A Performance Algorithm for Periodic Queues

Ni Ma
Industrial Engineering and Operations Research, Columbia University, nm2692@columbia.edu,

Ward Whitt
Industrial Engineering and Operations Research, Columbia University, ww2040@columbia.edu,
http://www.columbia.edu/ ww2040

An efficient algorithm is developed to calculate the periodic steady-state distribution and moments of the remaining workload W_y at time yc within a cycle of length c, $0 \leq y < 1$, in a single-server queue with a periodic arrival-rate function. The algorithm applies exactly to the $GI_t/GI/1$ model, where the arrival process is a time-transformation of a renewal process. A new representation of W_y makes it possible to apply a modification of the classic rare-event simulation for the stationary $GI/GI/1$ model exploiting importance sampling using an exponential change of measure. We establish bounds between the periodic workload and the stationary workload with the average arrival rate that enable us to prove that the relative error in estimates of $P(W_y > b)$ is uniformly bounded in b. With the aid of a recent heavy-traffic limit theorem, the algorithm also applies to compute the periodic steady-state distribution of (i) reflected periodic Brownian motion (RPBM) by considering appropriately scaled $GI_t/GI/1$ models and (ii) a large class of general $G_t/G/1$ queues by approximating by $GI_t/GI/1$ models with the same heavy-traffic limit. Simulation examples demonstrate the accuracy and efficiency of the algorithm for both $GI_t/GI/1$ queues and RPBM.

Key words: periodic queues, ruin probabilities, rare-event simulation, exponential change of measure, heavy traffic, reflected periodic Brownian motion

History: September 13, 2016

1. Introduction

For the steady-state performance of the stationary $GI/GI/1$ single-server queue with unlimited waiting room and service in order of arrival, we have effective algorithms, e.g., Abate et al. (1993), Asmussen (2003). We also have exact formulas in special cases and useful general approximation formulas in heavy traffic, e.g., Asmussen (2003), Whitt (2002). For the periodic steady-state performance of associated periodic single-server queues, having periodic arrival-rate functions, there is much less available. There is supporting theory
in Harrison and Lemoine (1977), Lemoine (1981, 1989), Rolski (1981, 1989). On the algorithm side, there is a recent contribution on perfect sampling in Xiong et al. (2015). Of particular note is the paper on the periodic $M_t/GI/1$ queue by Assmussen and Rolski (1994) that provides a theoretical basis for a rare-event simulation algorithm (although no algorithm is discussed there); also see §VII.6 of Asmussen and Albrecher (2010) and Morales (2004). The goal there was to calculate ruin probabilities, but those are known to be equivalent to waiting-time and workload tail probabilities. A heavy-traffic limit for the periodic $G_t/G/1$ queue, was also established recently by Whitt (2014), which shows that the basic processes can be approximated by reflected periodic Brownian motion (RPBM), but so far there are no algorithms or simple formulas for RPBM.

In this paper, we provide an effective algorithm to calculate the periodic steady-state distribution and moments of the remaining workload W_y at time yc within a cycle of length c, $0 \leq y < 1$, in a single-server queue with a periodic arrival-rate function. The algorithm applies exactly to the $M_t/GI/1$ model, where the arrival process is a nonhomogeneous Poisson process (NHPP), and any $GI_t/GI/1$ model, where the arrival process is a time-transformation of a renewal process. A new representation of W_y (in (2) below) makes it possible to apply a modification of the classic rare-event simulation for the stationary $GI/GI/1$ model exploiting importance sampling using an exponential change of measure, as in Ch. XIII of Asmussen (2003) and Ch. VI of Asmussen and Glynn (2007). We show that the algorithm is effective for estimating the mean and variance as well as small tail probabilities.

The main example is the periodic $M_t/GI/1$ queue, but our results go well beyond the periodic $M_t/GI/1$ queue. By also treating the more general $GI_t/GI/1$ queue, we are able to apply the algorithm to compute the steady-state distribution of the limiting RPBM in Whitt (2014). To cover the full range of parameters of the RPBM, we need the generalization to $GI_t/GI/1$. (In particular, this enables us to calculate the periodic steady-state distribution of the limiting RPBM for the $GI_t/G/1$ model in (17) for any variability parameter c_x.) As we explain, the algorithm for the $GI_t/GI/1$ model can serve as a basis for an approximation algorithm for more general $G_t/G/1$ models, but we do not report simulation results for that extension here.

We report results from extensive simulation experiments for $GI_t/GI/1$ models to demonstrate the effectiveness of the algorithm. Both the convergence to RPBM and the effectiveness of the algorithm for RPBM are demonstrated by displaying the results for a range
of traffic intensities ρ approaching 1. This unity in the numerical results requires the non-standard heavy-traffic scaling in Whitt (2014), which we review in §3. (In particular, the deterministic arrival-rate function is scaled as well as space and time.) The unity in the numerical results provided by the heavy-traffic scaling is in the same spirit as the scaling in the numerical results in Abate and Whitt (1998), Choudhury et al. (1997).

1.1. Using Bounds to Connect to Familiar Rare-Event Simulation Methods

We are able to apply the familiar rare-event simulation for the $GI/GI/1$ model to the periodic $GI_t/GI/1$ model because we can make strong connections between the given periodic $GI_t/GI/1$ model and the associated $GI/GI/1$ model with the constant average arrival rate. In fact, this connection is largely achieved directly by construction, because we represent the periodic arrival counting process A as a deterministic time transformation of an underlying rate-1 counting process N by

$$A(t) \equiv N(\Lambda(t)), \quad \text{where} \quad \Lambda(t) \equiv \int_0^t \lambda(s) \, ds, \quad t \geq 0. \quad (1)$$

where λ is the arrival-rate function, assumed to be positive, and \equiv denotes equality by definition. This is a common representation when N is a rate-1 Poisson process; then A is an NHPP. And this is precisely what we mean by the notation GI_t; then N is a renewal process with time between renewals having mean 1. The representation in (1) also has been used for processes N more general than NHPP’s by Massey and Whitt (1994), Gerhardt and Nelson (2009), Nelson and Gerhardt (2011), He et al. (2016), Ma and Whitt (2015), Whitt (2015) and Whitt and Zhao (2016).

Given that we use representation (1), we show that it is possible to uniformly bound the difference between the cumulative arrival-rate function Λ and the associated linear cumulative arrival-rate function $\bar{\lambda}e$ of the stationary model, where $\bar{\lambda}$ is the average arrival rate and e is the identity function, $e(t) \equiv t, \quad t \geq 0$. Consequently, we are able to bound the difference between the steady-state workloads W in the stationary $G/G/1$ model and W_y in the periodic $G_t/G/1$ model.

1.2. A Convenient Representation for Estimation Efficiency

We exploit the arrival process construction in (1) to obtain a convenient representation of the stationary workload W_y in terms of the underlying process $N \equiv \{N(t) : t \geq 0\}$ in (1) and the associated sequence of service times $V \equiv \{V_k : k \geq 1\}$ via

$$W_y = \sup_{s \geq 0} \left\{ \sum_{k=1}^{N(s)} V_k - \hat{\Lambda}^{-1}_{yc}(s) \right\}, \quad 0 \leq y < 1, \quad (2)$$
where
\[
\tilde{\Lambda}_y(t) \equiv \Lambda(y) - \Lambda(y-t), \quad t \geq 0,
\] (3)
is the reverse-time cumulative arrival-rate function starting at time \(y\) within the periodic cycle \([0, c]\) and \(\tilde{\Lambda}_y^{-1}\) is its inverse function, which is well defined because \(\tilde{\Lambda}_y(t)\) is continuous and strictly increasing. Representation (2) is convenient because all stochastic dependence is captured by the first term within the supremum, while all deterministic time dependence is captured by the second term.

From the representation in (2), it is evident that from each sample path of the underlying stochastic process \((N, V)\), we can generate a realization of \(W_y\) in (2) for each \(y, 0 \leq y < c\), by just changing the deterministic function \(\tilde{\Lambda}_y^{-1}\). Moreover, from the rare-event construction in §5, we can simultaneously obtain an estimate of \(P(W_y > b)\) for all \(b\) in the bounded interval \([0, b_0]\) while applying the estimation for the single value \(b_0\). Thus, we can essentially obtain estimates for all performance parameter pairs \((y, b) \in [0, c] \times [0, b_0]\) while doing the estimation for only one pair. This efficiency is very useful to conduct simulation studies to expose the way that \(P(W_y > b)\) and the other performance measures depend on \((y, b)\).

1.3. Stylized Sinusoidal Examples

We illustrate the rare-event simulation by showing simulation results for \(GI_t/GI/1\) queues with sinusoidal arrival-rate function
\[
\lambda(t) \equiv \bar{\lambda}(1 + \beta \sin(\gamma t)), \quad t \geq 0,
\] (4)
where \(\beta, 0 < \beta < 1\), is the relative amplitude and the cycle length is \(c = 2\pi/\gamma\). We let the mean service time be \(\mu^{-1} = 1\), so that the average arrival rate is the traffic intensity, i.e., \(\bar{\lambda} = \rho\). With this scaling, we see that there is the fundamental model parameter triple \((\rho, \beta, \gamma)\) or, equivalently, \((\rho, \beta, c)\). The associated cumulative arrival-rate function is
\[
\Lambda(t) = \rho(t + (\beta/\gamma)(1 - \cos(\gamma t))), \quad t \geq 0.
\] (5)
and the associated reverse-time cumulative arrival-rate function defined in (3) is
\[
\tilde{\Lambda}_y(t) = \rho(t + (\beta/\gamma)(\cos(\gamma(y-t)) - \cos(\gamma y))), \quad t \geq 0.
\] (6)

We only consider the case \(\rho < 1\), under which a proper steady-state exists under regularity conditions (which we do not discuss here). Behavior differs for short cycles and
long cycles. There are two important cases for the relative amplitude: (i) $0 < \beta < \rho^{-1} - 1$ and (ii) $\rho^{-1} - 1 \leq \beta \leq 1$. In the first case, we have $\rho(t) < 1$ for all t, where $\rho(t) \equiv \lambda(t)$ is the instantaneous traffic intensity, but in the second case we have intervals with $\rho(t) \geq 1$, where significant congestion can build up. If there is a long cycle as well, the system may be better understood from fluid and diffusion limits, as in Choudhury et al. (1997). (Tables 8 and 9 illustrate the significant performance difference for the mean $E[W_y]$.)

1.4. Organization of the Paper

We start in §2 by reviewing the reverse-time representation of the workload process, which leads to representation (2). In §3 we review the heavy-traffic FCLT in Theorem 3.2 of Whitt (2014), which explains the scaling that unifies our numerical results in the simulation experiments. In §4 we establish the bounds and associated asymptotic and approximations connecting the periodic model to the associated stationary model with the average arrival rate. In §5 we develop the simulation algorithm for the $GI_t/GI/1$ model and establish theoretical results on its efficiency. We also discuss the computational complexity and running times. In §6 we present simulation examples. In §7 we draw conclusions. More simulation examples and other supporting material appear in the online supplement, Ma and Whitt (2016).

2. Reverse-Time Representation of the Workload Process

We consider the standard single-server queue with unlimited waiting space where customers are served in order of arrival. Let $\{(U_k, V_k)\}$ be a sequence of ordered pairs of interarrival times and service times. Let an arrival counting process be defined on the positive halfline by $A(t) \equiv \max \{k \geq 1 : U_1 + \cdots + U_k \leq t\}$ for $t \geq U_1$ and $A(t) \equiv 0$ for $0 \leq t < U_1$, and let the total input of work over the interval $[0, t]$ be the random sum

$$Y(t) \equiv \sum_{k=1}^{A(t)} V_k, \quad t \geq 0,$$

(7)

Then we can apply the reflection map to the net input process $Y(t) - t$ to represent the workload (the remaining work in service time) at time t, starting empty at time 0, as

$$W(t) = Y(t) - t - \inf \{Y(s) - s : 0 \leq s \leq t\} = \sup \{Y(t) - Y(s) - (t - s) : 0 \leq s \leq t\}, \quad t \geq 0.$$

We now convert this standard representation to a simple supremum by using a reverse-time construction, as in Loynes (1962) and Chapter 6 in Sigman (1995). This is achieved by
letting the interarrival times and service times be ordered in reverse time going backwards from time 0. Then \(A(t) \) counts the number of arrivals and \(Y(t) \) is the total input over the interval \([-t, 0]\) for \(t \geq 0 \). With this reverse-time construction (interpretation), we can write

\[
W(t) = \sup \{Y(s) - s : 0 \leq s \leq t\}, \quad t \geq 0, \quad (8)
\]

and we have \(W(t) \) increasing to \(W(\infty) \equiv W \) with probability 1 (w.p.1) as \(t \uparrow \infty \). In a stable stationary setting, under regularity conditions, we have \(P(W < \infty) = 1 \); see §6.3 of Sigman (1995).

We now consider the periodic arrival-rate function \(\lambda(t) \) with cycle length \(c \), average arrival rate \(\bar{\lambda} = \rho < 1 \) and bounds \(0 < \lambda_L \leq \lambda(t) \leq \lambda_U < \infty \) for \(0 \leq t \leq c \). As in (1), we can construct the arrival process \(A \) by transforming a general rate-1 stationary process \(N \) by the cumulative arrival rate. We let the service times \(V_k \) be a general stationary sequence with \(E[V_k] = 1 \).

We now exploit (8) in our more specific context. The workload at time \(y \) in the system starting empty at time \(y-t \) can be represented as

\[
W_y(t) = \sup_{0 \leq s \leq t} \left\{ N(\tilde{\Lambda}_y(s)) \sum_{k=1}^{N(\tilde{\Lambda}_y(s))} V_k - s \right\} = \sup_{0 \leq s \leq \tilde{\Lambda}_y(t)} \left\{ \sum_{k=1}^{N(s)} V_k - \tilde{\Lambda}_y^{-1}(s) \right\}, \quad (9)
\]

where \(\Lambda(t) \) is the cumulative arrival-rate function in (1), \(\tilde{\Lambda}_y(t) \) is the reverse-time cumulative arrival-rate function in (3) and \(\tilde{\Lambda}_y^{-1} \) is its inverse function. Just as \(W(t) \uparrow W \) w.p.1 as \(t \to \infty \), so \(W_y(t) \uparrow W_y \) w.p.1 as \(t \to \infty \), for \(W_y \) in (2).

Even though (9) is valid for all \(t \), we think of the system starting empty at times \(-kc\), for \(k \geq 1 \), so that we let \(y-t = -kc \) or, equivalently, we stipulate that \(t = kc + y \) and consider successive values of \(k \) and let \(k \to \infty \) to get (2). That makes (9) valid to describe the distribution of \(W(kc + y) \) for all \(k \geq 1 \). We think that (9) and (2) are new representations, but they can be related to various special cases in the literature.

3. Review of the Heavy-Traffic Approximation for Periodic Queues

In this section we review the heavy-traffic FCLT for periodic \(G_t/G/1 \) queues in Theorem 3.2 of Whitt (2014) and its application to the sinusoidal example in (4). A key ingredient is a scaling of the arrival-rate function in addition to the usual scaling of space and time. As shown in Whitt (2014), the periodicity has no impact on the heavy-traffic limit if this additional scaling is not included. (That elementary observation was made earlier by Falin (1989); the main contribution of Whitt (2014) is the new scaling.)
3.1. The Heavy-Traffic FCLT

We assume that the rate-1 arrival and service processes \(N \) and \(V \) as specified in §2 are independent and each satisfies a FCLT; i.e, \(\hat{N}_n \Rightarrow c_a B_a \) and \(\hat{S}_n^v \Rightarrow c_s B_s \) in \(\mathcal{D} \) as \(n \to \infty \), where \(\mathcal{D} \) is the usual function space of right-continuous real-valued functions on \([0, \infty)\) with left limits and \(\Rightarrow \) denotes convergence in distribution, as in Whitt (2002), while \(B_a \) and \(B_s \) are independent Brownian motion processes, and \(\hat{N}_n \) and \(\hat{S}_n^v \) are the scaled processes defined by

\[
\hat{N}_n(t) \equiv n^{-1/2}[N(nt) - nt] \quad \text{and} \quad \hat{S}_n^v(t) \equiv n^{-1/2}\sum_{i=1}^{[nt]} V_k - nt], \quad t \geq 0, \tag{10}
\]

with \([x] \) denoting the greatest integer less than or equal to \(x \).

For the heavy-traffic limit theorem in Whitt (2014), it is important that the deterministic arrival-rate function in (1) depends on the traffic intensity \(\rho \) and is scaled appropriately as \(\rho \) increase to 1 from below through positive values. This makes the periodicity appear in the limit. In particular, as a special case of (8) in Whitt (2014) with \(\Lambda_f(t) \equiv t \), we let the cumulative arrival-rate function in model \(\rho \) be

\[
\Lambda_\rho(t) \equiv \rho t + (1 - \rho)^{-1}\Lambda_d((1 - \rho)^2 t), \quad t \geq 0, \tag{11}
\]

where

\[
\Lambda_d(t) \equiv \int_0^t \lambda_d(s) ds, \tag{12}
\]

with \(\lambda_d \) being a periodic function with period \(c^* \) satisfying

\[
\tilde{\lambda}_d \equiv \frac{1}{c^*} \int_0^{c^*} \lambda_d(s) ds \equiv 0. \tag{13}
\]

As a regularity condition, we also require that the function \(\lambda_d \) be an element of \(\mathcal{D} \).

From (11)-(13), we see that the associated arrival-rate functions, obtained by differentiation in (11), are

\[
\lambda_\rho(t) \equiv \rho + (1 - \rho)\lambda_d((1 - \rho)^2 t), \quad t \geq 0, \tag{14}
\]

so that the average arrival rate is \(\bar{\lambda}_\rho = \rho \), \(0 < \rho < 1 \). The time scaling in (14) implies that the period in model \(\rho \) with arrival-rate function \(\lambda_\rho(t) \) in (14) is \(c_\rho = c^*(1 - \rho)^{-2} \), where \(c^* \) is the period of \(\lambda_d(t) \) in (13). Thus the period \(c_\rho \) in model \(\rho \) is growing with \(\rho \), while the difference \(\lambda_\rho(t) - \rho \) decreases, being of order \(O(1 - \rho) \).
The construction in (11)-(13) implies that \(\hat{\Lambda}_\rho = \Lambda_d \) in \(\mathcal{D} \) for all \(\rho \) and

\[
\hat{\Lambda}_\rho(t) \equiv (1 - \rho)[\Lambda_\rho((1 - \rho)^{-2}t) - (1 - \rho)^{-1}\rho t], \quad t \geq 0.
\]

(15)

Now let scaled arrival, queue length and workload processes be defined as in (11) of Whitt (2014) by

\[
\hat{A}_\rho(t) \equiv (1 - \rho)[A_\rho((1 - \rho)^{-2}t) - (1 - \rho)^{-2}t],
\]

\[
\hat{Q}_\rho(t) \equiv (1 - \rho)Q_\rho((1 - \rho)^{-2}t) \quad \text{and} \quad \hat{W}_\rho(t) \equiv (1 - \rho)W_\rho((1 - \rho)^{-2}t), \quad t \geq 0.
\]

(16)

Let \(\mathcal{D}^k \) be the \(k \)-fold product space of \(\mathcal{D} \) with itself. Let \(\psi \) be the usual one-dimensional reflection map as on pp. 87, 290 and 439 of Whitt (2002). The heavy-traffic theorem states that \(\hat{A}_\rho \) converges to periodic Brownian motion (PBM), while \(\hat{Q}_\rho \) and \(\hat{W}_\rho \) converge to a common reflected periodic Brownian motion (RPBM). Let \(e \) be the identity function with \(e(t) = t, \ t \geq 0 \).

Theorem 1. (heavy-traffic limit from Whitt (2014)) If, in addition to the assumptions in (10)-(16) above, the system starts empty at time 0, then as \(\rho \uparrow 1 \)

\[
(\hat{A}_\rho, \hat{Q}_\rho, \hat{W}_\rho) \Rightarrow (c_aB_a + \Lambda_d - e, \psi(c_xB + \Lambda_d - e), \psi(c_xB + \Lambda_d - e)) \quad \text{in} \quad \mathcal{D}^3,
\]

(17)

where \(c_x \equiv \sqrt{c_a^2 + c_s^2} \) and \(B \) is Brownian motion.

The joint limit for \((\hat{A}_\rho, \hat{Q}_\rho) \) is established in Theorem 3.2 of Whitt (2014), which in turn follows quite directly from Iglehart and Whitt (1970), as reviewed in §9.3 of Whitt (2002). Theorem 9.3.4 of Whitt (2002) implies that the limit for \(\hat{W}_\rho \) is the same as for the limit for \(\hat{Q}_\rho \). (We remark that there is a typographical error in the translation term on the first line of (13) in the proof of Theorem 3.2 of Whitt (2014); it should be \(- (1 - \rho)^{-2}t\) as in equation (11) there instead of \(- (1 - \rho)^{-2}\rho t\).)

3.2. Approximations for the Periodic Steady State

We now also assume that the scaled processes \(\hat{Q}_\rho \) and \(\hat{W}_\rho \) defined in (16) have periodic steady-state limits, i.e.,

\[
\hat{Q}_\rho((k + y)c^*) \Rightarrow \hat{Q}_{\rho,y}(\infty) \quad \text{and} \quad \hat{W}_\rho((k + y)c^*) \Rightarrow \hat{W}_{\rho,y}(\infty) \quad \text{in} \quad \mathbb{R} \quad \text{as} \quad k \to \infty,
\]

(18)

where \(k \) runs through the positive integers and \(0 \leq y < 1 \), so that \(yc^* \) is a fixed place within the periodic cycle of length \(c^* \) for \(0 \leq y < c \). We also assume that \(P(\hat{Q}_{\rho,y}(\infty) < \infty) = 1 \) and \(P(\hat{W}_{\rho,y}(\infty) < \infty) = 1 \).
Theorem 1 does not directly imply heavy-traffic limits for these periodic steady-state quantities in (18), because an additional limit interchange argument is needed, e.g., see Budhiraja and Lee (2009) and references there, but we assume such a limit holds. We also assume that a corresponding limit holds for the limiting RPBM, i.e.,

\[R_{yc^*}(kc^*) \Rightarrow R_y(\infty; c_x) \text{ in } \mathbb{R} \text{ as } k \to \infty, \]

(19)

where again \(k \) runs through the positive integers and \(0 \leq y < 1 \), so that \(yc^* \) is a fixed place within the periodic cycle of length \(c^* \) and \(R_y(kc^*) \equiv \psi(c_xB + \Lambda_d - e)((k + y)c^*) \) is the RPBM evaluated at time \((k + y)c^*\). We include the variability parameter \(c_x \) in \(R_y(\infty; c_x) \), because the PBM inside the RPBM has unit constant negative drift, variability parameter \(c_x \) and deterministic periodic component \(\Lambda_d \) which has 0 integral over a cycle; see (13). The analysis above supports approximations for the unscaled steady-state random variables \(Q_y(\rho) \) and \(W_y(\rho) \), where dependence on \(y \) and \(\rho \) is shown. In particular,

\[
(1 - \rho)Q_y(\rho) \equiv \hat{Q}_{\rho,y}(\infty) \approx R_y(\infty; c_x) \quad \text{and} \quad (1 - \rho)W_y(\rho) \equiv \hat{W}_{\rho,y}(\infty) \approx R_y(\infty; c_x),
\]

(20)

for each \(y, 0 \leq y < 1 \), and \(\rho, 0 < \rho < 1 \), with the quality of the approximation expected to improve as \(\rho \) increases toward 1. That in turn supports approximating both \(W_y(\rho) \) and \(Q_y(\rho) \) in the \(G_t/G/1 \) model by \(W_y(\rho) \) in a \(GI_t/GI/1 \) model, when the \(GI_t/GI/1 \) model is constructed to have the same heavy-traffic limits.

3.3. Approximating the Arrival and Service Processes

To apply the heavy-traffic FCLT to generate approximations for the performance of general periodic \(G_t/G/1 \) models, we assume that the service process is independent of the arrival process and we approximate the underlying rate-1 arrival counting process \(N \) by a renewal processes with i.i.d. mean-1 times between renewals having scv equal to the arrival process variability parameter \(c_2^a \) in the assumed FCLT for \(N \). Similarly, we approximate the sequence of mean-1 service times \(\{V_k\} \) by a sequence of of mean-1 i.i.d. random variables with a scv equal to the service variability parameter \(c_2^s \) in the assumed FCLT. Both approximations are exact for \(GI \).

To construct the specific \(GI \) arrival and service processes, we follow the approximation scheme in §3 of Whitt (1982). We apply the same method for the interarrival times \(U_k \) of \(N \) as we do to the service times \(V_k \), so we only discuss the service times. If \(c_2^s \approx 1, \)
then we use a mean-1 exponential (M) distribution; if $c^2_s > 1$, then we use a mean-1 hyperexponential (H_2) distribution with pdf $f_V(x) = p_1\mu_1e^{-\mu_1x} + p_2\mu_2e^{-\mu_2x}$, with $p_1 + p_2 = 1$, having parameter triple (p_1, μ_1, μ_2). To reduce the parameters to two (the mean and scv), we assume balanced means, i.e., $p_1/\mu_1 = p_2/\mu_2$, as in (3.7) of Whitt (1982). If $c^2_s < 1$ and if $c^2_s \approx 1/k$ for some integer k, then we use a mean-1 Erlang (E_k) distribution (sum of k i.i.d. exponential variables), otherwise if $c^2_s < 1$, then we use the $D + M$ distribution, i.e., a sum of a deterministic constant d (D) and an exponential (M) distribution with rate μ, which has pdf $f_V(x) = \mu e^{-\mu(x-d)}$, $x \geq d$, as in (3.11) and (3.12) of Whitt (1982).

3.4. Application to the Sinusoidal Arrival-Rate Function

In the special case of (4), we have

$$\lambda_d(t) \equiv \tilde{\lambda}\beta \sin(\gamma t), \quad t \geq 0,$$

so that the cycle length is $c^* = 2\pi/\gamma$. With (21) and $\tilde{\lambda} \equiv \rho$, (14) becomes

$$\lambda_\rho(t) = \rho + (1-\rho)\rho \beta \sin((1-\rho)^2t), \quad t \geq 0,$$

so that the cycle length in model ρ is $c_\rho = c^*(1-\rho)^{-2} = 2\pi/(\gamma(1-\rho)^2)$.

When we consider the workload, we must remember the spatial scaling. In model ρ, we multiply by $1-\rho$ so that a proper limit holds for $P((1-\rho)W_\rho(\rho) > b) \equiv P(W_{\rho,y}(\infty) > b)$, and thus for $P(W_y(\rho) > b/(1-\rho))$.

Hence, to have asymptotically convergent models, we should choose parameter four-tuples $(\tilde{\lambda}_\rho, \beta_\rho, \gamma_\rho, b_\rho)$ indexed by ρ, where

$$(\tilde{\lambda}_\rho, \beta_\rho, \gamma_\rho, b_\rho) = (\rho, (1-\rho)\beta, (1-\rho)^2\gamma, (1-\rho)^{-1}b),$$

where (β, γ, b) is a feasible base triple of positive constants with $\beta < 1$. (We must constrain $\beta_\rho \leq 1$ so that $\lambda_\rho(t) \geq 0$ for all t.) Hence, we have the ρ-dependent constraint $\rho_\beta = (1-\rho)\beta \leq 1$. There is no problem if $\beta \leq 1$, but we may want to consider $\beta > 1$. In that case, β_ρ is only well defined for $\rho \geq 1 - (1/\beta))$. For example, if $\beta = 5.0$, then we require that $\rho \geq 0.8$.

Example 1. (Using $M_t/M/1$ to estimate the performance of RPBM)

To illustrate how we can apply simulations of the $M_t/M/1$ model with increasing traffic intensities, let the base parameter triple be $(\beta, \gamma, b) = (1.0, 2.5, 4.0)$. Then the parameter 4-tuple for $\rho = 0.8$ is

$$(\tilde{\lambda}_\rho, \beta_\rho, \gamma_\rho, b_\rho) = (0.8, (1-0.8)\beta, (1-0.8)^2\gamma, (1-0.8)^{-1}b) = (0.8, 0.2, 0.1, 20.0).$$
The associated parameter 4-tuple for $\rho = 0.9$ is $(0.90, 0.10, 0.025, 40.00)$.

Table 1 shows estimates of the ratio $P(W_y(\rho) > b(\rho)) / P(W(\rho) > b(\rho))$ for 5 different values of $1 - \rho$, where we successively divide $1 - \rho$ by 2, and 8 different values of the position y within the cycle in the $M_t/M/1$ model with sinusoidal arrival-rate function in (22) with the parameter 4-tuple in (23). The workload $W(\rho)$ is for the stationary $M/M/1$ model with the same scaling, which has an exponential distribution except for an atom $1 - \rho$ at the origin.

By Theorem 1, assuming that it applies to steady state as well as the transient values, the displayed ratios also can be regarded as estimates of the limiting ratio $P(R_y(\infty; 2) > b) / P(R(\infty; 2) > b)$, where $R_y(\infty; 2)$ ($R(\infty; 2)$) is the steady-state of RPBM $R_y(\infty)$ in (19) (of RBM $R(\infty)$) with $c^2 = c_x^2 + c_s^2 = 2$ for the base parameter triple $(\beta, \gamma, b) = (1.0, 2.5, 4.0)$. The parameter assignments for $\rho = 0.8$ and $\rho = 0.9$ are shown above.

Table 1

<table>
<thead>
<tr>
<th>ρ</th>
<th>$1 - \rho = 0.16$</th>
<th>$1 - \rho = 0.08$</th>
<th>$1 - \rho = 0.04$</th>
<th>$1 - \rho = 0.02$</th>
<th>$1 - \rho = 0.01$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.080</td>
<td>0.96604</td>
<td>0.96523</td>
<td>0.96424</td>
<td>0.96357</td>
<td>0.96334</td>
</tr>
<tr>
<td>0.125</td>
<td>0.97198</td>
<td>0.97086</td>
<td>0.97004</td>
<td>0.96937</td>
<td>0.96928</td>
</tr>
<tr>
<td>0.250</td>
<td>1.00556</td>
<td>1.00450</td>
<td>1.00255</td>
<td>1.00251</td>
<td>1.00250</td>
</tr>
<tr>
<td>0.375</td>
<td>1.03278</td>
<td>1.03264</td>
<td>1.03035</td>
<td>1.03152</td>
<td>1.03152</td>
</tr>
<tr>
<td>0.500</td>
<td>1.04565</td>
<td>1.04470</td>
<td>1.04278</td>
<td>1.04346</td>
<td>1.04405</td>
</tr>
<tr>
<td>0.625</td>
<td>1.03213</td>
<td>1.03096</td>
<td>1.03230</td>
<td>1.03150</td>
<td>1.03204</td>
</tr>
<tr>
<td>0.750</td>
<td>1.00225</td>
<td>1.00404</td>
<td>1.00425</td>
<td>1.00277</td>
<td>1.00241</td>
</tr>
<tr>
<td>0.875</td>
<td>0.97371</td>
<td>0.97696</td>
<td>0.97620</td>
<td>0.97657</td>
<td>0.97545</td>
</tr>
</tbody>
</table>

avg. diff	0.00037	0.00312	0.00015	-0.00019
avg. abs. diff	0.00099	0.00121	0.00081	0.00039
rmse	0.00116	0.00134	0.00096	0.00049

Table 1 shows that, for each fixed y, all estimates as a function of ρ serve as reasonable practical approximations for the others. The convergence in Table 1 is summarized by showing the average difference, average absolute difference and root mean square error (rmse) of the entry with the corresponding estimate for $\rho = 0.99$ in the final column, taken over 40 evenly spaced values of y in the interval $[0, 1)$.
4. Bounds and Approximations for General Periodic $G_t/G/1$ Queues

We first bound the periodic system above and below by modifications of the corresponding stationary system with an arrival process that has the average arrival rate. Then we establish limits and introduce approximations. In doing so, we extend results in Assmussen and Rolski (1994).

4.1. Basic Bounds

We now show that we can bound the periodic steady-state W_y in (2) above and below by a constant difference from an associated stationary workload W by rewriting (2) as

$$W_y \equiv W_y(\rho) = \sup_{s \geq 0} \left\{ \sum_{k=1}^{N(s)} V_k - \rho^{-1} s - (\tilde{\Lambda}_y^{-1}(s) - \rho^{-1} s) \right\}.$$

(25)

From (25), we immediately obtain the following lemma.

Lemma 1. (upper and lower bounds on W_y) For W_y in (2) and W defined as in (2) with $\rho^{-1}s$ replacing $\tilde{\Lambda}_y^{-1}(s)$,

$$W_y^- \equiv W - \zeta_y^- \leq W_y \leq W - \zeta_y^+ \equiv W_y^+$$

(26)

where

$$\zeta_y^- \equiv \sup_{0 \leq s \leq \rho c} \{\tilde{\Lambda}_y^{-1}(s) - \rho s\} \geq 0 \quad \text{and} \quad \zeta_y^+ \equiv \inf_{0 \leq s \leq \rho c} \{\tilde{\Lambda}_y^{-1}(s) - \rho s\} \leq 0.$$

(27)

Note that the supremum and infimum in (27) are over the interval $[0, \rho c]$. Because the average arrival rate is ρ, $\tilde{\Lambda}_y(c) = \Lambda(c) = \rho c$ and thus $\tilde{\Lambda}_y^{-1}(\rho c) = c$. Given that Λ is continuous and strictly increasing, we can use properties of the inverse function as in §13.6 of Whitt (2002) to determine an alternative representation of the bounds in terms of the reverse-time cumulative arrival-rate function $\tilde{\Lambda}_y$. We emphasize that these bounds depend on y.

Lemma 2. (alternative representation of the bounds) The constants ζ_y^- and ζ_y^+ can also be expressed as

$$\zeta_y^- = -\rho^{-1} \inf_{0 \leq s \leq c} \{\tilde{\Lambda}_y(s) - \rho s\} \geq 0 \quad \text{and} \quad \zeta_y^+ = -\rho^{-1} \sup_{0 \leq s \leq c} \{\tilde{\Lambda}_y(s) - \rho s\} \leq 0.$$

(28)
Proof. We use basic properties of inverse functions, as in §13.6 of Whitt (2002). First, note that, for any homeomorphism \(\phi \) on the interval \([0, c]\),

\[
\sup_{0 \leq s \leq c} \{\phi(s) - s\} = \sup_{0 \leq s \leq c} \{\phi(\phi^{-1}(s)) - \phi^{-1}(s)\} = \sup_{0 \leq s \leq c} \{s - \phi^{-1}(s)\} = - \inf_{0 \leq s \leq c} \{\phi^{-1}(s) - s\}.
\]

(29)

To treat \(\zeta_y \) in (27), we apply (29) to \(\tilde{\Lambda}_y^{-1} \) after rescaling time to get

\[
\sup_{0 \leq s \leq \rho c} \{\tilde{\Lambda}_y^{-1}(s) - \rho^{-1}s\} = \sup_{0 \leq u \leq c} \{\tilde{\Lambda}_y^{-1}(\rho u) - u\} = - \rho^{-1} \inf_{0 \leq s \leq c} \{\tilde{\Lambda}_y(s) - \rho s\}.
\]

(30)

In (30), the first equality is by making the change of variables \(u = \rho^{-1}s \); the second equality is by (29) plus Lemma 13.6.6 of Whitt (2002), i.e., \((\tilde{\Lambda}_y^{-1} \circ \rho e)^{-1} = (\rho^{-1} e \circ \tilde{\Lambda}_y) = \rho^{-1} \tilde{\Lambda}_y\); the third equality is obtained by multiplying and dividing by \(\rho \).

We now combine the one-sided extrema into an expression for the absolute value.

Corollary 1. (single bound) As a consequence,

\[
|W_y - W| \leq \zeta \equiv \max \{\zeta_y^-, \zeta_y^+\} = \rho^{-1}\|\tilde{\Lambda}_y - \rho e\|_c \equiv \rho^{-1} \sup_{0 \leq s \leq c} \{|\tilde{\Lambda}_y(s) - \rho s|\} < \infty.
\]

(31)

Corollary 2. (bounds in the sinusoidal case) For the sinusoidal case in (4), the bounds can be expressed explicitly as

\[
\zeta_y^- = \frac{\beta (\cos(\gamma y) + 1)}{\gamma} \quad \text{and} \quad \zeta_y^+ = \frac{\beta (\cos(\gamma y) - 1)}{\gamma}.
\]

(32)

Proof. By (6),

\[
\tilde{\Lambda}_y(t) - \rho t = (\rho \beta / \gamma) (\cos (\gamma (y - t)) - \cos (\gamma y)), \quad t \geq 0,
\]

(33)

from which (32) follows by choosing \(t \) to make \(\cos (\gamma (y - t)) = \pm 1 \).

4.2. Tail Asymptotics for the Periodic \(G_t/G/1 \) Model

For many models, it is possible to obtain an approximation for \(W \) of the form

\[
P(W > b) \approx A e^{-\theta^* b}, \quad b \geq 0,
\]

(34)

based on the limit

\[
\lim_{b \to \infty} e^{\theta^* b} P(W > b) = A.
\]

(35)
In the online supplement we discuss logarithmic asymptotics from Glynn and Whitt (1994) that supports the weaker approximation

\[P(W_y > b) \approx P(W > b) \approx e^{-\theta^* b}, \quad b \geq 0. \]

(36)

For the GI/GI/1 model, the limit (35) is discussed in §XIII.5 of Asmussen (2003), where the random variable \(X_k \equiv V_k - T_k \) is required to have a nonlattice distribution. However, the limit (35) also has been established for much more general models, allowing dependence among the interarrival times and service times; see Abate et al. (1994), Choudhury et al. (1996) and references therein. If indeed, the limit (35) holds for \(W \), then we easily get corresponding bounds for \(W_y \).

Corollary 3. (tail-limit bounds) If \(e^{\theta^* b} P(W > b) \to A \) as \(b \to \infty \) for some \(\theta^* > 0 \), then

\[
\limsup_{b \to \infty} e^{\theta^* b} P(W_y > b) \leq \limsup_{b \to \infty} e^{\theta^* b} P(W > b + \zeta_y^+) = A^+_y \equiv A e^{-\zeta^+ \theta^*} \quad \text{and} \\
\liminf_{b \to \infty} e^{\theta^* b} P(W_y > b) \geq \liminf_{b \to \infty} e^{\theta^* b} P(W > b + \zeta_y^-) = A^-_y \equiv A e^{-\zeta^- \theta^*}.
\]

(37)

as \(b \to \infty \). If \(e^{\theta^* b} P(W_y > b) \to A_y \) as \(b \to \infty \), then

\[A^-_y \leq A_y \leq A^+_y \quad \text{and} \quad A^-_y \leq A \leq A^+_y. \]

(38)

For the GI/GI/1 model, we have the Cramer-Lundberg inequality for \(W \) in Theorem XIII.5.1 of Asmussen (2003), yielding \(P(W > b) \leq e^{-\theta^* b} \) for all \(b \).

Corollary 4. (periodic Cramer-Lundberg bound) For the periodic GIt/GI/1 model,

\[P(W_y > b) \leq e^{-\theta^*(b + \zeta^+_y)} \quad \text{for all} \quad b > 0. \]

4.3. Implications for RPBM

There are important implications of the results above for the periodic steady-state distribution of RPBM, but several steps require theoretical justification; these are left for future research.

Given that the steady-state limits in (18) and (19) hold, and \(e^{\theta^*(\rho)b} P(W(\rho) > b) \to A(\rho) \) as \(b \to \infty \) for all \(\rho, \ 0 < \rho < 1 \), where \(W(\rho) \) is the unscaled steady-state workload \(W \) in the stationary model as a function of \(\rho \), Corollary 3 implies that

\[e^{\theta^*(\rho)b} P(W_y(\rho) > b) \to A_y(\rho) \quad \text{as} \quad b \to \infty \quad \text{for all} \quad \rho, \ 0 < \rho < 1, \]

(39)
for some constant $A_y(\rho)$, where $W_y(\rho)$ is the unscaled periodic steady-state workload in (20) as a function of ρ. Moreover, given (19) and (20), we conclude (subject to regularity conditions yet to be determined) that

$$e^{\theta^* b} P(R_y(\infty; c_x) > b) \to A_y \quad \text{as} \quad b \to \infty,$$

(40)

for some constant A_y, where $R_y(\infty; c_x)$ is the periodic steady-state of RPBM with variability parameter c_x and

$$\theta^* = \lim_{\rho \uparrow 1} \theta^*(\rho)/(1 - \rho),$$

(41)

with a proper limit existing in (41). In other words, we conclude that the periodic steady-state distribution of RPBM has its own tail limit where the asymptotic decay rate is the scaled limit of the asymptotic decay rates of the queues. Moreover, the asymptotic decay rate of the steady-state distribution of RPBM coincides with that of RBM, which directly has an exponential steady-state distribution, i.e., $P(R(\infty; c_x) > b) = e^{-2b/c_x^2}$. In the next section we provide support for (41). In our numerical results we show how to compute the tail probability $P(R_y(\infty) > b)$ assuming that these limits are valid.

4.4. Asymptotic Expansions for the Asymptotic Decay Rate

We can develop useful approximations for the asymptotic decay rate needed in the simulation and we can provide support for (41) making the connection to RPBM in §4.3 by applying asymptotic expansions established for the $GI/GI/1$ model (and more general multichannel queueing models) in Abate and Whitt (1994); corresponding asymptotic expansions for $MAP/GI/1$ queues were established in Choudhury and Whitt (1994). From (4) and (18) of Abate and Whitt (1994), we get the following result.

Theorem 2. *(Asymptotic expansion from Abate and Whitt (1994)) For the $GI/GI/1$ model, and thus also the periodic $GI_t/GI/1$ model,*

$$\theta^*(\rho) = \frac{2(1 - \rho)}{c_a^2 + c_s^2} + C(1 - \rho)^2 + O((1 - \rho^3)) \quad \text{as} \quad \rho \uparrow 1,$$

(42)

where C depends on the first three moments of the mean-1 interarrival time U_k and service time V_k, but not ρ, via

$$C \equiv C(c_a^2, d_a; c_s^2, d_s) \equiv \left(\frac{8(d_s - d_a)}{(c_a^2 + c_s^2)^3} - \frac{2(c_a^2 - c_s^2)}{(c_a^2 + c_s^2)^2} \right),$$

(43)

with $d_s \equiv (E[V_k^3] - 3c_s^2(c_s + 1) - 1)/6$. and similarly for d_a using the interarrival time.
We have provided evidence that we can calculate the tail probabilities $P(R_y(\infty; c_2) > b)$ by calculating associated tail probabilities $P(W_y(\rho) > b)$ for $GI_t/GI/1$ queues. Now we show that we may be able to choose two different $GI_t/GI/1$ queues that will bound the desired RPBM tail probabilities above and below, and thus bound the error. The following result only applies to the rates, but it explains what we have seen in numerical examples; see Table 2 below and the ratios $P(W_y(\rho) > b(\rho))/P(W(\rho) > b(\rho))$ in Tables 5 and 6.

Corollary 5. (switching interarrival-time and service-time distributions) If we switch the interarrival-time and service-time distributions without altering their mean values, and thus switch the pairs (c_2^2, a) and (c_2^2, s), then C in (43) is unchanged except for its sign, which is reversed. Thus, the one-term asymptotic approximation for $\theta^*(\rho)$ is bounded above and below by these special two-term approximations.

4.5. Exact Values for the Asymptotic Decay Rate

In the online supplement we elaborate on the exact values for the asymptotic decay rates in the special parametric cases in §3.3. For $M_t/M/1$, $\theta^* \equiv \theta^*(\rho) = 1 - \rho$. For both $M_t/H_2/1$ and $(H_2)_t/M/1$, θ^* is obtained as the solution of quadratic equations. Taylor series approximations produce asymptotic expansions that are consistent with (42).

Table 2 compares the 1-term and 2-term approximations for the asymptotic decay rate $\theta^*(\rho)$ from the asymptotic expansion in (42) with the exact values for the $M_t/H_2/1$ and $(H_2)_t/M/1$ models, where the H_2 distribution has $c^2 = 2.0$ and balanced means. The scaled value $\theta^*(\rho)/(1 - \rho)$ is shown for 6 values of $1 - \rho$. The asymptotic decay rate for RBM and RPBM are obtained directly from the first term. Table 2 shows that the 2-term approximation can serve as an explicit formula for $\theta^*(\rho)$ provided that ρ is not too small.

Assuming appropriate limit interchanges are valid, the asymptotic decay rate for RPBM is the same as for RBM, and that common value can be obtained directly from the first term in (42). Assuming that limits for the steady-state quantities follow from the process limits in Theorem 1, $(1 - \rho)W_{\rho,y} \Rightarrow R_y(\infty, c^2)$, where $R_y(\infty, c^2)$ has the steady-state distribution of RPBM $R_y(c^2)$. Assuming that the decay rates converge, we should have $\theta^* = \lim_{\rho \uparrow 1} \theta^*(\rho)/(1 - \rho) = 2/(c_a^2 + c_s^2)$ from (42). For ordinary RBM, this is immediate because RBM has an exponential steady-state distribution. Since the asymptotic decay rate of $(1 - \rho)W_{\rho,y}$ and $(1 - \rho)W_\rho$ agrees for all ρ, the same will be true for the limits, provided that the limit interchange is valid.
Table 2 A comparison of the 1-term and 2-term approximations for the asymptotic decay rate $\theta^*(\rho)$ from the asymptotic expansion in (42) with the exact values for the $M_t/H_2/1$ and $(H_2)_t/M/1$ models, where the H_2 distribution has $c^2 = 2.0$ and balanced means: The scaled value $\theta^*(\rho)/(1 - \rho)$ is shown for 6 values of $1 - \rho$.

<table>
<thead>
<tr>
<th>Model</th>
<th>Value (1 - ρ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M_t/H_2/1$ queue</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>exact</td>
<td>0.62934</td>
<td>0.64843</td>
<td>0.65766</td>
<td>0.66219</td>
<td>0.66444</td>
<td>0.66555</td>
</tr>
<tr>
<td>first term</td>
<td>0.66667</td>
<td>0.66667</td>
<td>0.66667</td>
<td>0.66667</td>
<td>0.66667</td>
<td>0.66667</td>
</tr>
<tr>
<td>first two terms</td>
<td>0.63111</td>
<td>0.64889</td>
<td>0.65778</td>
<td>0.66222</td>
<td>0.66444</td>
<td>0.66556</td>
</tr>
<tr>
<td>$(H_2)_t/M/1$ queue</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>exact</td>
<td>0.70619</td>
<td>0.68542</td>
<td>0.67580</td>
<td>0.67117</td>
<td>0.66890</td>
<td>0.66778</td>
</tr>
<tr>
<td>first term</td>
<td>0.66667</td>
<td>0.66667</td>
<td>0.66667</td>
<td>0.66667</td>
<td>0.66667</td>
<td>0.66667</td>
</tr>
<tr>
<td>first two terms</td>
<td>0.70222</td>
<td>0.68444</td>
<td>0.67556</td>
<td>0.67111</td>
<td>0.66889</td>
<td>0.66778</td>
</tr>
</tbody>
</table>

5. Simulation Methodology for the $GI_t/GI/1$ Model

We now apply the representation in (2) and the bounds in §4 to obtain an effective rare-event simulation method for the periodic $GI_t/GI/1$ queueing model. Our approach is to first generate a vector of i.i.d. uniform random variables on $[0, 1]$ and then transform them using vector operations and a tabled deterministic function to produce the desired estimates. Hence, the algorithm is primarily deterministic calculations. We obtain estimates of statistical precision by performing a large number of independent replications.

5.1. Exponential Tilting for the $GI/GI/1$ Model

We apply the familiar rare-event simulation method for the stationary $GI/GI/1$ model using importance sampling with an exponential change of measure, as in §XIII of Asmussen (2003) and §§V and VI of Asmussen and Glynn (2007). For the waiting times in the $GI/GI/1$ model based on $\{(\rho U_k, V_k)\}$, where $\{U_k\}$ and $\{V_k\}$ are independent sequences of i.i.d. nonnegative mean-1 random variables, the key random variables are $X_k(\rho) \equiv V_k - \rho U_k$. We assume that U_k, V_k and thus $X_k(\rho)$ have finite moment generating functions (mgf’s) $m_U(\theta)$, $m_V(\theta)$, and $m_X(\theta) \equiv m_{X(\rho)}(\theta)$, e.g., $m_V(\theta) \equiv E[e^{\theta V_k}]$, and probability density functions (pdf’s) f_U, f_V and $f_X \equiv f_{X(\rho)}$. As usual, we define the twisted pdf $f_{X,\theta}(x) = e^{\rho x} f_X(x)/m_X(\theta)$ and for our simulation use the “optimal value” θ^* such that $m_X(\theta^*) = 1$. That optimal tilting parameter coincides with the asymptotic decay rate θ^* in Corollary 3.

There are several simplifications that facilitate implementation. First, as in Example XIII.1.4 of Asmussen (2003), we can construct the tilted pdf $f_{X,\theta}(x)$ by constructing associated tilted pdf’s of f_U and f_V, in particular, because $X_k(\rho) \equiv V_k - \rho U_k$, it suffices to let $f_{V,\theta}(x) = e^{\rho x} f_V(x)/m_V(\theta)$ and

$$f_{-U/\rho,\theta}(x) = \frac{e^{\theta x} f_{-U/\rho}(x)}{m_{-U/\rho}(\theta)} \quad \text{or} \quad \frac{e^{-\theta y/\rho} f_U(y)}{m_U(-\theta/\rho)}$$ \hspace{1cm} (44)
with the second expression obtained after making a change of variables, so that \(m_X(\theta) = m_V(\theta)m_U(-\theta/\rho) \). We thus obtain the i.i.d. tilted random variables with pdf \(f_{X,\theta^*}(x) \) by simulating independent sequences of i.i.d. random variables with the pdf’s \(f_{V,\theta^*}(x) \) and \(f_{-U/\rho,\theta^*}(x) \).

Second, for all our examples, we consider common distributions that produce twisted pdf’s having the same form as the original pdf’s; it is only necessary to change the parameters. In particular, this property holds for the \(M \), \(H_2 \), \(E_k \) and \(M + D \) distributions that we propose to exploit in §3.3. In particular, if \(V \) is a rate-\(\mu \) exponential (\(M \)) random variable with pdf \(f_V(x) = \mu e^{-\mu x} \), then \(f_{V,\theta}(x) \) is again an exponential random variable with parameter \(\mu - \theta \), where we are required to have \(\mu > \theta > 0 \). Moreover, for the \(M/M/1 \) queue with arrival rate \(\lambda \) and service rate \(\mu \), the associated optimal tilted parameters are \(\lambda_{\theta^*} = \mu \) and \(\mu_{\theta^*} = \lambda \); i.e., the optimal tilting just switches the arrival and service rates; see Example XIII.1.5 of Asmussen (2003).

If \(V \) has an \(H_2 \) pdf \(f_V(x) = p\mu_1 e^{-\mu_1 x} + (1-p)\mu_2 e^{-\mu_2 x} \), having parameter triple \((p, \mu_1, \mu_2)\), then \(f_{V,\theta}(x) \) again has an \(H_2 \) distribution, but with a new parameter triple \((p_{\theta}, \mu_{1,\theta}, \mu_{2,\theta})\), where \(\mu_{j,\theta} = \mu_j - \theta \) and \(p_{\theta} = [p\mu_1/(\mu_1 - \theta) + (1-p)\mu_2/(\mu_2 - \theta)]/\{(1-p)\mu_1/(\mu_1 - \theta) + (1-p)\mu_2/(\mu_2 - \theta)\} \). We remark that the twisted \(H_2 \) pdf does not inherit the balanced-means property of the original \(H_2 \) pdf and has a different scv (still \(c^2 > 1 \)).

We now turn to the pdf’s with scv \(c^2 < 1 \). First, a twisted \(E_k \) distribution is again \(E_k \). More generally (because \(E_k \) is a special gamma distribution), if \(V \) has a gamma pdf \(f_V(x; \alpha, \mu) = \mu^\alpha x^{\alpha-1} e^{-\mu x} / \Gamma(\alpha) \), then \(f_{V,\theta}(x) \) has a gamma pdf with parameter pair \((\alpha_{\theta}, \mu_{\theta}) = (\alpha, \mu - \theta) \); see §V.1.b of Asmussen and Glynn (2007). Finally, if \(V \) is an \(M + D \) distribution with parameter pair \((d, \mu)\), then the twisted distribution is an \(M + D \) distribution with parameter pair \((d, \mu - \theta)\).

As a consequence, we can generate the tilted random variables in the standard way given underlying uniform random variables; e.g., we can apply the function \(h(x) = -\log(1-x)/\mu \) to a vector of uniform random variables to obtain the corresponding vector of exponential random variable with mean \(1/\mu \). For each \(H_2 \) random variable we can use two uniforms, one to select the exponential component and the other to generate the appropriate exponential; i.e., a random variable \(X \) with the \(H_2 \) distribution having parameter triple \((p, \mu_1, \mu_2)\) can be expressed in terms of the pair of i.i.d. uniforms \((Z_1, Z_2)\) as

\[
X = -((1/\mu_1)1_{\{Z_1 \leq p\}} + (1/\mu_2)1_{\{Z_1 > p\}}) \log(Z_2), \quad (45)
\]
where 1_A is the indicator variable with $1_A = 1$ on the event A.

5.2. Rare-Event Simulation for the GI/GI/1 Model

The standard rare-event simulation for the GI/GI/1 model is achieved by performing the change of measure using the tilted interarrival times and service times, as indicated in §5.1, where the tilting parameter θ^* coincides with the asymptotic decay rate in §4.2, as described in Ch. XIII of Asmussen (2003) and §VI.2a of Asmussen and Glynn (2007).

To implement the simulation, we generate the random variables U_k and V_k from their tilted distributions with θ^*. We estimate the tail probability $P(W > b)$ by its representation

$$P(W > b) = P(\tau_{S_b} < \infty) = E_{\theta^*}[I\{\tau_{S_b} < \infty\}L_{\tau_{S_b}}(\theta^*)] = E_{\theta^*}[L_{\tau_{S_b}}(\theta^*)]$$

$$= E_{\theta^*}[m_X(\theta^*)^\tau_{S_b} e^{-\theta^* S_{\tau_{S_b}}}] = E_{\theta^*}[e^{-\theta^* S_{\tau_{S_b}}}] = e^{-\theta^* b} E_{\theta^*}[e^{-\theta^* Y(b)}], \quad (46)$$

where $L_{\tau_{S_b}}(\theta^*)$ is the likelihood ratio of $\{X_k\}_{1 \leq k \leq \tau_{S_b}}$ with respect to P_{θ^*}. The second moment of this estimator is $E_{\theta^*}[L_{\tau_{S_b}}(\theta^*)^2] = E_{\theta^*}[e^{-2\theta^* S_{\tau_{S_b}}}]$. Theorem XIII.7.1 of Asmussen (2003) shows that the rare-event estimator of $P(W > b)$ has relative error that is uniformly bounded in b as $b \to \infty$. (The proof of Theorem XIII.7.1 relies on Theorems XIII.5.1-3; the pdf assumption implies that X has a nonlattice distribution.)

5.3. Applying the Bounds to Treat the Periodic Case

From (2), we see that any positive b must be hit for the first time at an arrival time. Thus, we have the alternative discrete-time representation

$$W_y = \sup_{n \geq 0} \left\{ \sum_{k=1}^{n} V_k - \tilde{\lambda}^{-1} (N^{-1}(n)) \right\} = \sup_{n \geq 0} \left\{ \sum_{k=1}^{n} V_k - \tilde{\lambda}^{-1} (\sum_{k=1}^{n} U_k) \right\}, \quad (47)$$

where U_k is the k^{th} interarrival time in the stationary process N.

For the periodic GI$_t$/GI/1 model with $\tilde{\lambda} = \rho$, we can apply a variant of the exponential change of measure for the waiting times in the GI/GI/1 model in §5.1 above. We use the
underlying measure P_θ, determined for GI/GI/1. We use the usual partial sum process $S_n = \sum_{k=1}^{n} X_k$ for GI/GI/1 and the associated process

$$R_n = \sum_{k=1}^{n} V_k - \Lambda_y^{-1} \left(\sum_{k=1}^{n} U_k \right).$$

We estimate the tail probability $P(W_y > b)$ by its representation as $P(\tau^R_b < \infty)$, where τ^R_b is the first hitting time of R_n at level b. Under the new probability measure, R_n hits b with probability 1, so we only need to estimate the likelihood ratio. We still twist $X_k = V_k - \rho^{-1}U_k$ in the same way, which is equivalent to twisting V_k and $\rho^{-1}U_k$ separately, as discussed in §5.1. Then the likelihood ratio ratio for n i.i.d. X_k is the same as before, i.e., $L_n(\theta) = m_X(\theta)^n e^{-S_n}$. As a consequence, we obtain the representation

$$P(W_y > b) = P(\tau^R_b < \infty) = E_{\theta^*} [L_{\tau^R_b}(\theta^*)] = E_{\theta^*} [m_X(\theta^*)\tau^R_b e^{-\theta^* S^R_b}] = E_{\theta^*} [e^{-\theta^* S^R_b}].$$

At first glance, (49) does not look so useful, because the random sum S^R_b involves the hitting time τ^R_b for $\{R_n\}$ instead of $\{S_n\}$, but we can shift the focus to R^τ_b because we can bound the difference.

Lemma 3. (bound on difference of random sums) Under the assumptions above,

$$|S^\tau_b - R^\tau_b| \leq \zeta \equiv \max \{ |\zeta_y^+|, |\zeta_y^-| \},$$

where ζ_y^+ and ζ_y^- are the one-sided bounds in (27) and (28). In addition, $\tau_{b^-}^S \leq \tau^R_b \leq \tau_{b^+}^S$.

Proof. The bound in (50) follows immediately from (27) and (28), because

$$|R_n - S_n| = \left| \left(\sum_{k=1}^{n} V_k - \Lambda_y^{-1} \left(\sum_{k=1}^{n} U_k \right) \right) - \left(\sum_{k=1}^{n} V_k - \rho^{-1} U_k \right) \right| \leq \zeta \equiv \max \{ |\zeta_y^+|, |\zeta_y^-| \}$$

for all $n \geq 1$, where ζ_y^+ and ζ_y^- are the one-sided bounds in (27) and (28).

Lemma 3 allows us to focus on R^τ_b, where τ^R_b is the hitting time for $\{R_n\}$. To do so, we impose an additional regularity condition. The regularity condition requires the excess service-time distribution be bounded above in stochastic order by a proper cdf, i.e.,

$$P(V > t + x | V > t) = \frac{P(V > t + x)}{P(V > t)} \leq G^c(x) \text{ for all } t \geq 0,$$

where $G^c(x) \equiv 1 - G(x) \to 0$ as $x \to \infty$. For example, it suffices for the service time to be bounded. It also suffices for the service-time distribution to have an exponential tail, which holds if there is a constant $\eta > 0$ such that

$$e^{nx} P(V > x) \to L, \quad 0 < L < \infty \text{ as } x \to \infty.$$
If (53) holds, then
\[\frac{e^{\eta(t+x)}P(V > t + x)}{e^{\eta t}P(V > t)} \to 1 \quad \text{as} \quad t \to \infty, \] (54)
so that (52) holds asymptotically with \(G^c(x) \equiv e^{-\eta x} \). It holds over any bounded interval because the ratio is continuous and bounded, given (53). Of course, condition (52) would not hold if \(x^p P(V > x) \to L \) as \(x \to \infty \) for \(0 < L < \infty \) and \(p > 0 \), but then we would not have the finite moment generating function needed for the exponential tilting either.

Theorem 3. *(bounded relative error)* The rare-event simulation algorithm for the tail probability \(P(W_y > b) \) in the periodic GI\(_t\)/GI/1 queue is unbiased and, if the service-time distribution satisfies condition (52), then the rare-event simulation algorithm produces relative error that is uniformly bounded in \(b \), just as for the stationary GI/GI/1 model, provided that the conditions for the rare-event simulation in the GI/GI/1 model are imposed so that the estimates are unbiased with bounded relative error.

Proof. The unbiasedness follows from (49). Lemma 3 allows us to focus on \(R_{y^R} \). The remaining result parallels Theorem XIII.7.1 in Asmussen (2003) for the GI/GI/1 model, which draws on Theorems XIII.5.1-3. Just as \(S_{y^R} = b + Y_S(b) \), where \(Y_S(b) \) is the overshoot of \(b \) upon first passage to \(b \) in the random walk \(\{S_n\} \), so is \(R_{y^R} = b + Y_R(b) \), where \(Y_R(b) \) is the overshoot of \(b \) upon first passage to \(b \) in the sequence \(\{R_n\} \). The results for the stationary case are based on the well developed theory for that overshoot, which depend on the random walk structure. In contrast, less is known for \(\{R_n\} \). However, we do see from (47) that the overshoot can be regarded as an excess-distribution of the last service time. Thus, under the extra condition (52), we can again apply the proof in Asmussen (2003), using
\[e^{-k\eta^R b} \geq E_{\theta^R}[e^{-k\eta^R R_{y^R}^R}] \geq e^{-k\eta^R b}E_{\theta^R}[e^{-k\eta^R Y_R(b)}] \geq ce^{-k\eta^R b} \]
for \(0 < c < 1 \), where \(c = E_{\theta^R}[e^{-k\eta^R Z}] \), \(P_{\theta^R}(Z > x) = G^c(x), x \geq 0 \), and \(k \) is a positive integer. ■

5.4. The Mean and Variance

We now show how tail-integral representations of the mean and higher moments on p. 150 of Feller (1971) can be exploited to obtain corresponding rare-event simulations of these related quantities. Recall that, for any nonnegative random variable \(X \), the mean can be expressed as
\[E[X] = \int_0^\infty P(X > t) \, dt, \] (55)
while the corresponding representation of the p^{th} moment for any $p > 1$ is

$$E[X^p] = \int_0^\infty pt^{p-1}P(X > t)\,dt. \tag{56}$$

To obtain a finite algorithm, it is natural to approximate the integrals for the mean and the second moment by finite sums plus a tail approximation, i.e.,

$$E[W_y] \approx \sum_{k=0}^n (P(W_y > k\delta)\delta) + \frac{P(W_y > n\delta)}{\theta^*}$$

$$E[W_y^2] \approx \sum_{k=0}^n (2P(W_y > k\delta)k\delta) + 2P(W_y > n\delta)(\frac{n\delta}{\theta^*} + \frac{1}{(\theta^*)^2}). \tag{57}$$

In each case, the second term is based on applying the tail integral formula over $[n\delta, \infty)$ with the approximation

$$P(W_y > n\delta + x) \approx P(W_y > n\delta)e^{-\theta^*x} \tag{58}$$

and integrating.

To understand how to choose the discretization parameter δ in (57), suppose that $P(W > t) = ae^{-\theta^*t}$. In that case, the infinite sum for the mean can be expressed as

$$\sum_{k=0}^\infty a\delta e^{-\theta^*k\delta} = \frac{a}{\theta^*} \left(1 + \theta^*\frac{\delta}{2} + O(\delta^2) \right) \quad \text{as} \quad \delta \downarrow 0,$$

so that the relative error for the mean is $\theta^*(\delta/2) + O(\delta^2)$. Similarly, the corresponding calculation for the second moment indicates an asymptotic relative error proportional to $\theta^*\delta$. The subsequent truncation approximations involving n imposes no additional error, provided that the tail is exponential, which is likely to hold in view of §4.2. Thus, the truncation is good provided that approximation (58) is good, which can be checked with the algorithm.

In closing, we remark that because $\theta^*(\rho)$ is of order $1 - \rho$ as $\rho \uparrow 1$ by §4.4, we can maintain fixed relative error in the discretization if we let δ be inversely proportional to $1 - \rho$ or $\theta^*(\rho)$ as $\rho \uparrow 1$. That can be useful because otherwise the computational complexity increases as ρ increases, as we show in the next sections. We illustrate letting δ increase with increasing ρ in Table 10.
5.5. The Algorithm

This exponential tilting algorithm to estimate tail probabilities $P(W_y > b)$ in the $GI_t/GI/1$ queue is based on equation (49) with the following steps. (We elaborate on Steps 4 and 5 in Ma and Whitt (2016).) Without loss of generality, we assume service rate is $\mu = 1$ and thus $\bar{\lambda} = \rho$.

Step 1. Before we conduct the simulation, we first construct a table of the inverse cumulative arrival-rate function $\rho \tilde{\Lambda}_y^{-1}$, i.e., the inverse of the reverse-time cumulative arrival-rate function $\tilde{\Lambda}_y$ in (3) scaled by ρ, for each time y in the cycle to be considered. For that purpose, we use Algorithm 1 in Ma and Whitt (2015). That algorithm constructs an approximation J_y to the inverse function $\rho \tilde{\Lambda}_y^{-1}$ for one cycle from the interval $[0, c]$ to the interval $[0, c]$. This table is the same for a fixed y no matter what value ρ takes, which will be used for efficiently calculating $\tilde{\Lambda}_y^{-1}$ later. The computational complexity has shown to be of order $O(c/\epsilon)$, where c is the length of a cycle of the periodic arrival-rate function and ϵ is an allowed error tolerance.

Step 2. Again, before we conduct the simulation, we determine the required number of partial sums needed in each replication, which we denote by n_s. This will depend on the largest value of b under consideration. Given the largest b, we estimate the expected number by $m_s \equiv b/E\theta [V_k - \rho^{-1}U_k]$ by approximating the sum by Brownian motion which is asymptotically correct as b gets large, e.g. by §5.7.5 of Whitt (2002). If we use a Brownian motion approximation for the random walk, then we can get that the approximate mean and variance by applying Theorems 5.7.13 and 5.7.9 of Whitt (2002). For the canonical Brownian motion in Theorem 5.7.13, the variance of the first passage time is equal to the mean, but in general the ratio of the variance to the mean is proportional to the scv $c_X^2 \equiv Var(X)/E[X]^2$. Hence, we use $n_s = \max\{C, Lm_s\}$, where C is a minimum number like 100 and L is a safety-factor multiplier to account for the stochastic variability, which might be taken to be simply 10, but could be constructed more carefully. The largest value of b will depend on the case. If we want to treat multiple cases at once for simulation efficiency, we need to determine the largest required value of n_s. If m_s is large, then it is natural to use $n_s = m_s + 5\sqrt{c^2X/m_s}$ instead of $n_s = 10m_s$, because then $5\sqrt{c^2X/m_s}$ is about 5 standard deviations, which should be sufficient, and beneficial if $5\sqrt{c^2X/m_s} << (L - 1)m_s$.
Step 3. As the first part of the actual stochastic simulation, for each replication we now generate the required random vectors of tilted interarrival times and service times: For each replication, generate \(\tilde{V} \equiv (V_1, \ldots, V_n) \) and \(\rho^{-1} \tilde{U} \equiv (\rho^{-1}U_1, \ldots, \rho^{-1}U_n) \) where \(n = n_s \) from step 2 above, \(V_k \) are i.i.d. random variables from \(F_{\theta^*}^V \), the exponentially tilted distribution of \(V_k \) with parameter \(\theta^* \) and \(\rho^{-1}U_k \) i.i.d. from \(F_{-\theta^*}^{-1}\rho^U \), the exponentially tilted distribution of \(\rho^{-1}U_k \) with parameter \(-\theta^* \). The distributions of \(V_k \) and \(U_k \) under the tilted probability measure \(P_{\theta^*} \) were discussed in §5.1.

Step 4. Using vector operations, we calculate the associated vectors of partial sums and transformed partial sums. Use Algorithm 2 in Ma and Whitt (2015) to calculate the time-transformed arrival times.

Step 5. Use (49) to calculate the desired tail probability \(P(W_y > b) \). We treat the cases of the tail probability for a single value of \(b \) differently from multiple values of \(b \), as required when we estimate moments. For multiple values of \(b \), we use one loop to find all stopping times at each element of the vector \(b \).

Step 6. We run the algorithm for \(N \) i.i.d. replications. Estimate \(P(W_y > b) \), \(EW_y \) and \(EW_y^2 \) by the sample averages over the \(N \) replications. We estimate the associated confidence intervals in the usual way, using the Gaussian distribution if \(N \) is large enough and the Student-t distribution otherwise.

In conclusion, we point out that there is flexibility in the order of the steps specified above. We can re-use random variables if we generate the random vectors in an early step. We can avoid storage problems if we perform calculations for each replication separately. As usual, there is a tradeoff in storage requirements and computation efficiency.

5.6. Computational Complexity and Running Times

We implemented the algorithm using matlab on a desktop computer. All examples were for the sinusoidal arrival-rate function \(\lambda \) in (4) with associated reverse-time cumulative arrival-rate function \(\tilde{\Lambda}_y \) in (6). Because we used matlab, it was important to use vector calculations in step 3 to avoid loops.

We now specify the computational complexity of the algorithm above. Given the inverse function table for \(\tilde{\Lambda}_y^{-1} \) computed in advance using the algorithm in Ma and Whitt (2015), the remaining algorithm has an approximate linear computational complexity of \(O(b/E_{\theta^*}(V_k - \rho^{-1}U_k)) \). Specifically for the \(M_t/M/1 \) model, the computational complexity is \(O(bp/(1 - \rho)) \), being directly proportional to \(b \) and inversely proportional to \(1 - \rho \). This
can be made precise as $b \uparrow \infty$ or as $\rho \uparrow 1$, and presumably in some joint limit as $b/(1-\rho) \uparrow$, but we do not do that here. For b large or for ρ large, we can perform asymptotics to make the following approximations valid.

The hitting time τ_b of the random walk S_n as defined in (48) has expectation $E(\tau_b) = b/(E_{\theta^*}(V_k - \rho^{-1}U_k))$ by approximating S_n by a Brownian motion, for b that is very large compared to the step size of the random walk. Now consider the hitting time τ_b of R_n as defined in (48). Since the average arrival rate $\bar{\lambda} = \rho$, the expected value of this hitting time is approximately the same as that for S_n.

When both V_k and $\rho^{-1}U_k$ are exponential random variables with rates 1 and ρ respectively, under the new measure θ^*, they are still exponential with rates ρ and 1 respectively. Thus $b/E_{\theta^*}(V_k - \rho^{-1}U_k) = b/(1/\rho - 1) = b\rho/(1 - \rho)$.

It can be advantageous to estimate the tail probabilities $P(W_y > b)$ for multiple values of b simultaneously. This can be done for each b by keeping track of the passage times for them while considering the largest value of b. This is very useful when we want to plot the cdf or its probability density function (pdf), or when we want to calculate the mean.

We now describe our experiments with running times on a desktop computer. Before conducting the simulation, we did step 1, constructing the table of the inverse function $\rho\tilde{\Lambda}_y^{-1}$ in one cycle, which takes computational time of $O(c/\epsilon) = O(1/\gamma \epsilon)$ by Theorem 3.1 of Ma and Whitt (2015), where c is the cycle length of the arrival rate function, γ is the parameter in the sinusoidal arrival-rate function and ϵ is the error bound we choose for the inverse function table. The longest cycle we consider has $\gamma = 0.00025$ (for (23) with $\rho = 0.99$), or $c = 25, 120$. For $\epsilon = 10^{-4}$, it took 0.08 seconds to form the table needed for a single value of y.

In each replication, we can quickly determine the required length of the random variable vector, generate the vectors of random variables and calculate the partial sums, which are steps 2 to 4. The most time is required for step 5, searching for the stopping time for one b, or for all stopping times for a long vector of b. When we do the search for one b, the computational time is $O(b/(E_{\theta^*}[V_k - \rho^{-1}U_k]))$, which is the approximate expected stopping time. When we do this for a long vector of b, we use a big loop which takes time linear in the maximum stopping time and the length of vector b, i.e., $O(max(b)/(E_{\theta^*}[V_k - \rho^{-1}U_k] + length(b)))$. Specifically, for the $M_t/M/1$ queue, the computational times are $O(b\rho/(1 - \rho))$ and $O(max(b)\rho/(1 - \rho) + length(b))$ respectively. For example, in $M_t/M/1$ queue, when
\(\rho = 0.8 \), we choose \(\max(b) = \log(1000)/\theta^* = \log(1000)/(1 - \rho) \), \(\delta = 0.0002/(1 - \rho) \), then maximum stopping time \(O(\max(b)\rho/(1 - \rho)) \) is negligible compared to the length of the vector \(b \). The first part of time increases as \(\rho \) increases while the second part does not depend on \(\rho \) as both the largest \(b \) and \(\delta \) are inversely proportional to \((1 - \rho) \). In this case, when we did 40,000 replications, the run time was 127 seconds on the desktop to find all stopping times, whereas it took about 10 seconds to find one stopping time for the largest \(b \).

6. Simulation Examples

We now give examples to illustrate the new simulation algorithm. All our examples are for the sinusoidal arrival-rate function in (4) with parameter triple \((\bar{\lambda}, \beta, \gamma)\). More results appear in the online supplement.

6.1. Estimating the Tail Probabilities \(P(W_y > b) \)

We start by illustrating the efficiency of the rare-event simulation estimator of the tail probability \(P(W_y > b) \), which gets exponentially small as \(b \) increases, and thus is prohibitively hard to estimate accurately by direct simulation. Table 3 shows that the relative errors of simulation estimates of \(P(W_y > b) \) for the \(\text{M}_t/\text{M}/1 \) model in several cases are approximately independent of \(b \). That property held in all models considered.

In particular, Table 3 shows estimates of \(\hat{p} \equiv P(W_y > b) \equiv A_y e^{-\theta^*b} \) and the components \(A_y \) and \(e^{-\theta^*b} \) for the special case \(y = 0.0 \) based on 5000 i.i.d. replications. Table 3 also shows estimates of the standard error (s.e.) of \(\hat{p} \), the upper and lower bounds of the 95% confidence interval (CI), and the relative error (r.e.), which is the s.e. divided by the estimate of the mean. For Table 3, we used the arrival-rate function (4) with \(\bar{\lambda} = 1 \), and \(E[V_1] = 0.8 \), so that \(\rho = 0.8 \). We let \(\beta = 0.2 \) and consider three values of \(\gamma \): 10, 1 and 0.1, making cycle lengths of 0.628, 6.28 and 62.8. The rapid fluctuation with \(\gamma = 10 \) makes the arrival process very similar to a homogeneous Poisson process, because the cumulative arrival-rate function approaches a linear function; see Theorem VIII.4.10 in Jacod and Shiryaev (1987), Problem 1 on p. 360 of Ethier and Kurtz (1986) and Whitt (2016). We also simulated the \(\text{M}/\text{M}/1 \) model with \(\beta = 0 \) to verify simulation correctness.

Table 3 shows that the rare-event simulation is effective for estimating \(P(W_0 > b) \), because the relative error is approximately independent of \(b \) for each \(\gamma \), ranging from about 0.0029 for \(\gamma = 10 \) to about 0.0055 for \(\gamma = 0.1 \).
We now focus on (i) non-exponential distributions and (ii) the traffic intensity ρ and the approach to RPBM discussed in §3. Tables 4, 5 and 6 show estimates of $P(W_y > b)$ for the $M_t/M/1$, $M_t/H_2/1$ and $(H_2)_t/M/1$ models, respectively. All three tables show results for $y = 0.0$ and $y = 0.5$ as a function of $1 - \rho$ with base parameter triple $(β, γ, b) = (1, 2.5, 4)$ in (23) based on 40,000 replications. The mean service time is fixed at $\mu = 1$ in all cases. The scv of the H_2 cdf is always $c^2 = 2$. The scaling in (23) is performed as a function of ρ in order to produce nearly stable results in each row.

We start by showing the estimate of the tail probability $\hat{p} \equiv P(W_y > b) \equiv A_y e^{-\theta^* b}$. Then we show the corresponding estimates for the components $e^{-\theta^* b}$ and $A_y \equiv e^{\theta^* b} \hat{p}$. We then show the lower and upper bounds in (37) of Corollary 3. We then show the s.e., the associated 95% CI bounds (lb and ub), and the r.e. In all cases the relative error is less than 0.0015 or 0.15%.

For the two cases $y = 0.0$ and $y = 0.5$, we also display estimates of scaled tail probabilities, $P(W_y > b)/P(W > b)$, where $P(W > b)$ is the corresponding estimate for the stationary model. We do this because we seek estimates that are more stable as functions of $1 - \rho$, and thus support approximations for the limiting RPBM tail probability, which is the scaled limit as $\rho \uparrow 1$. In Tables 5 and 6 for the $M_t/H_2/1$ and $(H_2)_t/M/1$ models we also show the alternative ratios $P(W_y > b)/\rho$; we do not show that for $M_t/M/1$ in Table 4 because the ratios are proportional, because $P(W > b) = \rho e^{-\theta^* b}$ for $M/M/1$ and $\theta^*(\rho) = 1 - \rho$. Tables 5 and 6 show that greater stability is achieved with the ratio $P(W_y > b)/(W > b)$.

Tables 4, 5 and 6 strongly support the heavy-traffic limit in Theorem 1, establishing convergence to RPBM as $\rho \uparrow 1$. The stability of the scaled quantities is especially clear through the ratios $P(W_y > b)/P(W > b)$. For the ratios at the bottom of the tables, we also show the difference and absolute difference of the value with value in the final column
Table 4 Simulation estimates of \(\hat{p} \equiv P(W_y > b) \equiv A_ye^{-\theta^*b} \) in the \(M_1/M/1 \) model for \(y = 0.0 \) and \(y = 0.5 \) as a function of \(1 - \rho \) with base parameter triple \((\beta, \gamma, b) = (1.2, 5.4, 4) \) in (23) based on 40,000 replications.

<table>
<thead>
<tr>
<th>(1 - \rho)</th>
<th>(\hat{p}) for (y = 0.0)</th>
<th>(e^{-\theta^*b})</th>
<th>(A_y)</th>
<th>(A_y^{\text{LB in (37)}})</th>
<th>(A_y^{\text{UB in (37)}})</th>
<th>% CI (lb)</th>
<th>% CI (ub)</th>
<th>r.e.</th>
<th>(P(W_y > b)/P(W > b))</th>
<th>diff w.r.t. last column</th>
<th>abs diff</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.16</td>
<td>0.011053</td>
<td>0.012192</td>
<td>0.012814</td>
<td>0.013122</td>
<td>0.013263</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.18</td>
<td>0.0183</td>
<td>0.0183</td>
<td>0.0183</td>
<td>0.0183</td>
<td>0.0183</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.20</td>
<td>0.604</td>
<td>0.666</td>
<td>0.700</td>
<td>0.716</td>
<td>0.724</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(A_y^{\text{LB in (37)}})</td>
<td>0.377</td>
<td>0.413</td>
<td>0.431</td>
<td>0.440</td>
<td>0.445</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(A_y^{\text{UB in (37)}})</td>
<td>0.840</td>
<td>0.920</td>
<td>0.960</td>
<td>0.980</td>
<td>0.990</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s.e.</td>
<td>1.75E-05</td>
<td>1.69E-05</td>
<td>1.71E-05</td>
<td>1.73E-05</td>
<td>1.74E-05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95% CI (lb)</td>
<td>0.01102</td>
<td>0.01216</td>
<td>0.01278</td>
<td>0.01309</td>
<td>0.01323</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(ub)</td>
<td>0.01109</td>
<td>0.01223</td>
<td>0.01285</td>
<td>0.01316</td>
<td>0.01330</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r.e.</td>
<td>0.001582</td>
<td>0.001387</td>
<td>0.001333</td>
<td>0.001319</td>
<td>0.001313</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(P(W_y > b)/P(W > b))</td>
<td>0.71845</td>
<td>0.72356</td>
<td>0.72879</td>
<td>0.73103</td>
<td>0.73444</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>diff w.r.t. last column</td>
<td>0.01298</td>
<td>0.00788</td>
<td>0.00264</td>
<td>0.0004</td>
<td>0.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>abs diff</td>
<td>0.01298</td>
<td>0.00788</td>
<td>0.00264</td>
<td>0.0004</td>
<td>0.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5 Simulation estimates of \(\hat{p} \equiv P(W_y > b) \equiv A_ye^{-\theta^*b} \) in the \(M_1/H_2/1 \) model for \(y = 0.0 \) and \(y = 0.5 \) as a function of \(1 - \rho \) with base parameter triple \((\beta, \gamma, b) = (1.2, 5.4, 4) \) in (23) based on 40,000 replications.

\(1 - \rho \)	\(\theta^*(\rho) \)	\(\hat{p} \) for \(y = 0.0 \)	\(e^{-\theta^*b} \)	\(A_y \)	\(A_y^{\text{LB in (37)}} \)	\(A_y^{\text{UB in (37)}} \)	% CI (lb)	% CI (ub)	r.e.	\(P(W_y > b)/P(W > b) \)	diff w.r.t. last column	abs diff	
0.16	0.101	0.0519	0.0263	0.0132	0.00664								
0.18	0.050594	0.052946	0.054024	0.054544	0.054904								
0.20	0.0807	0.0747	0.0720	0.0707	0.0701								
\(A_y^{\text{LB in (37)}} \)	0.627	0.708	0.750	0.771	0.783								
\(A_y^{\text{UB in (37)}} \)	0.477	0.532	0.560	0.573	0.580								
s.e.	3.87E-05	3.74E-05	3.80E-05	3.86E-05	3.89E-05								
95% CI (lb)	0.02581	0.02832	0.02918	0.03003	0.03045								
(ub)	0.02596	0.02847	0.02963	0.03019	0.03051								
r.e.	0.001496	0.001318	0.001286	0.001281	0.001279								
\(P(W_y > b)/P(W > b) \)	1.68266	1.68517	1.69068	1.67751	1.67821								
diff w.r.t. last column	-0.00045	-0.000696	-0.000247	0.000071	0.000000								
abs diff	0.00045	0.000696	0.000247	0.000071	0.000000								

\[y = b/M \quad \text{for} \quad \rho \text{ and } \theta \]
Table 6 Simulation estimates of $\hat{p} \equiv P(W_y > b) \equiv A_y e^{-\theta^* b}$ in the $(H_2)_t/M/1$ model for $y = 0.0$ and $y = 0.5$ as a function of $1 - \rho$ with base parameter triple $(\beta, \gamma, b) = (1, 2.5, 4)$ in (23) based on 40,000 replications.

<table>
<thead>
<tr>
<th>$1 - \rho$</th>
<th>0.16</th>
<th>0.08</th>
<th>0.04</th>
<th>0.02</th>
<th>0.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\theta^*(\rho)$</td>
<td>0.113</td>
<td>0.0548</td>
<td>0.0270</td>
<td>0.0134</td>
<td>0.00669</td>
</tr>
<tr>
<td>p for $y = 0.0$</td>
<td>0.041099</td>
<td>0.047976</td>
<td>0.051467</td>
<td>0.053499</td>
<td>0.054240</td>
</tr>
<tr>
<td>$e^{-\theta^* b}$</td>
<td>0.5593</td>
<td>0.6645</td>
<td>0.6670</td>
<td>0.6682</td>
<td>0.6690</td>
</tr>
<tr>
<td>A_y</td>
<td>0.693</td>
<td>0.744</td>
<td>0.768</td>
<td>0.784</td>
<td>0.788</td>
</tr>
<tr>
<td>A_y LB in (37)</td>
<td>0.504</td>
<td>0.546</td>
<td>0.567</td>
<td>0.577</td>
<td>0.582</td>
</tr>
<tr>
<td>A_y UB in (37)</td>
<td>0.887</td>
<td>0.945</td>
<td>0.973</td>
<td>0.987</td>
<td>0.993</td>
</tr>
<tr>
<td>s.e.</td>
<td>4.62E-05</td>
<td>4.68E-05</td>
<td>4.82E-05</td>
<td>1.72E-04</td>
<td>4.96E-05</td>
</tr>
<tr>
<td>95% CI (lb)</td>
<td>0.04119</td>
<td>0.04807</td>
<td>0.05156</td>
<td>0.05316</td>
<td>0.05414</td>
</tr>
<tr>
<td>(ub)</td>
<td>0.04119</td>
<td>0.04807</td>
<td>0.05156</td>
<td>0.05316</td>
<td>0.05414</td>
</tr>
<tr>
<td>A_y / ρ</td>
<td>0.82476</td>
<td>0.80897</td>
<td>0.80027</td>
<td>0.79995</td>
<td>0.79559</td>
</tr>
<tr>
<td>diff</td>
<td>-0.02916</td>
<td>-0.01337</td>
<td>-0.00349</td>
<td>-0.00169</td>
<td>0.00000</td>
</tr>
<tr>
<td>abs diff</td>
<td>0.02916</td>
<td>0.01337</td>
<td>0.00349</td>
<td>0.00169</td>
<td>0.00000</td>
</tr>
<tr>
<td>p for $y = 0.5$</td>
<td>0.075260</td>
<td>0.086414</td>
<td>0.092196</td>
<td>0.09480</td>
<td>0.09633</td>
</tr>
<tr>
<td>$e^{-\theta^* b}$</td>
<td>0.5053</td>
<td>0.6532</td>
<td>0.6349</td>
<td>0.60169</td>
<td>0.00000</td>
</tr>
<tr>
<td>A_y</td>
<td>1.269</td>
<td>1.341</td>
<td>1.376</td>
<td>1.394</td>
<td>1.401</td>
</tr>
<tr>
<td>A_y LB in (37)</td>
<td>0.887</td>
<td>0.945</td>
<td>0.973</td>
<td>0.987</td>
<td>0.993</td>
</tr>
<tr>
<td>A_y UB in (37)</td>
<td>1.561</td>
<td>1.635</td>
<td>1.671</td>
<td>1.688</td>
<td>1.696</td>
</tr>
<tr>
<td>s.e.</td>
<td>8.03E-05</td>
<td>7.92E-05</td>
<td>8.02E-05</td>
<td>8.13E-04</td>
<td>8.25E-05</td>
</tr>
<tr>
<td>95% CI (lb)</td>
<td>0.07510</td>
<td>0.08626</td>
<td>0.09204</td>
<td>0.09489</td>
<td>0.09633</td>
</tr>
<tr>
<td>(ub)</td>
<td>0.07510</td>
<td>0.08626</td>
<td>0.09204</td>
<td>0.09489</td>
<td>0.09633</td>
</tr>
<tr>
<td>A_y / ρ</td>
<td>1.51029</td>
<td>1.45708</td>
<td>1.43357</td>
<td>1.42285</td>
<td>1.41532</td>
</tr>
<tr>
<td>diff</td>
<td>-0.09497</td>
<td>-0.04176</td>
<td>-0.00467</td>
<td>-0.00436</td>
<td>0.00000</td>
</tr>
<tr>
<td>abs diff</td>
<td>0.09497</td>
<td>0.04176</td>
<td>0.00467</td>
<td>0.00436</td>
<td>0.00000</td>
</tr>
</tbody>
</table>

of the table. The consistent sign in Tables 5 and 6 show that the two cases $M_t/H_2/1$ and $(H_2)_t/M/1$ indeed serve as one-sided bounds on RPBM, as suggested by Corollary 5.

Tables 4, 5 and 6 show that the bounds A_y^- and A_y^+ in (37) are not too close, and thus not good approximations for the actual A_y. Experiments show that the average of the two bounds is not a consistently good approximation for A_y either.

Simulation results over a wide range of y show that $P(W_y > b)$ consistently increases from a minimum at $y = 0$ to a maximum at $y = 0.5$ and then decreases to back to the minimum at $y = 1$, with The values for $y = 1/4$ and $y = 3/4$ being approximately equal to $P(W > b)$. It remains to establish theoretical supporting results.
6.2. Estimating the Moments of W_y

We now apply the extension of the algorithm in §5.4 to estimate the first two moments of W_y, reporting the estimated mean and standard deviation. In Table 7 we first show preliminary results for the stationary $M/M/1$ model, so that we can judge the algorithm against known exact results. For ease of comparison, we show the corresponding known exact values for $P(W > 0)$, $E[W]$, $E[W^2]$ and $SD(W)$. The first section of Table 7 with three rows shows the algorithm parameters. The final seven rows of Table 7 are included to show alternatives ways of scaling aimed at achieving stable values across all values of $1 - \rho$. In this case, knowing that W has an exponential distribution except for an atom of mass $1 - \rho$ at the origin, we are not surprised to see that the final two rows provide the best scaling. We will use those rows in the following tables for time-varying arrival-rate functions.

<table>
<thead>
<tr>
<th>$1 - \rho$</th>
<th>0.16</th>
<th>0.08</th>
<th>0.04</th>
<th>0.02</th>
<th>0.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>n_s in (57)</td>
<td>40,000</td>
<td>40,000</td>
<td>40,000</td>
<td>40,000</td>
<td>40,000</td>
</tr>
<tr>
<td>δ in (57)</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>largest b</td>
<td>41</td>
<td>86</td>
<td>173</td>
<td>345</td>
<td>691</td>
</tr>
<tr>
<td>$P(W > 0)$</td>
<td>0.8396</td>
<td>0.9201</td>
<td>0.9601</td>
<td>0.9799</td>
<td>0.9900</td>
</tr>
<tr>
<td>exact</td>
<td>0.8400</td>
<td>0.9200</td>
<td>0.9600</td>
<td>0.9800</td>
<td>0.9900</td>
</tr>
<tr>
<td>$%95$ CI of $P(W > 0)$</td>
<td>(0.8383, 0.8410)</td>
<td>(0.919, 0.921)</td>
<td>(0.9598, 0.9605)</td>
<td>(0.9797, 0.9801)</td>
<td>(0.9899, 0.9901)</td>
</tr>
<tr>
<td>$E[W]$</td>
<td>5.249</td>
<td>11.499</td>
<td>23.999</td>
<td>49.000</td>
<td>99.000</td>
</tr>
<tr>
<td>exact</td>
<td>5.250</td>
<td>11.500</td>
<td>24.000</td>
<td>49.000</td>
<td>99.000</td>
</tr>
<tr>
<td>$E[W^2]$</td>
<td>65.624</td>
<td>287.494</td>
<td>1199.982</td>
<td>4899.957</td>
<td>19,800.03</td>
</tr>
<tr>
<td>exact</td>
<td>65.625</td>
<td>287.500</td>
<td>1200.000</td>
<td>4900.000</td>
<td>19,800.00</td>
</tr>
<tr>
<td>$%95$ CI of $E[W^2]$</td>
<td>(65.595, 65.654)</td>
<td>(287.449, 287.540)</td>
<td>(1199.92, 1200.05)</td>
<td>(4899.86, 4900.05)</td>
<td>(19,799.89, 19,800.17)</td>
</tr>
</tbody>
</table>

Tables 8 and 9 show corresponding estimates of the time varying mean $E[W_y]$ and standard deviation $SD(W_y)$ for the special case of $y = 0.5$ for associated $M_t/1$ model with arrival-rate function in (4) for base parameter pairs $(\beta, \gamma) = (1, 2.5)$ and $(\beta, \gamma) = (4, 2.5)$ using the scaling convention in (23). Both have cycle length $2\pi/\gamma$, which equals...
6.28/0.1 = 62.8 for $\rho = 0.8$. The higher relative amplitude in Table 9 leads to much larger mean values at $y = 0.5$, which tends to produce the largest values in the cycle. As can be seen from the online supplement, much lower values occur for $y = 0$, which tends to produce the least values.

Table 8 Estimated mean $E[W_y]$ and standard deviation $SD(W_y)$ as a function of $1 - \rho$ for five cases of the $M_1/M/1$ queue at $y = 0.5$: $\mu = 1, \lambda = \rho$ and base parameter pair $(\beta, \gamma) = (1,2,5)$

<table>
<thead>
<tr>
<th>$1 - \rho$</th>
<th>0.10</th>
<th>0.08</th>
<th>0.04</th>
<th>0.02</th>
<th>0.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>n_1 in (57)</td>
<td>40.000</td>
<td>40.000</td>
<td>40.000</td>
<td>40.000</td>
<td>40.000</td>
</tr>
<tr>
<td>δ in (57)</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>largest b</td>
<td>41</td>
<td>86</td>
<td>173</td>
<td>345</td>
<td>691</td>
</tr>
<tr>
<td>$P(W_y > 0)$</td>
<td>0.8801</td>
<td>0.9411</td>
<td>0.9714</td>
<td>0.9851</td>
<td>0.9930</td>
</tr>
<tr>
<td>s.e. of $P(W_y > 0)$</td>
<td>9.85E-04</td>
<td>6.54E-04</td>
<td>4.51E-04</td>
<td>2.92E-04</td>
<td>2.19E-04</td>
</tr>
<tr>
<td>std of $E[W_y]$</td>
<td>4.42E-03</td>
<td>1.20E-02</td>
<td>2.36E-02</td>
<td>4.69E-02</td>
<td>9.30E-02</td>
</tr>
<tr>
<td>$95%$ CI of $E[W_y]$</td>
<td>[0.8792, 0.8820]</td>
<td>[0.9309, 0.9424]</td>
<td>[0.9705, 0.9723]</td>
<td>[0.9845, 0.9856]</td>
<td>[0.9926, 0.9934]</td>
</tr>
<tr>
<td>$E[W_y]/[W_y > 0]$</td>
<td>7.771</td>
<td>15.860</td>
<td>32.113</td>
<td>64.632</td>
<td>129.315</td>
</tr>
<tr>
<td>$95%$ CI of $E[W_y]/[W_y > 0]$</td>
<td>[7.740, 7.808]</td>
<td>[15.814, 15.907]</td>
<td>[32.036, 32.189]</td>
<td>[64.501, 64.763]</td>
<td>[129.075, 129.554]</td>
</tr>
<tr>
<td>$E[W_y^2]$</td>
<td>97.507</td>
<td>427.685</td>
<td>1795.344</td>
<td>7344.665</td>
<td>29673.77</td>
</tr>
<tr>
<td>std of $E[W_y^2]$</td>
<td>7.81E-02</td>
<td>0.302</td>
<td>1.207</td>
<td>4.829</td>
<td>19.314</td>
</tr>
<tr>
<td>$95%$ CI of $E[W_y^2]$</td>
<td>[96.900, 97.21]</td>
<td>[427.090, 428.28]</td>
<td>[1793.0, 1797.7]</td>
<td>[7335.2, 7354.1]</td>
<td>[29636, 29712]</td>
</tr>
</tbody>
</table>

Table 9 Estimated mean $E[W_y]$ and standard deviation $SD(W_y)$ as a function of $1 - \rho$ for five cases of the $M_1/M/1$ queue at $y = 0.5$: $\mu = 1, \lambda = \rho$ and base parameter pair $(\beta, \gamma) = (4,2,5)$ having larger relative amplitude

<table>
<thead>
<tr>
<th>$1 - \rho$</th>
<th>0.16</th>
<th>0.08</th>
<th>0.04</th>
<th>0.02</th>
<th>0.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>n_1 in (57)</td>
<td>40.000</td>
<td>40.000</td>
<td>40.000</td>
<td>40.000</td>
<td>40.000</td>
</tr>
<tr>
<td>δ in (57)</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>largest b</td>
<td>41</td>
<td>86</td>
<td>173</td>
<td>345</td>
<td>691</td>
</tr>
<tr>
<td>$P(W_y > 0)$</td>
<td>0.9728</td>
<td>0.9883</td>
<td>0.9967</td>
<td>0.9995</td>
<td>0.9993</td>
</tr>
<tr>
<td>s.e. of $P(W_y > 0)$</td>
<td>3.61E-03</td>
<td>2.69E-03</td>
<td>2.05E-03</td>
<td>1.16E-03</td>
<td>8.52E-04</td>
</tr>
<tr>
<td>$95%$ CI of $P(W_y > 0)$</td>
<td>[0.9657, 0.9799]</td>
<td>[0.9831, 0.9936]</td>
<td>[0.9927, 1.0000]</td>
<td>[0.9943, 0.9988]</td>
<td>[0.9976, 1.0000]</td>
</tr>
<tr>
<td>$E[W_y]$</td>
<td>15.148</td>
<td>33.583</td>
<td>70.677</td>
<td>145.183</td>
<td>294.222</td>
</tr>
<tr>
<td>std of $E[W_y]$</td>
<td>5.58E-02</td>
<td>1.13E-01</td>
<td>2.27E-01</td>
<td>4.59E-01</td>
<td>9.15E-01</td>
</tr>
<tr>
<td>$95%$ CI of $E[W_y]$</td>
<td>[15.04, 15.26]</td>
<td>[33.36, 33.81]</td>
<td>[70.23, 71.12]</td>
<td>[144.3, 146.1]</td>
<td>[292.4, 296.0]</td>
</tr>
<tr>
<td>$E[W_y^2]$</td>
<td>331.868</td>
<td>1528.127</td>
<td>6547.951</td>
<td>27092.17</td>
<td>110239.9</td>
</tr>
<tr>
<td>std of $E[W_y^2]$</td>
<td>1.023</td>
<td>4.263</td>
<td>17.227</td>
<td>69.632</td>
<td>178.75</td>
</tr>
<tr>
<td>$95%$ CI of $E[W_y^2]$</td>
<td>[329.9, 333.9]</td>
<td>[1519.8, 1536.5]</td>
<td>[6514, 6582]</td>
<td>[26953, 27228]</td>
<td>[109691, 110787]</td>
</tr>
<tr>
<td>$SD[W_y]$</td>
<td>10.119</td>
<td>20.007</td>
<td>39.405</td>
<td>77.551</td>
<td>153.861</td>
</tr>
<tr>
<td>$P(W_y > 0)/\rho$</td>
<td>1.1301</td>
<td>1.1395</td>
<td>1.1433</td>
<td>1.1452</td>
<td>1.1472</td>
</tr>
<tr>
<td>$E(W_y)$</td>
<td>6.42E-03</td>
<td>1.20E-02</td>
<td>2.36E-02</td>
<td>4.69E-02</td>
<td>9.30E-02</td>
</tr>
<tr>
<td>$E(W_y^2)$</td>
<td>6.839</td>
<td>14.927</td>
<td>32.113</td>
<td>64.632</td>
<td>129.315</td>
</tr>
<tr>
<td>$SD[W_y]$</td>
<td>7.771</td>
<td>15.860</td>
<td>32.113</td>
<td>64.632</td>
<td>129.315</td>
</tr>
<tr>
<td>$SD[W_y^2]$</td>
<td>1.1301</td>
<td>1.1395</td>
<td>1.1433</td>
<td>1.1452</td>
<td>1.1472</td>
</tr>
<tr>
<td>$E(W_y^2)$</td>
<td>7.771</td>
<td>15.860</td>
<td>32.113</td>
<td>64.632</td>
<td>129.315</td>
</tr>
<tr>
<td>$SD[W_y^2]$</td>
<td>7.771</td>
<td>15.860</td>
<td>32.113</td>
<td>64.632</td>
<td>129.315</td>
</tr>
</tbody>
</table>

Finally, Table 10 shows estimates of the time varying mean $E[W_y]$ and standard deviation $SD(W_y)$ for the special case of $y = 0.5$ for associated $(H_2)_c/M/1$ model with arrival-rate function in (4) for base parameter pairs $(\beta, \gamma) = (1,2,5)$, but here we let δ increase as $1 - \rho$ decreases. Table 10 shows that the precision remains good for all ρ.
Table 10 Estimated mean $E[W_y]$ and standard deviation $SD(W_y)$ as a function of $1 - \rho$ for five cases of the $(H_2)_1/M/1$ queue at $y = 0.5$: $\mu = 1, \bar{\lambda} = \rho$ and base parameter pair $(\beta, \gamma) = (1, 2.5)$.

<table>
<thead>
<tr>
<th>$1 - \rho$</th>
<th>$\theta^*(\rho)$</th>
<th>ρ</th>
<th>δ</th>
<th>δ</th>
<th>δ</th>
<th>δ</th>
<th>δ</th>
<th>δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.16</td>
<td>0.08</td>
<td>0.04</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.113</td>
<td>0.0548</td>
<td>0.0270</td>
<td>0.004</td>
<td>0.008</td>
<td>0.016</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40,000</td>
<td>40,000</td>
<td>40,000</td>
<td>40,000</td>
<td>40,000</td>
<td>40,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>86</td>
<td>173</td>
<td>345</td>
<td>691</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$P(W_y > 0)$ | 0.9123 | 0.9576 | 0.9882 | 0.9897 | 0.9950 |
%95 CI of $P(W_y > 0)$ | [0.9019, 0.9136] | [0.9568, 0.9584] | [0.9796, 0.9807] | [0.9894, 0.9901] | [0.9948, 0.9953] |
$E[W_y]$ | 9.615 | 20.988 | 43.720 | 89.079 | 180.034 |
$\text{std of } E[W_y]$ | 5.76E-03 | 1.07E-02 | 2.07E-02 | 4.07E-02 | 8.15E-02 |
%95 CI of $E[W_y]$ | [9.604, 9.626] | [20.97, 21.01] | [43.68, 43.76] | [80.00, 89.16] | [179.87, 180.19] |
$E[W_Y^2]$ | 185.574 | 836.287 | 3534.26 | 14.5117 | 58.8342 |
$\text{std of } E[W_Y^2]$ | 9.24E-02 | 0.362 | 1.441 | 5.761 | 23.019 |
%95 CI of $E[W_Y^2]$ | [9.239, 9.156] | [835.58, 837.00] | [3531.4, 3537.1] | [14.500, 14.523] | [58.789, 58.879] |
$P(W_y > 0)/\rho$ | 1.0860 | 1.0409 | 1.0210 | 1.0099 | 1.0051 |
$(1 - \rho)E[W_y]$ | 1.5384 | 1.6790 | 1.7488 | 1.7816 | 1.8003 |
$(1 - \rho)SD[W_y]$ | 1.5400 | 1.5916 | 1.6114 | 1.6219 | 1.6255 |
$(1 - \rho)E[W_Y^2]/\rho$ | 1.8314 | 1.8250 | 1.8216 | 1.8179 | 1.8185 |
$(1 - \rho)SD[W_Y^2]/\rho$ | 1.2970 | 1.4643 | 1.5469 | 1.5895 | 1.6092 |
$(1 - \rho)E[W_y|W_y > 0]$ | 1.6864 | 1.7533 | 1.7841 | 1.8001 | 1.8093 |
$(1 - \rho)SD[W_y|W_y > 0]$ | 1.5375 | 1.5859 | 1.6081 | 1.6201 | 1.6245 |

7. Conclusions

We have developed a new algorithm to calculate the distribution of the periodic steady-state remaining workload W_y, at time y within a periodic cycle of length c, $0 \leq y < 1$, in a general $GI_t/GI/1$ single-server queue with periodic arrival-rate function. The key model assumption is the representation in (1) of the arrival process as a time-transformation of a rate-1 process. The algorithm is based on the new representation of W_y in (2) derived in §1.1 and §2. In §5 we developed an algorithm for computing the exact tail probabilities $P(W_y > b)$ in the $GI_t/GI/1$ model based on the established rare-event simulation algorithm for the associated stationary $GI/GI/1$ model. That connection is supported by the close relation between the two models, established in §4.

We also have shown that the algorithm can be applied together with the heavy-traffic FCLT in Whitt (2014) reviewed in §3 to also calculate the periodic steady-state distribution and moments of reflected periodic Brownian motion (RPBM). In addition, the algorithm can be applied to approximate the tail probabilities in the more general $G_t/G_t/1$ model by choosing special parameters (the squared coefficients of variation (scv) of interrenewal times) in the $GI_t/GI/1$ model to insure that the two systems obey the same heavy-traffic FCLT.

We have verified the effectiveness of the algorithm for $GI_t/GI/1$ queues and $RPBM$ by conducted extensive simulation experiments for the $GI_t/GI/1$ model with sinusoidal
arrival rate in §1.3 and a range of traffic intensities. Some of these are reported in §6 and in the online supplement Ma and Whitt (2016). It remains to investigate the algorithm for $G_t/G/1$ queues more general than $GI_t/GI/1$.

Acknowledgments
We thank Wei You and anonymous referees for carefully reading our paper and NSF (CMMI 1265070 and 1634133) for research support.

References

