treat the aggregate workload of both classes using traffic
intensity p = p1 + p2. We can think of the high-priority traffic intensity pq
as fixed with py < 1 and let po, T 1 — p;. By the same argument leading
to (10.9), we obtain a heavy-traffic stochastic-process limit supporting the
approximation

wo=(r5) " w((22) 7). 20 o

where the space-scaling exponent now is
H =maz{Hc,:1,Hc2,Hs} . (10.12)
The limit process W in (10.11) is ¢x(X) as in (4.9), where
X(t) = W'(0) + Cu1(t) + Caot) — S(t) +nt, t>0,
as in (4.8). If Hc; < H, then Ci(t) = 0 in the limit; if Hg < H, then
S(t) = 0 in the limit. Instead of (4.6), here we have
M = 1(An + Ao — fin)/cn =1 -

Not only may the space-scaling exponent H in (10.11) differ from its coun-
terpart H; in (10.9), but the parameters p and ¢ in (10.11) routinely differ
from their counterparts p; and ¢; in (10.9).

Of course, the low-priority workload is just the difference between the
aggregate workload and the high-priority workload. If that difference is too
complicated to work with, we can approximate the low-priority workload by
the aggregate workload, since the high-priority workload should be relatively
small, i.e.,

Wap(t) = W,(t) — Wi, () & W,(t), t>0. (10.13)

5.10.2. Processing Times

We now consider the per-class processing times, i.e., the times required
to complete processing of all work of that class in the system. For the
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high-priority class, we can apply Theorems 5.9.2 and 5.9.3 to justify (only
partially when K < oo) the approximation

Th o (1) & Wi (8)/ 1 (10.14)

However, the low-priority processing time is more complicated because
the last particle of low-priority work must wait, not only for the total aggre-
gate workload to be processed, but also for the processing of all new high-
priority work to arrive while that processing of the initial workload is going
on. Nevertheless, the low-priority processing time is relatively tractable be-
cause it is the time required for the class-1 net input, starting from time t,
to decrease far enough to remove the initial aggregate workload, i.e.,

To(t) = inf{u>0: X1 (t +u) — X1(t) < —W(2)} . (10.15)

Note that (10.15) is essentially of the same form as (2.12). Thus, we can
apply (10.15) with the reasoning in Theorem 5.9.3 to establish an analog of
Theorem 5.9.3, which partly justifies the heavy-traffic approximation

Wp(t)
p(l—p1)
In (10.16), T5 4, po(t) is the low-priority processing time as a function of the
two traffic intensities and W,(t) is the aggregate workload at time ¢ as a
function of the total traffic intensity p = p1 + p2.

The heavy-traffic approximation in (10.16) should not be surprising be-
cause, as p T 1 with p; fixed, the stochastic fluctuations in X; should be

negligible in the relatively short time required for the drift in X; to hit the
target level; i.e., we have a separation of time scales just as in Section 2.4.2.

T2:PlyP2 (t) ~ (10'16)

However, in applications, it may be important to account for the stochas-
tic fluctuations in X;. That is likely to be the case when p; is relatively high
compared to p. Fortunately, the heavy-traffic limits also suggest a refined
approximation. Appropriate heavy-traffic limits for X; alone suggest that
the stochastic process {X1(¢) : ¢ > 0} can often be approximated by a Lévy
process (a process with stationary and independent increments) without
negative jumps. Moreover, the future net input {X; (¢ +u) — X1(¢) : t > 0}
often can be regarded as approximately independent of W (¢). Under those
approximating assumptions, the class-2 processing time in (10.15) becomes
tractable. The Laplace transform of the conditional processing-time distri-
bution given W (¢) is given on p.120 of Prabhu (1998). The conditional mean
is the conditional mean in the heavy-traffic approximation in (10.16).
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Remark 5.10.1. Other service disciplines. We conclude this section by
referring to work establishing heavy-traffic limits for non-FCFS service dis-
ciplines. First, in addition to Chen and Shen (2000), Boxma, Cohen and
Deng (1999) establish heavy-traffic limits for priority queues. As mentioned
in Section 2.4.2, Coffman, Puhalskii and Reiman (1995, 1998), van der Mei
and Levy (1997) and van der Mei (2000) establish heavy-traffic limits for
polling service disciplines. Kingman (1982) showed how heavy-traffic lim-
its can expose the behavior of a whole class of service disciplines related
to random order of service. Yashkov (1993), Sengupta (1992), Grishechkin
(1994), Zwart and Boxma (2000) and Boxma and Cohen (2000) establish
heavy-traffic limits for the processor-sharing discipline. Fendick and Ro-
drigues (1991) develop a heavy-traffic approximation for the head-of-the-
line generalized processor-sharing discipline. Abate and Whitt (1997a) and
Limic (1999) consider the last-in first-out service discipline. Doytchinov et
al. (2001) and Kruk et al. (2000) consider “real-time” queues with due
dates. These alternative service disciplines are important because they sig-
nificantly affect queueing performance. As we saw for the high-priority class
with two priority classes, the alternative service disciplines can effectively
control congestion for some customers when the input of other customers
is excessive. The derivations of the heavy-traffic limits with these alterna-
tive service disciplines are fascinating because they involve quite different
arguments.



